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Abstract

Accurate localization is a requirement for any autonomous mobile robot. In recent
years, cameras have proven to be a reliable, cheap, and effective sensor to achieve this
goal. Visual simultaneous localization and mapping (SLAM) algorithms determine camera
motion by tracking the motion of reference points from the scene. However, these references
must be static, as well as viewpoint, scale, and rotation invariant in order to ensure accurate
localization. This is especially paramount for long-term robot operation, where we require
our references to be stable over long durations and also require careful point selection to
maintain the runtime and storage complexity of the algorithm while the robot navigates
through its environment.

In this thesis, we present SIVO (Semantically Informed Visual Odometry and Mapping),
a novel feature selection method for visual SLAM which incorporates machine learning and
neural network uncertainty into an information-theoretic approach to feature selection.
The emergence of deep learning techniques has resulted in remarkable advances in scene
understanding, and our method supplements traditional visual SLAM with this contextual
knowledge. Our algorithm selects points which provide significant information to reduce
the uncertainty of the state estimate while ensuring that the feature is detected to be a
static object repeatedly, with a high confidence. This is done by evaluating the reduction
in Shannon entropy between the current state entropy, and the joint entropy of the state
given the addition of the new feature with the classification entropy of the feature from a
Bayesian neural network.

Our method is evaluated against ORB SLAM2 and the ground truth of the KITTI
odometry dataset. Overall, SIVO performs comparably to ORB SLAM2 (average of 0.17%
translation error difference, 6.2×10−5deg/m rotation error difference) while removing 69%
of the map points on average. As the reference points selected are from static objects
(building, traffic signs, etc.), the map generated using our algorithm is suitable for long-
term localization.
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Chapter 1

Introduction

Localization is a key problem in the field of autonomous mobile robotics. Accurate knowl-
edge of a robot’s location facilitates a variety of lower-level tasks, such as vehicle control,
as well as higher level tasks, such as motion planning or object tracking. Accurate posi-
tioning information is also a matter of safety for autonomous cars, as localization accuracy
has to be known on the order of centimetres in order to prevent collisions or maintain
lane positioning. Although sensors such as a Global Positioning System (GPS) can pro-
vide localization information to the desired accuracy, there are numerous situations where
this is not possible for autonomous driving. These GPS denied (or weakened) scenarios
can occur in numerous different conditions, such as passing through a tunnel or under
a bridge, or even in dense urban environments where skyscrapers and similar structures
cause reflections of the GPS signal, resulting in multipath effects [1].

In recent years, visual odometry (VO) [2] has emerged as a reliable technique for vehicle
localization through the use of cameras. By observing the apparent motion of distinct
reference points, or features, in the scene, we can determine the motion of a camera through
the environment. This method has also been extended to simultaneously estimate and store
the 3D position of these tracked features in addition to the camera motion. This process is
referred to as Visual Simultaneous Localization and Mapping (SLAM). The map generated
by the SLAM algorithm can be used for long-term localization, providing the vehicle with
known reference points if it returns to a pre-mapped area.
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1.1 Motivation

In order to accurately track camera motion by observing features in the scene, it is imper-
ative that “good” reference points are selected. This task is performed by the front end
of the SLAM algorithm, which works to extract useful references and correspond them in
multiple scenes to provide an initial estimate of camera motion. This information is then
passed on to the back end of the SLAM algorithm, which is responsible for fusing together
this information with additional sensor measurements such as wheel odometry, accelera-
tion information from an Inertial Measurement Unit (IMU), or GPS pose measurements.
The back end consists of an optimization pipeline and provides an estimated value for the
camera pose. Although there are numerous accurate approaches for visual SLAM, this is
still an open area of research; the emergence of machine learning has opened new avenues
for SLAM, ranging from methods which add context and scene understanding to methods
which use machine learning in an end-to-end approach, using only input images to generate
a pose output.

Feature and keyframe selection for visual SLAM is an area of research that is still being
explored. When selecting reference points for visual SLAM, these points should meet a
number of criteria. Ideally, the selected features should be:

1. Viewpoint invariant

2. Scale invariant

3. Rotation invariant

4. Illumination invariant

5. Season invariant

6. Static

Traditional feature detectors and descriptors, such as SIFT [3], SURF [4], FAST [5], or
ORB [6] aim to tackle the first 3 criteria, while appearance based methods such as FAB-
Map [7] or SeqSLAM [8] aim to tackle criteria 4 and 5. Typically, visual SLAM algorithms
depend on outlier rejection schemes such as RANSAC [9] to characterize an object as
dynamic. In this case, the motion of the dynamic reference point would be an outlier
compared to the motion of static objects, which should comprise the majority of the scene.

2



Figure 1.1: Sample visual features extracted from ORB SLAM2 [10], on KITTI [11] dataset
trajectory 00

Figure 1.1 illustrates typical features used by a visual SLAM algorithm. From the
criteria, we see that there are some excellent points selected, but also some poor ones.
The best reference points are most likely on the street sign or the corners of the building;
these are extremely stable reference points that will be useful long-term references, and
would only be modified in the event of major construction or vandalism. In contrast, the
reference points on the car may be gone within the hour, and the features on foliage will no
longer be present as the seasons change. Due to the emergence of deep learning in recent
years, advances in scene understanding have paved the way for context to be incorporated
into a visual SLAM algorithm to address our final criterion. This would allow us to dictate
which references are more likely to be stable from our understanding of typical static and
dynamic object behaviour in the scene.

This work mainly focuses on criteria 1, 2, 3, and 6, by supplementing traditional feature
detectors with deep-learning based scene understanding. The incorporation of semantic
information is not necessarily novel (as discussed in Section 1.2.2), however, the majority
of methods to date do not emphasize the importance of network uncertainty, primarily
because this concept is still an open area of research [12]. What could be the potential
consequences of an incorrect answer, and how can we mitigate this effect? Sünderhauf et
al. [13] recently discussed the limits and potential of deep learning in robotics applications,
as robotics is a field that revolves around uncertainty. Sünderhauf states, “Robots have
to perceive, decide, plan, and execute actions - all based on incomplete and uncertain
knowledge” [13]. The probabilistic and uncertain nature of the SLAM problem allows it
to be described as “...simply tracking a normal distribution through a large state space...”
[14]. As we continue to develop our machine learning based methods, it is imperative
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to understand how much trust we can place in the network, and use this uncertainty in
our SLAM algorithm to facilitate robot decisions. This work proposes a novel front end
algorithm which blends together aspects of machine learning, neural network uncertainty,
and information theory in order to select better features for visual SLAM.

1.2 Related Works

While there is a wide catalogue of work concerned with feature selection, we will examine
related approaches which use information-theoretic criteria to reduce the complexity of the
algorithm, as well as approaches which incorporate semantic information to supplement a
SLAM method.

1.2.1 Information-Theoretic Approaches to SLAM

Map point maintenance is crucial in order to maintain the runtime and storage complexity
of a visual SLAM algorithm, and the use of information-theoretic methods have been
prominent in achieving this goal. The main concept behind these techniques is to only
select features, keyframes, or poses which maximize the information gain (see Section
2.7), therefore reducing the number of landmarks or poses in the optimization without
appreciably compromising the accuracy of the SLAM solution. In essence, a variable
which has low information is redundant, and is wasting valuable computational resources.

Information-Theoretic Feature Selection

One of the earliest information-theoretic approaches was proposed by Dissanayake et al. [15]
who presented a method to reduce the computational burden of maintaining a large map by
removing landmarks without affecting the statistical consistency of the estimation process.
The runtime and map storage complexities of the SLAM problem scale to O(N3) and
O(N2) respectively with respect to the number of landmarks. The authors propose a map
management strategy which deletes the majority of landmarks from the map within a
predetermined distance segment travelled by the robot. For each segment, the authors
first identify the set of landmarks that changed states from invisible to visible, and then
propose that only one landmark should be kept in the map: the landmark which has
the maximum information content for the set. The information content of a landmark
was determined by calculating the reciprocal of the trace of the covariance matrix for each
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landmark variable. This method reduced the total number of landmarks by 8-fold, without
significantly compromising estimation accuracy.

Hochdorfer and Schlegel [16] present a method to manage the continuously growing
number of landmarks by building on the method proposed by Dissanayake [15]. In addition
to quantifying the quality of a landmark, the authors propose that it is also relevant to take
spatial position into account, and state that a landmark’s benefit should be determined in
terms of observability regions. The observability is introduced as the arithmetic mean of the
observation positions for each measurement of the landmark. From here, landmarks within
the same observation region are clustered with k-means clustering, and the landmarks’
information content for each cluster is computed using the simple method proposed by
Dissanayake [15]. The landmark with the lowest information content from the cluster with
the largest spread of information is then removed in order to have the smallest degradation
of localization quality. The authors argue that the cluster which has the largest difference
of information content between its landmarks should cope best with the removal of a
landmark.

Davison [17] proposes a method which uses Shannon information theory to evaluate
the quality of a visual measurement with the aims of highlighting the location within
an image to focus processing resources. This approach uses mutual information as its
evaluation criteria (refer to Section 2.7.5). The variables of interest are the current pose
and a particular landmark measurement; the landmark with the highest mutual information
between the pose and itself will reduce the pose uncertainty the most. Once a landmark is
selected, the pose estimate and covariance is updated and the landmark selection process is
then repeated. As landmarks are selected, each new landmark will provide less information
for the state estimate. Therefore, Davison selects features until the mutual information for
the best feature drops below a certain threshold.

Zhang et al. [18] propose an entropy-based approach to select the best visual features
in a scene. This approach formulates feature selection as an optimization problem which
maximizes the amount of information acquired by minimizing the entropy. The authors
first incorporate each new measurement into the a posteriori probability density function
(PDF) of the system state, and then calculate the entropy of the distribution based on
the updated covariance matrix. This step is repeated for all new landmarks in a scene.
Once the updated entropy is calculated, the entropy difference for each feature in the map
is calculated, and features are only selected if they lead to a sufficient information gain.
Overall, this system showed considerable speedup over the naive solution which used all
available features when tested both in simulation and experimentally.

Kaess and Dellaert [19] investigate efficient recovery of marginal covariance matrices for
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data association and landmark selection. The method presented in their work recovers the
pertinent parts of the covariance matrix efficiently by exploiting the sparsity and structure
of the square root information matrix. While the majority of the paper focuses on data
association techniques, the authors show that selecting informative measurements also
requires extraction of the marginal covariance, as one method to make this selection is
through investigation of the mutual information between the original state estimate and the
state estimate with the addition of a single landmark, similar to the work of Davison [17].
The authors analyze the added information of each measurement using the “predicted”
estimate, as they wish to know which landmarks provide the most information prior to
actually taking the estimate. This method takes care of redundant features, and the
authors use a threshold of 2 bits to deem a landmark as not informative enough.

