
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

- �subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the University’s 
Director of Copyright Services

sydney.edu.au/copyright



Learning to Soar: Exploration

Strategies in Reinforcement Learning

for Resource-Constrained Missions

Jen Jen Chung

A thesis submitted in fulfillment

of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

March 2014





Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of the University or other institute of higher
learning, except where due acknowledgement has been made in the text.

Jen Jen Chung

31 March 2014



ii Declaration



Abstract
Jen Jen Chung Doctor of Philosophy
The University of Sydney March 2014

Learning to Soar: Exploration
Strategies in Reinforcement Learning
for Resource-Constrained Missions

An unpowered aerial glider learning to soar in a wind field presents a new manifes-
tation of the exploration-exploitation trade-off. The glider agent begins with limited
energy and must explore its state-action space to learn how to perform energy-gaining
flight trajectories. However, most actions cause the glider to lose energy, thereby re-
ducing its available flight time. This coupling, between what energy gain rewards are
observed and the glider’s ability to continue to make new observations to improve its
policy, presents new challenges for developing effective exploration strategies that can
cater for resource limitations. This thesis proposes a directed, adaptive and nonmy-
opic exploration strategy in a temporal difference reinforcement learning framework
for tackling the resource-constrained exploration-exploitation task of this autonomous
soaring problem.

The complete learning algorithm is developed in a SARSA(λ) framework, which uses
a Gaussian process with a squared exponential covariance function to approximate
the value function. The three key contributions of this thesis form the proposed
exploration-exploitation strategy. Firstly, a new information measure is derived from
the change in the variance volume surrounding the Gaussian process estimate. This
measure of information gain is used to define the exploration reward of an observa-
tion. An analytical solution to finding the variance volume is also presented and this
result can be extended to any choice of covariance function that satisfies some simple



iv Abstract

integrability properties. Secondly, a nonmyopic information value is presented that
captures both the immediate exploration reward due to taking an action as well as
future exploration opportunities that result. A rollout mechanism is introduced to
generate the set of reachable state-actions and the discounted information gain of
these potential observations are used to compute the information value. Finally, this
information value is combined with the state-action value of SARSA(λ) through a dy-
namic weighting factor to produce an exploration-exploitation management scheme
for resource-constrained learning systems. The proposed learning strategy encour-
ages either exploratory or exploitative behaviour depending on the requirements of
the learning task and the available resources.

While the motivating problem behind this work is that of autonomous soaring, the
presented exploration strategies can be applied across various learning and informa-
tion gain tasks. The performance of the learning algorithms presented in this thesis is
compared against other SARSA(λ) methods on the standard benchmarking problems,
puddle world and cart pole, as well as on a battery cycling problem and the specific
resource-constrained autonomous soaring problem. Results show that actively direct-
ing exploration to regions of the state-action space with high uncertainty improves
the rate of learning, while dynamic management of the exploration-exploitation be-
haviour according to the available resources produces prudent learning behaviour in
resource-constrained systems.



Acknowledgements

To my supervisors, Salah and Nick: thank you for all your guidance, thank you for
your advice, and thank you for your criticisms. Thank you for taking me on as a
student and thank you for your high expectations. I don’t know that this is exactly
what you had in mind when we first started working on it four years ago—it seemed
to pick up momentum all on its own, so thank you for helping me steer it all the way
here.

To the aerial robotics group at CATEC, Aníbal, Antidio and Miguel Ángel: thank
you for letting me work in your amazing facilities, thank you for trusting me with your
very new and very expensive equipment, and thank you for all the time and support
you provided. To all the wonderful people at CATEC: thank you for showing me
your beautiful city, thank you for teaching me some very useful Spanish, and thank
you for making my time in Seville so memorable. You are a great group of people to
work and hang out with and hopefully there will be more adventures in the future.

To the members of the LEAF group: thank you for letting me build planes with you
all, thank you for all the fun times in the field lab and at Marulan, and I’m really,
truly sorry for crashing that Skywalker.

To Zhe and John: thank you for all your technical support, thank you for helping me
solve all the dumb little computer problems I had (especially when you really ought
to have been working on your own theses), thank you for introducing me to the joys
of Linux and cloud computing, and most of all, thank you for your patience. It would
have been impossible to generate all the results in this thesis without your help.

To the amazing group of people at ACFR: thank you for creating such an incredible
community to work in, thank you sharing coffee and Tim Tams with me, and thank
you for teaching me so much more about the world. Whether it be about single malt
whisky, aquarium maintenance, the effect of vitamin deficiencies or real-time strategy
computer games; it is surprising the amount of information one seems to absorb just
by being here. You are all such diverse, talented and engaged people; it has been a
joy to work in your company.

To my family: thank you for your unwavering support, thank you for all the packed
lunches, and thank you most of all for always reminding me that there is life outside
of the thesis bubble.



For my family



Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Publications xi

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Nomenclature xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Problem and Related Fields . . . . . . . . . . . . . . . . . . . 1

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



viii CONTENTS

2 Background 7

2.1 Autonomous Soaring . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 A brief history of soaring research . . . . . . . . . . . . . . . . 8

2.1.2 Methods of autonomous soaring . . . . . . . . . . . . . . . . . 11

2.1.3 The exploration-exploitation trade-off . . . . . . . . . . . . . . 13

2.2 Exploration and Exploitation as a Reinforcement Learning Problem . 15

2.2.1 Sequential design and the bandit problem . . . . . . . . . . . 17

2.2.2 Temporal difference reinforcement learning . . . . . . . . . . . 19

2.2.3 Exploration and active learning . . . . . . . . . . . . . . . . . 21

2.3 Information-Based Exploration . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Existing information measures . . . . . . . . . . . . . . . . . . 23

2.3.2 Adaptive exploration . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Exploration-exploitation trade-offs in robotics . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Gaussian Processes in Reinforcement Learning 27

3.1 SARSA(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Value Function Approximation . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Gaussian Process Modelling . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Squared exponential covariance function . . . . . . . . . . . . 37

3.3.2 Sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Informative Exploration 41

4.1 Existing Exploration Strategies . . . . . . . . . . . . . . . . . . . . . 42

4.2 Information Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Gaussian process variance volume . . . . . . . . . . . . . . . . 44

4.2.2 Comparison to other information measures . . . . . . . . . . . 46

4.3 Information Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS ix

4.3.1 Rollout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Objective Function Trade-off . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Time-step-dependent information weighting . . . . . . . . . . 54

4.4.2 Greedy rollout . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 iGP-SARSA(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Benchmarking Experiments 59

5.1 Puddle World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Cart Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Battery Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 2D 3DOF Soaring Glider . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Resource-Constrained Learning for Autonomous Soaring 89

6.1 Resource Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 eGP-SARSA(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Computational complexity . . . . . . . . . . . . . . . . . . . . 93

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



x CONTENTS

7 Soaring Simulation Experiments 97

7.1 2D 3DOF Soaring Glider . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 3D 6DOF Soaring Glider . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Conclusion and Future Research 119

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

A Simulation Specifications 135

A.1 Puddle World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Cart Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.3 Battery Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.4 2D 3DOF Soaring Glider . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.5 3D 6DOF Soaring Glider . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Derivation of the GP Variance Volume 141



List of Publications

J. J. Chung, N. R. J. Lawrance and S. Sukkarieh. Learning to Soar: Resource-
Constrained Exploration in Reinforcement Learning. International Journal of Robotics
Research, 2014. Submitted.

J. J. Chung, N. R. J. Lawrance and S. Sukkarieh. Gaussian processes for informa-
tive exploration in reinforcement learning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2618–2624, 2013.

J. J. Chung, N. R. J. Lawrance and S. Sukkarieh. Resource constrained exploration
in reinforcement learning. In Proceedings of the 2013 Robotics Science and Systems
Workshop on Robotic Exploration, Monitoring, and Information Collection: Nonpara-
metric Modeling, Information-Based Control, and Planning under Uncertainty, pages
1–6, 2013.

J. J. Chung, M. Á. Trujillo Soto and S. Sukkarieh. A new utility function for smooth
transition between exploration and exploitation of a wind energy field. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2012), pages 4999–5005, 2012.

J. J. Chung and S. Sukkarieh. High level risk analysis and decision making regarding
the prediction of thermal lift locations for an autonomous Mars glider. In Proceedings
of the 10th Australian Space Science Conference, pages 237–248, 2010.

N. R. J. Lawrance, J. J. Acevedo, J. J. Chung, J. L. Nguyen, D. Wilson and S.
Sukkarieh. Long Endurance Autonomous Flight for Unmanned Aerial Vehicles. On-
era Aerospace Lab Journal, 2014. Accepted for publication.

http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=960
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=960
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=1004
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=1004
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=894
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=894
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=786
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=786


xii List of Publications

G. Brooker, J. Randle, M. E. Attia, Z. Xu, T. Abuhashim, A. Kassir, J. J. Chung,
S. Sukkarieh and N. Tahir. Strobe based sensor for tracking multiple locusts from a
UAV. In Proceedings of the Progress in Radar Research, 2012.

G. Brooker, J. Randle, M. E. Attia, Z. Xu, T. Abuhashim, A. Kassir, J. J. Chung, S.
Sukkarieh and N. Tahir. First airborne trial of a UAV based optical locust tracker. In
Proceedings of the Australasian Conference on Robotics and Automation, pages 1–9,
2011.

http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=947
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=947
http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=839


List of Figures

2.1 Rayleigh cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Gaussian thermal model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Toroidal thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Replace trace SARSA(λ) backup diagram . . . . . . . . . . . . . . . . 30

3.2 Tile coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 GP variance bounding volume . . . . . . . . . . . . . . . . . . . . . . 45

4.2 GP information measure case study . . . . . . . . . . . . . . . . . . . 47

4.3 Comparison of uncertainty measures . . . . . . . . . . . . . . . . . . 48

4.4 Comparison of information gain measures . . . . . . . . . . . . . . . . 49

4.5 Information gain rollout diagram . . . . . . . . . . . . . . . . . . . . 51

4.6 Time-step-dependent weighting function . . . . . . . . . . . . . . . . 54

4.7 Greedy rollout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Puddle World: Cost map . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Puddle World: Simulation results . . . . . . . . . . . . . . . . . . . . 62

5.3 Puddle World: Learnt value functions . . . . . . . . . . . . . . . . . . 63

5.4 Cart Pole: Problem setup . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Cart Pole: Simulation results . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Battery Cycling: Charging and discharging profiles . . . . . . . . . . 71

5.7 Battery Cycling: Cumulative and average rewards . . . . . . . . . . . 72

5.8 Battery Cycling: Learnt value functions . . . . . . . . . . . . . . . . . 73



xiv LIST OF FIGURES

5.9 2D Glider: Wind energy field . . . . . . . . . . . . . . . . . . . . . . 75

5.10 2D Glider: State transition . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 2D Glider: Flight paths . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.12 2D Glider: Averaged trial results . . . . . . . . . . . . . . . . . . . . 80

5.13 2D Glider: Individual trial results . . . . . . . . . . . . . . . . . . . . 82

5.14 2D Glider: Averaged trial results for varying τr . . . . . . . . . . . . . 83

5.15 2D Glider: Averaged trial results for different information gain measures 85

6.1 Resource-dependent weighting function . . . . . . . . . . . . . . . . . 92

7.1 2D Glider: Averaged results including eGP-SARSA(λ) . . . . . . . . 98

7.2 2D Glider: eGP-SARSA(λ) individual trial results . . . . . . . . . . . 99

7.3 3D Glider: Toroidal thermal wind field . . . . . . . . . . . . . . . . . 102

7.4 3D Glider: Action set . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 3D Glider: Average reward progression . . . . . . . . . . . . . . . . . 107

7.6 3D Glider: Average specific energy gain . . . . . . . . . . . . . . . . . 108

7.7 3D Glider: Total specific energy gain . . . . . . . . . . . . . . . . . . 109

7.8 3D Glider: Cumulative number of steps . . . . . . . . . . . . . . . . . 113

7.9 3D Glider: Learnt value function . . . . . . . . . . . . . . . . . . . . 114

7.10 3D Glider: Evolution of flight paths . . . . . . . . . . . . . . . . . . . 116

7.11 3D Glider: Aerial view of flight paths . . . . . . . . . . . . . . . . . . 117



List of Tables

4.1 Information gain computation times . . . . . . . . . . . . . . . . . . . 50

5.1 Cart Pole: Completed episodes . . . . . . . . . . . . . . . . . . . . . 68

7.1 2D Glider: Successful trials . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 3D Glider: Episode termination statistics . . . . . . . . . . . . . . . . 111

7.3 3D Glider: Number of observations . . . . . . . . . . . . . . . . . . . 112

A.1 Puddle World: Learning parameters . . . . . . . . . . . . . . . . . . . 135

A.2 Cart Pole: Problem constants . . . . . . . . . . . . . . . . . . . . . . 136

A.3 Cart Pole: Learning parameters . . . . . . . . . . . . . . . . . . . . . 136

A.4 Battery Cycling: Learning parameters . . . . . . . . . . . . . . . . . 137

A.5 2D Glider: Learning parameters . . . . . . . . . . . . . . . . . . . . . 138

A.6 3D Glider: Aircraft parameters . . . . . . . . . . . . . . . . . . . . . 139

A.7 3D Glider: Learning parameters . . . . . . . . . . . . . . . . . . . . . 140



xvi LIST OF TABLES



List of Algorithms

1 iGP-SARSA(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2 eGP-SARSA(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xviii LIST OF ALGORITHMS



Nomenclature

Acronyms

DAI Dynamic Allocation Index

DOF Degrees Of Freedom

DP Dynamic Programming

GP Gaussian Process

MC Monte Carlo

MCQ-L Modified Connectionist Q-Learning

MDP Markov Decision Process

RC Remote Controlled

RL Reinforcement Learning

SARSA State-Action-Reward-State-Action

TC Tile Coding

TD Temporal Difference

UAV Unmanned Aerial Vehicle

UCB Upper Confidence Bound

Greek Symbols

α Step size

β Linear independence measure of a GP observation

γ Reward discount factor



xx Nomenclature

γr Rollout discount factor

γthres Rollout discount threshold

δ Temporal difference

∆t Time step

ε Exploration parameter

ε GP training input score

θ Linear value function approximator parameters

λ Eligibility trace decay factor

π Policy

σ2
f GP process variance hyperparameter

σ2
n GP noise variance hyperparameter

τr Exploration value decay parameter

φ Linear function approximator basis functions

ωe Resource-constrained objective function weighting

ωt Time-step-dependent objective function weighting

ψ Heading/bearing

ω SARSA(λ) backup normalisation factor component

Roman Symbols

A Set of actions

a Action

BV GP basis vector set

D Drag

dtherm Distance to thermal centre

dthres Battery cycling discharge reward threshold

E Energy



Nomenclature xxi

e Eligibility trace

F Cart pole input action force

g Gravity

GP Gaussian process

H Differential entropy

h Glider altitude ratio

I Information gain

J Action selection objective function

K GP covariance matrix

k GP covariance function

ktherm Toroidal thermal elliptical factor

L Lift

l GP length scale hyperparameter

lp Length of the pole

ltherm Thermal radius

M Diagonal matrix of squared exponential GP length scales

m Number of tiles

mc Cart mass

mglider Glider mass

mp Pole mass

N Total number of state-action observations

Q State-action value function

R Reward function

R Return

r Reward

Rtherm Toroidal thermal major radius



xxii Nomenclature

S Set of states

s State

T Transition function

V Air-relative velocity

Vbound GP variance volume

ŵ GP observation projection

W Wind energy

wtherm Thermal core velocity

X GP observation set

x State-action observation

y GP value function estimate

z Altitude

Subscripts

a GP variance volume integral lower limit

b GP variance volume integral upper limit

i Time step/GP training input index

j GP training input index

m GP training input dimension index

n Total number of GP training input dimensions

t Time index

u Total number of state dimensions

v Total number of action dimensions



Chapter 1

Introduction

1.1 Motivation

An autonomous, unpowered aerial glider learning to soar in a wind energy field

presents a new manifestation of the exploration-exploitation problem. Soaring is

described as energy-gaining flight whereby particular flight trajectories through a

non-uniform wind field allow the glider platform to gain kinetic and/or potential en-

ergy. With no other means of energy storage, the glider must expend energy to explore

the space for efficient energy-gaining trajectories whilst simultaneously balancing this

against the need to exploit known trajectories to maintain sufficient energy such that

it can continue to explore. Aside from this cyclic dependency between exploration

and exploitation, the problem of learning to soar is particularly challenging due to the

additional constraint of maintaining positive platform energy and altitude throughout

the task.

1.2 Thesis Problem and Related Fields

The soaring problem can be approached in a number of ways, one method involves

learning a model of the wind field and deriving appropriate control actions given



2 Introduction

this model, another is to look purely at the energy gains associated with each glider

wind-relative state-action to learn profitable policies. The former requires the agent

to build a model of the wind field as well as a mapping between the glider actions at

each state in the wind field and the expected energy gain. This has been the approach

of much of the prior research into autonomous soaring, for example, the work by Allen

(2007), Langelaan (2007), Edwards and Silverberg (2010) and Lawrance (2011). The

second method bypasses the need for a wind model and attempts to directly solve

the policy by observing the energy gains for each glider state-action. Furthermore, it

has the additional benefit of being able to adapt to a changing wind field since the

state-action space is measured relative to the wind.

By taking the second approach, this problem can be tackled using reinforcement learn-

ing (RL) techniques, which are designed to train control policies for complex tasks

by observing reward signals due to state-action transitions. Indeed, the exploration-

exploitation trade-off is also a factor that must be considered in many RL meth-

ods. For example, temporal difference (TD) learning algorithms rely on exploration

strategies such as ε-greedy sampling to guarantee accessibility and coverage of the

state-action space. In this way, they are able to build value functions that converge

as each state-action in the space is observed a sufficient number of times. The value

function is used to derive a reward-gaining policy across the entire state space. For

on-policy learning, such as SARSA(λ), deciding when to explore the space for more

information and when to exploit the current policy to gain reward is a matter of

keen interest, particularly when dealing with a resource-constrained problem such as

learning to soar in an unpowered glider.

Under such resourced-constrained learning problems, it is desirable to direct explo-

ration to areas where observations will most improve the value function estimate, and

to adapt the exploration behaviour according to the available resources. For example,

a resource-constrained learning agent should explore more aggressively in unobserved

regions of the state-action space when resource levels are high and exploit the learnt

value function to replenish the resource when levels are low. Existing exploration

strategies have provided exploration rewards based on confidence bounds, such as in



1.3 Thesis Contributions 3

Lai (1987) and Brochu et al. (2010), or other ad-hoc information gain measures like

those of Sutton (1990) and Schmidhuber (1991). These measures are myopic in that

they only consider the information gain of the next observation; furthermore, they

are combined with the state-action value in the action selection objective function in

a fixed manner, that is, the influence of the exploration reward does not adapt to the

current learning conditions.

1.3 Thesis Contributions

This thesis proposes a directed, adaptive and nonmyopic exploration strategy to tackle

the resource-constrained exploration-exploitation task of learning to soar. There are

three key contributions of this thesis that are summarised as follows:

Derivation of a new information measure

The learning algorithms presented in this thesis use a Gaussian process (GP) re-

gression model to approximate the SARSA(λ) value function. The sum of the GP

variance at each state-action across the problem space represents an uncertainty vol-

ume; furthermore, the change in this volume due to taking a new observation can be

used as a measure of the information gain of that observation. This thesis derives

an analytical solution to finding this variance volume for a GP that uses a squared

exponential covariance function. It is also shown that an analytical solution can be

found for general covariance functions that satisfy certain integrability conditions.

Development of a nonmyopic information value

The notion of an information value introduced in this thesis is consistent with the

definition of the state-action value in RL as the discounted sum of future rewards.

However, instead of dealing with state-action rewards, the information value derives

from the information gain rewards of possible future state-action observations. The



4 Introduction

proposed rollout method draws inspiration from the operation of the eligibility trace

in SARSA(λ) and computes a nonmyopic information value as the discounted sum of

future information gain rewards.

An exploration-exploitation management scheme for resource-constrained

learning systems

An unpowered aerial glider learning to soar in a wind field is constrained by the

platform energy, which dictates the available flight time of the glider. Exploitation

of reward gaining state-action trajectories can increase platform energy and thereby

increase flight time, while exploration of the wind field is required to first identify

such reward gaining state-actions and also to continue searching for more efficient

trajectories. Here the state-action value can be seen as analogous to the value of

exploitation and similarly the information value represents the value of exploration.

This thesis presents a method for dynamically managing exploration and exploitation

behaviour by weighting the exploration value in the action selection objective function

according to the current resource level.

1.4 Thesis Structure

The chapters of this thesis build sequentially towards the final exploration-exploitation

learning algorithm that is applied to the resource-constrained problem of an unpow-

ered aerial glider learning to soar in a wind field.

Chapter 2 provides a literature review on the three major research fields from which

this thesis derives: autonomous soaring, RL, and information-based exploration.

Chapter 3 begins with a description of the mathematical framework for SARSA(λ)

RL and outlines techniques for value function approximation. A focused analysis

of GP regression modelling for value function approximation is provided along

with a description of the squared exponential covariance function, which is used

thoughout the thesis. This chapter also provides a discussion on an existing



1.4 Thesis Structure 5

sparsification method that can be used to bound the computation time of the

GP update.

Chapter 4 presents two of the key contributions of this thesis that are required

for defining the exploration value. The proposed GP variance volume informa-

tion measure is introduced in Section 4.2.1 and is compared to other existing

information measures. The rollout mechanism used to compute a nonmyopic

information value is presented in Section 4.3.1 and an adaptation of this is given

in Section 4.4.2 that can reduce the computational complexity of this method.

A dynamic exploration weighting based on the elapsed time steps is described in

Section 4.4.1 before the full (informative) iGP-SARSA(λ) algorithm is presented

in Section 4.5.

Chapter 5 compares the performance of the proposed learning algorithm with ex-

isting RL algorithms on several benchmarking problems, namely: puddle world

and cart pole from the 2005 NIPS RL Benchmarking workshop, and the battery

cycling problem and 2D 3DOF soaring glider problem first presented in Chung

et al. (2013). An analysis of the results discusses the various characteristics

of the proposed iGP-SARSA(λ) algorithm and the problem instances that it is

best suited to tackling.

Chapter 6 addresses the issue of resource-constrained exploration specific to the

problem of an unpowered aerial glider learning to soar in a wind field. The dy-

namic energy and altitude-based exploration strategy presented in this chapter is

incorporated into the learning algorithm to produce the (energy-weighted) eGP-

SARSA(λ) algorithm for autonomous soaring in Section 6.2. A discussion on

the computational complexity of this algorithm is also provided in Section 6.2.1.

Chapter 7 presents simulation results of the proposed iGP- and eGP-SARSA(λ)

learning algorithms as applied to the 2D 3DOF soaring glider problem described

in Section 5.4, as well as for a full 3D 6DOF glider simulator with a single

thermal updraft energy source.

Chapter 8 provides conclusions about the information measure and exploration

http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/


6 Introduction

strategies proposed in this thesis and suggests directions for future research

that can extend the work that has been presented.



Chapter 2

Background

The motivating problem behind this work is the unique exploration-exploitation co-

nundrum faced by an autonomous aerial glider learning to soar in a wind field. Soar-

ing is defined as energy-gaining flight whereby particular flight trajectories through

a wind field allow for energy capture from the wind surpassing the energy loss due

to drag. Successful energy capture is particularly pertinent in the problem of au-

tonomous soaring since the glider is an unpowered aircraft and is typically unable

to store energy in any form other than as gravitational potential energy or kinetic

energy. In recent times there have been studies into the feasibility of regenerative

soaring with dual-role windprops, see Barnes (2006), however this thesis focuses on

soaring without this capability. The soaring task that is addressed in this thesis in-

volves learning a control policy that maps every glider state to a control action. Since

there is no prior knowledge of the energy gain rewards for each possible state-action

pair, extensive exploration of the state-action space is required to learn a good pol-

icy. However, in opposition to an unrestrained style of exploration is the constraint

placed on the problem due to the available platform energy, which restricts the avail-

able flight time. Thus, in the problem of learning to soar, there is a tight coupling

between what energy gain rewards are observed throughout the learning process and

the glider’s ability to continue to make new observations.

In this thesis, autonomous soaring is viewed as a policy learning problem that can



8 Background

be tackled using RL techniques. Indeed, many of the early RL problems such as the

bandit style problems described in Gittins (1979) and Katehakis and Veinott (1987)

recognised the inherent exploration-exploitation trade-off in the problem structure

and developed sampling methods that accounted for both the expected reward as

well as the information that can be obtained from sampling a particular point. This

work grew largely from the field of experimental design, a fine example of this is the

work by Robbins (1952), which presented an early forerunner to the bandit problem.

Research into exploration methodologies in RL has continued to draw inspiration

from the areas of experimental design and information-based exploration.

The following sections provide some background on aerial soaring and the recent in-

terest in autonomous soaring, particularly as an exploration-exploitation problem.

Section 2.2 gives a review of how the RL community has handled the exploration-

exploitation trade-off; and finally, a discussion on the informative exploration tech-

niques used for path planning under uncertainty is given in Section 2.3.

2.1 Autonomous Soaring

2.1.1 A brief history of soaring research

Gliding and soaring flight was first observed in large birds, which were seen to remain

aloft and travel long distances with minimal or no flapping of the wings. In fact,

one of the first contributions towards understanding the mechanics of heavier-than-

air flight was the identification of the aerodynamic forces: lift, drag and weight, by

Cayley (1809, 1810a,b) after observing large birds in gliding flight.

When large birds, that have considerable extent of wing compared with

their weight, have acquired full velocity, it may frequently be observed,

that they extend their wings, and without waving them, continue to skim

for some time in a horizontal path. Cayley (1809)



2.1 Autonomous Soaring 9

Soaring bird flight was first noted by Peal (1880), who observed large birds gaining

altitude while flying in large curves of a spiral that headed downwind.

Firstly they rise by flapping the wings vigorously, and when up some 100

or 200 feet, if there is a breeze, begin to soar in large circular sweeps, rising

10 to 20 feet at each lap, the whole bird being otherwise quite motionless,

and the wings extended rigidly. Peal (1880)

Although what he actually saw was most likely a form of static soaring in a ther-

mal bubble travelling laterally due to the prevailing wind, Peal’s hypothesis of this

behaviour was a basic description of the energy transfers involved in dynamic wind

shear soaring, albeit without consideration of the horizontal wind profile.

I take it the explanation is, that in passing round with the wind, and

slightly falling, great impetus is gained, which is slowed down by turning

to meet and rise on the wind like a kite. Peal (1880)

Drawing from this, Rayleigh (1883) proposed that soaring can be achieved when either

the wind is not horizontal (as in the case for static soaring) or when the horizontal

wind is not uniform, that is, when there is wind shear. Expanding on the latter, he

described the air relative velocity changes for a bird dropping altitude while flying

leeward into a slower horizontal wind shear layer and then turning to rise windward

back into the faster wind shear layer above. Figure 2.1 gives a pictorial description of

dynamic soaring as described by Rayleigh (1883), this energy gaining flight trajectory

was later dubbed the Rayleigh cycle and has remained the basis of our understanding

of dynamic soaring.

The lead up to the 20th century saw many aviation pioneers make significant engi-

neering contributions towards unpowered human flight. Between 1891 and 1896, the

German brothers Otto and Gustav Lilienthal designed, built and flew their hang-

glider-type aircraft, the Derwitzer, in over 2000 successful and well-documented glid-

ing flights, see Lilienthal (1889). In 1896, Octave Chanute designed a biplane hang-

glider based on the Lilienthals’ work and this in turn inspired the Wright brothers’



10 Background

Wind shear profile

Upwind climb

Downwind dive

Figure 2.1: Dynamic soaring in a horizontal wind shear as described by Rayleigh (1883), airspeed is
gained in both the climb and dive segments while groundspeed is maintained.

design of the Wright Glider in 1900. Three years of experimentation and the addition

of a motor and propeller produced the Wright Flyer in which the Wright brothers

achieved the first controlled, powered and sustained heavier-than-air human flight.

The advent of World War I saw interest in soaring flight wane in favour of research

and development into powered flight; however, after the war, the Treaty of Versailles

placed restrictions on the manufacture and use of powered aircraft in Germany, re-

sulting in a renewed interest in soaring that spread throughout Germany, and later,

Europe. Indeed, as described in Shenstone and Scott-Hall (1935), German sailplane

engineering and soaring technology had made remarkable advances all throughout

the 1920s. Most notably, in 1926, the possibility of thermal updraft soaring was dis-

covered, largely by accident, when German sailplane pilot, Max Kegel, was swept up

into a thunderstorm that carried him (safely) to a distance of 54 km; the previous

distance record had been less than half of that since pilots had relied on updrafts

created by local hills to perform ridge soaring and this geographically restricted their

flight zones.

The following years of soaring and glider platform research were driven by thermal

soaring. Platform designs underwent heavy changes to accommodate the manoeu-

vrability required in thermal soaring and new on board instruments, such as the

variometer, were invented to help detect when the glider was in a thermal. Continued



2.1 Autonomous Soaring 11

research into the thermalling behaviour of birds during migration, as in Mackintosh

(1949), provided proof-of-concept that even greater distances in cross-country soaring

could be achieved via thermal hopping, while the work by Cone (1962) studied the

formation and structure of thermal updrafts and began to formalise the mechanics

of thermal soaring. Research into dynamic soaring also experienced something of a

renaissance during the mid-latter half of the 20th century when the flight of the alba-

tross recaptured the attention of ornithologists and aerodynamicists alike, as shown

in the work by Cone (1964), Wood (1972) and Weimerskirch et al. (2000).

