14 research outputs found

    Factor descent optimization for sparsification in graph SLAM

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the context of graph-based simultaneous localization and mapping, node pruning consists in removing a subset of nodes from the graph, while keeping the graph’s information content as close as possible to the original. One often tackles this problem locally by isolating the Markov blanket sub-graph of a node, marginalizing this node and sparsifying the dense result. It means computing an approximation with a new set of factors. For a given approximation topology, the factors’ mean and covariance that best approximate the original distribution can be obtained through minimization of the Kullback-Liebler divergence. For simple topologies such as Chow-Liu trees, there is a closed form for the optimal solution. However, a tree is oftentimes too sparse to explain some graphs. More complex topologies require nonlinear iterative optimization. In the present paper we propose Factor Descent, a new iterative optimization method to sparsify the dense result of node marginalization, which works by iterating factor by factor. We also provide a thorough comparison of our approach with state-of-the-art methods in real world datasets with regards to the obtained solution and convergence rates.Peer ReviewedPostprint (author's final draft

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms

    Pose-graph SLAM sparsification using factor descent

    Get PDF
    Since state of the art simultaneous localization and mapping (SLAM) algorithms are not constant time, it is often necessary to reduce the problem size while keeping as much of the original graph’s information content. In graph SLAM, the problem is reduced by removing nodes and rearranging factors. This is normally faced locally: after selecting a node to be removed, its Markov blanket sub-graph is isolated, the node is marginalized and its dense result is sparsified. The aim of sparsification is to compute an approximation of the dense and non-relinearizable result of node marginalization with a new set of factors. Sparsification consists on two processes: building the topology of new factors, and finding the optimal parameters that best approximate the original dense distribution. This best approximation can be obtained through minimization of the Kullback-Liebler divergence between the two distributions. Using simple topologies such as Chow-Liu trees, there is a closed form for the optimal solution. However, a tree is oftentimes too sparse and produces bad distribution approximations. On the contrary, more populated topologies require nonlinear iterative optimization. In the present paper, the particularities of pose-graph SLAM are exploited for designing new informative topologies and for applying the novel factor descent iterative optimization method for sparsification. Several experiments are provided comparing the proposed topology methods and factor descent optimization with state-of-the-art methods in synthetic and real datasets with regards to approximation accuracy and computational cost.Peer ReviewedPostprint (author's final draft

    Graph SLAM sparsification with populated topologies using factor descent optimization

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Current solutions to the simultaneous localization and mapping (SLAM) problem approach it as the optimization of a graph of geometric constraints. Scalability is achieved by reducing the size of the graph, usually in two phases. First, some selected nodes in the graph are marginalized and then, the dense and non-relinearizable result is sparsified. The sparsified network has a new set of relinearizable factors and is an approximation to the original dense one. Sparsification is typically approached as a Kullback-Liebler divergence (KLD) minimization between the dense marginalization result and the new set of factors. For a simple topology of the new factors, such as a tree, there is a closed form optimal solution. However, more populated topologies can achieve a much better approximation because more information can be encoded, although in that case iterative optimization is needed to solve the KLD minimization. Iterative optimization methods proposed by the state-of-art sparsification require parameter tuning which strongly affect their convergence. In this paper, we propose factor descent and non-cyclic factor descent, two simple algorithms for SLAM sparsification that match the state-of-art methods without any parameters to be tuned. The proposed methods are compared against the state of the art with regards to accuracy and CPU time, in both synthetic and real world datasets.Peer ReviewedPostprint (author's final draft

    Map Point Selection for Visual SLAM

    Full text link
    Simultaneous localisation and mapping (SLAM) play a vital role in autonomous robotics. Robotic platforms are often resource-constrained, and this limitation motivates resource-efficient SLAM implementations. While sparse visual SLAM algorithms offer good accuracy for modest hardware requirements, even these more scalable sparse approaches face limitations when applied to large-scale and long-term scenarios. A contributing factor is that the point clouds resulting from SLAM are inefficient to use and contain significant redundancy. This paper proposes the use of subset selection algorithms to reduce the map produced by sparse visual SLAM algorithms. Information-theoretic techniques have been applied to simpler related problems before, but they do not scale if applied to the full visual SLAM problem. This paper proposes a number of novel information\hyp{}theoretic utility functions for map point selection and optimises these functions using greedy algorithms. The reduced maps are evaluated using practical data alongside an existing visual SLAM implementation (ORB-SLAM 2). Approximate selection techniques proposed in this paper achieve trajectory accuracy comparable to an offline baseline while being suitable for online use. These techniques enable the practical reduction of maps for visual SLAM with competitive trajectory accuracy. Results also demonstrate that SLAM front-end performance can significantly impact the performance of map point selection. This shows the importance of testing map point selection with a front-end implementation. To exploit this, this paper proposes an approach that includes a model of the front-end in the utility function when additional information is available. This approach outperforms alternatives on applicable datasets and highlights future research directions