Choudhary et al. [20] present two methods to reduce the number of landmarks: an
active minimization approach, and an incremental approach which can be used online.
This is done by minimizing a tradeoff between the memory requirement and estimation
error. The subset of landmarks and poses is obtained by actively removing the least
informative landmark until the desired objective function is minimized; any poses which do
not see a landmark are then marginalized. The active minimization approach is effectively
a batch method, which removes the least informative landmark during each iteration. The
incremental method performs this active minimization every N poses, which should allow
this to run in real-time. However, the incremental approach marginalizes out the remaining
poses. Therefore, if the robot returns to an area where there were informative landmarks
in the past, these can never be added back, leading to a slightly higher error than the
active minimization approach.

Information-Theoretic Keyframe Selection and Pose Reduction

While this work looks to reduce the number of landmarks, it would be remiss to not discuss
information-theoretic SLAM approaches beyond feature selection. The main goal of using
information theory is to reduce the total computational complexity, and there are methods
which do this by reducing the number of poses in the optimization.

Das and Waslander [21] propose an entropy-based approach to keyframe selection, as
traditional keyframe selection is mostly heuristic driven. The authors propose to add
keyframes when the current variance of any of the pose values (x, y, z, roll(φ), pitch(ψ), yaw(θ))
is above a user specified threshold. The entropy reduction method, Cumulative Point En-
tropy Reduction (CPER), evaluates the predicted covariance of the state estimate after
adding each keypoint in the scene. The predicted covariance can be very quickly calcu-
lated, and the authors evaluate the uncertainty reduction for each keyframe by comparing
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the difference in entropy between the prior and new predicted covariance. The multi-
frame (keyframes at an instance in time for each camera in a multi-camera application)
which maximizes this difference is the one selected as the next multi-frame. Overall, this
method added significantly fewer keyframes in comparison to both a distance-based or
point-overlap-based keyframe selection method, and resulted in an increased localization
accuracy.

Ila et al. [22] present an information-theoretic approach to pose SLAM. As opposed to
full SLAM, pose SLAM only estimates the robot trajectory instead of both the trajectory
and landmark positions. The authors look to reduce complexity in their approach by
only incorporating non-redundant and informative poses, which shifts the computational
bottleneck from state recovery to data association. The authors consider a pose redundant
if it is too close to another pose already included in the optimization, or the addition of
this pose does not provide sufficient information. The authors also evaluate the mutual
information, which measures the amount of uncertainty removed from the state when the
link between poses is used. If this information gain is above a specific threshold and the
pose is non-redundant, then it is added to the optimization. Their approach was tested
on various trajectories, where it significantly reduced the number of poses used in the
optimization and the number of loop closure links, therefore reducing the execution time.
The authors found that this did not appreciably affect the consistency of the solution, as
99% of the sampled Monte Carlo trajectory simulations ended up inside the 95% confidence
interval of the last pose covariance.

Information-theoretic approaches have proven to be quite effective in reducing the com-
plexity of the SLAM problem. This is a promising direction which can be further supple-
mented through the use of semantic information.

1.2.2 Semantic SLAM

The idea to incorporate semantic information into the visual SLAM formulation is not
novel. The emergence of deep learning based approaches has resulted in increasingly accu-
rate methods for extracting semantic information from images, and are similarly becoming
easy to integrate into a SLAM algorithm. The following works discussed are not exhaustive,
but will provide an idea of some of the approaches to date.

An early approach to incorporate semantic information was SLAM++, proposed by
Salas-Moreno et al. [23]. In contrast to most SLAM work, which uses low-level primitive
features such as points, lines, or patches for localization, SLAM++ observes features at
the level of objects by accounting for domain knowledge of the SLAM environment. The
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authors first generate a 3D object database by scanning various common objects in their
environment such as tables, chairs, and desks using KinectFusion [24]. The SLAM for-
mulation is a graph-based approach, where each node represents the historical pose of the
camera or the pose of an object in the scene. Pose measurements of visible objects are cal-
culated using a 6 degree of freedom (DoF) object recognition algorithm, and are stored as
binary factors in the graph linking together one camera pose and one object pose. Camera
to camera constraints are computed using Iterative Closest Point (ICP) [25], and are also
added as constraints to the graph. SLAM++ also includes a relocalization mode and loop
closure detection, and this algorithm is also suitable for large scale mapping and detecting
if a pre-mapped object has since moved.

Bowman et al. [26] formulate their SLAM problem to include inertial, geometric, and
semantic constraints into a joint optimization framework. In most SLAM literature, a
“hard” data association decision is made to indicate that a feature was observed at a
certain pose. Correspondence using advanced feature descriptors such as SIFT [3] or
ORB [6] will generally provide accurate answers to the data association problem, how-
ever an incorrect or ambiguous data association could yield significant issues depending
on the optimization robustness. To bypass this issue, the authors consider the entire den-
sity of all possible data associations when estimating the state and landmark values and
use expectation maximization (EM) to determine the optimal data association. This den-
sity acts as a weighting factor, effectively “averaging” over all of these associations. The
semantic factor proposed by the authors has three separate components: the class, the
confidence for the class detection, and the bounding box generated by a deformable parts
model (DPM) object detector. The total measurement likelihood for the semantic factor is
decomposed as the product of the probabilities for these three separate components, with
the probability of the class corresponding to the confusion matrix of the object detector,
and the probability of the bounding box assumed to be normally distributed with mean
as the object centroid and covariance proportional to the bounding box dimensions. The
EM algorithm now iteratively solves for the data association in the expectation step, while
the sensor states and landmark positions are solved for in the maximization step. The
authors conduct their own indoor tests using an indoor positioning system (IPS), and also
test their algorithm on KITTI [11] odometry sequences 5 and 6. This work achieves better
results than ORB SLAM mono [27] or VISO2 [28], but not ORB SLAM2 [10] stereo.

An et al. [29] propose a VO pipeline which incorporates aspects of both indirect and di-
rect SLAM methods as well as semantic information to reduce the effect of dynamic objects
in the scene on the SLAM solution. While methods such as RANSAC [9] or preemptive
RANSAC [30] are often used to remove outliers, this fails to exploit prior knowledge of
class stability and depends on the quality of the RANSAC. This method proposes to weigh
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features with different contributions depending on their semantic category. The authors
first semantically segment the scene using SegNet [31], and then weigh the contribution of
a particular category by calculating the total reprojection error for the pixels of the cate-
gory between images using the essential matrix. This probability is incorporated into the
matching step as a weighting factor for RANSAC selection. Feature classes with a lower
reprojection error are more likely to be selected; this leads to a higher weighting of static
objects, as dynamic objects will most likely have a higher reprojection error. The total
optimization cost has contributions from a direct and indirect pipeline, blended together
via a tunable parameter. The selected points from the RANSAC algorithm comprise the
reprojection cost, while the direct framework looks to minimize a photometric error for
pixel patches. For a pixel to be selected for the direct pipeline, the authors select points
which meet 3 criteria: the points have to belong to a planar surface, be motionless, and
the depth from these patches should be easily estimated. As a result, only pixel patches
from the road marking, road, and pavement categories were selected, although the authors
note that road pixels were not very good, as most feature information for this category
comes from shadows. The pixel patches for this section were selected from a bird’s eye
view (BEV) projected image, and then matched between consecutive frames. Overall, this
method provided lower estimation errors than VISO2 [28], DSO [32], and ORB SLAM [10].

Murali et al. [33] extend a custom map builder and GPS-denied localization method [34],
as well as the localization functionality of ORB SLAM2 to use semantic scene information.
The semantic segmentation is done using a low-rank version of SegNet [31] trained on the
CamVid [35, 36] dataset. Each detected landmark is assigned a class from one of 12 labels
(sky, building, pole, road marking, road, pavement, tree, sign symbol, fence, vehicle, pedes-
trian, and bike). Based on traditional feature descriptor matching, the labels for all feature
correspondences are summed, and a condition variable is set using the final counts. This
condition variable defines whether the landmark is a ”valid” semantic class for localization.
A class is deemed to be invalid if the class is a temporal object (car, bike, pedestrian),
or too far away (sky, road). This condition variable is then incorporated into the factor
graph formulation; factors connecting landmarks and poses are gated by the variable, and
landmarks are only selected if this condition variable is true. This feature selection scheme
is only used for mapping, while all features are incorporated for visual odometry. Final re-
sults illustrate an improvement in 3D root-mean-squared error (RMSE) by approximately
20% over both their custom method and ORB SLAM when they incorporate this semantic
information.

Li and Belaroussi [37] present a real-time method for 3D mapping, which incorporates
semantic labels into LSD-SLAM [38]. The main contributions are the 2D-3D transfer of
semantic information via correspondence between connected keyframes, as well as map
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regularization in the semi-dense framework. The authors use DeepLab [39] as their se-
mantic segmentation network, and only run the network on selected keyframes in order to
save computational resources. The main claim is that 2D semantic segmentation may not
provide the same result of the same patch of pixels over multiple keyframes. In order to
manoeuvre around this issue, the authors propose a method to incrementally fuse together
the semantic label information in a Bayesian manner, which then allows them to label a
3D point based on the information from all previous keyframes. The second contribution is
semi-dense map regularisation, which uses a dense Conditional Random Field (CRF) [40]
to smooth the labelling between keyframes, incorporating contextual information. The
CRF minimizes the Gibbs energy, which uses a negative logarithm of label probability for
the unary potential, and uses a semantic score-related kernel for the pairwise potential.

Semantic information can be incorporated into a SLAM algorithm in a variety of differ-
ent ways. While the previously discussed work looked to use semantics for object or pixel
classification, Schönberger et al. [41] propose a method which blends together semantics
with an appearance based method for relocalization and place recognition. Through the
use of a variational autoencoder (VAE) [42], the method generates a novel descriptor for
each scene which combines geometric and semantic information. The input to the VAE
is an incomplete 3D segmented volume of the scene, extracted using stereo images. The
encoder section of the VAE reduces the input into a descriptor representation, and the
decoder then attempts to convert the descriptor into a completed 3D segmented volume.
In essence, the descriptor is learning an encoding function that jointly encodes the scene
semantics and geometry. The output segmented volume is then compared against the
ground truth segmentation during network training. As the network trains, the descrip-
tor will encode more information such that the encoder can reconstruct obscured parts of
the subvolume. Once the network is trained, the descriptor generated for new segmented
images can then be used for relocalization or place recognition.