Following the development of remote controlled (RC) unmanned gliders and the es-

tablishment of RC cross-country soaring as a competitive hobby-sport, recent years

have seen the focus turn to robotic unmanned aerial vehicles (UAVs) and the prospect

of autonomous soaring for long endurance aerial missions. The following subsections

describe the recent research into the methods of autonomous soaring and the unique

exploration-exploitation trade-off encountered in this problem.

2.1.2 Methods of autonomous soaring

The idea of autonomous soaring is attributed to Wharington (1998), who applied RL

to the design of adaptive control systems for soaring aircraft. The approach taken

in this seminal work was to investigate the feasibility of various techniques (dual

adaptive heuristic critic, neural networks and Q-learning) for learning the optimal

pitch, bank and speed control of a glider. In terms of its optimality measures, this

work drew on conventions established by manned and RC soaring communities, which

for the above cases were defined as maximum range/endurance, maximum vertical

velocity in thermalling, and fastest transit in a sequence of climb-cruise segments using

thermals (speed-to-fly, MacCready (1958)), respectively. Approaching autonomous

soaring as a control problem was a natural extension of the existing literature on

optimal soaring techniques for glider pilots and the major contributions of Wharington

(1998, 2004) were in implementing adaptive algorithms to refine the rules-of-thumb

given by MacCready (1958) and Metzger and Hedrick (1975) for autonomous UAVs.



12 Background

−200

−100

0

100

200

−200

−100

0

100

200
−0.5

0

0.5

1

1.5

2

2.5

X position (m)

Allen Thermal Updraft Model

Y position (m)

V
e

rt
ic

a
l 
w

in
d

 v
e

lo
c
it
y
 (

m
/s

)

Figure 2.2: The thermal model introduced by Allen (2006) models the vertical velocity of each
horizontal cross section of a thermal with a Gaussian function.

In addition to the problem of optimal soaring control for UAVs, researchers became

interested in how to better model and estimate wind features such as wind shear

and thermal updrafts. Early studies made by Allen (2005) modelled thermal updraft

characteristics given surface radiation and weather balloon data taken at Desert Rock,

Nevada, and showed the feasibility of thermal soaring for extending flight duration

for small UAVs. Furthermore, the Allen (2006) Gaussian model shown in Figure 2.2

became a standard model for simulating the vertical velocity of thermal updrafts in

much of the autonomous soaring research that followed.

Real world implementations of autonomous soaring were also achieved during this

time. The first successful autonomous soaring flights were a realisation of the work

by Allen (2005, 2006) and are reported in Allen (2007). These flights were a demon-

stration of the guidance algorithms used for thermal detection and the control algo-

rithms used to exploit thermals for altitude gain. As an improvement to the thermal

localisation used in Allen (2007), an adaptive grid search method was applied in

Edwards (2008) to refine the thermal centre estimation. The algorithm’s capabili-

ties were demonstrated in a cross-country soaring competition in which it competed



2.1 Autonomous Soaring 13

against RC gliders; the autonomous glider placed 3rd overall, flying a course distance

of 63.4 km in 3.5 hrs as reported in Edwards and Silverberg (2010).

Langelaan (2007) continued with the development of complete autonomous soaring

systems by combining estimation and prediction of the wind field with trajectory

planning, decision making and low-level flight control. The point mass model glider

was shown in simulation to successfully utilise ridge soaring to travel from a start

point to a goal point that would, without the aid of soaring, be impossible to reach.

A similar demonstration was given in Lawrance and Sukkarieh (2009); the strip-

method 6DOF flight simulation used in this work was able to model the wind effects

on the scale of the aircraft. The algorithm combined wind estimation and control

for dynamic soaring and was able to perform "energy-neutral trajectories" to reach

specified goal points.

One of the most recent steps in UAV soaring research has been to introduce methods

of handling stochasticity in the wind field. Examples include decaying the expected

power gain across the estimated wind field according to the short term and long

term memory modes defined in Bower et al. (2010), and the use of GP regression

in Lawrance and Sukkarieh (2010, 2011b) to model static or dynamic wind fields,

producing not only an estimate of the wind but also computing the uncertainty as-

sociated with the estimate. At the same time, more sophisticated thermal models

have been introduced that model not only the vertical wind profile, but also the lat-

eral wind velocities and disturbances due to turbulence as surveyed in Bencatel et al.

(2013). 3D wind turbulence was introduced in the thermal model used by Ákos et al.

(2010), while the toroidal thermal model presented by Lawrance (2011) and shown in

Figure 2.3 is one such model that describes the full 3D wind field of a thermal bubble.

2.1.3 The exploration-exploitation trade-off

Flight trajectories for wind field sampling and mapping had been suggested as early as

Allen (2005), however the exploration-exploitation trade-off in the task of autonomous

soaring was only first recognised and addressed in Lawrance and Sukkarieh (2010,



14 Background

−150

−100

−50

0

50

100

150

−100

0

100

−300

−250

−200

−150

−100

−50

0

East (m)

Toroidal Thermal Model

North (m)

D
o

w
n

 (
m

)

Figure 2.3: The toroidal thermal model introduced by Lawrance (2011) considers both the vertical
wind velocity across the thermal as well as the lateral wind velocities, ensuring that the overall
volumetric air flow of the thermal bubble is zero. The vertical wind profile at each horizontal
cross-section of the thermal is that of a sinusoid.

2011a). The problem was broken down thus: at any decision instance, the autonomous

glider had to choose between (a) gathering more wind data to reduce the overall

uncertainty of the wind field model or (b) visiting a location of high expected energy

gain to boost platform energy and extend its flight duration. The difficulty arises in

the fact that in order to continue performing (a), the glider must successfully gain

energy from the wind via (b), and to efficiently gain energy from the wind via (b),

the glider must perform (a) to improve its map of the wind field.

In Lawrance and Sukkarieh (2011a) the exploration-exploitation trade-off was handled

on both the target assignment level and the path planning level. The exploration goal

state was defined as the location of maximum map uncertainty, as measured from the

GP covariance, and included a minimum energy requirement for the glider at that

position. The exploitation goal point was defined as the location of maximum recorded

power gain. The exploration goal state was assigned as the global target as long as the

glider was determined to have sufficient energy to reach the exploration goal, otherwise



2.2 Exploration and Exploitation as a Reinforcement Learning Problem 15

the glider was assigned to the exploitation goal. For travel to the global target, at each

decision instance, the path planning algorithm selected a trajectory segment from a

pool of nominal paths according to a reward function that weighted the optimistic

energy gain, distance to goal, and reduction in map uncertainty expected for each

possible path.

The algorithm presented in Lawrance and Sukkarieh (2011a) directs an unpowered

aircraft to simultaneously map and use the wind field for soaring with a control

strategy that is dependent on the computed reward over a defined time horizon. The

time horizon can become a limitation in this approach since trajectories that generate

higher rewards in the future may be overlooked if they provide low reward within the

planning horizon. If a model of the wind field is only required for computing the

expected rewards when selecting the next set of actions, then an alternative method

can be to model the utility of each state-action pair directly from the observed energy

rewards. This produces a value function that maps the glider states and actions to an

expected return, which represents the discounted sum of all future rewards. In this

way, the value function describes the policy across the entire state space, and actions

chosen according to this policy do not suffer from the myopia that is introduced by a

defined planning horizon. The following section investigates how such value functions

have been used in RL to deal with the exploration-exploitation trade-off.

2.2 Exploration and Exploitation as a Reinforcement

Learning Problem

"Reinforcement learning is about learning from interaction how to behave in order

to achieve a goal," Sutton and Barto (1998); it can be defined as a Markov decision

process (MDP) consisting of:

• a set of states S

• a set of actions A



16 Background

• a (potentially unknown) state transition function T : S,A −→ S ′, which can

be stochastic, and

• a hidden reward function R : S,A,S ′ −→ <.

The RL agent must interact with its environment over a sequence of discrete time

steps to observe reward signals for each state and action. The reward function is

an individual state-action level representation of the overall goal while the return is

a function of future rewards, conventionally the discounted sum of future rewards.

The reward signals are used as the basis for evaluating the expected return for each

state-action and this is stored as a value function from which the policy is derived.

The optimal value function assigns to each state-action the largest expected return

achievable by any policy, and an optimal policy is greedy with respect to the optimal

value function.

Since the purpose of any RL problem is to learn a policy/the optimal policy for

achieving some goal, an integral part of the problem lies in estimating the value func-

tion. Each state-action that is explored provides information to aid estimation while

the estimated value function itself indicates state-action trajectories that are likely to

earn high long term rewards. The exploration-exploitation trade-off is apparent in the

decision of whether to proceed along a known trajectory that has reasonable expected

returns or explore new state-actions in the hopes of finding more efficient/profitable

trajectories. The following subsections are an investigation into the evolution of the

exploration-exploitation trade-off from its beginning in the multi-armed bandit prob-

lem to our current understanding of its role in RL. Supplementary to the following

discussion, readers are directed to the survey of early RL research by Kaelbling et al.

(1996), the required reading textbook by Sutton and Barto (1998), the benchmarking

efforts of Littman et al. (2005), and a recent survey of RL research in robotics by

Kober et al. (2013).



2.2 Exploration and Exploitation as a Reinforcement Learning Problem 17

2.2.1 Sequential design and the bandit problem

The sequential design of experiments is an adequately named method of using prior

observations for choosing what action to take next, that is, where to take future

samples to achieve maximum cumulative reward. As described by Robbins (1952),

"the size and composition of the samples are not fixed in advance but are functions

of the observations themselves". Robbins (1952) describes the problem of how to

draw samples x1, x2, . . . , xn from two unknown populations such that one obtains

the greatest possible expected value of the sum Sn = x1 + . . . + xn. The problem

described encapsulates the exploration-exploitation problem at the heart of all RL

problems; on the one hand, the experimenter/agent can choose to greedily sample

from the population that it currently believes to produce the highest values, while

on the other, it can choose to sample the population with the highest uncertainty to

better characterise the population distribution such that it can make a more informed

decision in future samples. This problem was later dubbed the multi-armed bandit

problem due to analogies with a gambler choosing the next slot machine (one-armed

bandit) to gamble on given its current knowledge of the reward distributions of each

machine.

Apart from defining the problem of sequential design for experiments, two other

concepts were raised in Robbins (1952). One was the problem of optional stopping,

that is, defining when to stop sampling from a population since some hypothesis of

its distribution has become satisfied within some quantifiable bounds, and the other

was the notion of regret as a measure of asymptotic loss per sample "due to ignorance

of the true state of affairs". These ideas are present in the dynamic allocation index

(DAI), or Gittins index, proposed by Gittins and Jones (1974) and Gittins (1979),

which was used for characterising the expected returns from sampling a population.

Given a bandit process, the DAI is intuitively that value λ which makes

one indifferent between accepting an immediate reward of λ and optimally

stopping the bandit process with a residual reward of λ discounted by at

if stopping occurs at time t. Gittins (1979)



18 Background

This "discounted sum of future rewards" method is in many ways similar to the

sequential analysis used in dynamic programming (DP) for solving stochastic optimal

control problems, Bellman (1952).

Bellman (1956) first applied DP to a modified version of the bandit problem where, of

the two possible populations to sample, one had known probabilities of return while

the other had only a priori information on the distribution of the probabilities. It was

shown that by making successive approximations to the expected return after each

observation, the algorithm converged to the expected returns of the optimal policy.

Furthermore, it was suggested that instead of applying value iteration, as was used in

this work, it may be more intuitive to apply policy iteration to solving this problem.

Indeed the notion of value functions and their application in RL derives mainly from

their use in DP.

A point of difference between DP and other forms of RL is that DP assumes full

knowledge of the underlying MDP, which allows updates of the value function to be

performed in sweeps over the entire state space at each time step. However, because

of this, DP suffers from what Bellman (1957) called "the curse of dimensionality",

where the computational requirements increase exponentially as the dimensionality

of the problem increases. One method used to address this is prioritised sweeping,

proposed by Moore and Atkeson (1993), which forms a queue of states to update in

the next sweep and the size of the sweep is determined by a computation budget.

Priority in the queue is given to those transitions that have the highest Bellman

error, which measures the difference between the predicted and actual outcomes.

While unlike the explicit exploration of model-free RL, prioritised sweeping is another

form of the exploration-exploitation trade-off; the goal is to learn the optimal control

strategy, however, given the computation budget, only a limited number of updates

can be performed to add to the overall pool of information used to improve the policy.

Defining a metric that prioritises the most "unexpected" state-action observations

allows the incorporation of the most useful updates in the sweep, thereby improving

the rate of learning.



2.2 Exploration and Exploitation as a Reinforcement Learning Problem 19

2.2.2 Temporal difference reinforcement learning

In contrast to the previous learning techniques that had assigned credit (reinforce-

ment) according to the difference between predicted and actual outcome, TD learning

proposed to assign credit according to differences between temporally successive pre-

dictions. The first use of TD methods for machine learning was in the checker-playing

programme by Samuel (1959). The programme used a scoring function to evaluate

board positions, with each score representing the predicted outcome of the game start-

ing from that position. Thus, the parameters of the scoring function were updated

by the difference between the evaluations of each pair of successive positions occur-

ring in a game. In terms of exploration, the program applied a lookahead method of

variable depth tree search where search depths were limited by certain board condi-

tions. These conditions were specific to the game of checkers and allowed "greater

surveillance of those paths which [offered] better opportunities for gaining or losing

an advantage," Samuel (1959).

The first comprehensive study of TD methods was by Sutton (1988), this work showed

the convergence and optimality of the linear TD(0) solution and also outlined the

generalised TD(λ) method that uses eligibility traces. Convergence proofs for TD(λ)

came later in Dayan (1992). These proofs relied on exploration of the state-action

space as induced by any distribution of starting probabilities over the entire space such

that there are no inaccessible states. This requirement meant that very simple explo-

ration strategies, such as ε-greedy, softmax or randomised/biased intial value function

estimation, could be applied while still guaranteeing convergence. Although the role

of exploration in RL had received considerable attention by Lai (1987), Sutton (1990),

Schmidhuber (1991) and Thrun (1992a,b), much of the theoretical research follow-

ing this was uninterested in investigating more sophisticated exploration strategies.

Instead, effort was directed to understanding the effects of value function approxima-

tion as in Baird (1995), Boyan and Moore (1995) and Sutton (1996), with convergence

proofs for linear function approximators given in Tsitsiklis and Van Roy (1997); there

was also considerable analysis on the effects of the step size and discount parameters

to the learning rate as by Sutton and Singh (1994) and Singh and Sutton (1996).



20 Background

A notable implementation of TD(λ) is the Tesauro (1995) TD-gammon programme,

which used value function approximation with initially random weights and a simple

greedy sampling strategy to learn backgammon strategies from self-play.

Other research at the time also looked at the possibility of using TD methods for

learning control policies. Watkins (1989) developed Q-learning as an off-policy strat-

egy for learning optimal control. By extension from the TD(λ) convergence, it was

shown that Q-learning is exploration insensitive, that is, regardless of the sampling

strategy used during learning, the algorithm is guaranteed to converge to the opti-

mal policy as long as each state-action pair is observed often enough. In Q-learning,

the TD of the value function update is computed between the value of the previous

state-action and the next maximal state-action value,

Qt+1 (st, at) = Qt (st, at) + α

[
rt+1 + γ max

a∈A(st+1)
Qt (st+1, a)−Qt (st, at)

]
. (2.1)

Since Equation (2.1) does not rely on the next actual state-action sampled according

to the sampling policy, Q-learning is considered an off-policy learning technique. An

on-policy version of Q-learning calledModified Connectionist Q-learning was proposed

by Rummery and Niranjan (1994) and was later named SARSA after the algorithm

update procedure (State-Action-Reward-State-Action). The TD used in the SARSA

update is computed between the value of the previous state-action and the value of

the next state-action as determined by the sampling policy,

Qt+1 (st, at) = Qt (st, at) + α [rt+1 + γQt (st+1, at+1)−Qt (st, at)] . (2.2)

Comparison of Equations (2.1) and (2.2) shows that if the greedy action is taken at

each time step, the Q-learning update is identical to the SARSA update.

Conventionally the sampling policy for either TD learning, Q-learning or SARSA de-

rives mainly from the value function estimate with some added randomness to ensure

ergodicity, however explicit exploration terms can be incorporated into the sampling

policy to generate specific exploration behaviours. The following section reviews ex-

isting methods for actively rewarding exploration that reduces the uncertainty of the



2.2 Exploration and Exploitation as a Reinforcement Learning Problem 21

value function.

2.2.3 Exploration and active learning

The concept of defining some form of exploration reward as part of the sampling policy

is not a new development and has its roots in stochastic control and dual control. Lai

(1987) defined a class of upper confidence bounds (UCBs) for adaptive exploration

in the multi-armed bandit framework, while Sutton (1990) devised an "exploration

bonus" that was based on an ad-hoc "number of steps [since last visit]" measure.

Schmidhuber (1991) maintained a separate model of the reliability of the predictions

generated by the Q-learning algorithm and defined a curiosity goal as maximising the

changes in prediction reliability, performing what he termed "adaptive curiosity".

The turn of the millennia was marked by the popularisation of GPs for classification

and regression in the machine learning community as seen in the work by Williams

(1998), Neal (1998), Csató and Opper (2002) and Rasmussen and Williams (2005).

For RL research in particular, the effects of this trend were largely seen in the area of

value function approximation, for TD learning by Engel et al. (2003, 2005) and Engel

(2005), as well as DP by Rasmussen and Kuss (2004), Deisenroth et al. (2009) and

Deisenroth (2010). Apart from its use as a function approximator, the GP additionally

provides an uncertainty measure in the form of a covariance; and as noted by Engel

et al. (2003), this uncertainty can be used to direct exploration of the value function

space. This sparked a new wave of enthusiasm for investigating efficient exploration

strategies in RL.

Dearden et al. (1998) formally defined exploration in RL using the classical description

of value of information—"the expected improvement in future decision quality that

might arise from the information acquired by exploration". This methodology for

defining exploration value requires assessment of the agent’s uncertainty of the value

function; thus, the use of GPs for estimating the value function provided an ideal

setup for characterising exploration reward as the uncertainty reduction (information

gain) associated with the value function approximation. Recent implementations of



22 Background

exploration in RL have applied the GP covariance to compute UCBs for bounding

regret in Srinivas et al. (2010), or as part of various information measures to form

acquisition functions by Brochu et al. (2010). In fact, the latter draws heavily from the

field of experimental design, Santner et al. (2003), performing a satisfying loop closure

with the exploration-exploitation ideas that originally characterised RL problems.

Some of the latest developments in RL exploration have been concerned with safety

considerations, this has been due in part to the increased number of robotic appli-

cations of RL in recent years as surveyed in Kober et al. (2013). There have been a

number of approaches to devising safe exploration strategies in RL, broadly, these can

be grouped under three categories: explicitly adjusting the risk of exploration in the

action selection objective function, sampling from a subset of policies that have been

deemed "safe", and executing predefined "safe return" policies when necessary. Of the

first category, Schneider (1996) proposed an objective function consisting of determin-

istic, cautionary and probing terms. The deterministic term computed state-action

values assuming a perfect model, the cautionary term considered risk associated with

uncertainty in the model, while the probing term favoured potentially suboptimal

and/or risky controls that improved the model. A similar approach was taken by

Gehring and Precup (2013) where the exploration bonus was computed as the neg-

ative controllability, or mean absolute TD error, of a state. Related to the second

category is the work by Bagnell (2004) that was able to provide robustness guarantees

by learning policies that performed well over all possible transition matrices (given

some uncertainty over the transition model). In terms of defining "safe" policies, the

baseline behaviour of García and Fernández (2012) allowed for transitions to known

safe states and also accounted for user-controlled Gaussian noise to the transition

model by which the agent performed exploration. Another example is the set of "δ-

safe" policies, proposed by Moldovan and Abbeel (2012), which are defined as those

policies that have a (greater than or equal to) δ probability of executing a return pol-

icy that can safely control the agent back to a predefined home state. The algorithm

by Moldovan and Abbeel (2012) overlaps the third type of safe exploration strategy

and is similar to the "backup policy" of Hans et al. (2008), which also falls under this



2.3 Information-Based Exploration 23

category.

2.3 Information-Based Exploration

Finally, this chapter cannot be concluded without taking a brief look at the meth-

ods of information-based exploration that have appeared in the robotic exploration

literature. Robotic exploration in its purest form can be considered as a sensor cov-

erage/placement problem, such as that defined by Hoffmann and Tomlin (2010), for

generating a map or model of an unknown area or phenomenon; however, the choice

of map representation along with imperfections in the sensor model and knowledge

of the vehicle pose are all confounding factors that contribute to uncertainties in the

observations and the a posteriori model that is built. Robotic exploration draws

inspiration from well-established information theory to devise objective functions for

guiding exploration, and recent efforts have focused on active and adaptive explo-

ration with recognition given to the exploration-exploitation trade-off that also exists

in some robotic systems.

2.3.1 Existing information measures

Many robotic mapping/modelling applications have favoured the use of entropy for

defining the information gain of taking particular observations, see Stachniss et al.

(2005), Low et al. (2009) and Amigoni and Caglioti (2010), while the closely related

mutual information has been used in work by Krause and Guestrin (2007), Singh

et al. (2009a,b, 2010) and Bender et al. (2013). Another example is the information

gain objective function used in Binney et al. (2013), which compares the average re-

duction in variance of the GP model for potential sampling points. The algorithm

computes this as the normalised difference between the trace of the prior and posterior

covariance matrices given the potential observations. In fact, using the trace of the co-

variance matrix draws from the A-optimality criterion in optimal design as described

by Fedorov (1972), while the D-optimality criterion, which uses the determinant of



24 Background

the covariance matrix, is proportional to the entropy. Although other estimation

techniques such as particle filters have been used successfully in such modelling prob-

lems, GP modelling features prominently in much of this work and its popularity is

again attributed to the GP covariance matrix, which provides a convenient basis for

measuring the change in uncertainty over the estimated model.

2.3.2 Adaptive exploration

A recent thrust of robotic exploration research has been to analyse the benefits of

performing adaptive online planning instead of using pre-planned paths. This work

has been driven by the high computational costs associated with adaptive planning

and is centred around the submodularity property of some information measures

such as mutual information. Submodularity is the property of diminishing returns

and was first defined by Nemhauser et al. (1978); in terms of informative exploration,

it describes the reduction in utility of taking a particular observation as the observed

set grows.

Adaptive planning selects the next sample point, or set of sample points, accounting

for all other observations taken up to the current decision instance, whereas non-

adaptive planning chooses the full set of observations to make and does not update or

alter the plan regardless of what new information arrives. Singh et al. (2009b) defines

the adaptivity gap as "the ratio of the performance of the optimal [adaptive] policy

divided by the performance of the best nonadaptive path" according to some utility

function. By providing theoretical bounds on the adaptivity gap, Singh et al. (2009b)

showed that their nonmyopic adaptive informative path planning algorithm, which

can use any near-optimal nonadaptive algorithm as a subroutine, performs within a

competitive bound of the optimal adaptive solution. Hollinger et al. (2013) proved a

similar result for a constrained exploration problem, quantifying the adaptivity gap

for a ship hull inspection problem with a monotone submodular objective function

(the predicted variance reduction of a GP) with an additional constraint on the to-

tal observation cost. Computationally efficient adaptive path planning for robotic



2.3 Information-Based Exploration 25

exploration remains a challenging research problem.

2.3.3 Exploration-exploitation trade-offs in robotics

The exploration-exploitation trade-off also exists in robotic exploration problems,

generally deriving from the need to complete a mapping or modelling task whilst also

minimising model uncertainties that can arise from various sources. The decision-

theoretic framework proposed by Stachniss et al. (2005) simultaneously considers

both the uncertainty in the map as well as in the pose of the vehicle, essentially

trading off paths that present loop closure opportunities with paths that can traverse

more of the unexplored region. Drawing from Bayesian optimisation and experimental

design, Marchant and Ramos (2012) proposed a new acquisition function called the

"Distance-based UCB" for monitoring abnormalities/extreme values in environmental

phenomena such as air pollution. The acquisition function trades off sensing in regions

that are likely to have extreme values with regions that have been observed only

sparsely, whilst simultaneously weighing this potential information gain (computed

by the GP covariance) against the distance to waypoint so as to promote energy

efficiency in exploration. In Krause and Guestrin (2007) and Hoang et al. (2014),

the exploitation goal is to accurately model some spatio-temporal phenomenon using

a GP, while the exploration goal is to decrease the hyperparameter uncertainty of

that GP. The problem described in this work involves an interesting coupling of

the exploration and exploitation goals: the exploitation goal point is determined

from the estimated uncertainty in the current GP model, however poorly chosen

GP hyperparameters will produce an inaccurate representation of the uncertainty.

This is similar to the exploration-exploitation relationship in the autonomous soaring

problem where exploitation of the wind energy field comes at the cost of learning a

more accurate mapping between state-action trajectories and their expected energy

rewards.



26 Background

2.4 Summary

This chapter introduced the three main research areas from which this thesis is built:

the unique exploration-exploitation relationship in autonomous soaring, the applica-

tion of RL to solving exploration-exploitation problems, and the information-based

exploration mechanisms that can be used for nonmyopic and adaptive exploration

of the RL state-action value function. The discussion presented here provided some

background on the historical development of the soaring and RL problems, and also

looked at the state-of-the-art in all three research areas. The following chapters de-

scribe the methodology used to combine these ideas into a new approach for solving

the resource-constrained exploration-exploitation problem of autonomous soaring.



Chapter 3

Gaussian Processes in Reinforcement

Learning

The algorithms presented in this thesis build upon the basic on-policy TD RL al-

gorithm, SARSA(λ). This chapter describes the SARSA(λ) algorithm framework

and compares two value function approximation techniques, tile coding (TC) and

GP regression modelling, for extending the learning algorithm to handle continuous

state-action spaces. Furthermore, given the computational load of computing the GP

approximation, a sparsification method based on Csató (2002) is also described in the

following subsections.

RL is systematic trial-and-error learning through interaction with the world, Sutton

and Barto (1998) describe it as a combination of search and memory, indeed, what

separates RL from naïve "guess and check" methods is the formal way it selects actions

in each situation and the unique way it connects actions to the situations in which

they work best. In an RL problem, the learning agent can sense its current state in the

world, perform actions to change its state and observe a reward when transitioning

between states. The agent gains "experience" by performing state-action transitions

and recording the observed rewards in a value function through an update step known

as a backup. The value function can then be used to predict future transition rewards

and consequently can be used to learn reward-gaining policies.



28 Gaussian Processes in Reinforcement Learning

There are three subclasses within RL: Monte Carlo (MC) methods, DP and TD

learning, these differ primarily according to when and how the backup operation is

performed on the value function. Broadly, MC methods compute the value function

as the average of the returns over a set of episodes (updated at the end of each

episode), while DP and TD learning are both bootstrapping methods, that is, they

perform updates after each step. DP uses the Bellman optimality equation to backup

the value function, and TD methods update the value function using the difference

between the predicted value at successive steps. TD learning can also be extended to

include eligibility traces which manage the sequence of visited state-actions and assign

credit from the current transition back along the history. In a way, TD learning with

eligibility traces bridges the divide between DP and MC methods by incorporating

both the one-step backup of DP and the long term averaging of rewards over entire

episodes as in MC methods.

The remainder of this chapter is focused on learning control policies using on-policy

TD learning with replacing eligibility traces. The original SARSA(λ) algorithm is

described in the next section, followed by an explanation of how GP regression can

be used for value function approximation in the algorithm framework.

3.1 SARSA(λ)

SARSA(λ) is an on-policy TD control method first introduced in Rummery and

Niranjan (1994) under the name Modified Connectionist Q-Learning or MCQ-L. Its

current name arises from the algorithm procedure where the learning agent begins

in a state s, performs an action a, observes the transition reward r and next state

s′, and then selects the next action a′ according to its learnt policy. The λ refers to

the use of eligibility traces to assign discounted credit along the trajectory history

as new transition rewards are observed. The state-action value update equation for

SARSA(λ) is,

Qt+1 (s, a) = Qt (s, a) + αδtet (s, a) , (3.1)



3.1 SARSA(λ) 29

where the TD error δt is given by the difference between the observed transition

reward rt+1 and the expected reward Qt (st, at)− γQt (st+1, at+1):

δt = rt+1 + γQt (st+1, at+1)−Qt (st, at) . (3.2)

The eligibility trace is updated by either the method of accumulating traces or the

method of replacing traces. The method of replacing traces was shown by Singh and

Sutton (1996) to produce a significant improvement in the learning rate over the

method of accumulating traces and is used in the following investigation. The update

is defined as:

et (s, a) =

1 if s = st and a = at;

γλet−1 (s, a) otherwise
∀s, a. (3.3)

The step size, 0 < α < 1, weights how far in the direction of the TD error to shift

the current state-action value estimate and can be varied over the learning steps. For

convergence of the value function, the following conditions must hold for the step size

sequence:
∞∑
k=1

αk (a) =∞ and
∞∑
k=1

α2
k (a) <∞, (3.4)

where αk (a) is the step size used after selecting action a for the k-th time.