    SIVO: Semantically Informed Visual Odometry and Mapping

    Get PDF
    Accurate localization is a requirement for any autonomous mobile robot. In recent years, cameras have proven to be a reliable, cheap, and effective sensor to achieve this goal. Visual simultaneous localization and mapping (SLAM) algorithms determine camera motion by tracking the motion of reference points from the scene. However, these references must be static, as well as viewpoint, scale, and rotation invariant in order to ensure accurate localization. This is especially paramount for long-term robot operation, where we require our references to be stable over long durations and also require careful point selection to maintain the runtime and storage complexity of the algorithm while the robot navigates through its environment. In this thesis, we present SIVO (Semantically Informed Visual Odometry and Mapping), a novel feature selection method for visual SLAM which incorporates machine learning and neural network uncertainty into an information-theoretic approach to feature selection. The emergence of deep learning techniques has resulted in remarkable advances in scene understanding, and our method supplements traditional visual SLAM with this contextual knowledge. Our algorithm selects points which provide significant information to reduce the uncertainty of the state estimate while ensuring that the feature is detected to be a static object repeatedly, with a high confidence. This is done by evaluating the reduction in Shannon entropy between the current state entropy, and the joint entropy of the state given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Our method is evaluated against ORB SLAM2 and the ground truth of the KITTI odometry dataset. Overall, SIVO performs comparably to ORB SLAM2 (average of 0.17% translation error difference, 6.2 × 10 −5 deg/m rotation error difference) while removing 69% of the map points on average. As the reference points selected are from static objects (building, traffic signs, etc.), the map generated using our algorithm is suitable for long-term localization

    Information-driven navigation

    Get PDF
    En los últimos años, hemos presenciado un progreso enorme de la precisión y la robustez de la “Odometría Visual” (VO) y del “Mapeo y la Localización Simultánea” (SLAM). Esta mejora de su funcionamiento ha permitido las primeras implementaciones comerciales relacionadascon la realidad aumentada (AR), la realidad virtual (VR) y la robótica. En esta tesis, desarrollamos nuevos métodos probabilísticos para mejorar la precisión, robustez y eficiencia de estas técnicas. Las contribuciones de nuestro trabajo están publicadas en tres artículos y se complementan con el lanzamiento de “SID-SLAM”, el software que contiene todas nuestras contribuciones, y del “Minimal Texture dataset”.Nuestra primera contribución es un algoritmo para la selección de puntos basado en Teoría de la Información para sistemas RGB-D VO/SLAM basados en métodos directos y/o en características visuales (features). El objetivo es seleccionar las medidas más informativas, para reducir el tama˜no del problema de optimización con un impacto mínimo en la precisión. Nuestros resultados muestran que nuestro nuevo criterio permitereducir el número de puntos hasta tan sólo 24 de ellos, alcanzando la precisión del estado del arte y reduciendo en hasta 10 veces la demanda computacional.El desarrollo de mejores modelos de incertidumbre para las medidas visuales mejoraría la precisión de la estructura y movimiento multi-vista y llevaría a estimaciones más realistas de la incertidumbre del estado en VO/SLAM. En esta tesis derivamos un modelo de covarianza para residuos multi-vista, que se convierte en un elemento crucial de nuestras contribuciones basadas en Teoría de la Información.La odometría visual y los sistemas de SLAM se dividen típicamente en la literatura en dos categorías, los basados en features y los métodos directos, dependiendo del tipo de residuos que son minimizados. En la última parte de la tesis combinamos nuestras dos contribucionesanteriores en la formulación e implementación de SID-SLAM, el primer sistema completo de SLAM semi-directo RGB-D que utiliza de forma integrada e indistinta features y métodos directos, en un sistema completo dirigido con información. Adicionalmente, grabamos ‘‘Minimal Texture”, un dataset RGB-D con un contenido visual conceptualmente simple pero arduo, con un ground truth preciso para facilitar la investigación del estado del arte en SLAM semi-directo.In the last years, we have witnessed an impressive progress in the accuracy and robustness of Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM). This boost in the performance has enabled the first commercial implementations related to augmented reality (AR), virtual reality (VR) and robotics. In this thesis, we developed new probabilistic methods to further improve the accuracy, robustness and efficiency of VO and SLAM. The contributions of our work are issued in three main publications and complemented with the release of SID-SLAM, the software containing all our contributions, and the challenging Mininal Texture dataset. Our first contribution is an information-theoretic approach to point selection for direct and/or feature-based RGB-D VO/SLAM. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. Our experimental results show that our novel criteria allows us to reduce the number of tracked points down to only 24 of them, achieving state-of-the-art accuracy while reducing 10x the computational demand. Better uncertainty models for visual measurements will impact the accuracy of multi-view structure and motion and will lead to realistic uncertainty estimates of the VO/SLAM states. We derived a novel model for multi-view residual covariances based on perspective deformation, which has become a crucial element in our information-driven approach. Visual odometry and SLAM systems are typically divided in the literature into two categories, feature-based and direct methods, depending on the type of residuals that are minimized. We combined our two previous contributions in the formulation and implementation of SID-SLAM, the first full semi-direct RGB-D SLAM system that uses tightly and indistinctly features and direct methods within a complete information-driven pipeline. Moreover, we recorded Minimal Texture an RGB-D dataset with conceptually simple but challenging content, with accurate ground truth to facilitate state-of-the-art research on semi-direct SLAM.<br /

    Information metrics for localization and mapping

    Get PDF
    Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals
    corecore