There are several other efforts to incorporate semantic information into a SLAM algo-
rithm. Stenborg et al. [43] use only the 3D location of a feature and its semantic label
as a descriptor, and use a particle filter in order to bypass the use of traditional feature
detectors. Radwan et al. [44] propose a novel architecture to jointly estimate odometry,
camera global pose, and semantics using multitask learning. Reddy et al. [45] emphasize
the importance of separating the static and aspects of a scene; through semantic segmen-
tation and optical flow, the authors propose a method to 3D reconstruct the static and
dynamic aspects of the scene separately, and fuse this information together for localization.
As our knowledge of deep learning techniques continues to grow, there undoubtedly will be
more methods proposed which looks to use this information to supplement visual SLAM.
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1.3 Statement of Contributions

The works presented in Section 1.2 considered various difficulties involved with long-term
visual localization. Information-theoretic approaches manage the number of variables
added to the optimization pipeline, in order to maintain real-time operation of the SLAM
algorithm as the robot continues to navigate through its environment. However, these
methods do not incorporate semantic information into the formulation, which in turn does
not guarantee long-term stability of the created map. While the rapid advancement of
deep learning has allowed for the development of semantic SLAM algorithms, the work to
date treats network output as deterministic, and does not consider network uncertainty in
the formulation. Uncertainty is a key component of SLAM, and as we work to incorporate
deep learning methods into our SLAM algorithm, it is important to consider the amount
of trust we can place in the network.

The first contribution of this thesis is SIVO, a novel feature selection algorithm for visual
simultaneous localization and mapping, specifically for an autonomous driving application.
Our algorithm incorporates context into the visual SLAM formulation by semantically
segmenting the scene using a Bayesian neural network and fusing together the network
uncertainty into an information-theoretic approach to feature selection. This methodology
creates a sparse map for long-term visual SLAM, by selecting features which provide signif-
icant information to reduce the uncertainty of the state estimate and ensuring the feature
is repeatedly classified as a static object with a high confidence. This is done by evaluating
the reduction in Shannon entropy between the current state entropy and the joint entropy
of the state given the addition of the new feature with the classification entropy of the
feature.

The second contribution is our implementation on Github1. The algorithm builds off
of the ORB SLAM2 [10] repository, and also contains a custom C++ implementation of
Bayesian SegNet [46] built using Caffe’s [47] C++ API.

Lastly, we compare the localization performance of our algorithm to the results of
ORB SLAM2 on the KITTI [11] odometry dataset, and compare the total number of
keyframes and map points used, as well as the translation and rotation error over the
course of the trajectory. Overall, SIVO performed comparably to the state-of-the art
(average of 0.17% translation error difference, 6.2 × 10−5deg/m rotation error difference)
while removing 69% of the map points on average. The map generated by the algorithm
can facilitate long-term localization of a robot, due to its sparsity and selection of static
reference points.

1https://www.github.com/navganti/SIVO
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1.4 Thesis Organization

The remainder of this thesis will be organized as follows. Chapter 2 will contain the back-
ground knowledge required to formulate the SIVO feature selection algorithm, including:
notation, Gaussian processes, computer vision, semantic segmentation using deep networks,
uncertainty in neural networks, information theory, and a summary of the ORB SLAM2
algorithm. Chapter 3 will outline the novel feature selection policy, and is the main
contribution of this thesis. Chapter 4 will show the results of SIVO in comparison to
ORB SLAM2 [10] on a selection of the KITTI [11] odometry trajectories, and also dis-
cuss the notable results. Lastly, Chapter 5 will conclude the thesis and examine potential
improvements to the algorithm as future work.
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Chapter 2

Background

This section will discuss the background material for SIVO.

2.1 Notation

2.1.1 Coordinate Frames

The main goal of our SLAM algorithm is to track the pose of a camera through time.
Therefore, let us begin by denoting our conventions for coordinate frames following the
notation proposed by Furgale [48]. We define a coordinate frame with origin at the point
A, as FA. This is a Cartesian coordinate frame which follows the right-hand convention.

Figure 2.1: Coordinate frame notation example. Image adapted from [48].

Vectors express relations between two coordinate frames, such as a displacement, veloc-
ity, or angular velocity of one frame with respect to another frame. These quantities need
three decorators in order to be fully defined. In this work, all vectors and matrices will be
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Figure 2.2: Vector AtBC illustrating the displacement of frame FC , with respect to frame
FB, expressed in frame FA. Image adapted from [48].

bold. We require three decorators in order to describe which frame the vector quantity
affects, the frame with which this quantity is with respect to, and the frame in which this
quantity is expressed. Therefore, AtBC ∈ R3 (Figure 2.2) illustrates the displacement (or
translation) of frame FC with respect to frame FB, expressed in coordinate frame FA. In
contrast, rotations or transformations only require two decorators, as they express relative
operations between frames. Rotation matrices are elements of the Special Orthogonal Lie
group in 3 dimensions, SO(3) [49]. The variable RAB ∈ SO(3) can be described in two

Figure 2.3: Notation and decorators for frame rotation. Image adapted from [48].

ways. It indicates the rotation of FB with respect to FA, but can also be described to
“rotate vectors from FB into FA” [48]. The use of these decorators allows us to easily
express the rotation of a vector into another frame, while verifying that our calculations
are correctly propagated through the kinematic chain.

AtBC = RAB(BtBC) (2.1)
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In Figure 2.3, we notice that there is both a translation and rotational component in
order to express the position of FB with respect to FA. This can be expressed via a
transformation matrix, which is an element of the Special Euclidean group in 3 dimensions,
SE(3). The transformation matrix is a 4 × 4 matrix which contains the rotation and

Figure 2.4: Notation and decorators for frame transformation. Image adapted from [48].

translation aspects as such:

TAB =

[
RAB AtAB
01×3 1

]
∈ SE(3) (2.2)

In a similar manner to rotations, transformations can describe the pose of FB with respect
to FA, or express an operation which “transforms a point from FB into FA” [48]. The
transformation chain would be expressed as follows:

AtAC = TAB(BtBC) = RABBtBC + AtAB (2.3)

Note that the transformation operation actually modifies two decorators: the prescript, and
the first subscript. This is due to the effect of rotation and translation on the kinematic
chain.

As per Furgale’s notation, we can simplify our decorators when discussing points. Let
us imagine we have a point p, expressed in frame FA. While we can express this point
using the translation AtAp as shown in Figure 2.5, the decorators are redundant and not
very informative. Therefore, Furgale proposes the following notation

AtAp = Ap (2.4)

which illustrates the frame the point is expressed in as the prescript. This also holds for
indicating rotations or transformations,

Ap = TABBp (2.5)

which illustrates the transformation of the point from frame FB into FA.
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Figure 2.5: Notation and decorators for a point expressed in a frame. Image adapted
from [48].

2.1.2 Homogeneous Coordinates

In theory, the point Ap ∈ R3. However, in order to use this with transformation matrices
T ∈ SE(3), we require Ap ∈ R4. This is done through the use of homogeneous coordinates.
Homogeneous coordinates ∈ RN are expressed as a vector ∈ RN+1 by placing a 1 as the
last element. For example, let us define a point as p = (x, y)T ∈ R2. In homogeneous
coordinates, we denote this point as p = (x, y, 1)T ∈ R3, and say that this represents the
same point. The main benefit of using homogeneous coordinates in computer vision is
that we can easily define points at infinity by p = (x, y, 0)T . Throughout this work, we
will use the same notation Ap to describe homogeneous coordinates and inhomogeneous
coordinates, depending on the equation.

2.2 Gaussian Distributions and Gaussian Processes

SLAM is effectively the process of tracking a Gaussian distribution through time. This
section will introduce our notation for Gaussian variables and Gaussian processes. For
further background on probability, please see Appendix A.

2.2.1 Gaussian Random Variables

A Gaussian, or normal distribution, describes a variable whose pdf describes a bell curve.
This is expressed by Equation 2.6 in the univariate case.

p(x) =
1√

2πσ2
exp−

(x−µ)2

2σ2 (2.6)
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In Equation 2.6, µ ∈ R is the mean of the distribution, and σ2 ∈ R represents the variance.
For the multivariate case, the pdf is expressed by Equation 2.7

p(x) =
1√

2πΣ
exp−

1
2

(x−µ)TΣ−1(x−µ) (2.7)

In the multivariate case, µ ∈ RN represents the multivariate mean, while Σ ∈ RN×N

represents the covariance matrix. An example 2D multivariate normal distribution can
be seen in Figure 2.6; the center of the ellipse represents the mean, while the covariance
matrix describes the parameters of the ellipse itself. The sides of the image are bell curves
illustrating the univariate Gaussian distributions for each variable.
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0

0.2
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Figure 2.6: Illustration of a 2D multivariate Gaussian distribution.1

Gaussian variables play a key part in this work. For SLAM, we typically make the
assumption that all measurements are normally distributed with a mean measurement
value and noise covariance to illustrate the uncertainty in the measurement. Throughout
this work, we will denote Gaussian variables as

x ∼ N (µ, σ2)

x ∼ N (µ,Σ)
(2.8)

1Image retrieved from: https://upload.wikimedia.org/wikipedia/commons/9/95/Multivariate_

normal_sample.svg on 2018/07/27.
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Note on Marginalization

An important concept in probability which briefly appears in this work is the idea of
marginalization. The marginal likelihood of a multivariate Gaussian variable represents
the distribution of a subset of the variables. This is illustrated in Figure 2.6; as discussed
above the green ellipse and point distribution represents the multivariate distribution,
however we see the individual bell curves of each variable illustrated on the side in blue
and red. These univariate distributions represent the marginal distribution of the individual
variables which comprise the 2D multivariate Gaussian distribution.

2.2.2 Gaussian Processes

While we have introduced the idea of a Gaussian variable, this work requires some back-
ground knowledge about the Gaussian Process (GP). A GP can be succinctly described as
a distribution over functions [50]. While a discrete Gaussian variable can be characterized
by its mean and covariance, we require a mean and covariance function to characterize a
GP [51]. Let us denote the mean function as µ(t), and the covariance function as Σ(t, t′).
We denote the entire GP as

x ∼ GP(µ(t),Σ(t, t′)) (2.9)

The covariance function controls function smoothness, and indicates the correlation be-
tween any two instances in time, t and t′ [51]. Figure 2.7 illustrates a visualization of a 2D
GP. At any instance in time, a variable of the GP will just be a simple Gaussian random

Figure 2.7: Illustration of a 2D Gaussian process. Image retrieved from Barfoot [51].

variable. For example, at time τ

x(t) ∼ GP(µ(t),Σ(t, t′))

x(τ) ∼ N (µ(τ),Σ(τ, τ))
(2.10)
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the mean function will yield a mean value, and the covariance function becomes a simple
covariance matrix, as seen before. In essence, we have marginalized out all other instances
of time, and are observing the distribution at a single point [51].

2.3 Computer Vision

This work uses a camera as its major exteroceptive sensor. This section will discuss some
fundamentals and techniques used in computer vision.