The discount rate, 0 ≤ γ ≤ 1, determines the contribution of future rewards to the

current return value,

Rt = rt+1 + γrt+2 + γ2rt+3 . . . . (3.5)

The corrected n-step truncated return sums the first n − 1 discounted rewards and

then approximates the rest of the series using the estimated value of the nth state-

action,

R
(n)
t = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnQt (st+n, at+n) . (3.6)

Values of γ close to zero promote myopic reward gaining behaviour, while values of

γ approaching 1 give future rewards a strong influence. In most non-trivial problems



30 Gaussian Processes in Reinforcement Learning

tt as ,







OR ( )λω −1

( )λλω −1

( ) 21 λλω −

0
tN

asas ttNN

≠
= ,,

1−−tTωλ

( )λSARSA  traceReplace

∑=1
Ts

Figure 3.1: The backup diagram for SARSA(λ) with replacing traces. The backup extends from the
terminal state of the episode at time t = T , represented by the grey square. No additional credit is
assigned to revisited states within the episode. The ω (1− λ) term ensures that all the weights sum
to 1.

there exist multiple local maxima such that performing actions to gain immediate

reward can prevent gaining larger rewards in the future. In such situations, larger

values of γ should be preferred to encourage nonmyopic behaviour.

The eligibility trace discount factor 0 ≤ λ ≤ 1 determines how much of the cur-

rent return to assign back along the state-action history. The backup diagram for

SARSA(λ) is shown in Figure 3.1. In contrast to SARSA(λ) with accumulating traces,

the weights given to each reward backup include a normalisation factor of ω (1− λ)

to ensure that they sum to 1. The additional ω is required since the contribution

of prior visits to a state-action are zeroed. Given a trajectory of state-actions where

revisits occured at times t = {N1, . . . , Nm}, consider the sum of the weights prior to



3.1 SARSA(λ) 31

normalisation:

sum of weights =
∞∑
n=1

(
λn−1

)
−

m∑
n=1

(
λNn−t−1

)
=

1

1− λ −
m∑
n=1

λNn−t−1. (3.7)

For the weights to sum to 1, this requires

normalisation factor =
1

1
1−λ −

∑m
n=1 λ

Nn−t−1

=
1− λ

1− (1− λ)
∑m

n=1 λ
Nn−t−1

, (3.8)

such that

ω =
1

1− (1− λ)
∑m

n=1 λ
Nn−t−1

. (3.9)

This gives rise to the definition of the λ-return as:

Rλ
t = ω (1− λ)

∞∑
n=1

λn−1R
(n)
t − ω (1− λ)

m∑
n=1

λNn−t−1R
(Nn)
t . (3.10)

If a terminal state exists, then all returns from that state onwards are equal to Rt

and so this can be separated from the sum to give,

Rλ
t = ω (1− λ)

T−t−1∑
n=1

λn−1R
(n)
t + ωλT−t−1Rt − ω (1− λ)

m∑
n=1

λNn−t−1R
(Nn)
t . (3.11)

From Equation (3.11) it can be seen that when λ = 1, only the return from the

terminal state remains such that all state-actions in the history are updated by this

same amount; this update is equivalent to the MC backup. When λ = 0, only the

most recent state-action is updated by the full return value, which is equivalent to

one-step SARSA. Values of λ approaching 1 mean that the proportion of the current

return passed along the trajectory decays more slowly.

There are noticeable parallels between the functions of the γ and λ discount values.

Both are used to tune the "far-sightedness" of the learning algorithm. In the case of



32 Gaussian Processes in Reinforcement Learning

γ discounting, the focus is on future state-action transition rewards ; λ discounting

relates to future returns, which in themselves encapsulate the sum of future rewards.

Thus, the combination of these two discount factors allows more efficient reward

tracking along entire trajectories, which can lead to faster convergence rates as shown

in Sutton and Singh (1994) and Singh and Sutton (1996).

The motivation for using a SARSA(λ) framework in this investigation is its on-policy

learning characteristic, which allows the trace to develop over the full state-action

trajectory. Credit assignment continuity is lost whenever the trace is reset, discard-

ing relevant information and essentially treating one continuous trajectory as two (or

more) separate trajectories. In off-policy methods such as Q-learning, developed by

Watkins (1989), the trace is reset whenever an exploratory action is taken. Therefore,

despite the physical connection, credit received after an exploratory action cannot

be assigned back to state-actions visited before that action. Since the number of

exploratory actions depends on the sampling policy, in cases where they occur fre-

quently, the effect of the eligibility trace is diminished. In another Q-learning method,

developed by Peng and Williams (1996), the trace is not reset; however, regardless

of the action taken, the most recent transition reward is taken to be the maximum

reward achievable by the available action set. This algorithm uses a hybrid of on-

and off-policy updates and as a result converges neither to the state-action values of

the current policy, Qπ, or to the optimal policy, Q∗. As opposed to these off-policy

methods, SARSA(λ) takes full advantage of the eligibility trace, allowing it to form

over the entire trajectory of an episode without needing to reset the trace whenever

an exploratory action is taken. This is most relevant in problems where state-actions

along a trajectory are highly correlated, that is, they cannot easily be reached from

any other state-action, and learning is expected to occur over long trajectories. Other

aspects in the choice between on- and off-policy learning also exist and are discussed

in Chowdhary et al. (2014).



3.2 Value Function Approximation 33

3.2 Value Function Approximation

The value function, Q (s, a), encapsulates the expected discounted sum of all future

rewards leading out from each state-action transition. In SARSA(λ), the value func-

tion approximates Qπ, the state-action values of the current policy, π. The policy can

then be gradually improved via exploratory methods such as ε-greedy sampling, and

can be shown to converge (under certain boundary conditions listed in Section 3.1)

to the optimal policy as the number of times each state-action is observed goes to

infinity.

From the backup shown in Equation (3.1) it can be seen that SARSA(λ), and in fact

RL in general, relies on repeat observations of the reward at each state-action location

to learn the value function. This may be achievable in discrete (tabular) state-action

learning cases where all state-actions are reachable within a finite number of learning

steps; however in problems with either continuous states and/or continuous actions,

the learning agent will almost surely never revisit any particular state-action and thus

cannot take advantage of any experience gained along its trajectory. The algorithm

is unable to extrapolate the value of state-action pairs that have not yet been visited;

thus even when dealing with purely discrete spaces, a problem can be computationally

infeasible if its state-action space is prohibitively large.

To extend RL to problems with continuous state-action spaces, methods for approx-

imating the value function must be employed. While any function approximation

technique can be used within the RL framework to model the value function, it is

desirable to choose a method that is best able to generalise the available observations

to the full state-action space. Linear methods, which are a subclass of gradient de-

scent methods, approximate the value function as a linear function of the parameter

vector, ~θt (i):

Qt (s, a) =
n∑
i=1

θt (i)φs,a (i), (3.12)

where each state-action is represented by a vector of features (basis function set),
~φs,a = (φs,a (1) , . . . , φs,a (n)), which has the same number of elements as ~θt. The



34 Gaussian Processes in Reinforcement Learning

 

Randomly 
offset tilings 

State-action space 

Features for the 
marked state-action 

Figure 3.2: A 2D example of TC with 3 randomly offset grid tilings covering the state-action space.
The state-action feature set is made up of the relevant overlapping grid cells from each tiling.

features can be constructed in various ways, methods such as TC discretise the entire

state-action space into overlapping regions which then become part of the set of

features for any state-action they cover. An example of TC features is shown in

Figure 3.2.

Linear methods for RL value function approximation are popular since under the

same boundary conditions as required previously, the only new requirements for the

approximated function to converge to the optimal values is for the basis functions

to be linearly independent and not grow too fast (see extended proofs in Tsitsiklis

and Van Roy (1997)). However, in high dimensional problems these methods which

attempt to discretise the state-action space quickly become impractical to implement.

For example, in TC, the resolution of the final approximation is closely linked to the

number of tilings and the resolution of the tilings themselves. As the dimensionality

and size of the state-action space grows, the number of tilings required to give a "rea-

sonable" approximation also grows. In fact, Sutton and Barto (1998) state that the

computational complexity of such methods increases exponentially with the number



3.3 Gaussian Process Modelling 35

of dimensions. For this reason, a more compact function approximation method must

be sought when dealing with high dimensional RL problems.

3.3 Gaussian Process Modelling

GP regression is a function approximation method that produces a continuous esti-

mate of the function mean as well as a measure of the estimation uncertainty over

the function space in the form of a variance. For the interested reader, Rasmussen

and Williams (2005) provides an extensive study into the theory and application

of this machine learning method. GP regression has previously been employed to

approximate the value function in various RL frameworks, for example, Engel et al.

(2005) applied GP regression to learn the continuous state-action value function inside

a standard SARSA(λ) procedure, Deisenroth et al. (2009) combined GP regression

with DP and demonstrated the ability of the regression technique to estimate the

state-action value at locations which are yet unobserved.

The training inputs XN = {xi}Ni=1 to the GP are the observed state-action pairs,

xi = [si, ai] , (3.13)

and the training targets yN = {yi}Ni=1 are the corresponding state-action values which

are updated on the fly as the eligibility trace decays,

yi = Q (si, ai) . (3.14)

For a test point x∗, covariance function k, covariance matrix K = K (X,X), and ad-

ditive white noise drawn from N (0, σ2
n), the estimated mean value Q̄∗ and covariance

cov (Q∗) are

Q̄∗ = E [Q (x∗) |X,y,x∗]

= K (x∗, X)
(
K + σ2

nI
)−1

y, (3.15)



36 Gaussian Processes in Reinforcement Learning

cov (Q∗) = K (x∗,x∗)−K (x∗, X)
(
K + σ2

nI
)−1

K (X,x∗) . (3.16)

In fact, Equation (3.15) can be rewritten as a linear combination ofN kernel functions:

Q̄∗ =
N∑
i=1

θik (xi,x∗), (3.17)

where each kernel/basis function is associated with a state-action observation and the

weights,
~θ = K−1

XXy, (3.18)

are a function of the covariance matrix and the training targets, which are updated

according to Equation (3.14). Note that in Equation (3.18) KXX = K + σ2
nI.

The representation of the GP in Equation (3.17) bears similarity to the general form

of the linear function approximator shown in Equation (3.12), however, there are a

couple of significant differences between the two approximation methods. In stan-

dard linear function approximation, there is a finite and constant number of basis

functions, whereas the GP model grows its basis function set with each new state-

action observation. Furthermore, the weighting parameters of the GP model are not

only updated according to the value function backup, as per standard linear function

approximation, but are also reshaped by the inverse covariance matrix, K−1
XX . These

differences imply that the convergence proofs of Tsitsiklis and Van Roy (1997) may

not apply to GP value function approximation unless some bound is placed on the

number of basis functions used in the approximation. Whether sparsification meth-

ods that limit the number of basis functions of the GP provide similar convergence

guarantees is an interesting and open research question.

The values in the covariance matrix depend upon the choice of covariance function

and the respective hyperparameters. The hyperparameters of the GP model can be

trained on the data by minimising the negative log marginal likelihood,

− log p (y|X) =
1

2
y>K−1

XXy +
1

2
log |KXX |+

N

2
log 2π. (3.19)



3.3 Gaussian Process Modelling 37

In this way, the value function approximation weights and GP model are primarily

data driven.

The underlying assumption captured by the GP approximation is that state-action

pairs close to one another in the covariance function space will have similar associated

Q-values. This assumption is not limited to problems where the state and/or action

spaces are continuous; it can also be applied to problems where the states and actions

are discrete but the transition function implies some sense of continuity, such as in

grid search problems. To some extent this continuity is captured by the eligibility

trace, however the trace is only able to assign credit to state-action pairs that have

been visited whereas the GP approximation is able to estimate the value of state-

action locations that are yet to be visited. For this reason, the GP approximation

has particular applications to RL problems where the state-action space is continuous

or where the problem has a discrete state-action space that is too large to explore

exhaustively.

3.3.1 Squared exponential covariance function

While the choice of GP covariance function is not restrictive, prior assumptions re-

garding the properties of the value function surface can be incorporated via judicious

design of this function. For example, there is an assumption of stationarity across

the state-action value space of the following experiments, thus the stationary squared

exponential covariance function was applied in the GP model used to approximate

the value function:

k (x,x′) = σ2
f exp

[
−1

2
(x− x′)

T
M (x− x′)

]
, (3.20)

whereM is a diagonal matrix with positive elements equal to l−2, and l = [l1, l2, . . . , ln]

are the length scales in each dimension of the training input vector. The hyperparam-

eters of the covariance function in Equation (3.20) are the length scales, l, and the

process variance, σ2
f . The noise variance, σ2

n, due to the additive white noise shown

in Equation (3.16) is the only other hyperparameter of the GP model.



38 Gaussian Processes in Reinforcement Learning

The covariance matrix, K (·, ·), is the covariance function evaluated between each

pair of points in the input sets, which for the squared exponential covariance function

requires the computation of the squared distance in the exponent. Angular dimensions

in the state-action training inputs will invoke wrap-around conditions that must be

accounted for when evaluating Equation (3.20) to avoid exaggerating the distance

between two angles. For example, if heading is a dimension of the training inputs,

then no two headings should be separated by more than π radians. This consideration

should also be used to bound the hyperparameters of angular dimensions.

In the experiments presented in this thesis, the hyperparameters were trained offline

on a set of simulation data gathered using a preliminary set of estimated hyperpa-

rameters. While it is possible to train the hyperparameters online, in practice, the

initial stages of learning tended to generate large changes in the value function caus-

ing an inflation in the process variance and noise variance hyperparameters, σ2
f and

σ2
n, respectively. The Matlab gradient descent function, fminunc, was used for hy-

perparameter learning in the following experiments and was unable to overcome the

initial dominance of these two terms during online hyperparameter training, thus it

could not learn meaningful hyperparameters.

3.3.2 Sparsification

One of the main drawbacks of using GP regression for value function approximation is

the O (N3) inversion of the covariance matrix at each update step in Equations (3.15)

and (3.16), where N is the number of training inputs to the GP. By updating a single

observation at a time, it is possible to take advantage of the matrix inversion lemma

to reduce this to an O (N2) operation; however, this is still prohibitive over the

long training sequences that are a feature of RL. To bound the computation time, a

budget can be placed on the number of inputs used to train the GP. Furthermore,

the sparsification method described by Csató and Opper (2002) can be applied such

that all observations, whether retained in the training set or not, contribute to the

final GP model.



3.3 Gaussian Process Modelling 39

Consider the GP training set as a set of basis vectors, BV = XN , the (noise-free)

variance at an observation point xi+1 gives a measure of its linear independence, or

"novelty", with respect to the current set of basis vectors,

βxi+1
= k (xi+1,xi+1)−K (xi+1, XN)K−1K (XN ,xi+1) . (3.21)

As described in Csató and Opper (2002), points with β less than some specified

tolerance value βtol are not included into BV . To retain some of the information

from these points in the GP model, the relevant covariance matrices can be updated

according to the projection of these observations onto the basis vectors,

ŵi+1 = K−1k (XN ,xi+1) , (3.22)

K−1
XX = K−1

XX −
[
K−1
XXk (XN ,xi+1)− ŵi+1

] [
K−1
XXk (XN ,xi+1)− ŵi+1

]>
σ2
n + cov (xi+1)

. (3.23)

Equation (3.23) is derived from the matrix inversion lemma and detailed derivations

can be found in Csató (2002).

If the number of points in BV exceeds the budget, then the observation with the

lowest score as defined by,

εi =

(
K−1
XXy

)
i

K−1
ii −K−1

XXii

, (3.24)

is removed. In Equation (3.24), K−1
ii is the i-th diagonal element of K−1 and similarly

for K−1
XXii

. The score is an approximation to the Kullback-Leibler divergence between

the GP models generated with and without observation xi. For further details on the

derivation of the score, the reader is referred to Csató (2002).

By keeping track of the relevant inverse matrices and applying the matrix inversion

lemma at each update/downdate step, it is possible to bound the GP computation

time to O (N2
max), where Nmax is the maximum number of training inputs as defined

by the computation budget.



40 Gaussian Processes in Reinforcement Learning

3.4 Summary

SARSA(λ) with GP function approximation has a number of desirable properties that

makes it particularly suitable for solving control problems such as the autonomous

soaring problem. The on-policy learning characteristic of SARSA(λ) allows credit

assignment to occur over entire state-action trajectories regardless of the sampling

policy, while extension to problems with continuous state-action spaces is granted by

applying GP value function approximation. The GP model can provide estimates of

the value function at any location in the state-action space without the requirement

of having previously observed that state-action. Furthermore, it produces a measure

of the uncertainty associated with the estimate in the form of a covariance. The

following chapter investigates how this uncertainty measure can be used to direct

exploration for more efficient and informative sampling of the state-action space.



Chapter 4

Informative Exploration

The role of exploration in RL is to encourage repeat observations of all state-action

transitions to improve the estimate of the value function across the entire space. In

this thesis, exploration is treated as an information gathering task where the goal is to

reduce the overall uncertainty of the value function estimate. Informative exploration

in this context is related to the reduction of uncertainty in the search space, whether

for target search and track, such as in Levine et al. (2010), or other sensor coverage

tasks such as monitoring spatio-temporal fields as performed in Singh et al. (2010).

In these examples, the information utility of performing an action is measured as the

reduction in uncertainty of the modelled phenomenon. The same methodology can

be applied to induce informative exploration behaviour in RL problems where the

modelled phenomenon is the value function.

This chapter introduces a method for directed, adaptive and nonmyopic informative

exploration in RL based on a GP model of the state-action value function. The

following sections begin with a discussion on the existing exploration methods in RL

and the informative sampling literature. A new information measure based on the

GP variance volume is then introduced in Section 4.2, with a nonmyopic information

value presented in Section 4.3. The chapter concludes with a discussion on how to

combine the information value with the state-action value to manipulate exploration

behaviour with the (informative) iGP-SARSA(λ) algorithm given in Section 4.5.



42 Informative Exploration

4.1 Existing Exploration Strategies

There are a number of methods traditionally used in RL to induce exploratory actions.

One of the most common methods is ε-greedy sampling where the greedy (maximal

state-action value) action is performed with probability 1− ε while a random action

is performed with probability ε. For such a simple concept, ε-greedy sampling is able

to reduce the value function convergence times for some problems. Furthermore, it

provides guarantees that all state-actions have a non-zero probability of being visited,

thereby satisfying the requirements to prove convergence of the value function for some

TD learning algorithms. However, since it is completely undirected and non-adaptive,

this method relies entirely on the available actions to "bounce" the learning agent out

of local minima and fails in situations where longer sequences of actions are required

to move the agent away from learnt trajectories that perform poorly.

Although not strictly used in RL, but worth mentioning here, is the less well-known

but quaintly named "run and twiddle" control method proposed by Selfridge (1984).

It is inspired by the behaviour of bacteria and acts as an adaptive form of ε-greedy

sampling in that it takes the greedy action (run) so long as it is gaining reward, and

when a loss is incurred, a random action (twiddle) then follows. Like in ε-greedy

sampling, this method does not direct exploration in any way, and simply introduces

randomness into the action selection in hopes of discovering a better trajectory. Fur-

thermore, it can also struggle in cases where movement penalties are applied and

rewards are only gained at the successful completion of each episode since a signifi-

cant amount of twiddling would be required before learning to run.

In discrete (tabular) RL problems, a popular method for directing exploration is to

bias the initial estimate of the value function. With sufficient prior knowledge of

the problem, it is possible to initialise the value function to bias exploration towards

areas of high expected reward, however it is often the case that the agent begins the

task with little or no knowledge of the field. A uniformly high expected value applied

across the entire value function space will promote exploration to areas that have not

yet been visited since the value function will gradually be driven down in locations



4.2 Information Measure 43

where the agent has repeat observations of lower than expected rewards. This method

can equivalently be thought of as applying a constant information gain reward at

each state-action at the start of exploration whose value decreases as observations

are made at those locations. As discussed in Section 3.2 however, in a continuous

state-action space, the agent will almost surely never revisit any single location, and

so this method of promoting exploration would only serve to add a constant bias over

the value function approximation.

Nevertheless, the task of exploring a value function space can be equated to an infor-

mation gathering task where observations at different locations in the space reduce

the uncertainty of the value estimate at, and possibly around, the observation loca-

tion depending on the estimation algorithm. One issue that must then be addressed

is how to quantify the uncertainty reduction, or information gain, of an exploratory

action.

4.2 Information Measure

The informative sampling literature outside of the RL community is rich with sug-

gestions of how to measure and incorporate the notion of uncertainty reduction when

choosing sampling locations. The alphabet optimality criteria are derived from max-

imising properties of the information matrix such as maximising the minimum eigen-

value in E-optimality, or minimising various properties of the covariance matrix, such

as the trace and determinant for A- and D-optimality, respectively, as applied in

Binney et al. (2013) and Kollar and Roy (2008). Mutual information and entropy

share direct links with A- and D-optimality measures and are also common infor-

mation measures that have been investigated in many informative path planning

applications such as in Singh et al. (2009a) and Hollinger et al. (2013). These metrics

are popular since for most problem formulations they maintain their submodularity

property which provides performance guarantees on the associated greedy policy, see

Nemhauser et al. (1978).

The idea of using information gain rewards to direct exploration in RL has also



44 Informative Exploration

been gaining momentum. Engel et al. (2005) suggested using confidence intervals

derived from the GP covariance to expand the repertoire of exploration strategies

used in RL, while more recently, Still and Precup (2012) used the Kullback-Liebler

divergence between successive estimates of the value function to quantify exploration

utility. These information measures are restricted by the condition that they can

only be computed at discrete sample locations in the space. The following section

introduces a new information measure based on the GP variance volume which is

capable of measuring the uncertainty reduction across the entire estimation space.

4.2.1 Gaussian process variance volume

Given a GP framework for modelling the value function, it is intuitive to use the

GP variance to quantify and compare the information gain of possible state-action

observations for directing exploration. Furthermore, since the ultimate goal of accu-

mulating reward is inherently tied to accurately modelling the value function, using

the GP variance to measure the information gain maintains a desirable consistency

across the value function approximation and information reward. This thesis proposes

to use the change in the GP variance volume over the entire state-action space as the

measure of uncertainty reduction due to a new set of observations; this information

measure was first presented in Chung et al. (2013).

The GP variance over the state-action space represents a bounding volume around

the estimated value function surface, shown by the translucent grey surface bounding

the coloured mean estimation surface from above in Figure 4.1. Each consecutive

observation results in a reduction in this volume and we define this as the uncertainty

reduction, or information gain, of the corresponding state-action observation,

VboundN =

∫ xnb

xna

· · ·
∫ x1b

x1a

cov ([x1, . . . , xn] |XN)dx1 . . . dxn, (4.1)

Igain = VboundN − VboundN+1
. (4.2)

The training set XN = {x1, . . . ,xN} consists of N observations of n-dimensional



4.2 Information Measure 45

Figure 4.1: The GP variance volume is bounded above by the translucent grey surface and below
by the GP mean estimate, shown as the coloured surface.

state-action pairs, with dimensions [x1, . . . , xn] = [s1, . . . , su, a1, . . . , av]; furthermore,

XN+1 = XN

⋃
xN+1.

Since the squared exponential covariance function given in Equation (3.20) is an

integrable function, an analytical solution to Equation (4.1) can be found,

Vbound =

∫ xnb

xna

· · ·
∫ x1b

x1a

k ([x1, . . . , xn] , [x1, . . . , xn])−

k ([x1, . . . , xn] , XN)K−1
XXk (XN , [x1, . . . , xn]) dx1 . . . dxn

= σ2
f

n∏
m=1

(xmb
− xma)− σ4

f

(√
π

2

)n n∏
m=1

(lm)

×
N∑
i=1

N∑
j=1

{[
K−1
XX

]
ij

exp

[
−

n∑
m=1

(
xim − xjm

2lm

)2
]

×
n∏

m=1

[
erf

(
xmb
− xim+xjm

2

lm

)
− erf

(
xma − xim+xjm

2

lm

)]}
, (4.3)

where k is the squared exponential covariance function andK−1
XX = [K (X,X) + σ2

nI]
−1

is the inverse of the covariance matrix of all the observed locations including additive

white noise drawn fromN (0, σ2
n). The full derivation of Vbound is given in Appendix B.

Indeed, the requirement for deriving an analytical solution to the variance volume for



46 Informative Exploration

a GP with any covariance function comes down to the integrability of the expression:∫ xb

xa

k (x,xi) k (xj,x). (4.4)

If this integral can be formulated as a closed-form expression then an analytical so-

lution to the variance volume can be found for the respective covariance function.

Equation (4.3) is not strictly a closed-form expression due to the requirement for nu-

merical approximation of the error function terms. However, most modern program-

ming languages such as Matlab have an inbuilt erf function that uses elementary

functions to compute fast and accurate approximations, thus providing tractability.

The limits of integration {xa,xb} can be chosen to incorporate the entire space or

only a local portion of it, for example, a reachable set within a finite time horizon.

Given that the computational cost is the same for either calculation it seems natural

to take the integral over the complete space. However, depending on the design of

the GP covariance function, there may be situations where it is desirable to restrict

the integration limits such that the information gain measure only represents the

uncertainty reduction in a region of interest. This may be implemented to prevent

large changes in the variance volume in highly correlated but spatially distant regions

from biasing exploration away from state-actions that can improve the value function

estimate in more "interesting" or more immediately reachable areas.

4.2.2 Comparison to other information measures

Other common measures used to compute the uncertainty associated with the GP

estimate include the trace and the entropy, which operate on the associated covariance

matrix derived from discrete samples of the input space. The covariance matrix for

a sequence of sample points X∗ = [x∗1 , . . .x∗c ] given training inputs XN is

K (X∗, X∗|XN) = K (X∗, X∗)−K (X∗, XN)K−1
XXK (XN , X∗) , (4.5)



4.2 Information Measure 47

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

12

16

6

8

5
10

9

18

13

4

x

Gaussian Process Estimate and Training Points

19

2

11

20

1

14

3

15

17

7

y

Figure 4.2: The GP estimate used in the information measure comparison study. The sequence of
20 randomly selected training inputs are numbered and overlaid on top of the final GP estimate of
the underlying function surface.

which derives from Equation (3.16). The trace of this matrix is simply computed as

the sum of the diagonal terms, while the differential entropy is defined by Guestrin

et al. (2005) to be,

H (X∗|XN) =
1

2
log (2π exp (K (X∗, X∗|XN))) . (4.6)

A comparison of the uncertainty and information gain calculated using the GP vari-

ance volume and these measures is conducted on the test case shown in Figure 4.2.

The uncertainty of the GP estimate is computed as each consecutive random sample

point is added to the training input set. In the variance volume information measure,

the integration limits were taken to be the (x, y) limits of the space. For the trace and

entropy measures, the GP covariance was predicted at the grid of points generated

along x = [0, 1, . . . , 30] and y = [0, 1, . . . , 20], giving a total of 31 × 21 = 651 test

points.

The computed uncertainty as each new training input was added to the set is shown in

Figure 4.3. All three measures record a similar trend in the uncertainty reduction as

new training points are introduced, with differences more pronounced in the variance



48 Informative Exploration

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Number of training points

C
o

m
p

u
te

d
 u

n
c
e

rt
a

in
ty

Comparison of Information Measures

 

 

volume

trace

entropy

Figure 4.3: A comparison of the computed uncertainty of the GP estimate using the GP variance
volume information measure, the trace of the covariance matrix and the entropy.

volume and trace measures. The reduction in uncertainty (that is, the information

gain) over consecutive measurements is shown in Figure 4.4a. There is a clear consis-

tency between the variance volume information gain measurements and the trace and

entropy measurements. Figure 4.4b plots the variance volume measurements against

those of the trace and entropy, showing a distinct direct proportionality relationship

between the measures. This is to be expected since the diagonals of the covariance

matrix represent the predicted variance at those points while the differential entropy

is a monotonic function of the variance.

It is important to note, however, that the trace and entropy are dependent on the

number of sampled points since the total uncertainty is taken as the sum of the

uncertainty at all the sampled points. This has implications on the choice of the test

point set as well as on the computation time. Often the sample points are chosen

according to some external criteria, for example, expected target locations or potential

sensor placement positions; without such restrictions, the choice of sample points can

only be guided by coverage. The test point set in this study was chosen uniformly

across the input space, however, it tends to be the case that the uncertainty is not



4.2 Information Measure 49

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Training point number

C
o

m
p

u
te

d
 c

h
a

n
g

e
 i
n

 i
n

fo
rm

a
ti
o

n

Comparison of Information Gain Measures

 

 

volume

trace

entropy

(a) Incremental information gain.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Proportionality of Variance Volume Information Measure

Trace/Entropy information gain

V
a

ri
a

n
c
e

 v
o

lu
m

e
 i
n

fo
rm

a
ti
o

n
 g

a
in

 

 

trace

trace (best fit)

entropy

entropy (best fit)

(b) Proportionality relationship.

Figure 4.4: Figure 4.4a gives a comparison of the computed information gain of including the n-
th training point to the GP estimate across the three different information measures. The GP
variance volume information measure is consistent with the both of the other information measures.
A close look at the proportionality relationship between the variance volume measure and the other
information measures is given in Figure 4.4b; it can be seen that the relationship to the trace and
entropy measures is close to linear.

distributed equally and so differences in the sample set will lead to differences in

the computed uncertainty and information gain. To reduce this effect, a denser set

of sample points can be taken, this leads to another consideration in the increased

computational requirement of a larger set.

A comparison of the computation times for each information measure is given in

Table 4.1. All three information measures require the K−1
XX matrix and the time taken

to compute this matrix is dependent on the number of training inputs as described in

Section 3.3.2. However, since it is constant across the three cases, it is not included in

the values shown in Table 4.1. The times shown here are for a Matlab program running

on a dual core 3 GHz computer. The variance volume provides an analytical measure

across the entire input space and so is not dependent on the number of sample points.