2.3.1 Camera Projection

A camera transforms points from 3D to 2D. Through a camera, our physical world is
represented as blue, green, and red (BGR) pixel values in a 2D image. Figure 2.8 illustrates

Figure 2.8: Illustration of a camera projecting a 3D point in the world frame, wp, to the
image frame, ip. Image adapted from Hartley and Zisserman [52].

this process, which is called central projection [52]. In this example, the world frame, Fw, is
expressed at the camera’s center of projection (COP), and the image frame, Fi, is located
at the image plane. A ray from a 3D point passes through the camera COP, intersecting
the image plane. As the image plane consists of the pixels, the intersection of the ray
with the image plane is the 2D representation of the 3D point that we can use for our
algorithms. In the top right corner of the image plane is another coordinate frame which
is the standard for expressing pixels, and is pixel (0, 0). Note: in reality, the image plane
actually lies behind the COP, and the image is inverted. For the sake of convenience, it is
common to place the image plane in front of the COP.
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Figure 2.9 shows a top-down view of the camera projection process. We see that the
location of the projected point can be easily determined through similar triangles. Here,
f represents the camera’s focal length. If we represent the point in the world frame with

Figure 2.9: Top view of the camera projection process from Figure 2.8. Image adapted
from Hartley and Zisserman [52].

wp = (wx, wy, wz) (2.11)

it follows through similar triangles that the x and y coordinates of the projected point are
scaled by the ratio f

Z
.

ip =

(
f
wx

wz
, f

wy

wz
, f

)
(2.12)

As we are only interested in the x and y coordinate on the image plane, we can drop the
final coordinate, yielding the mapping

(wx, wy, wz)T 7→
(
f
wx

wz
, f

wy

wz

)T
(2.13)

This mapping can be easily defined using the projection function, π

ip = π(wp) = π


wx

wy

wz

 =

fx wxwz
fy

wy

wz

 (2.14)

The above mapping illustrates the scenario where we have placed our world coordinate
frame at the COP. However, typically we express our pixel values as per the coordinate
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frame Fp in Figure 2.8, which is in discrete pixel values. This means we need to shift the
values to the new origin and convert the focal length from metres to pixels. Ideally, the
horizontal (x) and vertical (y) focal lengths would be the same value when converted to
pixels, but this is not typically the case due to imperfections in manufacturing the camera
sensors. Therefore, we have a focal length in both the x and y direction, fx and fy, and
the center of the image is denoted by cx, cy, with both sets of values measured in pixels.
As opposed to projecting the point in the world frame, we will now be projecting the point
in the camera frame, cp = [cx, cy, cz]T . This new mapping is expressed by [52]

(cx, cy, cz)T 7→
(
fx

cx

cz
+ cx, fy

wy

wz
+ cy

)T
(2.15)

This is especially true in a SLAM application, where we have the world frame as a starting
point, and want to track the moving camera with reference to that origin. This is illustrated

Figure 2.10: Illustration of a camera projecting a 3D point from the world frame, wp, to
the image frame, ip, with the camera frame Fc and world frame Fw separated. Image
adapted from Hartley and Zisserman [52].

in Figure 2.10, where we see that there are now 4 main frames of interest: the world frame
(Fw), camera frame (Fc), image frame (Fi), and the pixel frame (Fp). The transformation
Tcw represents the pose of Fw with respect to Fc. In order to use the projection discussed
above, we must first convert the points from the world frame to the camera frame. This is
defined by

cp = Tcwwp = Rcwwtwp + ctcw = ctcp (2.16)

where ctcw represents the position of Fw with respect to Fc, expressed in Fc.
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We therefore define the projection function, π, as

pp = π(cp) = π


cx

cy

cz

 =

fx cxcz + cx

fy
cy

cz
+ cy

 (2.17)

where π represents the projection function, cx,c y,z z represent the x, y, and z-coordinates
of the point in the camera frame cp, and fx, fy, cx, cy represent the camera intrinsic matrix
parameters.

2.3.2 Stereo Projection Measurement Model

Our measurement model is the rectified stereo projection model, where we assume that the
transformation between the right and left cameras is defined by a horizontal translation
equivalent to the baseline. This is defined by the function πs

πs(cp) = πs


cx

cy

cz

 =


fx c

x
cz

+ cx

fy
cy

cz
+ cy

fx
(cx−b)
cz

+ cx

 ∈ R3 (2.18)

where cx,c y,z z represent the x, y, and z-coordinates of the point in the camera frame cp,
fx, fy, cx, cy represent the camera intrinsic matrix parameters, and b is the baseline between
stereo cameras.

2.4 ORB SLAM2

ORB SLAM is an open source SLAM algorithm developed by Mur-Artal and Tardós with
both monocular [27] and stereo/RGBD [10] functionality. This algorithm has gained im-
mense popularity due to its well-documented, usable source code, as well as its excellent
speed and accuracy. This is one of the common benchmarks when comparing SLAM al-
gorithms, and we therefore chose to build upon this codebase when developing SIVO.
ORB SLAM has 3 main threads that operate in parallel, as seen in Figure 2.11.

The tracking thread comprises the majority of the front end, and is where we will make
our modifications for SIVO. This thread extracts stereo ORB features from the environ-
ment, and creates a Bag of Words representation in order to describe the features [53].
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Figure 2.11: ORB SLAM2 architecture diagram. Image retrieved from Mur-Artal and
Tardós [10].

Any features detected in an image are matched to the local map, and matched measure-
ments are added to a “motion-only” bundle-adjustment, which only optimizes the camera
rotation and translation.

The second thread is the local mapping thread, which comprises part of the back end.
The local map is defined through a covsibility graph, which links keyframes observing
common points [10]; all points observed are part of the local map. New keyframes are
sent from the tracking thread to the local mapping thread, which then adds the newly
observe/tracked points to the local mapping optimization. This thread then only optimizes
the location of the 3D world points within the bundle adjustment equation.

The final thread is the loop closing thread, which works to detect loops and perform
“full” bundle adjustment. Using the bag of words representation for ORB features, this
thread detects when the camera is visiting a pre-mapped area. Once the loop is detected,
it spawns a fourth thread to perform a full pose-and-point bundle adjustment, optimizing
over the entire trajectory. We use all of the functionality of ORB SLAM2, however we
modify the tracking thread to include our novel feature selection method.

2.5 Semantic Segmentation

Semantic segmentation is the task of labelling each pixel of an image with a distinct class,
such as a car, pedestrian, or traffic sign. In recent years, deep neural networks have proven
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Figure 2.12: Semantic segmentation example using Bayesian SegNet [46] trained on the
CityScapes dataset [55].

to be extremely capable at this task with architectures such as SegNet [31], PSPNet [54],
and DeepLab [39]. Figure 2.12 shows a segmented scene from the CityScapes dataset [55].
This was performed using Bayesian SegNet [46], which will be discussed in Section 2.6.8.
Having class knowledge of each pixel allows us to add context to our SLAM algorithm.
The typical corner features used by a SLAM algorithm (see Section A.3.1) can now be
supplemented by this contextual understanding.

2.5.1 Convolutional Neural Networks (CNNs)

Most semantic segmentation neural network architectures are based on the Convolutional
Neural Network (CNN), which rose to prominence from the work of Krizhevsky [56]. A
CNN is a feed-forward NN which uses a combination of convolution kernels, non-linear
activation functions (such as a Rectified Linear Unit (ReLU), or sigmoid function), and
pooling in its architecture. These networks have proven to be extremely effective in learning
tasks ranging from object detection to natural language processing. When using a CNN
for object detection, fully connected (FC) layers are typically employed to represent the
detection in vector form. Long et al. [57] “convolutionalized” the FC layers in a CNN (see
Figure 2.13), which resulted in an output of a heatmap, as opposed to the typical feature
vector. This heatmap can then be upsampled back to the original image size in order to
determine a true pixel-wise segmentation.
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Figure 2.13: Convolutionalization of the fully connected (FC) layers in a convolutional
neural network (CNN). Image retrieved from Long et al. [57].

2.5.2 SegNet

SegNet [31] was one of the first architectures to build on the fully-convolutional pipeline.
The authors proposed an encoder-decoder architecture, which is now very common in most
semantic segmentation networks. The goal of an encoder-decoder architecture is to reduce
the original image into a reduced-dimension representation, which should encode all of the
information in the scene. This can then be deconvolved through the decoder and passed
through a softmax function (Equation 2.21) to obtain the classification.

Figure 2.14 illustrates the SegNet architecture. The main contribution of this network
is to save the max-pooling indices from the encoder, and use these to upsample the inputs
in the decoder. In contrast to learning the upsampling, this allowed for the entire network
to be trained at once at a reasonable learning rate, which at the time was not common for
such a large network. SegNet is the base of the segmentation network used in this work.

2.6 Uncertainty in Machine Learning

While machine learning development has exploded in recent years, the idea of network
uncertainty is still an open research area [12]. How much trust can we place in a network’s
output ? What if the network’s prediction is wrong, and what are the consequences? This
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Figure 2.14: The SegNet architecture for semantic segmentation. Image retrieved from
Badrinarayanan et al. [31].

is especially important in a robotics application, where decisions have to be made in spite
of uncertainty [13]. While this is an open research area, we will be using the methodology
presented by Gal [58, 59, 60, 61].

2.6.1 Gaussian Processes and Bayesian Neural Networks

In Section 2.2.2 we discussed the concept of a Gaussian Process, which can be summarized
as a distribution over functions. It has been shown that a neural network with one layer,
an infinite number of weights, and a Gaussian distribution placed over each of its weights,
converges to a GP [62]. We can intuitively see that this is the case; neural networks have
long been considered as “function approximators”, and placing a Gaussian distribution
over the weights would then result in a distribution over the function.

An infinitely-wide neural network is obviously impossible to construct, however, finite
NNs with distributions over its weights have been studied as Bayesian Neural Networks [62].
The claim made by Gal [60] is that by incorporating dropout [63] before every weight layer
in a neural network with arbitrary depth and nonlinearities is a mathematically equivalent
approximation to the Bayesian Neural Network, which in turn is an approximation to the
deep GP.

2.6.2 Dropout

Dropout was first presented by Srivastava et al. [63] as a method to prevent overfitting
and inhibit the co-adaptation of features at each layer. Starting with a single layer NN
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with K weights, let us define W1,W2 as the weight matrices for each layer, σ(·) as the
element-wise nonlinearity (e.g. ReLU), b as the bias term, x as the input, and y as the
output. Here, x ∈ RQ, b ∈ RK and y ∈ RD. This leads to W1 ∈ RK×Q and W2 ∈ RD×K .
For a standard NN, the network output is determined by

y = W2 · σ(W1x + b) (2.19)

Let us now define two binary vectors z1 ∈ RQ, z2 ∈ RK . Each element of these vectors is
drawn from a Bernoulli distribution, i.e.

pi ∈ [0, 1] ∀i = 1, 2

z1,q ∼ Bernoulli(p1) z2,k ∼ Bernoulli(p2)

These binary vectors can now be multiplied element-wise by the input and hidden layer
vectors

y = W2(z2
Tσ(W1(z1

Tx) + b)) (2.20)

Randomly setting elements to 0 prevents the network from overfitting by sampling from
“thinned out” neural networks, and preventing co-adaptation between features present in
the training data during each mini-batch [63]. This is illustrated in Figure 2.15.