In comparison, the computation times for the trace and entropy measures increase

proportionally as this set grows.



50 Informative Exploration

Table 4.1: Information Gain Computation Times (20 training inputs)

Number of test points Variance
volume Trace Entropy

176 0.0017 s 0.0023 s 0.0303 s
651 0.0017 s 0.0383 s 0.1398 s
2501 0.0017 s 0.4799 s 0.8766 s

4.3 Information Value

The information reward of taking an observation at a particular state-action is simply

computed as Equation (4.2), however, approaching this from an RL perspective, it

is more meaningful to consider the nonmyopic information value, that is, the total

future information gain possible due to performing a particular action. There is one

key difference to note between the RL state-action value and this information value:

the RL reward for any state-action is constant whereas the information reward for

reobserving a particular state-action decreases over the number of observations. The

main consequence of this is that the information reward cannot be directly included in

the computation of Q, and similarly, information gain credit cannot be meaningfully

assigned back along the eligibility trace. Instead, the approach proposed in this thesis

is to look at the set of possible future state-action observations leading out from a

particular action via a forward propagating rollout, the discounted sum of those

expected future information gain rewards are then used to compute the information

value of that initial action.

4.3.1 Rollout

The information gain rollout technique is illustrated in Figure 4.5. The information

value sums the information gained from the next proposed transition, s′, a′ → s′′

where a′ ∈ A (s′) and A (s′) is the set of available actions from state s′, with the

discounted information gained from all possible future state-actions rolled out from

s′′ up to a threshold discount factor. Given a discount parameter γr < 1, the total



4.3 Information Value 51

s ′′

s′

s ′′′

a′

a ′′

a ′′′





( )asI gain ′′,
0

( )
( )
∑

′′∈′′

′′′′=
sa

gaingain asII
A

,
1

( )
( )

∑ ∑
′′′ ′′′∈′′′

′′′′′′=
s sa

gaingain asII
A

,
2



Figure 4.5: The rollout method introduced in Chung et al. (2013). The information gain of each
rollout level considers all the reachable state-actions at that level. The total information value is a
discounted sum of the information gain of each level.

information gain of an action a is computed as,

Iatotal = Igain0 + γrIgain1 + γ2
r Igain2 + . . .+ γpr Igainp , (4.7)

where p is the highest integer for which γpr is greater than the discount threshold

γthres.

The breadth of the expansion tree is determined by the number of available actions

at each depth, therefore, large action sets and a long rollout depth will generate a

heavy computational burden when computing the rollout. A greedy rollout method

is later presented in Section 4.4.2 that can reduce the exponential branching of the

information gain tree to a linear computation which is dependent only on the search

depth.

Rollout requires knowledge of the state transition model for forward state propaga-

tion, however, stochasticity in the form of external disturbances or an imperfect model

will affect the quality of the future state estimates. Because of this, the information

value is more accurately thought of as an expectation, that is, the information value

is the discounted sum of expected future information gain in the same way that the



52 Informative Exploration

state-action value is the discounted sum of expected future rewards.

4.4 Objective Function Trade-off

The state-action value from the GP value function approximation and the nonmyopic

information rollout value quantify, respectively, the exploitation and exploration utili-

ties of performing an action at a particular state. The way in which these two utilities

are combined in the action selection objective function will produce different learning

behaviours in the agent. For example, heavily favouring the information value will

encourage the agent to select potentially risky actions that take it to areas of the state-

action space that have high uncertainty, while favouring the state-action value will

promote more risk averse actions that move the agent to areas of high expected val-

ues. Furthermore, it is often desirable for a learning system to dynamically adapt its

exploration-exploitation behaviour according to some overarching specifications such

as the total available learning time. Under such circumstances, a dynamic weight-

ing factor, such as the attention parameter proposed by Thrun and Möller (1992) or

the exploration-exploitation utility function presented in Chung et al. (2012), can be

introduced to balance the information value against the state-action value.

When combining the two values, some thought must also be given to the difference

in magnitude that may exist between the state-action value and the information

value. The magnitude of the state-action value is largely determined by the reward

function, discount factors and the step-size parameter. If the step-size does not satisfy

Equation (3.4) then there is no guarantee of value function convergence and the state-

action value can potentially grow unbounded if the reward function and discount

factors are poorly chosen. On the other hand, the information value as computed

using the GP variance volume, tends to shrink as more state-action observations are

made.

The ranking of the available actions according to the objective function ultimately

determines which action is executed. Since this is the case, it is useful to normalise



4.4 Objective Function Trade-off 53

the values when combining them as this removes the problem of their differences in

magnitude. That is, let

Q̂i =
Q̄i

max |Q̄i|
, (4.8)

Îi =
Iitotal

max |Iitotal |
, (4.9)

where i is the current time step. Note that the value estimate component lies within

[−1, 1] while the information gain component lies within (0, 1]. The action selection

objective function can now be written as,

Ji = Q̂i + ωiÎi, (4.10)

where the exploration weighting factor ωi can be a function of the learning system

state. Note that normalisation of the values in the action selection objective function

removes the need to handle the magnitude differences between the raw measurements

in the design of the exploration-exploitation decision making function ω. Other value

combination methods may also be used to control learning behaviour. For example,

the actual magnitude of information value provides some notion of the expected infor-

mation gain rewards and may be useful for determining when exploration is no longer

necessary, that is, when exploration provides little improvement to the uncertainty

reduction of the value function estimate. This and other methods for combining Q̄

and Itotal are possible within the framework of the learning algorithm. The weight-

ing functions presented in this thesis all have values drawn from [0, 1]; this follows

the "optimism in the face of uncertainty" methodology which applies exploration

bonuses on top of the expected return. Other weighting functions that draw from a

larger range such as [−1, 1] can also be used to penalise exploration. Alternatively, a

counter-weight can be applied to the state-action value to shift from pure exploitation

to pure exploration.

Two weighting functions are developed in this thesis, the following subsection de-

scribes a time-step-dependent weighting function while a resource-level-dependent

weighting function is presented later on in Section 6.1.



54 Informative Exploration

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time−step−dependent weighting function

Time step

In
fo

rm
a

ti
o

n
 w

e
ig

h
t 

ω
t

 

 

τ
r
=1

τ
r
=5

τ
r
=10

τ
r
=50

τ
r
=100

τ
r
=500

τ
r
=1000

Figure 4.6: The time-step-dependent information weighting function evalutated for a range of τr
values.

4.4.1 Time-step-dependent information weighting

When using the change in the GP covariance volume as the information measure,

a consequence of the normalisation in Equation (4.9) is that the natural decline in

information value as more observations are taken is also eliminated. Generally it is

desirable to maintain this decline in the final action selection objective function to

encourage the learning agent to explore more at the start and less later on when the

number of observations increases.

The decline in information value can be reintroduced as a decreasing weighting factor

on the normalised information value. The time-step-dependent information weighting

function is defined as,

ωt =
τr

τr + i
, (4.11)

where i is the current time step. For problems with a continuous state and/or action

space, i is equivalent to the number of unique state-action observations, however, this

is not necessarily the case for discrete problems where a single state-action can be

reobserved multiple times. Depending on the requirements of the problem, a possible



4.4 Objective Function Trade-off 55

modification of Equation (4.11) would be to directly use the number of unique state-

action observations in place of i. The overall effect of this is to scale the agent’s

behaviour from exploratory to exploitative as learning progresses, Figure 4.6 plots

ωt for various τr values. The weighting factor in Equation (4.11) does not rely on

a fixed mission length by which to decay the information value weight, instead the

decay rate is determined by the τr parameter. The weighting decay profile has an

inverse relationship with the current time step where τr represents the "half-life"

of the information value, that is, the information value of the τr-th step is given a

weighting of 1
2
. Small values of τr drive the agent towards exploitative behaviour early

on, while large values encourage exploration for a longer proportion of the mission.

4.4.2 Greedy rollout

Having introduced the weighted objective function, it is now possible to propose a

directed rollout method to reduce the computational load of the information value

calculation. Recall from Section 4.3.1 that the information gain rollout tree branches

exponentially in the number of available actions. To prevent this exponential branch-

ing, a directed sampling method can be applied to restrict the rollout to only include

the expected future state-actions. That is, only consider the information gain from fu-

ture state-actions where the actions are selected from an approximation of the current

policy,

a = argmax
a∈A(s)

J̃a = argmax
a∈A(s)

Q̂a + ωi
Iagain0

max
∣∣Iagain0

∣∣ , (4.12)

when computing the information value. The rollout diagram for this greedy rollout

method is similar to the backup diagram for Q-learning and is shown in Figure 4.7.

Enforcing this restriction on the state-actions considered in the information gain

rollout ensures that the computation of the information value is linear in the rollout

depth. It is expected that when the current policy is in a state of flux, the greedy

rollout information value will poorly represent the actual future information gains

since the state-action value function, and consequently the policy, are likely to change.

In contrast, this issue does not exist when the full information rollout is taken since



56 Informative Exploration

s ′′

s′

a′

a ′′

( )asI gain ′′,
0

( ) e
a

gaingain JaasII ~maxarg,,
1

=′′′′′′=



Figure 4.7: Rollout diagram for the greedy rollout method. Only the information gain from the
expected state-actions of the current policy are considered in the calculation of the information
value.

all possible actions are considered and contribute to the information value.

4.5 iGP-SARSA(λ)

The complete learning algorithm using an informative exploration strategy is dubbed

iGP-SARSA(λ) and is shown in Algorithm 1. It combines GP value function ap-

proximation with informative exploration, via the GP variance volume information

measure from Equation (4.2) and the action selection objective function given by

Equation (4.11), in a replace trace SARSA(λ) RL framework. Both the full rollout

and greedy rollout sampling methods can be used within this algorithm by adjusting

the information value computation on line 11.

iGP-SARSA(λ) in Algorithm 1 differs from a standard GP-SARSA(λ) implementation

by the information value and objective function calculation in lines 12 to 17. In GP-

SARSA(λ), this would be replaced with an ε-greedy selection of the next action to

execute.

4.6 Summary

This chapter presented the mechanisms from which an informative exploration strat-

egy was developed for a SARSA(λ) RL framework that uses a GP for value function



4.6 Summary 57

Algorithm 1 iGP-SARSA(λ)

1: Q̄a ← 0 . Initial value estimate
2: Initialise θ . GP hyperparameters
3: for each episode do
4: e← 0 . Initialise trace
5: s, a← initial state and action
6: for each step i do
7: e (s, a)← 1 . Replacing traces
8: Take action a, observe reward, r, and next state, s′
9: δ ← r − Q̄a

10: for all a∗ ∈ A (s′) do
11: Q̄a∗ ∼ GPQ . GP approximation for Q
12: Ia∗total ← Igain0 + γrIgain1 + . . .+ γpr Igainp

13: end for
14: ωt ← τr

τr+i
. Time-step-dependent information weighting

15: Q̂a∗ ← Q̄a∗
max |Q̄a∗ |

. Normalised state-action value

16: Îa∗ ←
Ia∗

total

max |Ia∗
total
| . Normalised information value

17: Ja∗t ← Q̂a∗ + ωtÎa∗
18: a′ ← arg maxa∗ Ja∗t
19: δ ← δ + γQ̄a′

20: if (s, a) is a new state then
21: Append (s, a) to GPQ training inputs X
22: end if
23: y← y + αδe . Update GPQ training targets
24: if retrain hyperparameters then
25: θ ← arg minθ [− log p (y|X, θ)] . Minimise the

negative log marginal likelihood
26: end if
27: e← γλe
28: s← s′

29: a← a′

30: end for
31: end for

approximation. An information gain metric based on the change in the GP variance

was proposed and an analytical solution to finding the variance volume of a GP with

a squared exponential covariance function was provided in Equation (4.3). The infor-

mation gain rollout method is able to compute a nonmyopic information value from

the discounted sum of future information gain and this value was combined with the



58 Informative Exploration

state-action value according to a time-step-dependent weighting function.

The presented algorithm, iGP-SARSA(λ), uses a sampling strategy that is able to

direct exploration to areas of the state-action space where there is potential for high

information gain. Furthermore, this strategy adapts according to the state-actions

that have already been observed since the information gain in those areas are driven

down in the GP variance. Finally, the weighting function shown in Equation (4.11) is

designed to promote exploration in the early stages of learning and gradually increase

exploitative behaviour that attempts to maximise the state-action value as learning

progresses. The following chapter investigates the performance of iGP-SARSA(λ) as

compared to existing RL methods.



Chapter 5

Benchmarking Experiments

This chapter presents a series of benchmarking experiments to compare the iGP-

SARSA(λ) algorithm against existing SARSA(λ) methods. Four learning scenarios

are investigated, the first two are based on the puddle world and cart pole problems

as defined in the 2005 NIPS RL Benchmarking workshop, and the final two are the

battery cycling problem and 2D 3DOF soaring glider problem that were first presented

in Chung et al. (2013). Puddle world, cart pole and the battery cycling problem all

have continuous states with discrete actions, while the 2D soaring glider problem has

both discrete states and actions. In the cases where the state space is continuous, TC

(as described in Section 3.2) is used for value function approximation.

The learning algorithms compared in the following experiments are listed below along

with their associated plot markers:

1. SARSA(λ) with TC for value function approximation (if value function approx-

imation is required) and ε-greedy sampling (blue diamonds)

2. SARSA(λ) with GPs for value function approximation and ε-greedy sampling

(green squares)

3. iGP-SARSA(λ) with greedy rollout informative exploration (red circles)

4. iGP-SARSA(λ) with full rollout informative exploration (cyan triangles).

http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/


60 Benchmarking Experiments

Figure 5.1: Puddle world cost map. Terminal states lie in the region x ≥ 0.95
⋂
y ≥ 0.95 and all

transitions incur a cost of −1− 400× distance inside puddle.

5.1 Puddle World

5.1.1 Simulation setup

The puddle world simulation is based on the problem described in Sutton (1996).

The agent state is defined by its (x, y) coordinates and at each step the agent can

choose one of four actions: {up, down, right, left}, which moves the agent in the

chosen direction by a distance drawn from N (0.05, 0.012). The goal region is defined

as x ≥ 0.95
⋂
y ≥ 0.95 and transition into this area terminates the episode. All other

state-action transitions incur a cost of −1−400×distance inside puddle. The puddle

world cost map is shown in Figure 5.1. The two puddles both have radii of 0.1 and are

located between centre points {(0.1, 0.75) , (0.45, 0.75)} and {(0.45, 0.4) , (0.45, 0.8)}.

Simulations for each algorithm were repeated over 100 trials, each consisting of 20

episodes. Each episode was run for a maximum of 100 steps with the agent beginning

in the same set of random locations for each algorithm test set. Since both dimensions

of the problem state are continuous, value function approximation in the form of TC



5.1 Puddle World 61

and GP regression modelling was required. For the TC experiments, m = 10 tilings

with 10 partitions for each state dimension over 4 actions were used to discretise

the state-action space, the partition size was chosen with consideration of the puddle

dimensions and the required resolution to adequately map the cost variations across

the puddle world. The step-size was chosen as, α = 0.5
m
, with the discount parameters

γ = 0.9, λ = 0.9, and random exploration probability, ε = 0.01.

For the GP value function approximation experiments, the same discount factors were

used, while the step-size was chosen to be α = 0.5. In the GP-SARSA(λ) experiments,

the same ε value was used for the sampling strategy. The informative exploration

trials used greedy and full rollout with a rollout discount value of γr = 0.4 to a

threshold parameter γthres = 0.1, providing a rollout depth of 3. In the action selection

objective function, the step number count was reset for each new episode, and the

information value half-life was chosen to be τr = 20, which represents one-fifth of the

maximum allowable number of time steps per episode. GP hyperparameter training

was performed offline with a data set generated using a nominal set of hyperparameter

values. The final hyperparameters were chosen to be
{

0.1, 0.1, π
3

}
for the length scales

in the {x, y, action} dimensions, respectively, with process variance σ2
f = 0.1 and noise

variance σ2
n = 0.1. A summary of the learning parameters used in this set of trials is

given in Table A.1 of Appendix A.1.

5.1.2 Results

The averaged results over each set of 100 simulation trials are shown in Figure 5.2. The

greatest difference in performance between the four tested algorithms is seen in the

plot of the average rewards in Figure 5.2a. The three GP value function approximation

algorithms are each able to achieve an average reward above −1.5 whereas the TC

simulations produced a much lower average reward over all the episodes culminating

in an average reward of −1.7 in the final episode. This difference in performance is

particularly interesting since the percentage of episodes that ended in the terminal

region for the TC experiments and the iGP-SARSA(λ) experiments with full rollout



62 Benchmarking Experiments

0 2 4 6 8 10 12 14 16 18 20
−3.5

−3

−2.5

−2

−1.5

−1
Average Reward

Episode number

A
v
e

ra
g

e
 r

e
w

a
rd

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(a) Average reward over all simulations.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

50
Percentage of Successful Episodes

Episode number

P
e
rc

e
n
ta

g
e
 s

u
c
c
e
s
s

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(b) Percentage of episodes that ended in the ter-
minal region.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Average Number of Steps

Episode number

A
v
e

ra
g

e
 s

te
p

s

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(c) Average number of steps taken over all sim-
ulations for all episodes.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Average Number of Steps for Successful Episodes

Episode number

A
v
e

ra
g

e
 s

te
p

s

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(d) Average number of steps taken over all sim-
ulations for episodes that ended in the terminal

region.

Figure 5.2: Results for the set of puddle world simulations. Each algorithm was tested on 100
simulations of 20 episodes, each episode was allowed a maximum number of 100 steps. Episodes
terminated if the goal region was not reached within the maximum number of steps. Averages over
all 100 simulations for each algorithm set are shown with 95% confidence intervals where applicable.

are very close, especially towards the latter half of the episodes. This suggests that the

iGP-SARSA(λ) algorithm was able to find lower cost paths to the terminal region than

TC SARSA(λ). In this set of experiments, the GP-SARSA(λ) algorithm produced

the highest final average reward of −1.3, however, iGP-SARSA(λ) with greedy rollout

for informative exploration produced the highest number of episodes that terminated

in the goal region, with a final average reward coinciding with that of the full rollout



5.1 Puddle World 63

(a) TC SARSA(λ), ε-greedy sampling. (b) GP-SARSA(λ), ε-greedy sampling.

(c) iGP-SARSA(λ), greedy rollout sampling. (d) iGP-SARSA(λ), full rollout sampling.

Figure 5.3: Final estimated value functions of one trial for each learning algorithm. Although the
estimates vary in precision, the darker high cost regions are all roughly estimated to be around the
puddle regions shown in Figure 5.1.

simulations.

The effect of the informative exploration strategies can be seen in the average num-

ber of steps taken shown in Figure 5.2d. The greedy and full rollout algorithms

visited more state-actions in the episodes that terminated in the goal region than GP-

SARSA(λ) with ε-greedy sampling. The TC experiments also required more steps to

reach the goal region; however, since this set of experiments also applied an ε-greedy

sampling strategy, and given its poor reward-gain performance, this behaviour is more

likely attributed to learning an inferior policy.



64 Benchmarking Experiments

The final estimated value function (for the maximal actions) of one group of trials is

shown for each learning algorithm in Figure 5.3. For each of the tested algorithms, the

darker high cost regions all roughly align to the puddle regions in the cost map shown

in Figure 5.1. There is a notable difference between the smoothness of the estimations

from the TC approximation and the GP approximation; while the smoothness of

the GP model is influenced by the choice of covariance function, TC relies on the

resolution of the partitionings and the number of tilings used. Increasing the number

of partitions can increase the resolution of the value function approximation, however,

in this case, more state-action observations are required to visit all the partitions and

cover the space. Instead, it may be beneficial to limit the partitioning resolution in

favour of increasing the number of tilings to improve learning performance.

One issue with using GP regression for value function approximation is that unlike

in TC, the GP estimate is not bounded by the observations. Therefore, even though

the entire puddle world cost map has values that are less than or equal to 0, it

is possible for the GP approximation to assign positive values to some state-action

pairs; this can be seen in Figures 5.3b and 5.3c. These artifacts are due to the

GP attempting to smooth the model according to the covariance function and the

respective hyperparameters. They can be reduced by taking more observations at the

locations where they occur.

Both of the informative exploration algorithms generated value functions that appear

more similar in shape to the actual puddle world cost map when compared to GP-

SARSA(λ). The iGP-SARSA(λ) algorithms were able to pick up both the horizontal

and vertical puddle components while GP-SARSA(λ) only picked out the vertical

puddle. Considering the similar average reward profiles shown in Figure 5.2a, and

the percentage of episodes that reached the goal region shown in Figure 5.2b, it can be

seen that in the puddle world problem informative exploration can produce a better

approximation of the value function while also performing mission tasks to a degree

comparable to that of existing strategies such as ε-greedy sampling.



5.2 Cart Pole 65

−3 −2 −1 0 1 2 3

θ < −π/6 θ > π/6

x < −2.4 x > 2.4

−0.5 ≤ x
0
 ≤ 0.5

−π/18 ≤ θ
0
 ≤ π/18

θ

x (m)

Figure 5.4: The cart pole problem setup: the initial conditions of the cart position and pole position
for each run are shown in the shaded green and shaded blue regions, respectively. Failure conditions
are shown by the shaded red regions. The cart is able to slide freely between −2.4 ≤ x ≤ 2.4 and
the pole is able to rotate freely about its hinge.

5.2 Cart Pole

5.2.1 Simulation setup

The cart pole problem as described in Littman et al. (2005) is "to apply forces to a

cart moving along a track so as to keep a pole hinged to the cart from falling over.

A failure is said to occur if the pole falls past a given angle from vertical or if the

cart runs off the track." The four continuous state variables in this problem are the

cart position x (m), cart velocity v (m/s), pole angle θ (rad from vertical), and pole

angular velocity ω (rad/s). The initial conditions of each episode are chosen from

the following region: −0.5 ≤ x0 ≤ 0.5, −π
18
≤ θ0 ≤ π

18
, v0 = 0, ω0 = 0, as shown in

Figure 5.4, while the failure conditions are defined as |x| > 2.4 or |θ| > π
6
.

The cart pole dynamics are defined by the following equations:

θ̇ = ω,

ẋ = v,

ω̇ =
g sin θ + cos θ−F−mplpω2 sin θ

mc+mp

lp

(
4
3
− mp cos θ

mc+mp

) ,

v̇ =
F +mplp (ω2 sin θ − ω̇ cos θ)

mc +mp

, (5.1)

where F is the input action force applied to the cart and is drawn from the action



66 Benchmarking Experiments

set, A = F ∈ {−10,−9, . . . , 9, 10} N, and the constants in Equation (5.1) are given

in Table A.2. The Matlab simulation implemented a fourth order integration routine

via the inbuilt ode45 function using a time step of ∆t = 0.02 s.

The reward function for the cart pole problem is given as:

r =


0 if |θ| ≤ π

60
and |x| ≤ 0.05 (balancing),

−1000 if |θ| ≥ π
6
or |x| ≥ 2.4 (failure),

−1 otherwise.

(5.2)

Episodes were also terminated if a failure state was encountered, that is, if the cart

ran off the tracks or if the pole angle was greater than π
6

rad from vertical.

Each algorithm was run for 15 trials, each consisting of 20 episodes; the starting

states were consistent across the four tested algorithms. Each episode was run for a

maximum of 500 steps, which is equivalent to 10 s at a time step of ∆t = 0.02 s. For

the TC experiments, m = 100 tilings with 5 partitions for each state dimension over

21 actions (a total of 54 × 21 × 100 = 1312500 features) were used to discretise the

state-action space. The step-size was chosen as, α = 0.5
m
, with the discount parameters

γ = 0.9, λ = 0.9, and random exploration probability, ε = 0.01.

For the GP value function approximation experiments, the same discount factors were

used, while the step-size was chosen to be α = 0.5. As with the puddle world trials,

the GP-SARSA(λ) experiments used the same ε value as the TC experiments for the

sampling strategy. The informative exploration trials used greedy and full rollout with

a rollout discount value of γr = 0.4 to a threshold parameter γthres = 0.1, providing

a rollout depth of 3; in the action selection objective function, the information value

half-life was chosen to be τr = 20. GP hyperparameter training was performed offline

with a data set generated using a nominal set of hyperparameter values. The final

hyperparameters were chosen to be
{
π
18
, π

18
, 1.5, 1, 1.5

}
for the length scales in the

{θ, ω, x, v, action} dimensions, respectively, with process variance σ2
f = 0.1 and noise

variance σ2
n = 0.1. A summary of the learning parameters used in this set of trials is

given in Table A.3 of Appendix A.2.



5.2 Cart Pole 67

0 2 4 6 8 10 12 14 16 18 20
−120

−100

−80

−60

−40

−20

0
Average Reward

Episode number

A
v
e

ra
g

e
 r

e
w

a
rd

 

 

TC, ε−greedy

GP, ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(a) Average reward over all simulations.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500
Cumulative Number of Steps

Episode number

C
u

m
u

la
ti
v
e

 s
te

p
s

 

 

TC, ε−greedy

GP, ε−greedy

iGP, greedy rollout τ
r
=20

iGP, full rollout τ
r
=20

(b) Cumulative number of steps across the
episodes and averaged over all simulations.

Figure 5.5: Results for the set of cart pole simulations. Each algorithm was tested on 15 simulations
of 20 episodes, each episode is allowed a maximum number of 500 steps. Episodes terminate if the
pole falls beyond a defined angle from vertical or if the cart attempts to move beyond the rails.
Averages over all 15 simulations for each algorithm set are shown with 95% confidence intervals.

5.2.2 Results

The average reward and cumulative number of steps for the cart pole simulation sets

are shown in Figure 5.5. The GP-SARSA(λ) algorithm converges to the highest av-

erage reward while also achieving the highest number of cumulative steps. The TC

simulations display the poorest performance despite using the same ε-greedy explo-

ration method, achieving the lowest average reward and lowest number of cumulative

steps overall. This difference in performance is attributed to the ability of the GP

function approximation to infer values across the entire state-action space given only

a finite number of observations. In comparison, TC requires visitation of all state-

action partitions to garner a similar understanding of the value function surface.

Furthermore, since the value function is initially assumed to be 0 everywhere and

given the reward scheme in Equation (5.2), it is likely that at the start of learning, all

unobserved state-actions will appear to be of greater value than those already visited,

generating greater exploration to state-actions that are difficult to recover from. This

issue is far less prevalent in GP function approximation since the entire value function

estimate is updated with each observation.



68 Benchmarking Experiments

The number of episodes for which the pole was able to balance for the entire duration

of the episode is shown in Table 5.1.

Table 5.1: Number of Completed Episodes

Algorithm Number of
completed episodes

TC SARSA(λ) 3
GP-SARSA(λ) 16
iGP-SARSA(λ) with greedy rollout 21
iGP-SARSA(λ) with full rollout 6

It is interesting to note that although iGP-SARSA(λ) with greedy rollout was able to

balance the pole for more episodes, the cumulative number of steps of GP-SARSA(λ)

was still greater than either of the informative exploration algorithms. The proposed

explanation for these results is related to the particular reward setup for the cart pole

problem and the exploration strategy applied by iGP-SARSA(λ).

iGP-SARSA(λ) encourages early exploration to decay as the number of time steps

in each episode increases, however, many of the state-actions of the cart pole prob-

lem lead to termination conditions, that is, the pole falling beyond a certain angle

from vertical or the cart driving off the rails. Before observation, state-action value

estimates along these "failure" trajectories have a higher associated variance and are

more profitable in an exploration sense, the difficulty is that once in these states, there

become far fewer actions that return the pole to a balanced position than actions that

cause termination. iGP-SARSA(λ) tries to explore these state-action regions at the

start of each episode but this often leads to early termination and consequently fewer

observations to improve the value function approximation. Furthermore, the max-

imum reward region is very narrow and so only a small number of observations is

required to drive down the variance in this region. With the exploration value of the

maximum reward state-actions quickly reduced, the exploration phase at the start of

each episode becomes dominated by state-actions that are difficult to recover from

and are much more likely to lead to termination.



5.3 Battery Cycling 69

From this analysis, it is perhaps fair to conclude that the particular exploration strat-

egy used in iGP-SARSA(λ) is not suitable for this cart pole balancing problem. The

problem setup has parallels to the soaring glider problem, which also exhibits similar

critical states. Because of this, a more conservative exploration mechanism that can

account for the risk of failure seems to be required for this task. For example, an ex-

ploration strategy that can take into account the pole angle when deciding whether to

explore or exploit may produce longer trajectories and consequently improve learning

performance over the current iGP-SARSA(λ) exploration scheme.

On the other hand, a modification to the problem setup to allow swing up may result

in more favourable learning conditions for iGP-SARSA(λ). The most common cause

for episode termination is the pole falling beyond the threshold vertical angle, if this

termination condition is removed, iGP-SARSA(λ) will have greater opportunity to

recover and learn from costly states encountered during its early exploration phase.

5.3 Battery Cycling

For both of the prior benchmarking experiments, puddle world and cart pole, there

is only one way to gain reward in each setup. In puddle world there is only one

termination region and in cart pole there is only one region where balancing the pole

incurs no cost. The design of these narrow reward regions results in no real benefit

for performing exploration once the agent has found a trajectory that is successful.

Local exploration by an ε-greedy sampling strategy allows for small refinements to

a successful trajectory, however iGP-SARSA(λ) actively directs the agent away from

visited locations, which in these experiments is in fact distracting the agent from the

goal of the learning problem and typically induces a heavy penalty as well.

The problem of learning to soar differs from the previous benchmarking problems

in that there are multiple trajectories that the agent can execute to can gain re-

ward, however some are more efficient than others. In these situations exploration is

necessary to traverse the state-action space and discover the most profitable paths.



70 Benchmarking Experiments

The following two benchmarking experiments are designed with multiple reward re-

gions to compare the exploration ability of the iGP-SARSA(λ) algorithm to ε-greedy

sampling.

5.3.1 Simulation setup

Consider the task of providing energy above a particular rate from a battery with the

charging and discharging profiles shown in Figure 5.6. A reward of 0.01 is received

when the discharge rate of the battery is greater than or equal to the reward threshold

of dthres = 0.045, while a cost of −0.01 is incurred any time the battery is charging

or whenever it is discharging below the reward threshold. The two profiles generate

a non-convex reward surface where local optima exist between 0.4 ≤ energy ≤ 1.

At each step, two discrete actions are available: the battery can either charge up or

discharge. The energy state of the battery is continuous between 0 and 1, i.e. empty

and full, respectively.

Each algorithm was tested over 100 trials of 500 s simulations with a time step of

∆t = 0.5 s, giving a total of 1000 time steps per trial. For the TC experiments,

m = 100 tilings with 50 state partitions over 2 actions were used to discretise the

state-action space. The step-size was chosen as, α = 0.5
m
, with discount parameters,

γ = 0.9, λ = 0.7, and random exploration probability, ε = 0.01. In the GP- and iGP-

SARSA(λ) experiments, the same discount parameters were used, while the step size

was set to α = 0.5. The hyperparameters of the GP model were trained offline, they

were found to be {0.3, 0.18} for the lengths scales in the {energy, action} dimensions,

with a process variance σ2
f = 0.14 and noise variance σ2

n = 0.013. In the greedy

and full rollout iGP-SARSA(λ) experiments, a rollout discount value of γr = 0.4 was

used with a threshold parameter γthres = 0.1, providing a rollout depth of 3; in the

action selection objective function, the information value half-life was chosen to be

τr = 500, that is, half the maximum number of time steps for each simulation. For

each experiment, the battery began at a random energy state; the set of random

starting states was consistent across the full and greedy rollout iGP-, GP- and TC



5.3 Battery Cycling 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Energy

R
a
te

Charging and Discharging Profiles

 

 

rcharge = 55.9x6 − 164.1x5 + 173.1x4

−76.9x3 + 11.3x2 + 0.6x

rdischarge = 0.05 9
√
x

Charging

Discharging

Reward threshold

Figure 5.6: Battery charging and discharging profiles as a function of the energy state, equations
for each profile are also given where x = energy. The discharge reward threshold is shown as the
dashed line.

SARSA(λ) experiments. A summary of the learning parameters used in this set of

trials is given in Table A.4 of Appendix A.3.

5.3.2 Results

Figure 5.7 shows the averaged results for the cumulative and average rewards over the

100 simulation trials for each algorithm. Both of the iGP-SARSA(λ) algorithms are

seen to perform better than the algorithms that relied on ε-greedy for exploration.

The average rewards for the informative exploration algorithms converge to 4.17×10−3

for the full rollout case and 4.28× 10−3 for the greedy rollout simulations, while the

TC simulations converged to an average reward of 3.61×10−3 and the GP-SARSA(λ)

average rewards converged to 3.02× 10−3.

It is perhaps unexpected that GP-SARSA(λ) performed so poorly compared to the

other three algorithms especially when considering its performance in the puddle

world and cart pole problems shown in the previous subsections. The main differ-



72 Benchmarking Experiments

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Cumulative Reward

Time step

C
u

m
u

la
ti
v
e

 r
e

w
a

rd

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=500

iGP, full rollout τ
r
=500

(a) Cumulative reward over all trials.

0 100 200 300 400 500 600 700 800 900 1000
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3 Average Reward

Time step

A
v
e
ra

g
e
 r

e
w

a
rd

 

 

TC, ε−greedy

GP,  ε−greedy

iGP, greedy rollout τ
r
=500

iGP, full rollout τ
r
=500

(b) Progression of average reward over all trials.

Figure 5.7: Comparison of the mean cumulative reward over all 100 trials for TC SARSA(λ) and
GP-SARSA(λ) against iGP-SARSA(λ), 95% confidence intervals are given at 100 time step intervals.
The averaged cumulative reward is shown in Figure 5.7a and the average reward received is given
in Figure 5.7b.

ence between the battery cycling problem and the previous two problems is that the

state-actions that generate positive reinforcement in the battery cycling problem form

trajectory loops that exist in local maxima across the state-action space, this is shown

by the different trajectories taken by each of the learning algorithms in Figure 5.8.

Each of these trajectories have converged to a locally optimal reward-gaining cycle,

however, without adequate nonmyopic exploration, it becomes difficult to search for

other cycles that may produce a higher average reward. These results show that the

informative exploration strategy is able to explore beyond locally optimal loops to

find a higher reward-gaining cycle than the ε-greedy exploration strategy.

The state-action trajectory and approximated state-action value function of one trial

is shown for each of the tested algorithms in Figure 5.8. The state-action trajectory

is given by the solid black line, which is overlaid above the learnt state-action value

function represented by the coloured surface plot beneath. Since TC SARSA(λ) with

ε-greedy sampling was unable to explore beyond the first locally optimal cycle it

discovered, the state-action value function is only approximated at and around those

locations that were visited. GP-SARSA(λ) with ε-greedy sampling provides better

coverage of the state-action value function in its approximation since the GP is able



5.3 Battery Cycling 73

(a) TC SARSA(λ), ε-greedy sampling. (b) GP-SARSA(λ), ε-greedy sampling.

(c) iGP-SARSA(λ), greedy rollout sampling. (d) iGP-SARSA(λ), full rollout sampling.

Figure 5.8: Battery charge/discharge paths for one set of trials overlaid on top of the approximated
value function. The dashed white line shows the energy at which the discharge rate is above the
reward threshold. A cost is incurred if the battery attempts to discharge anywhere to the left of the
dashed line. The SARSA(λ) trial coverges early on to the nearest locally optimal solution, around
energy = 0.8, while the iGP-SARSA(λ) algorithm is able to find the globally optimal cycle between
0.4 ≤ energy ≤ 0.5. The final state-action location is indicated by the cross.

to infer the value at locations that have not been visited. As discussed previously,

the random sampling method used in this algorithm is unable to drive exploration

beyond locally optimal trajectory cycles and so the learnt value function does not

detect the higher reward-gaining loop near the discharge rate cut-off (shown by the

dashed white line in Figure 5.8), instead it expects the optimal loop to exist around

energy = 0.5. In comparison, the two informative exploration trials both discover

the globally optimal trajectory cycle around energy = 0.4; in particular, the ability

of the exploration mechanism is demonstrated in Figures 5.8c and 5.8d where it can



74 Benchmarking Experiments

be seen that the algorithm initially discovers the loop around energy = 0.5 but is

able to explore beyond it to converge to the cycle with the higher reward gain.

5.4 2D 3DOF Soaring Glider

5.4.1 Simulation setup

In the soaring glider problem, the search space is discretised into an hexagonal grid

world with an underlying wind energy field as shown in Figure 5.9. The glider state

is defined by (x, y, ψ), the location and heading of the platform. The headings are

discretised according to the six faces of the hexgrid cells, however, since this state

is angular, the wraparound condition must be enforced when computing the squared

distances for the GP covariance function. The glider is only able to travel within the

defined search space and receives a penalty for choosing actions that attempt to move

it beyond the boundaries.

At each state, the glider has the choice of three actions: turn left, go straight or

turn right. The state transition for each action is shown in Figure 5.10. Headings

are defined as 0◦ north, then 60◦, 120◦, etc., travelling in an anti-clockwise direction

from north. Since the state-action space is discrete, TC was not necessary for these

experiments and standard SARSA(λ) was applied.

The reward functions for the hexgrid example are based on a simple glider aircraft

model. During flight in no wind the aircraft is assumed to lose energy at a constant

rate while travelling forwards with an additional penalty when turning. This is equiv-

alent to a glider travelling at a constant airspeed that loses energy in proportion to

the lift to drag ratio L
D
, the vehicle mass mglider and the acceleration due to gravity

g. For an electric vehicle these can be considered constant values during flight. An

additional penalty is applied to turns due to the drag from increased wing loading.

With the fixed turn angles of 60◦ in the hexgrid example, the additional turn penalty

is approximated as 1.3 times the steady-level energy loss over the same distance. The



5.4 2D 3DOF Soaring Glider 75

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

x

y

Wind Energy Field

 

 

0

20

40

60

80

100

120

140

160

180

200

Figure 5.9: Wind energy field for the soaring glider simulation. A thermal is centred at (12, 17) and
a wind shear field is present between the limits of 10 ≤ x ≤ 20 and 5 ≤ y ≤ 15. The filled contour
plot shows the thermal energy in Joules.

Turn left 

Go straight 

Turn right 

s

s

Figure 5.10: State transition for each available action. Each action involves an initial forward step,
the following step is either into the cell on a bearing of 60◦ to the left or right, or into the cell directly
ahead.

resulting cost function for a movement action between cells spaced distance d apart

is

rmove = −mglidergd
L
D

×

1 if action = go straight

1.3 otherwise.
(5.3)

The energy sources in the field are either rising air (static soaring) or wind gradient



76 Benchmarking Experiments

(dynamic soaring) sources. A rising air energy source is placed at (12, 17) with a de-

fined core wind speed wtherm and radius ltherm. Energy is gained from rising air simply

by flying through it (independent of heading) and is proportional to the strength of

the wind. At a distance dtherm from the thermal centre the reward is

rtherm = mgliderg∆twtherm ×

1−
(
dtherm
ltherm

)2

if dtherm < ltherm

0 if dtherm ≥ ltherm,
(5.4)

where ∆t is the time step.

Dynamic soaring is the process of collecting energy by moving through a spatial

wind gradient, which effectively increases the airspeed of the aircraft. By flying cyclic

patterns through wind shear it is possible to continuously increase airspeed. Typically,

dynamic soaring is performed in a vertical wind gradient (with respect to altitude)

rather than the planar wind gradient used here; whilst an in-depth discussion of

dynamic soaring is beyond the scope of this thesis, suitable descriptions can be found

in Wood (1972), Weimerskirch et al. (2000), Lawrance (2011). The dynamic soaring

sources are modelled as a planar linear shear gradient, as noted by the wind vectors

in Figure 5.9. Energy capture from a wind gradient is due to the increased air-relative

kinetic energy gained through the increase in airspeed from the wind gradient. For a

linear wind gradient ∂Wx

∂y
, the kinetic energy and power are

Ekinetic = 1
2
mV 2, (5.5)

dEkinetic
dt

= 1
2
m

(
2V

dV

dt

)
(5.6)

= 1
2
m
(
∂Wx

∂y
V 2 cosψ sinψ

)
. (5.7)

This is effectively the projection of the wind gradient in the airspeed direction, for

this simulation the resulting reward function for travelling distance d through a linear



5.4 2D 3DOF Soaring Glider 77

gradient ∂Wx

∂y
at airspeed V and heading ψ is

rshear = 1
2
md sinψ cosψ ∂Wx

∂y

(
2V + d sinψ cosψ ∂Wx

∂y

)
. (5.8)

Thus positive reward is obtained by heading into a positive gradient, while negative

reward is received for heading into a negative gradient.

Finally, the reward function includes a penalty term for flight outside the specified

area. The edge penalty is twice the magnitude of the strongest wind energy source,

redge =

−2 maxW if outside flight area

0 otherwise.
(5.9)

The resulting reward function is the sum of these four components,

r = rmove + rtherm + rshear + redge. (5.10)

In addition to the reward function, the four energy gain/loss components are used to

compute the remaining platform energy. In the experiments that follow, the agent

is restricted to an upper energy bound defined by the maximum energy and a lower

bound of zero which represents a critical failure. The glider began each experiment

at maximum energy, this was chosen to be the amount of energy required to fly

straight and level for half of the total simulation time. Considering the additional

energy penalties for turning and attempting to exit the field, it is not expected that

a random policy will be able to maintain positive platform energy levels over the

duration of the simulation.

The 2D 3DOF glider experiment was repeated over 15 trials of 104 s simulations

(timestep ∆t = 1 s) for each algorithm. In each of the 15 trials, the glider began

in a random starting location that was consistent across the four tested algorithms.

The discount factors used in this set of simulations are γ = 0.9, λ = 0.7, with step

size α = 0.5. For the random sampling exploration policies, ε = 0.01, while the

rollout discount value was again chosen to be γr = 0.4, with discount threshold,



78 Benchmarking Experiments

γthres = 0.1, giving a total of 3 rollout levels. To observe the effect of the information

half-life parameter, τr was selected to be {2000, 5000, 7000}. As with the previous

experiments, the hyperparameters of the GP model used to approximate the value

function were trained offline; the length scales were chosen to be
{

3, 3.5, π
4
, 0.5

}
for

the {x, y, ψ, action} dimensions, respectively, with process variance σ2
f = 10 and noise

variance σ2
n = 10. A summary of the learning parameters used in this set of trials is

given in Table A.5 of Appendix A.4.

5.4.2 Results

Sample flight paths for each algorithm are shown in Figure 5.11. Figure 5.12 shows

the averaged results over all 20 trials with 95% confidence intervals given at 1000

time step intervals; the following series of plots show only the τr = 5000 results.

The progression of the average reward is shown in Figure 5.12a where it can be seen

that GP-SARSA(λ) with ε-greedy sampling achieves the highest final average reward

across the simulations. Both of the informative exploration algorithms have a similar

average reward profile to that of GP-SARSA(λ), while SARSA(λ) exhibits several

initial dips before rising and overtaking the informative exploration strategies in the

latter half of the simulations. The steep drops in reward-gain performance early on

for the SARSA(λ) simulations suggests that the agent continues to attempt actions

that send it outside of the flight area. The GP approximation cases are able to avoid

this behaviour because the GP can efficiently propagate the large negative reward

triggered by these actions to nearby state-actions thereby preventing the agent from

attempting similar actions in those states.

Since the state-action space is discrete in this problem, it is possible to directly

compare the exploration behaviour of each algorithm by examining the number of

observed state-action pairs, this is shown in Figure 5.12b. The two algorithms that use

ε-greedy sampling produce the highest and lowest number of observed state-actions.

This is perhaps not that surprising given the average reward profiles of Figure 5.12a;

GP-SARSA(λ) is able to discover and maintain reward-gaining state-actions early



5.4 2D 3DOF Soaring Glider 79

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

x

y

Glider Flight Path

 

 

SARSA(λ)

GP

iGP
greedy

, τ
r
=5000

iGP
full

, τ
r
=5000

Figure 5.11: Flight trajectories learnt by each of the algorithms. Most of the flight time is concen-
trated around areas of potential wind energy gain, and it is apparent that paths can vary in their
energy gain efficiency.

on, as a result, the random actions induced by ε-greedy sampling are largely damped

out by the learnt value function. In comparison, SARSA(λ) cannot infer the value of

unobserved state-actions and so requires many more time steps to identify reward-

gaining state-actions. Furthermore, the ε-greedy sampling strategy is not the only

force driving exploration at the start. The initial value function is assumed to be

zero everywhere, however for most state-actions, the reward from Equation (5.10) is

negative, this means that during the start of learning, unobserved state-actions appear

more rewarding than most of those that have been observed and this would contribute

to the exploration of new state-actions until positive reward-gaining state-actions are

observed.

The informative exploration strategies reach a middle ground between the two ex-

tremes displayed by the ε-greedy sampling strategies. The objective function given

by Equation (4.10) places higher weighting on the exploration value early on and so

the number of observed state-actions follows closely with the SARSA(λ) exploration

profile, particularly in the first 1000 time steps. As learning progresses, the explo-



80 Benchmarking Experiments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−600

−500

−400

−300

−200

−100

0
Average Reward

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

 

 

SARSA ε−greedy

GP ε−greedy

iGP, greedy rollout τ
r
=5000

iGP, full rollout τ
r
=5000

(a) Average rewards.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Average Number of Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

 

 

SARSA ε−greedy

GP ε−greedy

iGP, greedy rollout τ
r
=5000

iGP, full rollout τ
r
=5000

(b) Observed state-actions.

Figure 5.12: Averaged rewards and observed state-actions for each tested algorithm over each of the
15 trials, 95% confidence intervals are also given at 1000 time step intervals offset by 200 time steps
for each set of trials.

ration weight declines and the algorithm favours the learnt reward-gaining trajectories

identified in the approximated value function.

It is also worth discussing the differences in the informative exploration strategy due

to the state-action space being either continuous or discrete. The previous three ex-

periments all included continuous states, while the 2D soaring glider operates in a

discrete state-action space; this means that each state-action observation of puddle

world, cart pole and the battery cycling problem is unique and almost surely irre-

producible, whereas samples in the 2D soaring glider problem can be reobserved any

number of times. Thus state-actions that have been observed previously have an in-

formation gain reward due only to the noise variance hyperparameter and derive no

information gain reward from the squared exponential component of the covariance

function since the distance to an existing training input is exactly 0. The length-scale

hyperparameters continue to dictate the information gain reward for all other previ-

ously unobserved state-actions, however due to the discretisation, there is now a step

change between the information gain of neighbouring state-actions. This makes reob-

servations far less appealing than new observations especially during the predominant

exploration phase at the start of learning when using the objective function of Equa-

tion (4.10). This is advantageous for achieving greater exploration of the state-action



5.4 2D 3DOF Soaring Glider 81

space, however, it does somewhat inhibit revisitation of profitable states while the

exploration weight is high, leading to potentially slower learning rates as a trade-off

for greater exploration of the state-action space.

Consider the plots of the cumulative energy and observed states for each trial shown

in Figure 5.13. In the plots of the left column, the dashed black lines show the 0

energy threshold. The SARSA(λ) plots in Figures 5.13a and 5.13b show a distinct

inverse relationship between the energy and the rate of observing new states. In fact,

all SARSA(λ) trials initially drop below the energy threshold before the algorithm

discovers a region of energy gaining state-action loops, after which the cumulative

energy is replenished and the rate of new state-action observations drops. On the

other hand, the GP-SARSA(λ) trials show early discovery and maintenance of energy-

positive flight paths with the cumulative energy reaching maximum capacity for many

of the trials. Unfortunately, this comes at the cost of poor exploration performance,

which is apparent when comparing against the number of observed state-actions of

all the other algorithms.

One of the most interesting features of the informative exploration energy profiles is

the early peaks in energy gain seen in both the greedy rollout and full rollout cases.

These indicate that although the algorithm has discovered energy gaining trajectories,

it abandons them in order to explore more of the state-action space. Consequently,

the cumulative energy drops and may not recover if the agent is unable to return to

these regions later on. This appears to be common in the greedy rollout case, however

most of the full rollout trials retain or regain positive cumulative energy throughout

the simulation.

The question that should now be asked is: how can learning be conducted to retain

positive energy without compromising the exploration performance of the learning

agent? This question will be tackled in the following chapter.



82 Benchmarking Experiments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−10

−8

−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(a) SARSA(λ) cumulative energy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Observed State−Actions

Time step ∆t = 1s

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

e
d
 s

ta
te

−
a
c
ti
o
n
s

(b) SARSA(λ) observed state-
actions.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−10

−8

−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(c) GP-SARSA(λ) cumulative en-
ergy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Observed State−Actions

Time step ∆t = 1s

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

e
d
 s

ta
te

−
a
c
ti
o
n
s

(d) GP-SARSA(λ) observed state-
actions.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−10

−8

−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(e) iGP-SARSA(λ) with greedy roll-
out cumulative energy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Observed State−Actions

Time step ∆t = 1s

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

e
d
 s

ta
te

−
a
c
ti
o
n
s

(f) iGP-SARSA(λ) with greedy roll-
out observed states-actions.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−10

−8

−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(g) iGP-SARSA(λ) with full rollout
cumulative energy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Observed State−Actions

Time step ∆t = 1s

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

e
d
 s

ta
te

−
a
c
ti
o
n
s

(h) iGP-SARSA(λ) with full rollout
observed state-actions.

Figure 5.13: Cumulative energy and observed state-actions over the course of the simulation for each
of the 15 trials. Energies below the threshold value of 0, shown by the black dashed line, represent
a critical failure.



5.4 2D 3DOF Soaring Glider 83

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−350

−300

−250

−200

−150

−100

−50

0
Average Reward

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

 

 

iGP
greedy

 τ
r
=2000

iGP
full

 τ
r
=2000

iGP
greedy

 τ
r
=5000

iGP
full

 τ
r
=5000

iGP
greedy

 τ
r
=7000

iGP
full

 τ
r
=7000

(a) Average rewards.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

Average Number of Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

 

 

(b) Observed state-actions.

Figure 5.14: Averaged rewards and observed state-actions for varying τr values over each of the 15
trials, 95% confidence intervals are also given at 1000 time step intervals, offset by 100 time steps
for each set of trials.

The effect of τr

The effect of the information value half-life can be seen in Figure 5.14, these plots

compare the progression of the average reward and the number of observed state-

actions for varying τr values. The exploration performance of all the trials is very

similar within the first 1000 time steps, beyond this, the full rollout trials show

considerable divergence from one another with the higher τr value trials observing

new state-actions at a greater rate. The greedy rollout trials of τr = 7000 also

diverges to achieve the highest average number of state-action observations, while the

greedy rollout τr = {2000, 5000} trials continue to match in exploration performance

until after 2500 steps when the rate of new state-action observations of the lower τr
value trials declines. In terms of reward-gain performance, trials with lower τr values

appear to reach higher average rewards faster than those with a higher τr value. Full

rollout simulations also appear to consistently achieve better reward-gain performance

than informative exploration strategies that use greedy rollout, particularly during

the early stages of learning.

The trends demonstrated in Figure 5.14 are to be expected since the τr value controls

the desire to explore through the exploration weighting in the action selection objec-



84 Benchmarking Experiments

tive function. Lower τr values cause the learning agent to favour exploiting the learnt

value function earlier, resulting in higher returns earlier on, while higher τr encourages

a longer exploration period at the start of learning. In this 2D glider problem, the

results suggest that a τr value less than 2000 may induce sufficient exploration of the

state-action space to discover reward-gaining trajectories. However, for a problem

such as the battery cycling problem, where many locally optimal loops exist, more

exploration may be required to discover globally optimal solutions. Ultimately, the

τr value should be chosen to reflect the number of state-action observations required

to provide sufficient coverage of the state-action space, where sufficiency is guided by

the ability of the learning agent to sample across the space and the proportional size

of any reward-gaining regions.

Comparison of information gain measures

The iGP-SARSA(λ) algorithm with τr = 5000 was also tested using the covariance

matrix trace and differential entropy information measures described in Section 4.2.2.

The average reward and number of observed state-actions for each information gain

measure are shown in Figure 5.15. Although full information rollout was applied

with each of the information measures, the trace and entropy measures produced

exploration and exploitation behaviour similar to the GP-SARSA(λ) algorithm with

ε-greedy sampling. The average number of observed state-actions for the trace and

entropy measures are roughly half that of the GP variance volume simulations. The

primary reason for the lag in exploration performance is that these two informa-

tion values are computed as the discounted sum of the trace or entropy at each of the

state-actions in the rollout; this is different to the GP variance volume measure, which

computes the information gain across the entire state-action space and not at discrete

locations. By limiting the information gain calculation to discrete locations, an el-

ement of the nonmyopic exploration behaviour is lost since exploratory actions now

only consider the information gain from the next sequence of state-action locations,

and not across the entire value function space.



5.5 Summary 85

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−300

−250

−200

−150

−100

−50

0

Average Reward

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

 

 

Volume

Trace

Entropy

(a) Average rewards.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Average Number of Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

 

 

(b) Observed state-actions.

Figure 5.15: Averaged rewards and observed state-actions for different information gain measures
over each of the 15 trials, 95% confidence intervals are also given at 1000 time step intervals, offset
by 200 time steps for each set of trials.

5.5 Summary

This chapter compared the performance of the iGP-SARSA(λ) algorithm, which

has an adaptive, directed and nonmyopic exploration strategy, to that of standard

SARSA(λ) learning with ε-greedy exploration. The algorithms were tested on four

experiments: puddle world, cart pole, a battery cycling problem and a 2D soaring

glider problem. The results from each of these experiments suggest that using GPs

for value function approximation can improve reward-gain performance over the TC

function approximation method. The GP function approximation updates the value

estimate at every state-action whenever a new observation is made, whereas the TC

method only updates those features that were observed. Thus, the GP approxima-

tion does not suffer from bias due to the initial value estimate, whereas this can be

an issue for approximation methods such as TC, which depend on the initial value

estimate before the necessary observations are made.

GP-SARSA(λ) with ε-greedy sampling demonstrated good reward-gain performance

in both the puddle world and cart pole experiments, however the battery cycling and

2D soaring problem highlighted the need for a directed and nonmyopic exploration

scheme to improve coverage of the state-action space. In the 2D soaring problem, the



86 Benchmarking Experiments

ε-greedy strategy discovered a reward-gaining loop early on in the learning process

and did not explore many other state-actions afterwards. This was also the case

for the battery cycling simulations, however, because of the multiple locally optimal

loops that exist in this problem, the learning agent was unable to discover the globally

optimal trajectory via random exploration. In comparison, informative exploration

performed particularly well in the battery cycling problem, iGP-SARSA(λ) using

either the greedy rollout or full rollout method was capable of directing exploration

beyond these local optima to discover more efficient reward-gaining trajectories.

In general, designing the action selection objective function to actively control explo-

ration and exploitation behaviour requires some knowledge and consideration of the

learning agent and learning system. For example, the size and complexity of the state

and the ability of the agent to traverse and observe state-actions should be a factor

when determining information value decay rates. Traditional exploration methods

such as ε-greedy do not require, and therefore do not consider, these meta-properties

of the learning problem, simplifying the associated function approximation and sam-

pling computation somewhat. However, as shown in the battery cycling results, some

problems require more sophisticated exploration strategies to provide sufficient cov-

erage of the state-action space.

The results presented in this chapter have also shown cases where exploration can

jeopardise the ability to continue learning. In the cart pole problem, some actions

can trigger transitions into states that are difficult to recover from, causing failures

with severe penalties to occur. Since the iGP-SARSA(λ) policy promotes exploration

during the early stages of each episode, early termination due to costly failure condi-

tions were common. This was evidenced by the fewer number of cumulative steps for

both informative exploration algorithms as compared to GP-SARSA(λ) with ε-greedy

sampling. This in turn limited the total number of observed state-actions that were

available for value function approximation, degrading the overall performance even

further.

The challenge is to develop a learning algorithm that can actively decide when it is

safe to explore and when exploitation is required. For this, some measure of "safety"



5.5 Summary 87

must be defined and accordingly used to adapt the exploratory or exploitative nature

of the action selection. The following chapter addresses this problem in the context

of an unpowered aerial glider learning to soar in a wind energy field.



88 Benchmarking Experiments



Chapter 6

Resource-Constrained Learning for

Autonomous Soaring

This chapter presents an extension of the informative exploration strategy to prob-

lems that exhibit resource constraints, specifically, the autonomous soaring problem

described in Section 2.1. As was discussed in Chapter 4, the goal of the sampling

policy (that is, the action selection function) in the RL problem is to consolidate

the two competing objectives of exploration and exploitation to improve the overall

value function estimate and consequently improve the policy. However, given a sys-

tem subject to resource constraints, such as limited platform energy, the desire to

explore or exploit should adapt according to the current available resources. This is

of particular importance when the resource of interest constitutes the reward signal

and also determines the continuation or (critical) termination of the learning process.

Exploration can come at the cost of mission success if accessibility to successful state-

actions is very narrow (that is, small deviations may severely affect the final reward)

and the agent is only able to take a limited number of steps during learning due to

these resource constraints. On the other hand, the agent should continue to explore

the state-action space to discover ever more efficient reward-gaining trajectories.

The following subsections propose a weighting function to adaptively preference ex-

ploration or exploitation according to the currently available resources. This dy-



90 Resource-Constrained Learning for Autonomous Soaring

namic weighting function replaces the time-step-dependent weighting function of Sec-

tion 4.4.1 and is used to formulate the sampling policy used in the eGP-SARSA(λ)

algorithm described in Section 6.2.

6.1 Resource Limitations

RL research has typically dealt with problems where the single goal is to efficiently

find an optimal state-action trajectory for an agent as its number of observations

increases to infinity. Limitations on available resources such as platform energy have

largely been neglected from such problems in existing research. However, when the RL

problem is a resource-seeking mission, the reward and the ability to continue collecting

rewards become tightly coupled and such limitations can no longer be ignored.

Resource limitations can be seen as a risk management issue when characterising

exploration-exploitation behaviour. Safety considerations for reinforcement learning

have been investigated in the work by Schneider (1996), García and Fernández (2012),

Moldovan and Abbeel (2012) and others, and these methods consider risk due to

uncertainty in the transition model, particularly with regard to actions that may

cause the learning agent to experience catastrophic failures. The proposed methods

typically require prior knowledge of some "safe" state-action regions and rely on

heuristic policies that can drive the agent back into these areas when risky state-

actions are encountered. In the autonomous soaring problem described in this thesis,

the level of risk is considered to be inversely proportional to the available platform

energy, however, to perform flight trajectories to regain platform energy is exactly

the learning task of the system. For simplicity, the remainder of this discussion will

focus solely on platform energy as the resource and reward of interest.