Figure 2.15: Illustration of dropout randomly setting input values to zero, and creating a
“thinned-out” neural network. Image retrieved from Srivastava et al. [63].
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2.6.3 Classification Loss

For classification, the output of the neural network is passed through an element-wise
softmax mapping, indicating the probability of detecting class ci out of C potential classes.

pci =
exp(yci)∑

ci∈C
exp(yci)

(2.21)

The ground truth is defined as C-dimensional one-hot encodings for each pixel. A cross-
entropy loss over the number of pixels (N) is used for classification, which becomes the
Softmax loss due to the use of one-hot encodings. For each pixel, only the probability
output for the desired class, pci,n is considered.

E = − 1

N

N∑
n=1

log(pci,n) (2.22)

In addition to this loss term, regularization terms are typically added for the weight ma-
trices and bias vectors. This results in the total cost,

Ldropout := E + λ1‖W1‖2
2 + λ2‖W2‖2

2 + λ3‖b‖2
2 (2.23)

which uses L2 regularization weighted by a weight decay term, λi. For a deeper network,
this regularization terms would include all weight matrices and bias vectors.

Ldropout := E + λ
L∑
i=1

(‖Wi‖2
2 + ‖bi‖2

2) (2.24)

2.6.4 Gaussian Processes for Machine Learning

Let us define:

Inputs: X ∈ RN×Q = {x1, . . . ,xN}
Outputs: Y ∈ RN×D = {y1, . . . ,yN}
Functions: F ∈ RN = {f1, . . . , fN}
Covariance Function: K(X,X′)
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We place a prior over the space of functions to define a posterior distribution which de-
scribes the probability that a particular function generated our input and output data.
This is defined as [61]

p(f |X,Y) ∝ p(Y|X, f)p(f)

For classification tasks, we can now estimate the posterior. Passing the model outputs
through the softmax function defined in 2.21, we can sample from a categorical distribution.

F|X ∼ N (0,K(X,X′)) (2.25)

Y|F ∼ N (F,0) (2.26)

cn|yn ∼ Categorical

 exp(yci,n)∑
ci∈C

exp(yci,n)

 (2.27)

We see that Y = F. This notation was selected by Gal in order to define the same
framework for classification and regression tasks.

2.6.5 Bayesian Neural Networks

As discussed above, a Bayesian Neural Network is a finite NN with a distribution over its
weights, and can be thought of as an approximation to the deep GP. Typically, we place
standard Gaussian priors over each weight matrix, p(Wi), with a point estimate on the
bias vectors.

Wi ∼ N (0, I)

The output of a neural network, y with Gaussian distributed weights can be expressed as

y = f(x, (Wi)
L
i=1) (2.28)

which is a random variable dependent on the input, x, and the weight matrices Wi.
The Bayesian NN effectively approximates the function f . In classification tasks such as
semantic segmentation, we will then pass this output through the softmax function.

p(ci|x, (Wi)
L
i=1) = Categorical

 exp(yci)∑
ci∈C

exp(yci)

 (2.29)

We therefore can obtain a probability for each class from our categorical distribution. In
this work, we have 15 possible outputs.
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2.6.6 Variational Inference

For any new point x∗, the predicted output can be determined by integrating over all
possible functions.

p(y∗|x∗,X,Y) =

∫
p(y|f)p(f |x∗,X,Y)df (2.30)

This integral is typically intractable. Therefore, Gal proposes to use variational inference
to approximate the posterior [60]. This process first conditions the model on a set of finite
variables, ω, and then defines a varational distribution, q(ω), which is easy to evaluate.
The key assumption is that these finite variables are sufficient statistics for our model.
Minimizing the Kullback-Leibler (KL) divergence (Equation 2.44) between this variational
distribution and the true distribution should result in an accurate approximation. Incor-
porating these finite variables yields the new predictive distribution.

p(y∗|x∗,X,Y) =

∫
p(y|f)p(f |x∗,ω)p(ω|X,Y)dfdω

Typically the distribution p(ω|X,Y) is also intractable, therefore we define q(ω) as de-
scribed above. Including the variational distribution results in the following predictive
distribution.

q(y∗|x∗) =

∫
p(y|f)p(f |x∗,ω)q(ω)dfdω (2.31)

Minimizing the KL divergence is equivalent to maximizing the log evidence lower bound [59],
which is expressed by

LV I :=

∫
q(ω)p(F|X,ω) log(p(Y|F))dFdω −KL(q(ω)||p(ω|X,Y)) (2.32)

2.6.7 Approximating the Bayesian Neural Network using Varia-
tional Inference

The main goal of variational inference is to approximate the posterior distribution of the
sufficient statistics, ω, given our input and output data, X and Y. This is expressed as

p(ω|X,Y)

For a Bayesian neural network, the sufficient statistics are the weights.

ω = (Wi)
L
i=1
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Gal and Ghahramani [59] define the variational distribution for each layer as

Wi = Mi · diag([zi,j]
Ki
j=1) (2.33)

zi,j ∼ Bernoulli(pi) for i = 1, . . . , L, j = 1, . . . , Ki−1 (2.34)

In the above equation, zi,j are Bernoulli distributed random variables with probability pi,
and Mi are the variational parameters to optimize. Equation 2.32 cannot be evaluated
analytically, and so it must be approximated. Gal and Ghahramani use Monte Carlo
integration to approximate the integral, resulting in

L̂V I :=
N∑
i=1

E(yi, f(xi, ω̂))−KL(q(ω)||p(ω|X,Y)) (2.35)

where E(·) is the softmax loss, illustrated in Equation 2.22. Gal [61] illustrates in detail
the steps required to approximate the KL divergence, and show that this is equivalent to
minimizing the dropout cost from Equation 2.24.

Predicting new outputs using this model use Equation 2.31, but the integration can
similarly be approximated using Monte Carlo integration. In contrast to averaging the
weights as described in [63], the outputs from the “thinned” networks are averaged as the
final output. This is referred to as MC dropout [59].

p(y∗|x∗,X,Y) ≈
∫
p(y∗|x∗,ω)q(ω)dω ≈ 1

T

T∑
t=1

p(y∗|x∗, ω̂t) (2.36)

The values of ω̂i are realizations from q(ω). This method is effectively averaging samples
obtained from the posterior distribution over models, or in other words, is sampling from
different function realizations from the GP by using dropout to create “thinned out” neural
networks for each Monte Carlo sample.

2.6.8 Bayesian SegNet

Kendall et al. [46] applied the Bayesian Neural Network approximation to SegNet [31], by
adding dropout layers to both the encoder and decoder sections of the architecture.

The authors implemented various dropout schemes in order to determine the most ef-
fective architecture. Although dropout should be added before every layer as per Gal [60],
this acted as too strong of a regularizer and prevented the network from training at a
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Figure 2.16: Bayesian SegNet architecture for semantic segmentation. Image retrieved
from Kendall et al. [46]

reasonable rate. In addition to this, placing dropout before every layer did not perform as
well as a network with dropout only used after these central layers. The posterior distribu-
tion over the models, p(y∗|x∗,X,Y), is approximated by using Monte Carlo sampling with
dropout at test time, and the results are then passed through the softmax classifier (2.21)
to obtain the posterior distribution of softmax class probabilities. As per Kendall [46],
it is important to note the distinction between the softmax ”probabilities” and the ob-
tained distribution from Monte Carlo sampling; the softmax mapping describes relative
probabilities between class detections, but is not an absolute measure of certainty.

2.7 Information Theory

Information theory is a field with its basis in communication, and is concerned with data
compression and transmission. We will be approaching information theory in the context
of encoding the information content of a stochastic variable.

2.7.1 Entropy

Entropy quantifies the average uncertainty in a random variable [64], or can be considered
as a metric for the expected information content of a variable [65]. For a stochastic variable
X = {x0, x1, . . . , xn} with pmf p(x), the entropy is defined by

H(x) = −
∑
x∈X

p(x) log p(x) (2.37)

The units of entropy are defined by the base of the logarithm from Equation 2.37. The
use of the natural logarithm (ln) indicates a measurement unit of nats, while calculations
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using the base-2 logarithm (log) are measured in bits.

2.7.2 Joint Entropy

The definition of entropy discussed above was only concerned with one random variable,
however this can be extended to multiple variables. The joint entropy between a pair of
discrete random variables X = {x0, x1, . . . , xn} and Y = {y0, y1, . . . , ym} can be expressed
by [64]

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.38)

In the event that X and Y are independent, the joint entropy H(X, Y ) can be expressed
as a sum of the individual entropies.

H(X, Y ) = H(X) +H(Y ) (2.39)

2.7.3 Conditional Entropy

The conditional entropy is a metric to express the information content of one variable
when we have knowledge of another correlated variable. The conditional entropy is defined
by [64]

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)
(2.40)

Looking at equations 2.37, 2.38, and 2.40, we see that they are all intuitively related [64].

H(X, Y ) = H(X) +H(Y |X) (2.41)

2.7.4 Entropy of a Gaussian Random Variable

The entropy for a univariate or multivariate Gaussian are well defined. The univariate case
is defined by

H(x) =
1

2
log
(
σ22πe

)
(2.42)
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where σ represents the standard deviation of the distribution. This can easily be extended
for a multivariate Gaussian

H(x) =
1

2
log((2πe)n det(Σ)) (2.43)

where Σ represents the covariance matrix of the random variable, and n is the number
of variables comprising the random variable. We see that the metric of entropy for a
mutivariate Gaussian is directly related to the volume of the covariance hyperellipsoid. A
variable with a larger entropy would have a larger covariance hyperellipsoid, which follows
our intuitive understanding that entropy is a measurement of uncertainty.

2.7.5 Relative Entropy and Mutual Information

The relative entropy, or Kullback-Leibler (KL) divergence is a metric to express the differ-
ence between two probability distributions [64].

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
(2.44)

The KL divergence can also be used to express the inefficiency of using distribution q to
approximate p [64]. This metric is always non-negative, and is only 0 if p = q.

The concept of relative entropy is directly related to that of Mutual Information; the
mutual information is defined as the relative entropy between the joint distribution and
the product of individual distributions. This can also be considered as the amount of
information shared between two variables [65].

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.45)
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2.7.6 Relationship Between Entropy and Mutual Information

By rearranging the definition of mutual information, we can extract a relationship between
this metric and entropy [64].

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

= −
∑
x∈X

p(x) log p(x)−

(
−
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

)
= H(X)−H(X|Y )

(2.46)

Therefore, the mutual information describes the reduction of uncertainty in variable X,
due to gaining knowledge of variable Y . One last interesting point as per [64] is that
the mutual information of a random variable with itself is the entropy of the random
variable. Hence, entropy is sometimes referred to as self-information. Figure 2.17 clearly
illustrates the relationship between entropy, joint entropy, conditional entropy, and mutual
information.