A soaring glider learning to gather energy from a wind field must expend energy to

explore the space for profitable flight trajectories. With no auxiliary energy storage,

the glider must store wind energy by increasing its altitude and/or velocity. The

instantaneous energy of the glider can be computed as the sum of its kinetic and



6.1 Resource Limitations 91

potential energies,

Ei =
1

2
mgliderV

2
i +mglidergzi, (6.1)

where mglider is the mass of the glider, g is the acceleration due to gravity, Vi is its

current velocity and zi is its current altitude.

Given the structure of the general objective function in Equation (4.10), the weighting

function ω can be thought to describe how optimistic the agent can afford to be in

its assumption of uncertain values. For the glider agent, a possible measure of this

is its available flight time. The maximum gliding flight time is directly linked to the

available energy and is also dependent on the condition that z > 0 throughout the

flight. Thus, a suitable dynamic weighting function to scale exploratory behaviour

according to these factors is,

ωe =
2

π
arctan (hi)×max

(
0,min

(
1,

Ei
Emax

))
1, (6.2)

where, Ei is the available platform energy at time step i, Emax is the maximum

amount of energy that can be stored on the platform (for example, corresponding to

a maximum speed at a maximum altitude), and

hi = max

(
0,min

(
1,

zi
zmax

))
× 100%. (6.3)

The purpose of including hi is to explicitly restrict exploration in states at low al-

titudes, regardless of available platform energy (which also includes the altitude in

the potential energy component). The altitude penalty is squeezed into an arctan

profile between [0, 1) so that for the most part it does not greatly affect ωe, however

at critically low altitudes, it drives ωe to zero, ultimately restricting the exploration

of state-action trajectories that may potentially send the platform into the ground

at high speeds. Other weighting functions may also be designed that use different

methods to combine these or other factors significant to the specific learning problem,
1The max min terms are required for simulation analysis only since it is not expected for energy

to drop below 0 or rise above Emax in a physical system. This similarly applies to the computation
of hi in Equation (6.3).



92 Resource-Constrained Learning for Autonomous Soaring

Figure 6.1: The resource-dependent information weighting function from Equation (6.2) evaluated
for a range of energy and altitude values. Emax and zmax are, respectively, the maximum energy
and maximum altitude allowable according to the 3D 6DOF soaring glider simulation described in
the following chapter. The surface primarily gradates linearly between 0→ Emax for most altitude
values but is driven towards 0 for critically low altitudes.

however, the general concept of representing exploration affordability in the context

of resource constraints should be maintained.

The weighting factor in Equation (6.2) attempts to consolidate all the principal di-

mensions of the physical glider state to represent the affordability of exploration on

a scale of 0 to 1. This requires some simplifications, which in this case has been to

define affordability according to the physical relationship between the glider’s alti-

tude and energy and its ability to do work. Certainly, this objective function does

not represent the complete picture of the interactions that occur during soaring, but

it is sufficient in describing the principal elements in this complex task.

The weighting function is shown in Figure 6.1 and applies the same simulation con-

stants to compute maximum altitude and energy as will be used in the 3D 6DOF

soaring glider simulation that will be presented in the following chapter. The surface

plot shows the predominantly linear gradation of ωe across the range of platform en-



6.2 eGP-SARSA(λ) 93

ergies, while critically low altitudes have ωe values shifted towards 0 by the additional

arctan scaling component.

The weighting factor in Equation (6.2) is combined with Equations (4.8) and (4.9) to

produce the resource-constrained exploration-exploitation objective function:

Jie = Q̂i + ωeÎi, (6.4)

The effect of this objective function is to increase the influence of the information

value when platform energy and altitude is high so that the agent tends to explore

areas of the state-action space that have high uncertainty. When platform energy

and/or altitude is low, the state-action value dominates the action selection objective

function so that the agent tends to exploit areas of the state-action space that are

believed to produce high energy reward, thereby replenishing the resource.

6.2 eGP-SARSA(λ)

The energy-weighted action selection objective function is applied directly into the

SARSA(λ) algorithm with GP value function approximation. The full algorithm,

eGP-SARSA(λ), is shown in Algorithm 2. At each decision instance, the agent must

query the available platform energy and current altitude to compute the resource-

limited exploration weight using Equation (6.2), this is shown on line 14 and replaces

the time-step-dependent weight on line 14 of Algorithm 1.

6.2.1 Computational complexity

For each action selection, Algorithm 2 requires simulation of the motion model and

estimation of the resulting information gain across a tree with branching factor in

the number of possible actions and search depth imposed by the limit γthres. It is

possible, at each depth, to compute the information gain components of each branch

in parallel, reducing the exponential complexity of traversing the tree to a constant



94 Resource-Constrained Learning for Autonomous Soaring

Algorithm 2 eGP-SARSA(λ)

1: Q̄a ← 0 . Initial value estimate
2: Initialise θ . GP hyperparameters
3: for each episode do
4: e← 0 . Initialise trace
5: s, a← initial state and action
6: for each step i do
7: e (s, a)← 1 . Replacing traces
8: Take action a, observe reward, r, next state, s′, and current energy Ei
9: δ ← r − Q̄a

10: for all a∗ ∈ A (s′) do
11: Q̄a∗ ∼ GPQ . GP approximation for Q
12: Ia∗total ← Igain0 + γrIgain1 + . . .+ γpr Igainp . Information value
13: end for
14: ωe ← 2

π
arctan (hi)×max

(
0,min

(
1, Ei

Emax

))
. Resource-limited
exploration weight

15: Q̂a∗ ← Q̄a∗
max |Q̄a∗ |

. Normalised state-action value

16: Îa∗ ←
Ia∗

total

max |Ia∗
total
| . Normalised information value

17: Ja∗e ← Q̂a∗ + ωeÎa∗
18: a′ ← arg maxa∗ Ja∗e
19: δ ← δ + γQ̄a′

20: if sparsify then
21: if βi > βtol then . Linear independence test
22: Append (s, a) to GPQ training inputs X
23: if |BV| >budget then
24: Delete training input with lowest score from Equation (3.24)
25: end if
26: end if
27: else
28: if (s, a) is a new state then
29: Append (s, a) to GPQ training inputs X
30: end if
31: end if
32: y← y + αδe . Update GPQ training targets
33: if retrain hyperparameters then
34: θ ← arg minθ [− log p (y|X, θ)] . Minimise the

negative log marginal likelihood
35: end if
36: e← γλe
37: s, a← s′, a′

38: end for
39: end for



6.3 Summary 95

multiple of the search depth. However, practically speaking, it would be a challenge

to mount the number of processors required to maintain this computational speed.

As stated in Section 4.4.2, applying the greedy rollout method on the state-actions

considered in the information gain rollout allows the computation of the information

value to be linear in the rollout depth. That is, the cost of computing the information

value becomes O (N2tM), where the N2 term arises from the evaluation of the GP

covariance, there are t layers in the search tree, and the motion model computation

has complexity O (M). To restrict the complexity even further, it is possible to apply

the sparsification method outlined in Section 3.3.2 to the GP approximation of the

value function, limiting the complexity to a constant O (N2
maxtM) where Nmax is the

fixed size of the BV set used to train the GP.

6.3 Summary

This chapter introduced the concept of resource-constrained exploration in RL. In

learning problems where a replenishable resource is required to enable action execu-

tion or to avoid undesirable terminal states, exploration should be conducted with

consideration of the available resources. The trade-off between exploration and ex-

ploitation becomes much more coupled in these situations since exploration enables

discovery of new state-actions that can replenish the resource more efficiently, while

exploitation of known reward-gaining state-actions builds up resource levels and al-

lows greater exploration of the state-action space.

The motivating problem studied in this chapter was that of an unpowered aerial glider

learning to soar in a wind energy field. In this problem, the resource of interest was

the glider platform energy, which is depleted during exploratory flight and replenished

when learnt energy-gaining flight trajectories are performed. A dynamic exploration

weighting function was introduced that can promote exploration when platform en-

ergy and altitude is high, and preferences exploitative behaviour when low energy or

altitude is detected.



96 Resource-Constrained Learning for Autonomous Soaring

The discussion in this chapter was focused on the autonomous soaring problem, how-

ever, this learning approach can be applied to any problem where the reward (or

part of the reward) constitutes an expendable resource that is depleted throughout

the learning process. For example, the original multi-armed bandit problem can be

formulated to consider the actual "monetary" reserves of the agent as an indicator

of how many more samples it can take. A robot or a swarm of robots learning to

move in an unknown environment to search and track multiple targets could consider

time as the resource if the reward is inversely related to the uncertainty of the target

locations, which grows over time when targets are unobserved. Alternatively, this can

be thought of as a mapping problem where the agents have limited platform energy

and the environment contains recharging stations.



Chapter 7

Soaring Simulation Experiments

This chapter revisits the 2D 3DOF soaring glider problem outlined in Section 5.4

and introduces a full 3D 6DOF glider simulation to compare the performance of

eGP-SARSA(λ) in Algorithm 2 against the previously tested set of algorithms. The

purpose of these experiments is to investigate the ability of the resource-constrained

learning algorithm to handle RL problems where the reward and the ability to seek

reward are tightly coupled. The setup of the soaring problem includes a reward

function that is expressive of the performance of the agent. For both the 2D and 3D

experiments, the reward function includes the observed energy gain/loss of the state-

action transition, along with discrete penalties for observing certain state-actions.

The agent begins each experiment with insufficient energy to explore the entire state-

action space for the duration of the episode and must exploit the wind energy field in

which it is operating to maintain positive energy. Unlike in the 2D soaring simulations,

the full 3D 6DOF simulations terminate the episode if the agent flies outside the

defined soaring region or if the glider expends all of its platform energy.

The goal of both learning problems is for the agent to maintain positive platform

energy without degrading its exploration performance. As mentioned in Section 5.4.2,

the exploration performance of the discrete 2D soaring problem can be measured as

the rate of newly observed state-actions. In the 3D soaring scenario, the state-action

space is continuous, and so every state-action observation is almost surely unique,



98 Soaring Simulation Experiments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−300

−250

−200

−150

−100

−50

0

Average Reward

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

 

 

SARSA ε−greedy

GP ε−greedy

iGP, greedy rollout τ
r
=5000

iGP, full rollout τ
r
=5000

eGP, greedy rollout

eGP, full rollout

(a) Average rewards.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000
Average Number of Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

 

 

(b) Observed state-actions.

Figure 7.1: Averaged rewards and observed state-actions for eGP-SARSA(λ) over each of the 15
trials as compared to the previously tested learning algorithms, 95% confidence intervals are also
given at 1000 time step intervals. eGP-SARSA(λ) has a stronger reward-gaining performance than
iGP-SARSA(λ); the number of newly observed state-actions also appears to increase at a constant
rate for eGP-SARSA(λ) whereas this value decays for all other algorithms as the number of time
steps increases.

thus the cumulative number of steps over all the episodes is used to measure the

exploration performance in the 3D simulations.

7.1 2D 3DOF Soaring Glider

7.1.1 Simulation setup

The setup for this set of trials is identical to that of Section 5.4 with the only difference

being in the learning algorithm applied to the problem. eGP-SARSA(λ) with both

greedy and full rollout was tested, however, with no measure for glider altitude in this

2D problem, the arctan factor was dropped from the resource-constrained exploration

weighting in Equation (6.2), leaving a linear scaling of the exploration value according

to the current platform energy.



7.1 2D 3DOF Soaring Glider 99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(a) eGP-SARSA(λ) with greedy rollout cumula-
tive energy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500
Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

(b) eGP-SARSA(λ) with greedy rollout ob-
served state-actions.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−6

−4

−2

0

2

4

6
x 10

5 Cumulative Energy

Time step ∆t = 1s

E
n

e
rg

y
 (

J
)

(c) eGP-SARSA(λ) with full rollout cumulative
energy.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500
Observed State−Actions

Time step ∆t = 1s

N
u

m
b

e
r 

o
f 

o
b

s
e

rv
e

d
 s

ta
te

−
a

c
ti
o

n
s

(d) eGP-SARSA(λ) with full rollout observed
state-actions.

Figure 7.2: Cumulative energy and observed state-actions for eGP-SARSA(λ) over the course of the
simulation for each of the 15 trials. Energies below the threshold value of 0, shown by the dashed
black line, represent a critical failure. The number of observed state-actions exhibits a distinctly
different profile from the other tested algorithms shown in Figure 5.13. After an initially strong
exploration period of approximately 1000 time steps, the rate of new observations decreases but
appears to remain a positive constant as shown by the linear upward trend.

7.1.2 Results

The progression of the average reward and the number of observed state actions

for the eGP-SARSA(λ) trials are compared to the results of the previously tested

algorithms in Figure 7.1. Both the greedy and full rollout versions of eGP-SARSA(λ)

have a stronger reward-gaining performance than iGP-SARSA(λ). Furthermore, the



100 Soaring Simulation Experiments

number of newly observed state-actions also appears to increase at a constant rate

for both eGP-SARSA(λ) trial sets whereas this value decays for all other algorithms

as the number of time steps increases.

The individual trial results are shown in Figure 7.2. The cumulative energy plots

along the left column show periodic energy gain and loss cycles as the learning agent

balances the need to explore the state-action space whilst maintaining positive plat-

form energy. Unlike the cumulative energy plots for GP-SARSA(λ) in Figure 5.13c,

eGP-SARSA(λ) does not saturate the platform energy and instead is able to use the

harvested energy to explore new state-actions. From the spread of the cumulative

energy plots, it seems that for the majority of time steps of each trial, the exploration

weighting lay below 1
2
and rarely strayed above this threshold after the initial ex-

ploration phase. This suggests that some equilibrium exists around this point above

which such exploration is generated that tends to result in energy loss and below

which exploitation and energy gain is preferred.

For both the greedy and full rollout information values, eGP-SARSA(λ) is capable

of maintaining positive platform energy for a majority of the trials. A comparison of

all the algorithms in this regard is given in Table 7.1.

Table 7.1: Number of Trials for which Platform Energy Remained
Positive (out of 15 trials)

Algorithm Number of
successful trials

SARSA(λ) 0
GP-SARSA(λ) 11
iGP-SARSA(λ), max rollout τr = 5000 0
iGP-SARSA(λ), full rollout τr = 5000 6
eGP-SARSA(λ), greedy rollout 9
eGP-SARSA(λ), full rollout 11

The number of observed state-actions is given in the right column of Figure 7.2

and exhibits a distinctly different profile from the other tested algorithms shown in

Figure 5.13. After an initially strong exploration period of approximately 1000 time



7.2 3D 6DOF Soaring Glider 101

steps, the rate of new observations decreases but appears to remain a positive constant

as shown by the linear upward trend. These results show that the resource-constrained

learning algorithm, eGP-SARSA(λ), is able to manage available platform energy by

exploring new state-actions when energy levels are high and exploiting known energy-

gaining trajectories when energy levels are low.

7.2 3D 6DOF Soaring Glider

7.2.1 Simulation setup

The resource-constrained eGP-SARSA(λ) algorithm was also tested on a full 3D

6DOF soaring glider simulation under a static (thermal updraft) soaring scenario.

As with the 2D soaring scenario, the reward is the energy gained by the glider agent

flying particular trajectories in the wind field; to learn these trajectories, the agent

must expend energy to explore the state-action space. The goal of these experiments

was to show that given a wind energy field consisting of a single thermal, the proposed

resource-constrained learning algorithm is able to effectively explore the state-action

space to generate energy-positive trajectories. Unlike the 2D simulation, this full 3D

soaring simulation makes no provisions for forcing the glider to remain in the flight

boundary or above an altitude of 0 m. Thus, in the early stages of learning, it was

expected that many of the trajectories would result in failure or with the glider exiting

the field, and so the problem was formulated as an episodic learning task where each

episode was terminated either due to the glider crashing or exiting the designated

field.

Thermal wind field

The toroidal thermal model is a realistic 3D updraft model that is commonly used in

the autonomous soaring literature, see (Bencatel et al., 2013). The toroidal thermal

model developed in Lawrance (2011) and shown in Figure 7.3 was the 3D wind field



102 Soaring Simulation Experiments

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

 

East (m)

Toroidal Thermal Wind Field

North (m)
 

A
lt
it
u
d
e
 (

m
)

−0.5

0

0.5

1

1.5

2

2.5

Figure 7.3: Toroidal thermal vector field of a thermal updraft based on the Lawrance (2011) model
shown in Figure 2.3. The model is dominated by the central column of rising air, which is offset by
the thinner surrounding ring of sinking air. Small lateral wind components also exist outside the
flight boundary at the upper and lower extremities of the thermal to maintain the toroidal flow of
the air.

used in the following simulations. The thermal model is conservative in its flow,

meaning that there is no net horizontal or vertical flow. This is achieved via symmetry

in the horizontal flow at the upper and lower extremities of the thermal, and balanced

rising and sinking volumetric flow in the vertical plane. In this way, the thermal core

of strong rising air is offset by a surrounding column of slow sinking air, while the

lateral transitions from rising to sinking air at the top of the thermal are equal and

opposite to the transitions from sinking to rising air at the bottom of the thermal.

The shape of the thermal model is determined by three main terms: the core vertical

wind speed, wtherm = 3 m/s; the major radius, Rtherm = 100 m; and the elliptical

factor, ktherm = 100. The core vertical wind speed is scaled against a sinusoidal

function of the thermal radius to form a smooth vertical wind profile. The elliptical

factor determines the contribution of the lateral wind components. By choosing a

high value for ktherm, the thermal model is dominated by the vertical wind flow.



7.2 3D 6DOF Soaring Glider 103

0
5

10
5

0
−5

94

96

98

100

102

104

North (m)

3D 6DOF Glider Action Set

East (m)

A
lt
it
u

d
e

 (
m

)

Figure 7.4: Roll and pitch rate action set for a glider travelling straight and level in still air at
V = 12m/s.

Glider platform

The dynamic model for the glider is a non-linear aerodynamic point mass model based

on the RnR SBXC 4.32 m wingspan scale model glider (see Table A.6 in Appendix A.5

for platform specifications). The applied forces are the aerodynamic force (decom-

posed into lift and drag) and the weight force. Lift is limited by the maximum lift

coefficient and load factor constraints. Body force due to sideslip is not considered. A

flat Earth model is assumed due to the relatively small scale of the aircraft and flight

paths, so the weight force is directed down. Since this is a glider, modelling the effect

of wind is an important consideration. This model includes effects for the changes

in lift and drag due to the wind and locally linear spatial wind gradients but does

not account for moments imparted by differential wind across the lifting surfaces.

The model equations can be found in detail in Lawrance (2011). The simulation is

performed using numerical integration of the non-linear equations of motion.

Control is modelled using commanded inputs of roll and pitch rates. At each control

time step there are three discrete commands available for both roll and pitch, such



104 Soaring Simulation Experiments

that a single action,

a =
[
aφ̇, aθ̇

]
. (7.1)

This gives rise to a total of nine available actions in the action set shown in Figure 7.4.

Intuitively, the roll rate commands result in banking further to the left or right, or

maintaining the current bank angle, and similarly for the pitch rate commands which

control the aircraft climb angle. Maximum and minimum load factors along with a

maximum lift coefficient are defined to restrict the available actions; this simulates an

onboard controller that prevents the glider from taking actions that will cause stall

conditions. The actions are also limited such that they will not generate commands

for bank angles over ±45◦ or pitch angles that would result in a dive steeper than 50◦

so that all actions in the action set should always be achievable.

In the state-action value function approximation, the pitch and roll commands were

regarded as separate dimensions in the training input space since they generated

responses in orthogonal axes of the aircraft’s body frame. As such, no meaningful

length scale or metric could be defined to measure the "difference" between banking

and pitching, and so it was left to the GP to model the interactions between these

commands and the expected value.

Reward function

The reward function used was based on the specific energy gained by the platform

during each state-action transition, penalties were also applied when the glider stalled

(that is, if airspeed fell below stall speed) and if the glider dropped below an altitude

of 0 m. While the former condition was recoverable, the latter indicated a critical

failure, thus the reward function was designed to reflect the severity of these states.

The penalty incurred for stalling was computed as 25% of the specific kinetic energy

at stall velocity,

rstall = −25%× 1

2
V 2
stall, (7.2)



7.2 3D 6DOF Soaring Glider 105

while the penalty for crashing (altitude ≤ 0 m) was defined as twice the maximum

allowable specific energy in the flight envelope,

rcrash = − 2Emax
mglider

, (7.3)

where Emax corresponds to the platform energy when flying at the maximum allowable

speed and altitude, mglider is the platform mass and Vstall is the stall velocity of the

platform. The complete reward function was computed as,

ri =
Ei

mglider

+ stall × rstall + crash × rcrash, (7.4)

where stall and crash are boolean indicators for the two respective conditions.

Relative states

To use the full glider state space would require learning over 13 state dimensions in

addition to the 2 action dimensions, rendering the learning task infeasible given the

prohibitively large number of points required to generate a reasonable GP model of

the entire state-action space. The problem can be simplified if it is assumed that the

thermal centre is known. The states of interest, that is, the primary contributors to

the reward function by virtue of wind field geometry, can therefore be defined as the

distance to the thermal centre, the bearing to the thermal centre, and the airspeed:

s = [dtherm, ψtherm, V ] . (7.5)

The value function then becomes a function of the states and actions presented in

Equations (7.1) and (7.5).

The full glider state is still maintained since it is required in the rollout (where the

state transition is performed under the assumption of no wind) and the reduced

relative states are not Markovian in this regard. In fact, without full information

of the wind field, the full glider state is also not strictly Markovian, however this

algorithm relies on the smoothness in the GP model to handle variability in the



106 Soaring Simulation Experiments

states introduced by the unknown thermal wind field.

It is noted that although the rcrash component of the reward is a function of the

altitude, this variable is not included as a dimension in the relative learning state. In

fact, the event of crashing is linked to the climb angle and airspeed of the aircraft,

and these two variables are themselves linked through the glider dynamics shown in

Lawrance (2011). In the results given in the next section, it is shown that the RL

algorithm learns to avoid high airspeeds since there is a strong correlation between

this and receiving a strong negative reward due to rcrash.

7.2.2 Results

The following five learning algorithms were tested:

• eGP-SARSA(λ) with full rollout information value,

• iGP-SARSA(λ) with full rollout information value, τr = 100,

• eGP-SARSA(λ) with greedy rollout information value,

• sparse eGP-SARSA(λ) with full rollout information value, 1000 BV , βtol = σ2
n

(outlined in Section 3.3.2), and

• GP-SARSA(λ) with ε-greedy exploration, ε = 0.01.

Each algorithm was run over 10 trials, each with a learning period of 50 episodes. The

learning agent began each episode in a random location in the field with a bearing of

0◦ to the thermal centre, these starting locations were consistent across all the tested

learning algorithms.

Reward and energy gain performance

The progression of the average reward across the episodes for each tested algorithm

is shown in Figure 7.5; the average of each set of 10 trials is plotted along with 95%



7.2 3D 6DOF Soaring Glider 107

0 5 10 15 20 25 30 35 40 45 50
−150

−100

−50

0

Average Reward

Episode number

A
v
e
ra

g
e
 r

e
w

a
rd

 

 

eGP, full rollout

iGP, full rollout τ
r
=100

eGP, greedy rollout

sparse−eGP, β
tol

=σ
n

2

GP, ε−greedy

Figure 7.5: Progression of the average reward across the episodes. The plots compare the perfor-
mance of eGP-SARSA(λ) with full rollout, iGP-SARSA(λ) with full rollout, eGP-SARSA(λ) with
greedy rollout, sparse eGP-SARSA(λ) with βtol = σ2

n, and GP-SARSA(λ) with ε-greedy sampling.
The average of each set of 10 trials is plotted along with 95% confidence intervals at 5 episode inter-
vals, the episodes plotted for each algorithm are offset by 1 episode each to improve clarity, however
the data at episode 50 are shown for all the tested algorithms.

confidence intervals at 5 episode intervals, the episodes plotted for each algorithm

are offset by 1 episode each to improve clarity, however the data at episode 50 are

shown for all the tested algorithms. The graph shows that both the greedy and

full rollout eGP-SARSA(λ) algorithms promptly converge to a higher average reward

and are followed closely by GP-SARSA(λ) with ε-greedy sampling, however the latter

has a larger confidence interval than either of the eGP-SARSA(λ) cases. The iGP-

SARSA(λ) trials produce the lowest initial average rewards and also display a high

level of variation between the rewards gained in each simulation. The graph also shows

the departure of the sparse-eGP approach in terms of reward-gaining performance as

the training input set is reduced during the early episodes. Indeed, the average reward

achieved begins to decrease during the later episodes and even drops below that of

iGP-SARSA(λ) after episode 37. This suggests that the size of BV may be insufficient

in representing the full state-action space or that the linear independence metrics used



108 Soaring Simulation Experiments

0 5 10 15 20 25 30 35 40 45 50
−35

−30

−25

−20

−15

−10

−5

0

5

10

15
Average Specific Energy Gain

Episode number

S
p
e
c
if
ic

 e
n
e
rg

y

 

 

eGP, full rollout

iGP, full rollout τ
r
=100

eGP, greedy rollout

sparse−eGP, β
tol

=σ
n

2

GP, ε−greedy

Figure 7.6: Progression of the average specific energy gain across the episodes and averaged for each
simulation case, 95% confidence bounds are given at 5 episode intervals.

to reject and discard observations from BV are inadequate for this learning task.

The progression of the average specific energy gain across the episodes is shown in

Figure 7.6 and the total specific energy gain for each episode is shown in Figure 7.7.

The average specific energy profiles are similar to the average reward profiles, since

a large portion of the reward is derived from the energy gain, however, the reward

also includes the rstall and rcrash components. Looking purely in terms of energy

gain, it can be seen that the sparse-eGP case performs the worst of all the tested

algorithms, with iGP-SARSA(λ) over-taking its energy-gaining performance much

earlier in episode 5. The average specific energy gain per step for the sparse-eGP

case dropped to −5.5 J/kg by the final episode; to place this value in context, it is

approximately the specific drag induced by the glider flying straight and level at a

speed of 15.0 m/s over one time step. Furthermore, the slight decline in energy gain

performance from episode 26 onwards cannot entirely account for the much steeper

decline in reward gain performance seen in Figure 7.5; this suggests that the agent

experienced more stall and/or crash events during the later episodes.



7.2 3D 6DOF Soaring Glider 109

0 5 10 15 20 25 30 35 40 45 50
−1000

−500

0

500

1000

1500

2000

2500

3000
Total Specific Energy Gain

Episode number

S
p

e
c
if
ic

 e
n

e
rg

y

 

 

eGP, full rollout

iGP, full rollout τ
r
=100

eGP, greedy rollout

sparse−eGP, β
tol

=σ
n

2

GP, ε−greedy

Figure 7.7: The total specific energy gain averaged for each simulation case at each episode, 95%
confidence bounds are given at 5 episode intervals. In the eGP-SARSA(λ) simulation with full
rollout information gain, once the learning agent observes an episode of large energy gain, it is able
to continue executing energy-gaining trajectories with relative consistency.

Aside from sparse-eGP, all other learning algorithms were able to achieve a positive

average specific energy gain by episode 50. Figure 7.6 shows that GP-SARSA(λ) with

ε-greedy sampling achieves a higher average specific energy gain than eGP-SARSA(λ)

with greedy rollout despite the latter achieving a greater average reward in Figure 7.5.

Both algorithms have much lower average energy gain profiles than eGP-SARSA(λ)

with full rollout information value. Furthermore, the eGP-SARSA(λ) with full rollout

has a more consistent energy gain performance as shown by the significantly smaller

confidence intervals.

The total specific energy gain averaged over all the trials also provides an interest-

ing perspective on the relative performances of each algorithm. The total energy

gain of the first 15 episodes is very similar for all five test cases, however, the re-

sults diverge into three groups beyond this point. On average, sparse-eGP generated

trials with overall energy loss; the GP-SARSA(λ), eGP-SARSA(λ) with greedy roll-

out and iGP-SARSA(λ) with full rollout trials were able to produce positive energy

gain trajectories; however, eGP-SARSA(λ) with full rollout information value consis-



110 Soaring Simulation Experiments

tently achieved a higher total energy gain for each episode over all the other tested

algorithms.

Exploration management

The preceding three plots in Figures 7.5 to 7.7 have summarised the energy- and

reward-gain performance of the tested algorithms. The results show a clear perfor-

mance advantage of eGP-SARSA(λ) with the full rollout information value in terms

of efficient reward- and energy-gain for this soaring glider problem. GP-, iGP- and

eGP-SARSA(λ) with greedy rollout have shown comparable performances, however

the greedy rollout algorithm is able to retain a higher average reward despite achieving

a lower average energy gain.

The reason for the disparities between Figures 7.5 and 7.6 comes down to the num-

ber of crash incidents each algorithm experiences. While stall events also lower the

average reward, it is the heavy cost of crashing that has the greatest influence over

the average reward. The termination statistics for all 10 trials of each algorithm are

shown in Table 7.2. A successful termination is defined as one in which the glider

gains enough energy to soar out through the upper flight boundary. Although eGP-

SARSA(λ) with greedy rollout and GP-SARSA(λ) have similar termination statistics,

the 4 fewer crash incidents of eGP-SARSA(λ) with greedy rollout boost its reward-

gaining performance above that of ε-greedy, despite having slightly fewer successful

terminations. The iGP-SARSA(λ) terminations help to explain its poor reward-

gaining performance. Although iGP-SARSA(λ) has the second highest number of

successful terminations, 141, it also has the highest number of crash terminations at

77. These termination statistics show that eGP-SARSA(λ) with full rollout performs

the best overall in terms of successful flights. Over half of all the episodes for full

rollout eGP-SARSA(λ) terminated with the glider gaining enough energy to soar out

through the upper flight boundary. Although it also experienced 33 crash termina-

tions, this figure only represents 12.9% of its successful terminations, as compared to

54.6% for iGP-SARSA(λ), 23.1% for eGP-SARSA(λ) with greedy rollout, 725% for

sparse-eGP, and 26.8% for GP-SARSA(λ) with ε-greedy sampling.



7.2 3D 6DOF Soaring Glider 111

Table 7.2: Episode Termination Statistics

Algorithm Successes Crash
terminations

Lateral
boundary
termination

eGP-SARSA(λ), full rollout 256 33 211
iGP-SARSA(λ), full rollout 141 77 282
eGP-SARSA(λ), greedy rollout 78 18 404
sparse-eGP, βtol = σ2

n 8 58 434
GP-SARSA(λ), ε-greedy 82 22 396

The poor performance of sparse-eGP is attributed to insufficient or inappropriate

training input points that cannot effectively approximate the value function. Table 7.3

presents the average number of observations and the final size of the training input set

for each simulation case. On average, sparse-eGP observes far fewer state-actions over

a single trial and tends to discard approximately 34% of these observations according

to the linear independence test of Equation (3.21). The linear independence test used

to reject observations from BV uses the squared exponential covariance function and

therefore favours observations taken in isolated state-action locations. However, for

the problem of learning to soar in a static thermal, energy-gaining flight can only

occur in a local region around the thermal centre where it is necessary to have a

more refined policy. In regions further away from the thermal centre, a reasonably

coarse policy can be applied to direct the glider towards the energy-gain regions.

Therefore, a uniform density of training inputs over the entire state-action space may

not provide as good a model for learning the policy as compared to a distribution of

inputs that concentrate observations in the regions of interest (for example in state-

action areas that lead to crash or stall conditions, or near state-actions that generate

positive reward). In addition to this, the low number of observations has a cumulative

effect since fewer observations leads to poorer estimation of the value function and

thus a poorer sampling policy that is more likely to lead to early termination. This is

supported by the statistics in Table 7.2 that show sparse-eGP with the lowest number

of successful terminations.



112 Soaring Simulation Experiments

Table 7.3: Average Number of Observations and Training Inputs

Algorithm Average number
of observations Average BV size

eGP-SARSA(λ), full rollout 3448 3448
iGP-SARSA(λ), full rollout 2702 2702
eGP-SARSA(λ), greedy rollout 2118 2118
sparse-eGP, βtol = σ2

n 1264 829
GP-SARSA(λ), ε-greedy 2072 2072

In comparison, all the other tested learning algorithms are, on average, able to achieve

over 2000 observations during each trial. Moreover, they retain all observations for

use in training the GP approximation of the value function. eGP-SARSA(λ) with

the full rollout information value has the highest average number of observations in

each trial. This demonstrates that the resource-constrained exploration strategy is

able to manage platform energy throughout the flight to enable consistently longer

trajectories in each episode, as shown in Figure 7.8. Consequently, the agent visits

more state-action locations and is able to learn a better model of the value function.

The curves plotted in Figure 7.8 are consistent with the successful termination statis-

tics given in Table 7.2, however it is interesting to observe the progression of the

sparse-eGP curve, which initially follows the iGP-SARSA(λ) plot but diverges rapidly

after episode 25. Greedy rollout eGP-SARSA(λ) and GP-SARSA(λ) with ε-greedy

sampling have very similar profiles that, from the very first episode, are slower than

full rollout eGP-SARSA(λ) and iGP-SARSA(λ) to accumulate steps. The reason

for the initial divergence between the full and greedy rollout can be attributed to

the poorly modelled value function at the start of learning. While the full rollout

accounts for the information gain of all the possible future state-actions, the greedy

rollout only considers the information gain of those state-actions it expects to visit

according to the current value function estimate. Since the value function is poorly

modelled at the start of learning, the greedy rollout information value consequently

computes a poor estimate of the information value.



7.2 3D 6DOF Soaring Glider 113

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Cumulative Number of Steps

Episode number

S
te

p
s

 

 

eGP, full rollout

iGP, full rollout τ
r
=100

eGP, greedy rollout

sparse−eGP, β
tol

=σ
n

2

GP, ε−greedy

Figure 7.8: Comparison of the cumulative number of steps over the episodes and averaged for each
simulation case, 95% confidence bounds are given at 5 episode intervals.

Learnt value function

The learnt value function for one trial of full rollout eGP-SARSA(λ) at 5 m/s velocity

intervals from stall velocity up to the maximum allowable airspeed is shown in Fig-

ure 7.9. The plots show the estimated state-action value for the best set of turning

actions,
[
aφ̇, aθ̇

]
, at each state. As expected, higher values are predicted for states

close to the thermal centre; at states further away, bearings closer to 0◦ produced

higher values. The wraparound condition enforced by the GP distance measure can

also be observed along the bearing axis.

There is a distinct change from positive values to negative values as the airspeed

increases, showing the agent learned that the event of crashing, which generates a

strong negative reward from rcrash, tended to occur at high velocities. In this way,

the two negative reward components, rcrash and rstall, effectively placed an upper and

lower bound on the glider airspeed.

It was expected that the value function would be symmetrical in the bearing axis

since, if all else was equal, circling clockwise or anticlockwise around the thermal



114 Soaring Simulation Experiments

2020

20

15

10
5

0 −5

−5

−10

−10

−10

2020

20

15

10
5

0 −5

−5

−10

−10

−10

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−10

−10

−10

−5

−50

5
10

15

20

20 20

max
a
Q(s,a) for V=9.54m/s

ψ
therm

 (deg)

d th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

20
20

15
10

5
0

−5

−5

−10

−10

20
20

15
10

5
0

−5

−5

−10

−10

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−10

−10

−5

−5

0
5

10
15

20
20

max
a
Q(s,a) for V=15m/s

ψ
therm

 (deg)

d th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

15

15
10

5

5

0
−5

−5

−10

−10

−10

15

15
10

5

5

0
−5

−5

−10

−10

−10

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−10

−10

−10

−5

−5
0

5

5

10
15

15

max
a
Q(s,a) for V=20m/s

ψ
therm

 (deg)

d th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

5

0

0

−5

−5

−5

−10

−10

−15

−15

−15

5

0

0

−5

−5

−5

−10

−10

−15

−15

−15

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−15

−15

−15

−10

−10

−5

−5

−5

0

0

5

max
a
Q(s,a) for V=25m/s

ψ
therm

 (deg)

d th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

−5

−5

−5

−5

−5

−10

−10

−10

−10 −15

−15

−20

−20

−25

−25

−30

−30

−35

−35

−35
−40

−40

−40

−45

−45

−50

−50

−5

−5

−5

−5

−5

−10

−10

−10

−10 −15

−15

−20

−20

−25

−25

−30

−30

−35

−35

−35
−40

−40

−40

−45

−45

−50

−50

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−50

−50

−45

−45

−40

−40

−40
−35

−35

−35

−30

−30

−25

−25

−20

−20

−15

−15−10

−10

−10

−10

−5

−5

−5

−5

−5
max

a
Q(s,a) for v

a
=30m/s

ψ
therm

 (deg)

r th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

−5

−5

−5

−10

−10

−10

−15

−15

−20−20 −20

−25

−25

−30

−35
−40

−5

−5

−5

−10

−10

−10

−15

−15

−20−20 −20

−25

−25

−30

−35
−40

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

−40
−35

−30

−25

−25

−20−20 −20

−15

−15

−10

−10

−10

−5

−5

−5

max
a
Q(s,a) for v

a
=36.6m/s

ψ
therm

 (deg)

r th
er

m
 (

m
)

 

 

−50

−40

−30

−20

−10

0

10

20

Figure 7.9: The full eGP-SARSA(λ) value function for one trial evaluated at the best action for
each state. There is a distinct transition into negative values at V = 30m/s, this is because the
slowest airspeed for which the agent experienced a crash event was V = 30.9m/s. The strong
negative reward signal observed at this state-action caused a steep reduction in the values around
this airspeed. The values plotted for V = 36.6m/s appear to improve upon those at V = 30m/s,
however, this is due mostly to the fewer observations made at and around the higher airspeed.



7.2 3D 6DOF Soaring Glider 115

should give equivalent energy gain profiles. Figure 7.9 gives a hint of this symmetry,

however, it appears that during this particular learning trial, the agent favoured

making anticlockwise loops around the thermal centre. This may be due to the fact

that the agent travelled in an anticlockwise trajectory during the first episode in

which it successfully gained enough energy to soar out through the upper boundary

(see Figure 7.10), thereby creating an initial bias for later trajectories.

Flight trajectories

Successive flight trajectories from one trial of the full rollout eGP-SARSA(λ) simula-

tions are shown in Figure 7.10. These plots show the steady progression of the glider

agent learning to gain energy from the thermal wind field. In the first episode, the

actions executed by the agent are unsuccessful in gaining energy and the episode ends

with the glider exiting the lateral boundary of the field. This is to be expected since

very few observations of the state-action have been collected at this point and so the

GP estimate of the value function is still highly uncertain. In episode 14, the glider

performs a single loop that traverses near the centre of the thermal where energy gain

potential is high before once again exiting the lateral flight boundary.

Episode 20 is the first instance in which the agent consistently performs loops around

the thermal centre and gains enough energy throughout the flight trajectory to allow

the glider to soar out through the upper boundary of the field. The trajectory in this

episode is not a smooth rise, nor does it have a smooth turning motion, and this would

result in higher energy losses due to increased drag. The trajectories of episodes 27

through to 50 show the glider moving efficiently towards the thermal centre at the

start of flight when energy is lowest and rapidly gain altitude via thermal soaring.

The flight paths show a general trend towards smoother and more regular circling,

representing more efficient energy gain paths.

The effect of the resource-constrained informative exploration strategy can also be

seen in the flight trajectories that occupy the upper regions of the flight boundary. At

higher altitudes, the agent has gained significant potential energy from the thermal



116 Soaring Simulation Experiments

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 1

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 10

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 14

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 20

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 27

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 35

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 42

North (m)

A
lt
it
u

d
e

 (
m

)

0

100

200

300

0

100

200

300
0

50

100

150

200

250

300

East (m)

Episode 50

North (m)

A
lt
it
u

d
e

 (
m

)

Figure 7.10: Evolution of the learnt flight path for one trial of the eGP-SARSA(λ) case. The glider
operates in a flight boundary defined by a 300 × 300 × 300m3 volume, in these figures, the glider
is enlarged by a factor of 10 so that it can be seen more easily. During the first episode, the glider
performs largely random actions; in episode 20 the agent successfully gains enough energy to exit
the field via the upper boundary; the flight path of episode 50 shows a consistent circling trajectory.



7.3 Summary 117

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East (m)

Episode 27

N
o

rt
h

 (
m

)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East (m)

Episode 50

N
o

rt
h

 (
m

)

Figure 7.11: Aerial view of episodes 27 and 50, the glider has been enlarged by a factor of 5 so
that it can be seen more easily. These paths illustrate the exploration behaviour generated by eGP-
SARSA(λ). In episode 27, the agent explores across the range of radial distances to the thermal
centre, while in episode 50 the aerial view shows that the agent flight path resembles a superhelix
that samples over a range of bearings and radial distances.

and can afford to explore more of the state-action space. It does so by morphing the

trajectory helix, which allows it to sample new regions of the state-action space while

maintaining proximity to known energy gain transitions. The aerial view of the flight

trajectories generated in episodes 27 and 50 are shown in Figure 7.11. In episode 27,

the glider traverses a range of radial distances as it gains more platform energy, and

in episode 50, the flight path resembles a superhelix, which is able to rapidly sample

a range of radial distances and bearings.

7.3 Summary

This chapter analysed the performance of the resource-constrained informative ex-

ploration strategy of eGP-SARSA(λ) when applied to the problem of an unpowered

aerial glider learning to soar in a wind energy field. The algorithm was first tested on

the 2D 3DOF glider simulation from Section 5.4 and then extended to a full 3D 6DOF

simulation with a single thermal updraft energy source. The proposed algorithm was



118 Soaring Simulation Experiments

compared against the basic GP-SARSA(λ) with ε-greedy exploration algorithm and

the iGP-SARSA(λ) algorithm presented in Section 4.5. Both the greedy and full roll-

out versions of the resource-constrained informative exploration strategy were tested

as well as a sparse-eGP implementation of the value function approximation (using

the full rollout information value).

The 2D 3DOF simulation results demonstrated the ability of the resource-constrained

exploration strategy of eGP-SARSA(λ) to maintain positive platform energy while

continually exploring new state-actions. The exploration management scheme was

able to exploit wind energy sources when platform energy was low and explore unob-

served state-actions when platform energy was high.

The 3D 6DOF simulation results presented in this chapter show that eGP-SARSA(λ)

using the full rollout exploration value achieved the highest average reward and high-

est average energy gain over all other tested algorithms. It produced the greatest

number of successful episodes where the glider was able to capture enough energy

from the wind to soar out through the upper boundary of the wind field. The dy-

namic resource-constrained exploration weighting was able to manage exploration and

exploitation behaviour to generate longer learning trajectories, which explore more

state-action transitions without compromising overall reward- and energy-gain per-

formance. Successive flight trajectories of a single trial were provided and showed

the evolution of the learnt policy. The learnt flight paths were dominated by a he-

lix occupying the region close to the thermal centre, but also included evidence of

morphing in the upper regions of the flight boundary when the resource-constrained

informative exploration strategy increased exploration priority.



Chapter 8

Conclusion and Future Research

The problem of an unpowered aerial glider learning to soar in a wind energy field en-

capsulates an aspect of the exploration-exploitation trade-off that has not previously

been addressed in the RL literature. In this soaring task, the learning agent must

expend energy to explore for more efficient energy-gaining trajectories whilst simul-

taneously managing the need to exploit known flight paths to maintain altitude and

airspeed. Unlike in other typical RL applications, the learning agent in this resource-

constrained problem cannot afford to explore the value function space exhaustively

and must manage its learning behaviour to accommodate for these constraints.

This thesis presented an informative exploration strategy for use in RL problems,

such as the soaring glider problem, where the trade-off between exploration and ex-

ploitation is driven by resource constraints. The proposed algorithms, iGP- and

eGP-SARSA(λ), actively direct exploration to regions of the state-action space where

uncertainty of the value function estimate is high. The exploration strategy devel-

oped here is nonmyopic in that the effect of future observations is considered when

assessing the exploration utility of potential actions. Furthermore, the algorithms

adaptively manage the exploration-exploitation behaviour of the learning agent ac-

cording to the available resources, whether it be learning time or a physical resource

such as platform energy. Section 8.1 summarises the contributions of this thesis and

Section 8.2 gives suggestions for future research directions.



120 Conclusion and Future Research

8.1 Summary of Contributions

Derivation of a new information measure

A new information measure was derived based on the change in the GP variance

volume due to a new training input. An analytical solution to the variance volume

of a GP with a squared exponential covariance function was presented. Furthermore,

the required covariance function integrability condition that guarantees an analytical

solution was also defined. This information measure was compared against existing

measures, namely the differential entropy and the trace of the covariance matrix, and

was shown to be consistent with both.

Unlike the differential entropy or trace measures, which can only be applied to a

discrete set of sample points, the variance volume information measure can capture

the reduction in uncertainty over the entire continuous GP query space. Furthermore,

the differential entropy and trace measures induce computational overheads due to

the additional matrix computations required for solving K (X∗, X∗|XN), these are

proportional to the number of discrete query points. On the other hand, the analytical

solution to the variance volume information measure is not susceptible to sampling

resolution and involves no such additional overheads.

Development of a nonmyopic information value

A state-action rollout mechanism was introduced to compute the nonmyopic informa-

tion value as the discounted sum of potential future information gain. The information

reward is the expected uncertainty reduction over the value function estimate due to

a single observation, thus the rollout ensures that the information value not only

accounts for immediate information gain rewards but also represents the potential for

future information gain. The rollout method was inspired by the definition of the RL

state-action value and the eligibility trace of TD(λ). Two types of rollouts were pre-

sented: the full rollout information value sums the discounted information gain of the

complete set of state-actions that are reachable within a rollout threshold, whereas the



8.1 Summary of Contributions 121

greedy rollout information value collects only the expected state-action observations

according to the current sampling policy. The benchmarking results of this thesis

showed that using the nonmyopic information value to direct exploration improved

learning rates over an ε-greedy exploration strategy, particularly when dealing with

state-action value functions with multiple local minima.

The information value can be used to direct exploration in problems for which choos-

ing one action over another changes the forward reachable set of state-actions in the

n-step future, that is, problems that deal inherently with state-action trajectories.

Thus, computing the nonmyopic information value requires a state transition model

to determine the state-actions reachable at each rollout depth. For a setup such as

the multi-armed bandit problem where each action returns the agent to the original

state with the same set of available actions, the nonmyopic information value will not

provide any benefit over using the myopic information gain reward. This is because

the entire state-action space is reachable at each step regardless of the action taken.

The benefit of the nonmyopic information value lies in being able to discriminate the

future exploration opportunities of the immediately available actions.

Experiments in this thesis have used the nonmyopic information value to direct ex-

ploration in an RL context. However, this method can be applied more generally to

informative path planning problems where the goal is to take observations along a

trajectory to reduce the uncertainty of a model.

An exploration-exploitation management scheme for resource-constrained

learning systems

A dynamic action selection objective function for adaptive exploration-exploitation

management was presented in this thesis. The proposed objective function computes

a dynamic resource-constrained exploration weighting that represents how optimistic

the agent can afford to be regarding uncertain value estimates given the current

resource levels. In this way, the policy preferences actions that have large exploration

values when resource levels are high, and reverts to exploitative actions according to



122 Conclusion and Future Research

the current value function estimate when resources are low. This management scheme

was tested on a preliminary 2D glider simulation and a full 3D 6DOF resource-limited

soaring glider mission and was shown to be capable of maintaining required resource

levels without compromising the exploration performance.

While this thesis focused on the autonomous soaring problem as an example of a

resource-constrained learning system, the proposed learning approach is applicable

to any problem where the reward can be formulated as an expendable resource that

is depleted throughout the course of learning. For example, a literal implementation

of the multi-armed bandit problem can be considered a resource-constrained learn-

ing system, where each action induces a base cost and the total monetary return for

all actions determines the ability of the agent to continue sampling. A robot or a

team of robots performing search and track over multiple targets can consider time

as the resource if the reward is inversely related to the uncertainty of the target lo-

cations, which grows over time when targets are unobserved. Other derivations of

energy-constrained exploration problems also exist, such as robots with limited plat-

form energy performing a mapping task in a large environment containing recharging

stations. The exploration-exploitation management scheme presented in this thesis

can also be applied to enable resource-constrained action selection for these problems.

8.2 Future Research

Convergence analysis of GP-SARSA(λ)

This thesis used a GP to approximate the RL value function with the assumptions that

the GP model provides a good estimate of the value function and that the estimate

improves as more observations are used to update and train the GP. An analysis of the

convergence properties of GP value function approximation would give greater insight

and perhaps provide guarantees on the quality of this approximation method. While

GPs have a representation as a linear function approximator, there are a number

of key differences between it and other standard linear function approximators that



8.2 Future Research 123

violate the assumptions required for the value function convergence proofs given by

Tsitsiklis and Van Roy (1997). For example, Lemma 7 of Tsitsiklis and Van Roy

(1997) assumes that the number of basis functions in the linear function approximator

is a finite constant, however in a GP model, a new basis function is added for each

new training input included in the BV set, and the size of this set can increase to

infinity (albeit only when the number of training inputs increases to infinity). If a

sparsification method, such as the one by Csató (2002) that is applied in this thesis, is

used to limit the size of BV , then futher investigation must be sought over the effect

of its update method on the overall value function convergence properties.

Sparsification methods for online GP-SARSA(λ)

The GP sparsification method used in this thesis applied a novelty threshold for de-

termining which observations to include in the BV set and which to reject, however

results showed that this measure may be inadequate for the learning problems that

were considered in this thesis. To reiterate Section 8.2, further research is warranted

to analyse the effects of the sparse update on the value function approximation prop-

erties. Other sparsification methods that can maintain a conservative approximation

of the value function may also be investigated to reduce the overall computational

complexity of the approximation and enable online on-platform applications.

Safety guarantees for aerial soaring

The presented learning algorithm is able to incorporate resource constraint considera-

tions into the action selection, however it provides no strong guarantees for remaining

within the resource budget when performing exploration, as evidenced by the early

trajectories when the glider exited the field or crashed. It is perhaps an understate-

ment to say that episode termination due to a crash is undesirable in a flight trial,

and so safety guarantees must be provided to ensure safe learning conditions. Fu-

ture research will involve generating robust policies with known safe routes to avoid

breaching hard resource constraints.



124 Conclusion and Future Research

Soaring in multi-feature wind fields

This work aims towards developing practical solutions for guidance of a gliding aircraft

in large unknown wind fields consisting of multiple types of wind features. Soaring

flight in unknown wind fields is a high-dimensional problem, and the solution pre-

sented in the current work addressed this issue by identifying a lower dimensional

feature set to represent a known wind feature. The work presented here does not

attempt to estimate the parameters of the wind field and has not addressed any

robustness issues associated with imperfect knowledge of the thermal parameters.

Future work will examine hierarchical methods to autonomously identify lower di-

mensional feature spaces and consider how multiple policies could be learnt and then

integrated with connecting approach and exit trajectories, such as those in Woodbury

et al. (2014), to achieve an adaptive global policy for exploration of unknown spaces

with resource constraints.



Bibliography

Zsuzsa Ákos, Máté Nagy, Severin Leven, and Tamás Vicsek. Thermal soaring flight
of birds and unmanned aerial vehicles. Bioinspiration & Biomimetics, 5(4), 2010.

Michael J. Allen. Autonomous soaring for improved endurance of small uninhabited
air vehicle. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.

Michael J. Allen. Updraft model for development of autonomous soaring
uninhabited air vehicles. In 44th AIAA Aerospace Sciences Meeting and Exhibit,
2006.

Michael J Allen. Guidance and control of an autonomous soaring UAV. Technical
report, NASA Dryden Flight Research Center, February 2007. URL
http://ntrs.nasa.gov/search.jsp?R=20070005019.

Francesco Amigoni and Vincenzo Caglioti. An information-based exploration
strategy for environment mapping with mobile robots. Robotics and Autonomous
Systems, 58(5):684–699, 2010.

J. Andrew Bagnell. Learning Decisions: Robustness, Uncertainty, and
Approximation. PhD thesis, Robotics Institute, Carnegie Mellon University,
August 2004.

Leemon Baird. Residual algorithms: Reinforcement learning with function
approximation. In Machine Learning, pages 30–37. Morgan Kaufmann Publisher,
Inc., 1995.

J Philip Barnes. Flight Without Fuel–Regenerative Soaring Feasibility Study.
Technical report, SAE Technical Paper, 2006.

Richard E. Bellman. On the theory of dynamic programming. Proceedings of the
National Academy of Sciences of the United States of America, 38(8):716–719,
1952.

Richard E. Bellman. A problem in the sequential design of experiments. Sankhya:
The Indian Journal of Statistics (1933-1960), 16(3/4):221–229, 1956. ISSN
00364452.

http://iopscience.iop.org/1748-3190/5/4/045003/
http://iopscience.iop.org/1748-3190/5/4/045003/
http://arc.aiaa.org/doi/abs/10.2514/6.2005-1025
http://arc.aiaa.org/doi/abs/10.2514/6.2005-1025
http://arc.aiaa.org/doi/abs/10.2514/6.2006-1510
http://arc.aiaa.org/doi/abs/10.2514/6.2006-1510
http://ntrs.nasa.gov/search.jsp?R=20070005019
http://ntrs.nasa.gov/search.jsp?R=20070005019
http://www.sciencedirect.com/science/article/pii/S0921889009002024
http://www.sciencedirect.com/science/article/pii/S0921889009002024
http://www.ri.cmu.edu/publication_view.html?pub_id=4905
http://www.ri.cmu.edu/publication_view.html?pub_id=4905
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.3256
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.3256
http://papers.sae.org/2006-01-2422/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/
http://www.jstor.org/stable/25048278


126 BIBLIOGRAPHY

Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.
ISBN 9780691079516.

Ricardo Bencatel, João Tasso de Sousa, and Anouck Girard. Atmospheric flow field
models applicable for aircraft endurance extension. Progress in Aerospace
Sciences, 61:1–25, 2013.

Asher Bender, Stefan B. Williams, and Oscar Pizarro. Autonomous methods for
environmental modeling and exploration. In Proceedings of the 2013 Robotic
Science and Systems Workshop on Robotic Exploration, Monitoring, and
Information Collection: Nonparametric Modeling, Information-based Control, and
Planning under Uncertainty, 2013.

Jonathan Binney, Andreas Krause, and Gaurav S. Sukhatme. Optimizing waypoints
for monitoring spatiotemporal phenomena. The International Journal of Robotics
Research, 32(8):873–888, 2013.

Geoffrey. C. Bower, Tristan C. Flanzer, Alexander D. Naiman, and Suman Saripalli.
Dynamic environment mapping for autonomous thermal soaring. In AIAA
Guidance, Navigation and Control Conference, 2010.

Justin Boyan and Andrew W Moore. Generalization in reinforcement learning:
Safely approximating the value function. Advances in Neural Information
Processing Systems, pages 369–376, 1995.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. Technical report, University of British
Columbia, 2010. URL http://arxiv.org/abs/1012.2599.

George Cayley. On aerial navigation. A Journal of Natural Philosophy, Chemistry
and the Arts, 24:164–174, 1809.

George Cayley. On aerial navigation. A Journal of Natural Philosophy, Chemistry
and the Arts, 25:81–87, 1810a.

George Cayley. On aerial navigation. A Journal of Natural Philosophy, Chemistry
and the Arts, 25:161–173, 1810b.

Girish Chowdhary, Miao Liu, Robert Grande, Thomas Walsh, Jonathan How, and
Lawrence Carin. Off-Policy Reinforcement Learning with Gaussian Processes.
Acta Automatica Sinica, to appear, 2014.

Jen Jen Chung, Miguel Ángel Trujillo, and Salah Sukkarieh. A new utility function
for smooth transition between exploration and exploitation of a wind energy field.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4999–5005, 2012.

http://www.sciencedirect.com/science/article/pii/S037604211300016X
http://www.sciencedirect.com/science/article/pii/S037604211300016X
http://sertac.scripts.mit.edu/rssworkshop/contributed-papers/
http://sertac.scripts.mit.edu/rssworkshop/contributed-papers/
http://ijr.sagepub.com/content/32/8/873.short
http://ijr.sagepub.com/content/32/8/873.short
http://arc.aiaa.org/doi/abs/10.2514/6.2010-8031
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3946
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3946
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://www.biodiversitylibrary.org/ia/journalofnatural24lond#page/188/mode/1up
http://www.biodiversitylibrary.org/item/111214#page/101/mode/1up
http://www.biodiversitylibrary.org/item/111214#page/183/mode/1up
http://daslab.okstate.edu/sites/default/files/backgrounds/GPQ_AAS_Special_issue.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385736
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385736


BIBLIOGRAPHY 127

Jen Jen Chung, Nicholas R. J. Lawrance, and Salah Sukkarieh. Gaussian processes
for informative exploration in reinforcement learning. In 2013 IEEE International
Conference on Robotics and Automation, pages 2633–2639, 2013.

Clarence D. Cone. Thermal soaring of birds. American Scientist, 50(1):180–209,
1962.

Clarence D. Cone. A Mathematical Analysis of the Dynamic Soaring Flight of the
Albatross: With Ecological Interpretations. Virginia Institute of Marine Science,
1964.

Lehel Csató. Gaussian Processes: Iterative Sparse Approximations. PhD thesis,
Aston University, 2002.

Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural
Computation, 14(3):641–668, 2002.

Peter Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8(3-4):
341–362, 1992.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-learning. In
Proceedings of the National Conference on Artificial Intelligence, pages 761–768,
1998.

Marc P. Deisenroth. Efficient Reinforcement Learning using Gaussian Processes.
PhD thesis, Karlsruhe Institute of Technology, 2010.

Marc P. Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process
dynamic programming. Neurocomputing, 72(7-9):1508–1524, 2009.

Daniel J. Edwards. Implementation details and flight test results of an autonomous
soaring controller. 2008.

Daniel J. Edwards and Larry M. Silverberg. Autonomous soaring: The Montague
cross-country challenge. Journal of Aircraft, 47(5):1763–1769, 2010.

Yaakov Engel. Algorithms and Representations for Reinforcement Learning. PhD
thesis, The Hebrew University of Jerusalem, 2005.