Figure 2.17: Relationship between entropy, joint entropy, conditional entropy, and mutual
information. Adapted from MacKay [66].
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2.7.7 Mutual Information of a Multivariate Gaussian

The mutual information of a multivariate Gaussian has been well explored in literature.
Let us denote a multivariate Gaussian variable by

x =

[
a
b

]
, Σ =

[
Σaa Σab

Σba Σbb

]
(2.47)

where Σ represents the covariance matrix for the variable. Chli [65] showed that the mutual
information between the two partitions of x can be written as

I(a; b) =
1

2
log

(
det(Σaa) det(Σbb)

det(Σ)

)
(2.48)

2.7.8 Uncertainty in Classification Results for a Bayesian Neural
Network

Gal [58] outlines various metrics for uncertainty in classification, including entropy. In this
setting, entropy will capture the information in the predictive distribution. Let us denote
y as our network output, I as our input image data, D as our training data, and ci as a
particular class output with ci ∈ C potential classes. The probability of these class values
is obtained by calculating the Softmax of the network output. Gal defines the entropy as

H(ci|I,D) := −
∑
ci∈C

p(ci|I,D) log p(ci|I,D) (2.49)

We see that Equation 2.49 clearly derives from 2.37, with our variable of interest being the
class output given our input and training data. Equation 2.49 reaches a maximum value
when all of the class outputs are equiprobable, and a minimum value of 0 when one class
is predicted with a probability of 1.

The probability values are the confidence values of each class after averaging the
stochastic passes through the network. Although the confidence values individually do
not necessarily have any meaning of uncertainty, the entropy calculation will observe the
spread in the confidence value for each class output of a pixel. Therefore, we set

p(ci|I,D) =
1

T

T∑
t

p(ci|I, ω̂t) (2.50)
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where ω̂t represents our model parameters which optimize our variational distribution,
q∗θ(ω). Each probability value is expressed using the Softmax mapping from Equation
2.21.

[p(ci = 1|I, ω̂t), . . . , p(ci = C|I, ω̂t)] := Softmax(y) =
exp(yci)∑

ci∈C
exp(yci)

(2.51)

Therefore, we can write an expression for the approximate entropy for the confidence
output

H(ci|I,D) = −
∑
ci∈C

(
1

T

T∑
t

p(ci|I, ω̂t)
)

log

(
1

T

T∑
t

p(ci|I, ω̂t)
)

(2.52)

which expresses the uncertainty of our semantic segmentation in bits.

The entropy in classification can be visualized as the spread of points on a probability
simplex [67]; in our application of Bayesian SegNet, this would be a 15-simplex due to our
15 output classes.

Figure 2.18: Ensemble and distribution of a categorical distribution over a 3-simplex.
Adapted from Malinin and Gales [67].

The representation shown in Figure 2.18 is only true for one image input, I∗, passed
through the network repeatedly. Each point in the ensemble is a categorical distribution,
representing an implicit conditional distribution over the simplex. Assuming we have taken
enough samples, the entropy of the ensemble should then represent the uncertainty in the
distribution [67].
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Chapter 3

SIVO Feature Selection Criteria

This section outlines the main contribution of this work: the feature selection methodology
for long-term visual SLAM. As discussed earlier in this thesis, we blend together aspects
of semantic segmentation (Section 2.5), neural network uncertainty (Section 2.6), and
information theory (Section 2.7) in order to select the most stable and informative reference
points.

Our method builds upon and combines the methods proposed by Davison [17] as well
as Kaess and Dellaert [19]. We will first outline those methods in detail, and then present
the SIVO feature selection strategy.

3.1 Information-Theoretic Feature Selection Methods

Davison [17] proposes a method to determine the quality of a measurement in order to
determine the best location within an image to focus processing resources. Let us define
our 6DOF robot pose parameterization at some time t as

xt =
[
x y z φ ψ θ

]T ∈ R6 (3.1)

The pose has an associated covariance matrix, denoted as Σt ∈ R6×6. Measurements are
defined through a non-linear measurement model, h(xt), as

zi = hi(xt) + ε, ε ∼ N (0,Qi) (3.2)

which represents the rectified stereo projection model illustrated in Equation 2.18. This
therefore implies that zi ∈ R3. Any new feature measurement will also have random noise,
defined as a zero mean Gaussian with covariance Qi ∈ R3×3.
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Assume that at time t, we have n available features distributed throughout the scene
that we can select for our optimization pipeline. We can stack the current pose with the
candidate measurements into a vector as such

x̂ =


xt
z1

z2
...

zn

 =


xt

h1(x)
h2(x)

...
hn(x)

 (3.3)

As each of these random variables are described by multivariate Gaussian distributions, it
follows that the stacked vector, x̂, also can be described by a multivariate Gaussian distri-
bution. This stacked variable will also have a covariance matrix, which is defined through
the pose covariance, and propagation of this pose covariance through the measurement
model. This is defined by

Σ̂ =



Σt Σt
∂h1
∂x

T
Σt

∂h2
∂x

T · · · Σt
∂hn
∂x

T

∂h1
∂x

Σt
∂h1
∂x

Σt
∂h1
∂x

T
+ Q1

∂h1
∂x

Σt
∂h2
∂x

T · · · ∂h1
∂x

Σt
∂hn
∂x

T

∂h2
∂x

Σt
∂h2
∂x

T
Σt

∂h1
∂x

∂h2
∂x

Σt
∂h2
∂x

T
+ Q2 · · · ∂h2

∂x
Σt

∂hn
∂x

T

...
...

...
. . .

...

∂hn
∂x

Σt
∂hn
∂x

Σt
∂h1
∂x

T ∂hn
∂x

Σt
∂h2
∂x

T · · · ∂hn
∂x

Σt
∂hn
∂x

T
+ Qn


(3.4)

This information-theoretic feature selection strategy revolves around the idea of selecting
the measurement which best reduces the uncertainty of our pose through calculation of
the mutual information. Recall from Section 2.7.5 that provided two random variables
(X, Y) are dependent, the mutual information describes the reduction of uncertainty in
variable X, due to gaining knowledge of variable Y. Here, we look to select the feature
measurement zi which best reduces the uncertainty in x, or

argmax
zi

I(x; zi)

This can be easily calculated using Equation 2.48, however we first must extract the
marginal covariance for each feature zi (refer to Section 2.2.1). Luckily, the marginal-
ized covariance is just a selection of the relevant variables. For example, the marginal
covariance of the state x and measurement zi from the full covariance matrix in Equation
3.4 is

Σ̂i =

Σxx Σxzi

Σzix Σzizi

 =

 Σt Σt
∂hi
∂x

T

∂hi
∂x

Σt
∂hi
∂x

Σt
∂hi
∂x

T
+ Qi

 (3.5)
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We can then calculate the mutual information I(x; zi) as

I(x; zi) =
1

2
log

(
det(Σxx) det(Σzizi)

det(Σi)

)
(3.6)

This quantity should then describe, in bits, the expected information gain about the state
by making this measurement. The feature which provides the maximum mutual informa-
tion is then selected for the optimization pipeline, and we calculate a new state estimate.
Once the state has been updated, this process is repeated until the maximum information
provided by a new measurement falls below a user-defined threshold value, which we will
denote as ∆H.

Kaess and Dellaert [19] build upon this method and evaluate features in a similar
manner in their work. However, they argue that selecting individual features and then
updating the state estimate is not practical. In most SLAM solutions, updating the state
and extracting the marginal pose covariance values can be quite expensive depending on
the algorithm used. Another option could be to calculate the mutual information between
the state and all possible combinations of measurements, in order to determine the com-
bination which provides the best mutual information. This however, scales with a 2N

complexity, which is unfeasiblet. Therefore, Kaess and Dellaert propose to select the best
measurement without updating the state space, and then repeat the process with the re-
maining measurements until the best feature available provides an information gain less
than ∆H. Although this is will not guarantee that the optimal landmark is selected for
each iteration, it is far cheaper than the alternatives.

3.2 SIVO Feature Selection

We now enhance this information-theoretic approach to incorporate semantic information.
As discussed in Section 2.3, we know that each measurement is a 3D point projected to
a 2D pixel on the image frame. Using semantic segmentation, we can then determine
a discrete class value for each pixel measurement as well. Therefore, we can determine
the points which best reduce our uncertainty while incorporating contextual knowledge to
determine whether they will also be stable references.

For example, say we have 4 measurements, z1, z2, z3, z4. Using the mutual information
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calculation from Equation 3.6, the value of each measurement is

I(x; z1) = 7.0 bits

I(x; z2) = 5.0 bits

I(x; z3) = 4.5 bits

I(x; z4) = 5.0 bits

(3.7)

We see that measurement z1 clearly provides the most information gain about the state,
followed by z2 and z4, with z3 providing the least information. Now, let us take semantic
information into account, by denoting the detected class for a measurement as ci. The
detected classes for these 4 features are

c1 = Bicycle

c2 = Building

c3 = Traffic Sign

c4 = Tree

(3.8)

This is an interesting, albeit predictable development for this example; the most informative
point happens to be part of a bicycle, which we know from experience is most likely not
a stable reference. While the bicycle could be static and parked for several hours, there
is a higher probability that it is currently moving. Therefore, tracking the motion of this
feature will not provide an accurate representation of vehicle motion. Therefore, it seems
that we should select one of the other measurements for long-term mapping. However, c2

and c4 provide the same amount of information for our state estimate. We now look to
determine which of the two is a better feature by introducing network uncertainty.

We asked earlier: what happens if the NN provides us with the wrong answer? In
our example, this could manifest as the network incorrectly segmenting the image and
misclassifying a vehicle as a building. Although the network should be trained to accurately
segment images in the test environment, an out-of-domain example could result in a poorly
segmented image, such as Figure 3.1. While part of the van is being properly classified
(blue) in Figure 3.1, the logo on the van has confused the network, causing it to be labelled
as a traffic sign. In this work, we segment images using Bayesian SegNet [46], and therefore
can incorporate network uncertainty into our feature selection methodology by using MC
dropout.

Recall from Equation 2.46 the relationship between entropy and mutual information.
For the purely information-theoretic approach with our robot state and new feature mea-
surements, we can rewrite the mutual information criterion for feature selection in terms
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Figure 3.1: Example of low quality image segmentation. In this scenario, the logo on the
right van (blue) is being misclassified as a traffic sign (yellow), while the left van is being
misclassified as a building (grey).

of entropy,
I(x; zi) = ∆H = H(x|Z)−H(x|zi,Z) (3.9)

where Z represents all previous measurements made in order to obtain our current state
estimate. This value, ∆H, is the same threshold for feature selection denoted above; if
this value is greater than a pre-defined threshold for a measurement zi, it is selected as
a reference for the SLAM algorithm in both Davison’s [17] and Kaess and Dellaert’s [19]
works.

We propose to modify ∆H, and evaluate the entropy difference between the current
state and the joint entropy of the state given the new feature measurement, and the
semantic segmentation classification, using Equation 2.52. This can be expressed as

∆H = H(x|Z)−H(x, ci|zi,Z,I,D) (3.10)

where I represents the current image and D represents the dataset used to train the neural
network. We assume that the classification entropy and state entropy are conditionally
independent. Therefore, using Equation 2.39, we can rewrite the last term as

H(x, ci|zi,Z,I,D) = H(x|zi,Z,I,D) +H(ci|zi,Z,I,D)

= H(x|zi,Z) +H(ci|I,D)
(3.11)

The state is not dependent on the actual image or dataset, thus we can remove these con-
ditionally dependent terms from the individual entropy terms. Similarly, the classification
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detection is not dependent on any of the feature measurements. Therefore, we can now
rewrite Equation 3.10 as

∆H = H(x|Z)−H(x|zi,Z)−H(ci|I,D) (3.12)

The first two terms are exactly the mutual information criteria introduced in Section 3.1.
Therefore, we can further simplify the equation to yield

∆H = I(x; zi)−H(ci|I,D) (3.13)

Equation 3.13 highlights the main claim of this work. We argue that the best reference
points should not only provide the most information to reduce the uncertainty of the state,
but they should be static reference points which have been detected as such with a very
high certainty. This feature selection criteria provides us with a weighting between the
value of a feature for the state estimate and the certainty of the feature’s classification.
Recall from Section 2.7.8 that the minimum value of H(ci|I,D) is 0 when the network
predicts one class with a confidence of 100%, and all other classes as 0%. Therefore, in an
ideal world where we can perfectly identify the class of each pixel in every image, we will
be selecting the features which best reduce the uncertainty of the state as per the original
information-theoretic criterion outlined in Section 3.1.

Let us continue with our example. Imagine we run our current image frame through
Bayesian SegNet, averaging the result of an arbitrarily selected 12 stochastic passes. After
averaging these values, we extract the following maximum confidence outputs from the
softmax layer

p2 = 20%

p3 = 95%

p4 = 60%

(3.14)

We can calculate the classification entropy using Equation 2.49 and convert the confidence
values into bits. Recall that the entropy value for classification also requires the confidence
values of all the other class outputs, ci, even if they are not the maximum value. For this
example, we assume the remaining confidence values are evenly distributed amongst the
14 other classes, as this is closest to our real-world scenario discussed in Chapter 4. The
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entropy values are calculated to be

H(c2|I,D) = −0.2 log(0.2) + 14×
(
−0.8

14
log

(
0.8

14

))
= 1.134 bits

H(c3|I,D) = −0.95 log(0.95) + 14×
(
−0.05

14
log

(
0.05

14

))
= 0.144 bits

H(c4|I,D) = −0.6 log(0.6) + 14×
(
−0.4

14
log

(
0.4

14

))
= 0.751 bits

(3.15)

As expected, we see that the lower the averaged network confidence, the higher the entropy.
Fusing together the values from Equation 3.7 and 3.15 using Equation 3.13 yields

∆H2 = I(x; z2)−H(c2|I,D) = 5.0− 1.134 = 3.866 bits

∆H3 = I(x; z3)−H(c3|I,D) = 4.5− 0.144 = 4.356 bits

∆H4 = I(x; z4)−H(c4|I,D) = 5.0− 0.751 = 4.249 bits

(3.16)

As per our evaluation criteria, point 3 should be the point we select for our visual SLAM
pipeline. The entropy reduction it provides, ∆H3, is the highest for all features. This point
has been detected as a building with 95% confidence, and also significantly reduces the
uncertainty of the state estimate. We follow the methodology of Kaess and Dellaert [19],
and select all points that have an entropy reduction above a defined threshold. We modify
this threshold value during our experiments, which is discussed further in Section 4. By
selecting these points, our aim is to simultaneously reduce the number of map points stored
while improving the quality of the selected points to aid long-term robot autonomy.

Note on Keyframe Selection

The keyframe selection process for our algorithm involves tweaking the criteria used by
ORB SLAM2. Mur-Artal [10] proposes a keyframe selection scheme based on the number
of close and far keypoints detected in the scene. If the algorithm detects less than 100 close
points in the current frame, but 70 new close points can be added, then the current frame
is inserted as a keyframe. As SIVO discards points from cars, we found that we were using
significantly fewer close features, causing keyframes to be added very frequently. Therefore,
we modified these parameters to add a keyframe if less than 35 close points are detected
in the current frame, but 70 new close points can be added.
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Note on Outlier Rejection

The incorporation of semantic information also aids our outlier rejection method in the
matching step. In addition to matching the descriptors over multiple scenes, we also require
that the semantic classification must match for each detection of the feature. This is an
added layer of robustness which ensures that feature tracks belong to the same static
object, and the dual criteria is more reliable than purely relying on descriptor matching.
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Chapter 4

Results

This section will discuss the implementation details and results of the algorithm presented
in Chapter 3.

4.1 Implementation Details

Our implementation of SIVO is publicly available on Github1, and the repository contains
instructions and all dependencies required to run the code. Our training setup is adapted
from the original SegNet repository, and can also be found online2.

4.1.1 Training

We train Bayesian SegNet using the Cityscapes dataset [55], and fine-tune the network
using the KITTI [11] dataset. We only use the finely annotated images from the dataset,
which contains 2975 training and 500 validation images. An example of the annotated
Cityscapes data can be seen in Figure 4.1. Cityscapes images are labelled with 33 distinct
classes, however, we modify the labels using the authors’ “Cityscapes scripts”3 in order to
generate training data with only 15 classes. The 15 classes selected are: road, sidewalk,
building, wall/fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person/rider,
car, truck/bus, motorcycle/bicycle, and void.

1https://www.github.com/navganti/SIVO
2https://www.github.com/navganti/SegNet
3https://www.github.com/navganti/cityscapesScripts
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Figure 4.1: Ground truth annotations for Cityscapes training data.4

In order to verify performance using the KITTI odometry dataset, we first prepare the
Cityscapes data in a similar format to the KITTI test sequence images. Cityscapes images
have a resolution of 1, 024 × 2, 048, while KITTI images are 376 × 1, 241, 375 × 1, 242,
or 370 × 1, 226. Bayesian SegNet requires both the height and width of the image must
be divisible by 16, and in order to maintain most of the image data while also preserving
some GPU memory, we select a resolution of 352 × 1, 024. Therefore, the KITTI images
are center cropped, while the Cityscapes images are cropped from the bottom to remove
the ego-vehicle and downsampled to maintain the aspect ratio.

Due to the large image size, we use the Bayesian SegNet Basic network in order to
preserve GPU memory and speed up inference time. This network contains fewer layers
in both the encoder and decoder sections of the architecture in comparison to the original
Bayesian SegNet. The network is trained for 215, 000 iterations with a mini-batch size
of 8 images, corresponding to ∼ 578 epochs. The learning rate, η, is set to 0.001 and
the momentum vector, β, is set to 0.9. An example of segmentation on Cityscapes vali-
dation data using the trained Bayesian SegNet Basic network can be seen in Figure 4.2.
Although the trained network performs below the standard of top segmentation results
on the Cityscapes benchmark,it has sufficiently learned the details it needs to effectively
fine-tune performance using the KITTI semantic dataset.

To fine-tune the network, we use the trained network weights (which generated Figure
4.2) as initial values, and then provide new training examples. As the network has already

4Image retrieved from: https://www.cityscapes-dataset.com/wordpress/wp-content/uploads/

2015/07/zuerich00.png
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Figure 4.2: Semantic segmentation on Cityscapes [55] validation data using Bayesian Seg-
Net Basic [46].

been trained for a particular task, it quickly adapts to the new data. The new training
examples come from the KITTI [11] semantic dataset, which is comprised of 200 training
and test images. The training data is split into 160 training images and 40 validation
images. The learning rate and momentum values are kept as 0.001 and 0.9 respectively,
and the network is trained for 2500 iterations, or 125 epochs. Results of Bayesian SegNet
Basic on a validation image can be found in Figure 4.3. The segmentation quality is

Figure 4.3: Semantic segmentation on KITTI [11] semantic validation data using Bayesian
SegNet Basic [46].

representative for SegNet, given the limited training resources and small dataset.
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4.1.2 Network Inference and Hardware

We implement network inference using Caffe’s [47] C++ interface in order to integrate the
results from Bayesian SegNet with ORB SLAM2. Any relevant information stored in the
Caffe “Blobs,” such as the network’s pixel-wise confidence output, are converted to Eigen5

tensors and matrices. The rest of the SIVO algorithm is embedded in the ORB SLAM2
source code, specifically in the Tracking class. We do not disable any of ORB SLAM2’s
loop closure or relocalization functionality. We have also created a custom SIVO library
which uses hand-calculated Jacobian matrices (see Appendix B) to quickly and efficiently
construct the marginal covariance matrix required to calculate the mutual information.

The algorithm is deployed on an Nvidia Titan Xp GPU and an Intel i7-6700 CPU @
3.40 GhZ. For an image of resolution 352 × 1, 024, inference takes approximately 108ms
for 2 dropout samples, 310ms for 6 dropout samples, and 625ms for 12 samples. This
performance is partially due to the size of the images being used, but there are also some
further optimizations (such as the use of CUDA) which could improve inference time.

4.2 Experiments and Notation

We validate performance of our algorithm on the KITTI odometry dataset. The tunable
parameters are the feature selection entropy threshold (Hth), and the number of samples
for MC Dropout (T ). The experiments are referred to as follows:

Bayesian SegNet T Entropy Hth

So, for example, an experiment where the number of samples T = 6, and the entropy
threshold is set to 4 bits is deemed BS6E4. For all trajectories, we evaluated the following
configurations:

• BS2E4

• BS6E2

• BS6E3

• BS6E4

5http://eigen.tuxfamily.org/index.php?title=Main_Page
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• BS12E4

These values are selected because T = 6 was determined to be the point where MC
dropout outperformed the weight averaging technique [63] typically used with dropout
at test time [46]. Through experimentation, we deemed that 5 bits was too strict of a
threshold, and the ORB SLAM2 feature matching pipeline did not have enough features
to localize the robot. These configurations of SIVO are compared to ORB SLAM2 as well
as the KITTI ground truth values.

4.3 Results on KITTI Trajectories

The SIVO pose estimation results are compared to both the ground truth of the KITTI
odometry set, as well as the performance of ORB SLAM2. The trajectories are evaluated
using the same metrics as the benchmark6. First, both rotation and translational errors for
all subsequences from lengths 100m to 800m are evaluated. These values are then averaged
over the subsequences to provide a final translation error (%) and rotation error (deg/m)
for each trajectory. The results for each trajectory also include the total number of map
points and keyframes used for each trajectory. We provide a selection of the results in this
section, and direct the reader to Appendix C for detailed results on all trajectories.