Yaakov Engel, Shie Mannor, and Ron Meir. Bayes meets Bellman: The Gaussian
process approach to temporal difference learning. In Proceedings of the 20th
International Conference on Machine Learning, pages 154–161, 2003.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with Gaussian
processes. In Proceedings of the 22nd International Conference on Machine
Learning, pages 201–208, 2005.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6630938
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6630938
http://www.jstor.org/stable/27838346
http://eprints.aston.ac.uk/1327/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.9713&rep=rep1&type=pdf
http://link.springer.com/article/10.1007/BF00992701
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1256
http://mlg.eng.cam.ac.uk/pub/pdf/Dei10.pdf
http://www.sciencedirect.com/science/article/pii/S0925231209000162
http://www.sciencedirect.com/science/article/pii/S0925231209000162
http://arc.aiaa.org/doi/abs/10.2514/6.2008-7244
http://arc.aiaa.org/doi/abs/10.2514/6.2008-7244
http://arc.aiaa.org/doi/abs/10.2514/1.C000287
http://arc.aiaa.org/doi/abs/10.2514/1.C000287
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.6809
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2648
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2648
http://dl.acm.org/citation.cfm?id=1102377
http://dl.acm.org/citation.cfm?id=1102377


128 BIBLIOGRAPHY

Valerii Vadimovich Fedorov. Theory of Optimal Experiments. Academic Press, Inc.,
1972.

Javier García and Fernando Fernández. Safe exploration of state and action spaces
in reinforcement learning. Journal of Artificial Intelligence Research, 45(1):
515–564, 2012. ISSN 1076-9757.

Clement Gehring and Doina Precup. Smart exploration in reinforcement learning
using absolute temporal difference errors. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages
1037–1044, 2013. ISBN 978-1-4503-1993-5.

John C. Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society. Series B (Methodological), 41(2):148–177, 1979.

John C. Gittins and D. M. Jones. A dynamic allocation index for the sequential
allocation of experiments. Progress in Statistics, pages 241–66, 1974.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor
placements in Gaussian processes. In Proceedings of the 22nd international
Conference on Machine Learning, pages 265–272. ACM, 2005.

Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft.
Safe exploration for reinforcement learning. In Proceedings of 16th European
Symposium on Artificial Neural Networks, pages 143–148, 2008.

Trong Nghia Hoang, Kian Hsiang Low, Patrick Jaillet, and Mohan Kankanhalli.
Nonmyopic ε-Bayes-Optimal Active Learning of Gaussian Processes. In
Proceedings of the 31st International Conference on Machine Learning, pages
739–747, 2014.

Gabriel M. Hoffmann and Claire J. Tomlin. Mobile sensor network control using
mutual information methods and particle filters. IEEE Transactions on
Automatic Control, 55(1):32–47, 2010. ISSN 0018-9286.

Geoffrey A. Hollinger, Brendan Englot, Franz S. Hover, Urbashi Mitra, and
Gaurav S. Sukhatme. Active planning for underwater inspection and the benefit
of adaptivity. The International Journal of Robotics Research, 32(1):3–18, 2013.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

Michael N. Katehakis and Arthur F. Veinott. The multi-armed bandit problem:
Decomposition and computation. Mathematics of Operations Research, 12(2):
262–268, 1987.

http://dl.acm.org/citation.cfm?id=2444851.2444864
http://dl.acm.org/citation.cfm?id=2444851.2444864
http://dl.acm.org/citation.cfm?id=2484920.2485084
http://dl.acm.org/citation.cfm?id=2484920.2485084
http://www.jstor.org/stable/2985029
http://dl.acm.org/citation.cfm?id=1102385
http://dl.acm.org/citation.cfm?id=1102385
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2008
http://jmlr.org/proceedings/papers/v32/hoang14.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350445
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350445
http://ijr.sagepub.com/content/32/1/3.short
http://ijr.sagepub.com/content/32/1/3.short
http://arxiv.org/abs/cs/9605103
http://arxiv.org/abs/cs/9605103
http://www.jstor.org/stable/3689689
http://www.jstor.org/stable/3689689


BIBLIOGRAPHY 129

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274,
2013.

Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforcement
learning for map exploration. The International Journal of Robotics Research, 27
(2):175–196, 2008.

Andreas Krause and Carlos Guestrin. Nonmyopic active learning of Gaussian
processes: An exploration-exploitation approach. In Proceedings of the 24th
International Conference on Machine Learning, pages 449–456. ACM, 2007.

Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit problem.
The Annals of Statistics, 15(3):1091–1114, 1987.

Jack W. Langelaan. Long distance/duration trajectory optimization for small UAVs.
In 2007 AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.

Nicholas R. J. Lawrance. Autonomous Soaring Flight for Unmanned Aerial Vehicles.
PhD thesis, The University of Sydney, 2011.

Nicholas R. J. Lawrance and Salah Sukkarieh. A guidance and control strategy for
dynamic soaring with a gliding UAV. In 2009 IEEE International Conference on
Robotics and Automation, pages 3632–3637, 2009.

Nicholas R. J. Lawrance and Salah Sukkarieh. Simultaneous exploration and
exploitation of a wind field for a small gliding UAV. In AIAA Guidance,
Navigation and Control Conference, volume 8032, 2010.

Nicholas R. J. Lawrance and Salah Sukkarieh. Autonomous exploration of a wind
field with a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3),
2011a.

Nicholas R. J. Lawrance and Salah Sukkarieh. Path planning for autonomous
soaring flight in dynamic wind fields. In 2011 IEEE International Conference on
Robotics and Automation, pages 2499–2505. IEEE, 2011b.

Daniel Levine, Brandon Luders, and Jonathan P. How. Information-rich path
planning with general constraints using rapidly-exploring random trees. In AIAA
Infotech@ Aerospace Conference, Atlanta, GA, 2010.

Otto Lilienthal. Der Vogelflug als Grundlage der Fliegekunst : ein Beitrag zur
Systematik der Flugtechnik / auf Grund zahlreicher von O. und G. Lilienthal
ausgeführter Versuche ; bearbeitet von Otto Lilienthal. R. Gaertner, 1889.

http://ijr.sagepub.com/content/32/11/1238.short
http://ijr.sagepub.com/content/32/11/1238.short
http://ijr.sagepub.com/content/27/2/175.short
http://ijr.sagepub.com/content/27/2/175.short
http://dl.acm.org/citation.cfm?id=1273553
http://dl.acm.org/citation.cfm?id=1273553
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1176350495
http://arc.aiaa.org/doi/abs/10.2514/6.2007-6737
http://db.acfr.usyd.edu.au/content.php/292.html?publicationid=934&displaypage=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5152441&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5152441&tag=1
http://arc.aiaa.org/doi/abs/10.2514/6.2010-8032
http://arc.aiaa.org/doi/abs/10.2514/6.2010-8032
http://arc.aiaa.org/doi/abs/10.2514/1.52236
http://arc.aiaa.org/doi/abs/10.2514/1.52236
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5979966
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5979966
http://arc.aiaa.org/doi/abs/10.2514/6.2010-3360
http://arc.aiaa.org/doi/abs/10.2514/6.2010-3360


130 BIBLIOGRAPHY

Michael Littman, Alain Dutech, Tim Edmunds, Jelle Kok, Michail Lagoudakis,
Martin Riedmiller, Brian Russell, Bruno Scherrer, Rich Sutton, Stephan Timmer,
Nikos Vlassis, Adam White, and Shimon Whiteson. NIPS Workshop:
Reinforcement Learning Benchmarks and Bake-offs II. 2005.

Kian Hsiang Low, John M. Dolan, and Pradeep Khosla. Information-theoretic
multi-robot adaptive exploration and mapping of environmental hotspot fields. In
ESSA 2009: Workshop on Sensor Networks for Earth and Space Sciences
Applications, 2009.

Paul B. MacCready. Optimum airspeed selector. Soaring (January–February),
pages 10–11, 1958.

D. R. Mackintosh. The use of thermal currents by birds on migration. Ibis, 91(1):
55–59, 1949. ISSN 1474-919X.

Roman Marchant and Fabio Ramos. Bayesian optimisation for intelligent
environmental monitoring. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2242–2249, 2012.

Darryl E. Metzger and J. Karl Hedrick. Optimal flight paths for soaring flight.
Journal of Aircraft, 12(11):867–871, 1975.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in Markov decision
processes. In Proceedings of the 29th International Conference on Machine
Learning, 2012.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping:
Reinforcement learning with less data and less time. Machine Learning, 13(1):
103–130, 1993.

R. M. Neal. Regression and classification using Gaussian process priors. In J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Baysian
Statistics 6, pages 475–501. Oxford University Press, 1998.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of
approximations for maximizing submodular set functions—I. Mathematical
Programming, 14(1):265–294, 1978.

S. E. Peal. Soaring of birds. Nature, 23(575):10–11, 1880.

Jing Peng and Ronald J. Williams. Incremental multi-step Q-learning. Machine
Learning, 22(1-3):283–290, 1996.

Carl Edward Rasmussen and Malte Kuss. Gaussian processes in reinforcement
learning. Advances in Neural Information Processing Systems 16, 16:751–759,
2004.

http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/bakeoffs05.pdf
http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/bakeoffs05.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.3396&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.3396&rep=rep1&type=pdf
http://soaring.guenther-eichhorn.com/Soaring_Index/1958/PDF/1958_Jan-Feb_10.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1474-919X.1949.tb02235.x/abstract
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=63856% 53
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=63856% 53
http://arc.aiaa.org/doi/abs/10.2514/3.59886
http://arxiv.org/abs/1205.4810v3
http://arxiv.org/abs/1205.4810v3
http://link.springer.com/article/10.1007/BF00993104
http://link.springer.com/article/10.1007/BF00993104
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.156.1910
http://link.springer.com/article/10.1007/BF01588971
http://link.springer.com/article/10.1007/BF01588971
http://www.nature.com/nature/journal/v23/n575/pdf/023010b0.pdf
http://link.springer.com/article/10.1023/A:1018076709321
http://books.nips.cc/papers/files/nips16/NIPS2003_CN01.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_CN01.pdf


BIBLIOGRAPHY 131

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2005.

Lord Rayleigh. The soaring of birds. Nature, 27(701):534–535, 1883.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of
the American Mathematical Society, 58(5):527–535, 1952.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.
Technical report, Cambridge University Engineering Department, 1994. URL
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539.

Arthur L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3:535–554, 1959.

Thomas J. Santner, Brian J. Williams, and William Notz. The Design and Analysis
of Computer Experiments. Springer, 2003.

Jürgen Schmidhuber. Curious model-building control systems. In 1991 IEEE
International Joint Conference on Neural Networks, pages 1458–1463. IEEE, 1991.

Jeff G. Schneider. Exploiting model uncertainty estimates for safe dynamic control
learning. In Neural Information Processing Systems 9, pages 1047–1053. The MIT
Press, 1996.

Oliver G. Selfridge. Some themes and primitives in ill-defined systems. In Adaptive
Control of Ill-defined Systems, pages 21–26. Springer, 1984.

B. S. Shenstone and S. Scott-Hall. Glider development in Germany: A technical
survey of progress in design in Germany since 1922. Aircraft Engineering and
Aerospace Technology, 7(10):249–258, 1935.

Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J. Kaiser. Efficient
informative sensing using multiple robots. Journal of Artificial Intelligence
Research, 34(2):707–755, 2009a.

Amarjeet Singh, Andreas Krause, and William J. Kaiser. Nonmyopic adaptive
informative path planning for multiple robots. In Proceedings of the 21st
International Joint Conference on Artifical intelligence, pages 1843–1850. Morgan
Kaufmann Publishers Inc., 2009b.

Amarjeet Singh, Fabio Ramos, Hugh Durrant Whyte, and William J. Kaiser.
Modeling and decision making in spatio-temporal processes for environmental
surveillance. In IEEE International Conference on Robotics and Automation,
pages 5490–5497. IEEE, 2010.

Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22(1-3):123–158, 1996.

http://www.nature.com/nature/journal/v27/n701/pdf/027534a0.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.3232
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2539
http://ieeexplore.ieee.org.ezproxy2.library.usyd.edu.au/xpl/articleDetails.jsp?tp=&arnumber=5389202
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=170605&tag=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5365
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5365
http://www.emeraldinsight.com/journals.htm?articleid=1677271&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1677271&show=abstract
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.904
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.904
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.3432
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.3432
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509934
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509934
http://link.springer.com/article/10.1023/A:1018012322525
http://link.springer.com/article/10.1023/A:1018012322525


132 BIBLIOGRAPHY

Niranjan Srinivas, Andreas Kraus, Sham M. Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In
Proceedings of the International Conference on Machine Learning, 2010.

Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information gain-based
exploration using Rao-Blackwellized particle filters. In Proceedings of Robotics:
Science and Systems, 2005.

Susanne Still and Doina Precup. An information-theoretic approach to
curiosity-driven reinforcement learning. Theory in Biosciences, 131(3):139–148,
2012.

Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, 1988.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the 7th
International Conference on Machine Learning, pages 216–224, 1990.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in Neural Information Processing
Systems 8, pages 1038–1044. MIT Press, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 1998.

Richard S. Sutton and Satinder P. Singh. On step-size and bias in
temporal-difference learning. In The Proceedings of the Eighth Yale Workshop on
Adaptive and Learning Systems, pages 91–96, 1994.

Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3):58–68, 1995.

Sebastian Thrun and Knut Möller. Active exploration in dynamic environments. In
Advances in Neural Information Processing Systems 4, pages 531–538, 1992.

Sebastian B. Thrun. The role of exploration in learning control. In David A. White
and Donald A. Sofge, editors, Handbook for Intelligent Control: Neural, Fuzzy and
Adaptive Approaches. Van Nostrand Reinhold, 1992a.

Sebastian B. Thrun. Efficient exploration in reinforcement learning. Technical
Report CMU-CS-92-102, School of Computer Science, Carnegie-Mellon
University, January 1992b. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.4011.

John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic Control,
42(5):674–690, 1997.

http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/0912.3995
http://www.roboticsproceedings.org/rss01/p09.html
http://www.roboticsproceedings.org/rss01/p09.html
http://link.springer.com/article/10.1007/s12064-011-0142-z
http://link.springer.com/article/10.1007/s12064-011-0142-z
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.7760
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7362
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7362
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.4764
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.4764
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8589
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8589
http://dl.acm.org/citation.cfm?id=203343
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.4252
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.4011
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.4011
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580874
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580874


BIBLIOGRAPHY 133

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, 1989.

H. Weimerskirch, T. Guionnet, J. Martin, S. A. Shaffer, and D. P. Costa. Fast and
fuel efficient? Optimal use of wind by flying albatrosses. Proceedings of the Royal
Society of London - Biological Sciences, 267(1455):1869–1874, 2000.

John M. Wharington. Autonomous Control of a Soaring Aircraft by Reinforcement
Learning. PhD thesis, Department of Aerospace Engineering, Royal Melbourne
Institute of Technology, 1998.

John M. Wharington. Heuristic control of dynamic soaring. In Control Conference,
2004. 5th Asian, volume 2, pages 714–722, 2004.

Christopher K. I. Williams. Prediction with Gaussian processes: From linear
regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and
Inference in Graphical Models, pages 599–621. Kluwer Academic Press, 1998.

C. J. Wood. The flight of albatrosses (A computer simulation). Ibis, 115(2):
244–256, 1972.

Tim Woodbury, Caroline Dunn, and John Valasek. Autonomous Soaring Using
Reinforcement Learning for Trajectory Generation. In 5nd Aerospace Sciences
Meeting, pages 1–11, 2014.

http://www.cs.rhul.ac.uk/home/chrisw/new_thesis.pdf
http://rspb.royalsocietypublishing.org/content/267/1455/1869.short
http://rspb.royalsocietypublishing.org/content/267/1455/1869.short
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1426740
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.1226
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.1226
http://onlinelibrary.wiley.com/doi/10.1111/j.1474-919X.1973.tb02640.x/abstract
http://arc.aiaa.org/doi/abs/10.2514/6.2014-0990
http://arc.aiaa.org/doi/abs/10.2514/6.2014-0990


134 BIBLIOGRAPHY



Appendix A

Simulation Specifications

A.1 Puddle World

Learning parameters for the puddle world simulation set are shown in Table A.1.

Table A.1: Puddle World Learning Parameters

Description Symbol Value
Time discretisation ∆t 1 s
Max steps 100
Exploration parameter ε 0.01
Exploration value decay parameter τr 20
Reward discount factor γ 0.9
Trace discount factor λ 0.9
Rollout discount factor γr 0.4
Step size α 0.5
State s [x, y]
Action a {up, down, left , right}

∼ N (0.05, 0.012)
Tilings m 10
Partitions 10



136 Simulation Specifications

A.2 Cart Pole

The constants used to compute the dynamics of the cart pole problem are given in

Table A.2, while the learning parameters used across the simulation set are shown in

Table A.3.

Table A.2: Cart Pole Problem Constants

Description Symbol Value Unit
Gravity g 9.81 m/s2

Cart mass mc 1 kg
Pole mass mp 0.1 kg
Pole length lp 0.5 m

Table A.3: Cart Pole Learning Parameters

Description Symbol Value
Time discretisation ∆t 0.02 s
Max steps 500
Exploration parameter ε 0.01
Exploration value decay parameter τr 20
Reward discount factor γ 0.9
Trace discount factor λ 0.9
Rollout discount factor γr 0.4
Step size α 0.5
State s [x, v, θ, ω]
Action a ∈ {−10,−9, . . . , 10} N
Tilings m 100
Partitions 5



A.3 Battery Cycling 137

A.3 Battery Cycling

The learning parameters used across the battery cycling simulation set are shown in

Table A.4.

Table A.4: Battery Cycling Learning Parameters

Description Symbol Value
Time discretisation ∆t 0.5 s
Max steps 1000
Exploration parameter ε 0.01
Exploration value decay parameter τr 500
Reward discount factor γ 0.9
Trace discount factor λ 0.7
Rollout discount factor γr 0.4
Step size α 0.5
State s [energy ]
Action a ∈ {charge, discharge}
Tilings m 100
Partitions 50



138 Simulation Specifications

A.4 2D 3DOF Soaring Glider

The learning parameters used across the 2D 3DOF soaring glider simulation set are

shown in Table A.5.

Table A.5: 2D 3DOF Soaring Glider Learning Parameters

Description Symbol Value
Time discretisation ∆t 1 s
Max steps 10000
Exploration parameter ε 0.01
Exploration value decay parameter τr 5000
Reward discount factor γ 0.9
Trace discount factor λ 0.7
Rollout discount factor γr 0.4
Step size α 0.5
State s [x, y, ψ]
Action a ∈ {left , straight , right}
Maximum energy Emax 4.002× 105 J



A.5 3D 6DOF Soaring Glider 139

A.5 3D 6DOF Soaring Glider

The glider platform simulated in the experiments was modelled on the RnR SBXC

glider. The aircraft parameters used in the simulations are given in Table A.6. The

learning parameters used across the 3D 6DOF soaring glider simulation set are shown

in Table A.7.

Table A.6: Glider Aircraft Parameter Values

Aircraft Parameter Value
Parasitic drag coefficient 0.012
Wing reference area 0.95677 m2

Wing aspect ratio 19.54
Oswald’s efficiency factor 0.85
Vehicle mass 5.44 kg
Maximum positive load factor 2.0
Maximum negative load factor 0
Maximum lift coefficient 1.2
Maximum roll rate 30◦ /s
Maximum roll angle 60◦

Maximum air relative climb angle 50◦

Approximate glide ratio 30
Stall speed 9.54 m/s
Maximum allowable airspeed 36.6 m/s



140 Simulation Specifications

Table A.7: 3D 6DOF Soaring Glider Learning Parameters

Description Symbol Value
Time discretisation ∆t 1 s
Max steps 500
Exploration parameter ε 0.01
Exploration value decay parameter τr 100
Reward discount factor γ 0.9
Trace discount factor λ 0.7
Rollout discount factor γr 0.4
Step size α 0.5
State s [r, v, ψ]

Action a
[
φ̇, θ̇
]

φ̇ ∈ {left , straight , right}
θ̇ ∈ {up, straight , down}

Maximum energy Emax 1.965× 104 J



Appendix B

Derivation of the GP Variance

Volume

Given the squared exponential covariance function, shown in Equation (3.20) and

repeated here,

k (x,x′) = σ2
f exp

[
−1

2
(x− x′)

T
M (x− x′)

]
, (B.1)

the variance volume for a set of n-dimensional observations XN can be derived as

follows:

Vbound =

∫ xb

xa

cov (x) dx

=

∫ xnb

xna

· · ·
∫ x1b

x1a

cov ([x1, . . . xn]) dx1 . . . dxn

=

∫ xnb

xna

· · ·
∫ x1b

x1a

k ([x1, . . . , xn] , [x1, . . . , xn])

− k ([x1, . . . , xn] , XN)K−1
XXk (XN , [x1, . . . , xn]) dx1 . . . dxn. (B.2)

In the interest of space and clarity, the following equations will refer to the vector

form of x = [x1, . . . xn] in the covariance function terms and the integral limits.



142 Derivation of the GP Variance Volume

Equation (B.2) can be split into two terms, with the covariance function Equa-

tion (B.1), the first term gives:∫ xb

xa

k (x,x) dx =

∫ xb

xa

σ2
fdx

= σ2
f × (x1b − x1a)× . . .× (xnb

− xna)

= σ2
f

n∏
m=1

(xmb
− xma). (B.3)

To compute the general form of the second integral term, consider

[
a b

]c d

e f

a
b

 = aca+ bea+ adb+ bfb,

which leads to the equation,

k (x, XN)K−1
XXk (XN ,x) =

∑
i

∑
j

k (x,xi)
[
K−1
XX

]
ij
k (xj,x). (B.4)

Since
[
K−1
XX

]
is not a function of x, then the second integral term in Equation (B.2)

can be written as,

N∑
i=1

N∑
j=1

[
K−1
XX

]
ij

∫ xb

xa

k (x,xi) k (xj,x) dx, (B.5)

where in a slight abuse of notation, xi refers to the i-th observation in the set of ob-

servations XN . The components of this integral can be expanded to aid clarification,

giving the vectors

k (x, XN) =
[
k (x,x1) . . . k (x,xN)

]
,

k (XN ,x) =


k (x,x1)

...

k (x,xN)

 ,



Derivation of the GP Variance Volume 143

since the covariance matrix is symmetrical. These can be used to give a matrix

representation of the integral in Equation (B.5),

C =


∫ xb

xa
k (x,x1) k (x1,x) dx . . .

∫ xb

xa
k (x,x1) k (xN ,x) dx

... . . . ...∫ xb

xa
k (x,xN) k (x1,x) dx . . .

∫ xb

xa
k (x,xN) k (xN ,x) dx

 , (B.6)

such that the second integral term in Equation (B.2) becomes,

∫ xb

xa

k (x, XN)K−1
XXk (XN ,x) dx =

N∑
i=1

N∑
j=1

[
K−1
XX ·C

]
ij
. (B.7)

The individual elements in C can be solved for by investigating the relevant covariance

function, in this case, the squared exponential function shown in Equation (B.1). For

the i, j-th integral element in C,

k (x,xi) k (xj,x)

= σ2
f exp

[
−1

2
(x− xi)

T M (x− xi)

]
σ2
f exp

[
−1

2
(xj − x)T M (xj − x)

]
= σ2

f exp

{
−1

2

[(
x1 − xi1

l1

)2

+ . . .+

(
xn − xin

ln

)2
]}

× σ2
f exp

{
−1

2

[(
xj1 − x1

l1

)2

+ . . .+

(
xjn − xn

ln

)2
]}

= σ4
f exp

{
−
[

(x1 − xi1)2 + (xj1 − x1)2

2l21
+ . . .+

(xn − xin)2 + (xjn − xn)2

2l2n

]}
,

(B.8)

remembering that M is the diagonal matrix of squared length scales diag (M) =

l−2 =
[
l−2
1 , . . . , l−2

n

]
. This expression can be simplified by completing the square for

each element in the exponent (the dimensional subscript is removed here for ease of



144 Derivation of the GP Variance Volume

reading):

(x− xi)2 + (xj − x)2

2l2
=

(
x− xi+xj

2

l

)2

+

(
xi − xj

2l

)2

, (B.9)

and recognising now that σ4
f and the second term in Equation (B.9) are not functions

of x and so can be taken out of the integral, giving,

∫ xb

xa

k (x,xi) k (xj,x) dx = σ4
f exp

{
−
[(

xi1 − xj1
2l1

)2

+ . . .+

(
xin − xjn

2lm

)2
]}

×
∫ xnb

xna

· · ·
∫ x1b

x1a

exp

−
(x1 − xi1+xj1

2

l1

)2

+ . . .+

(
xn − xin+xjn

2

ln

)2
 dx1 . . . dxn.

(B.10)

The integral in Equation (B.10) can now be separated into the constituent dimensions,

∫ xb

xa

k (x,xi) k (xj,x) dx = σ4
f exp

[
−

n∑
m=1

(
xim − xjm

2lm

)2
]

×
∫ xnb

xna

exp

−(xn − xin+xjn
2

ln

)2
 dxn × · · · ×

∫ x1b

x1a

exp

−(x1 − xi1+xj1
2

l1

)2
 dx1.

(B.11)

From here (dropping the dimensional subscript again for clarity) performing the fol-

lowing substitution,

t =
x− xi+xj

2

l
, (B.12)

such that,

dt =
dx

l
,



Derivation of the GP Variance Volume 145

and when

x = xa, t =
xa − xi+xj

2

l
, x = xb, t =

xb − xi+xj
2

l
,

allows the integration:

∫ xb

xa

exp

−(x− xi+xj
2

l

)2
 dx = l

(√
π

2

)[
erf

(
xb − xi+xj

2

l

)
− erf

(
xa − xi+xj

2

l

)]
.

(B.13)

Substituting back into Equations (B.11), (B.6) and (B.7) gives the solution to the

second integral term of Equation (B.2):∫ xb

xa

k (x, XN)K−1
XXk (XN ,x) dx

= σ4
f

(√
π

2

)n
(l1 × . . .× ln)×

N∑
i=1

N∑
j=1

{[
K−1
XX

]
ij

exp

[
−

n∑
m=1

(
xim − xjm

2lm

)2
]

×
[

erf

(
x1b −

xi1+xj1
2

l1

)
− erf

(
x1a −

xi1+xj1
2

l1

)]
× . . .

×
[

erf

(
xnb
− xin+xjn

2

ln

)
− erf

(
xna − xin+xjn

2

ln

)]}
. (B.14)

Combining Equation (B.14) with Equation (B.3) gives the final result:

Vbound = σ2
f

n∏
m=1

(xmb
− xma)− σ4

f

(√
π

2

)n n∏
m=1

(lm)

×
N∑
i=1

N∑
j=1

{[
K−1
XX

]
ij

exp

[
−

n∑
m=1

(
xim − xjm

2lm

)2
]

×
n∏

m=1

[
erf

(
xmb
− xim+xjm

2

lm

)
− erf

(
xma − xim+xjm

2

lm

)]}
. (B.15)

Note that the only requirement to finding an analytical solution to Equation (B.2) is

that the covariance function multiplication k (x,xi) k (xj,x) be integrable. Significant



146 Derivation of the GP Variance Volume

computational speed-up can also be achieved by keeping track of the matrices K−1
XX

and C. Since the GP approximation of the value function already uses the block

update form to maintain the inverse covariance matrix, all that remains is to append

the new row and column of C for each new observation; furthermore, the computation

of these elements is linear in the number of observations since the the matrix is

symmetrical.


	Copyright_Statement
	chung_jj_thesis.pdf
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Thesis Problem and Related Fields
	1.3 Thesis Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Autonomous Soaring
	2.1.1 A brief history of soaring research
	2.1.2 Methods of autonomous soaring
	2.1.3 The exploration-exploitation trade-off

	2.2 Exploration and Exploitation as a Reinforcement Learning Problem
	2.2.1 Sequential design and the bandit problem
	2.2.2 Temporal difference reinforcement learning
	2.2.3 Exploration and active learning

	2.3 Information-Based Exploration
	2.3.1 Existing information measures
	2.3.2 Adaptive exploration
	2.3.3 Exploration-exploitation trade-offs in robotics

	2.4 Summary

	3 Gaussian Processes in Reinforcement Learning
	3.1 SARSA()
	3.2 Value Function Approximation
	3.3 Gaussian Process Modelling
	3.3.1 Squared exponential covariance function
	3.3.2 Sparsification

	3.4 Summary

	4 Informative Exploration
	4.1 Existing Exploration Strategies
	4.2 Information Measure
	4.2.1 Gaussian process variance volume
	4.2.2 Comparison to other information measures

	4.3 Information Value
	4.3.1 Rollout

	4.4 Objective Function Trade-off
	4.4.1 Time-step-dependent information weighting
	4.4.2 Greedy rollout

	4.5 iGP-SARSA()
	4.6 Summary

	5 Benchmarking Experiments
	5.1 Puddle World
	5.1.1 Simulation setup
	5.1.2 Results

	5.2 Cart Pole
	5.2.1 Simulation setup
	5.2.2 Results

	5.3 Battery Cycling
	5.3.1 Simulation setup
	5.3.2 Results

	5.4 2D 3DOF Soaring Glider
	5.4.1 Simulation setup
	5.4.2 Results

	5.5 Summary

	6 Resource-Constrained Learning for Autonomous Soaring
	6.1 Resource Limitations
	6.2 eGP-SARSA()
	6.2.1 Computational complexity

	6.3 Summary

	7 Soaring Simulation Experiments
	7.1 2D 3DOF Soaring Glider
	7.1.1 Simulation setup
	7.1.2 Results

	7.2 3D 6DOF Soaring Glider
	7.2.1 Simulation setup
	7.2.2 Results

	7.3 Summary

	8 Conclusion and Future Research
	8.1 Summary of Contributions
	8.2 Future Research

	Bibliography
	A Simulation Specifications
	A.1 Puddle World
	A.2 Cart Pole
	A.3 Battery Cycling
	A.4 2D 3DOF Soaring Glider
	A.5 3D 6DOF Soaring Glider

	B Derivation of the GP Variance Volume