4.3.1 Summary

Table 4.1 contains a summary of the SIVO experiments for each of the KITTI odometry
sequences. For each sequence, the table details the SIVO configuration which performed
best, the camera translation estimation error (%) for ORB SLAM2 and SIVO, the camera
rotation estimation error (deg/m) for ORB SLAM2 and SIVO, and the number of map
points used by the two algorithms. This table is ordered by translation error performance
compared to ORB SLAM2.

SIVO outperformed ORB SLAM2 on KITTI sequence 09 (Section 4.3.2), performed
comparably (average of 0.17% translation error difference, 6.2× 10−5deg/m rotation error
difference) on sequences 00, 02, 05, 07, 08, and 10, and performed worse on sequences 01,
03, 04, and 06 (sequences separated by the midline) while removing, on average, 69% of the
map points. The comparable results on 7 out of the 11 odometry sequences indicates that

6http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Table 4.1: Translation error, rotation error, and map reduction for ORB SLAM2 and SIVO
on the KITTI dataset.

KITTI
Seq.

ORB
Trans.
Err.
(%)

ORB
Rot.
Err.

(deg/m)

SIVO
Trans.
Err.
(%)

SIVO
Rot.
Err.

(deg/m)

ORB
Map

Points

SIVO
Map

Points

SIVO
Config.

09 1.20 4.63E−5 1.18 3.60E−5 64,442 18,893 BS6E2
10 0.95 4.85E−5 0.97 7.34E−5 33,181 9,369 BS2E4
08 1.15 4.89E−5 1.29 4.98E−5 127,810 40,574 BS6E3
05 0.59 2.70E−5 0.76 2.93E−5 73,463 22,237 BS6E3
07 0.58 4.43E−5 0.80 5.08E−5 29,632 9,684 BS6E3
00 1.18 3.88E−5 1.44 4.68E−5 138,153 45,875 BS6E4
02 1.37 3.95E−5 1.70 4.86E−5 202,293 58,894 BS12E4

04 0.67 2.20E−5 1.50 1.97E−5 21,056 6,328 BS12E4
03 2.72 3.75E−5 4.65 1.29E−4 27,209 8,449 BS12E4
01 1.01 3.10E−5 3.17 9.31E−5 101,378 37,233 BS2E4
06 0.67 3.91E−5 7.10 3.27E−4 47,461 11,396 BS6E3

the points removed by SIVO are redundant and the remaining points should be excellent
long-term reference points for visual SLAM, although it is not possible to verify feature
persistence with the KITTI dataset.

ORB SLAM2 generally outperformed SIVO in both translation and rotation estimation
error. However, the rotation errors for both algorithms are on the magnitude of 10−5 deg/m.
Over an 800m sequence this corresponds to a total rotation error of 0.008deg, which is
negligible. We therefore focus our analysis on the translation estimation performance of
the algorithms. We now further examine the results on sequences 09, 00, 08, and 01.
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4.3.2 Trajectory 09

The first trajectory selected for further analysis is sequence 09. This route is selected as it
is the trajectory where SIVO performs better than ORB SLAM2 for both the translation
and rotation estimates. It is important to note that although this sequence forms a loop,
there is no loop closure due to the early termination of the sequence; both ORB SLAM2
and SIVO require a few more images along the visited region to detect the loop closure.
Therefore, the errors include all drift accumulated over the trajectory.

Figure 4.4 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 09.
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Figure 4.4: Overlaid trajectory results for sequence 09 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table 4.2 compares the keyframes and map points used by the various SIVO configu-
rations on KITTI sequence 09 as well as the translation and rotation errors. SIVO uses
30% fewer keyframes and 70% fewer map points on average. For trajectory 09, we see
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that ORB SLAM2 uses the most map points at 64,442, while the BS2E4 configuration of
SIVO uses the least at 17,090. This achieves part of our goal; one argument for our feature
selection strategy was to reduce the number of map points in order to maintain the runtime
and storage complexity of the algorithm as the robot navigates through its environment.

Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)

ORB SLAM2 608 64,442 1.20 4.63× 10−5

BS2E4 448 17,090 1.43 4.44× 10−5

BS6E2 342 18,893 1.18 3.60× 10−5

BS6E3 375 18,053 1.39 4.83× 10−5

BS6E4 487 17,353 1.21 3.90× 10−5

BS12E4 473 17,513 1.34 5.31× 10−5

Table 4.2: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 09.

SIVO configuration BS6E2 has the best rotation and translation error at 3.60×10−5deg/m
and 1.18% respectively, compared to ORB SLAM2 with rotation and translation errors of
4.63×10−5deg/m and 1.20% respectively. The rotation error discrepancy is negligible, while
the translation error difference corresponds to a 16cm difference in localization accuracy
over an 800m subsequence.

Figure 4.6 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 09. ORB SLAM2 has the lowest translation errors over subsequences
from 100m to 400m, however SIVO configurations BS6E2, BS6E3, and BS6E4 outperform
ORB SLAM2 at various points over subsequences of length 500m to 800m.
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Figure 4.5: Example image from KITTI sequence 09.
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Figure 4.6: Translational errors for subsequences of length 100m to 800m on KITTI se-
quence 09 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
SIVO BS6E2 outperforms ORB SLAM2 for this trajectory.

Figure 4.5 illustrates a sample image from the KITTI 09 sequence. Like most of the
KITTI odometry sequences, the sequence consists of mostly static objects. However, this
sequence contains significantly fewer parked cars. As discussed in Section 4.3.6, removing
points on parked cars eliminates close features for the algorithm to use, which results in
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worse translation estimates. Sequence 09 has significant stretches with no parked cars in the
scene, which results in better feature distribution for SIVO and results in the comparable
performance to ORB SLAM2.
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4.3.3 Trajectory 00

The second trajectory selected for further analysis is trajectory 00. This sequence is one of
the longest in the KITTI odometry dataset, and it contains multiple loop closures which
correct for some of the accumulated drift in the algorithm. Figure 4.7 shows an overlaid
trajectory including the ground truth, the 5 different SIVO configurations, as well as the
ORB SLAM2 localization result. We see that there is a significant difference between
all localization methods and the ground truth, however the various localization methods
perform similarly.
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Figure 4.7: Overlaid trajectory results for sequence 00 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.
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Table 4.3 compares the keyframes and map points used by the various algorithms on
KITTI sequence 00 as well as the translation and rotation errors. All algorithms use a
similar number of keyframes, but ORB SLAM2 uses approximately 65% more map points.
For trajectory 00, we see that ORB SLAM2 uses the most map points at 138,153, while
the BS12E4 configuration of SIVO uses the least at 45,786.

Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 1,452 138,153 1.18 3.88× 10−5

BS2E4 1,304 46,783 1.48 4.31× 10−5

BS6E2 900 52,550 1.60 4.81× 10−5

BS6E3 985 48,307 1.56 4.50× 10−5

BS6E4 1,352 45,875 1.44 4.68× 10−5

BS12E4 1,356 45,786 1.45 4.55× 10−5

Table 4.3: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 00. All algorithms use a similar number of keyframes,
and SIVO uses approximately 65% more map points on average without drastically com-
promising localization accuracy.

Removing these map points did have a minor, but adverse effect on localization per-
formance for this trajectory. ORB SLAM2 has the best rotation and translation error at
3.88×10−5deg/m and 1.18% respectively, while the best SIVO configuration, BS6E4, has a
rotation and translation error of 4.68× 10−5deg/m and 1.44% respectively. The rotational
error discrepancy is negligible, while this translational error difference over an 800m sub-
sequence converts to a further localization error of 2.08m. This is an insignificant decrease
in accuracy for a 65% reduction in map size.

Figure 4.8 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 00. ORB SLAM2 consistently has the lowest error for all subsequences
over this trajectory.
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Figure 4.8: Translational errors for subsequences of length 100m to 800m on KITTI se-
quence 00 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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4.3.4 Trajectory 08

The next trajectory selected for further analysis is sequence 08. Similar to sequence 00,
this is one of the longer sequences from the odometry dataset. However, this sequence does
not have any loop closures, and the results contain all accumulated drift over the duration
of the sequence. Figure 4.9 shows an overlaid trajectory including the ground truth, the
5 different SIVO configurations, as well as the ORB SLAM2 localization result for KITTI
sequence 08.
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Figure 4.9: Overlaid trajectory results for sequence 08 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.
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Table 4.4 compares the keyframes and map points used by the various algorithms
on KITTI sequence 08 as well as the translation and rotation errors. SIVO uses 30%
fewer keyframes and 70% fewer map points on average. For trajectory 08, we see that
ORB SLAM2 uses the most map points at 127,810, while the BS6E3 configuration of
SIVO uses the least at 40,574.

Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 1,266 127,810 1.15 4.89× 10−5

BS2E4 953 41,047 1.29 5.01× 10−5

BS6E2 737 40,833 1.29 5.00× 10−5

BS6E3 784 40,574 1.29 4.98× 10−5

BS6E4 965 40,817 1.30 5.73× 10−5

BS12E4 1,001 41,496 1.30 5.20× 10−5

Table 4.4: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 08.

For sequence 08, ORB SLAM2 has the best rotation and translation error at 4.89 ×
10−5deg/m and 1.15% respectively, while the best SIVO configuration, BS6E3, has a rota-
tion and translation error of 4.98× 10−5deg/m and 1.29% respectively. The rotation error
discrepancy is negligible, while the translation error difference corresponds to a 1.12m dis-
crepancy over an 800m subsequence. Interestingly, this additional translation error is less
than the additional error for sequence 00, even without loop closures. Once again, these
results are comparable considering the 70% reduction in map size.

Figure 4.10 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 08. ORB SLAM2 has the lowest translation errors over all subse-
quences, however all SIVO configurations are very similar.
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Figure 4.10: Translational errors for subsequences of length 100m to 800m on KITTI
sequence 08 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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4.3.5 Trajectory 01

The last trajectory selected for further analysis is sequence 01. SIVO performed signif-
icantly worse than ORB SLAM2 on this sequence. This sequence also does not contain
any loop closures, implying the final estimation contains all accumulated drift from the se-
quence. Figure 4.11 shows an overlaid trajectory including the ground truth, the 5 different
SIVO configurations, as well as the ORB SLAM2 localization result for KITTI sequence
01.
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Figure 4.11: Overlaid trajectory results for sequence 01 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table 4.5 compares the keyframes and map points used by the various algorithms on
KITTI sequence 01 as well as the translation and rotation errors. SIVO uses approximately
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40% fewer keyframes and 65% fewer map points than ORB SLAM2. For trajectory 01, we
see that ORB SLAM2 uses the most map points at 101,378, while the BS12E4 configuration
of SIVO uses the least at 34,015.

Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 1,038 101,378 1.01 3.10× 10−5

BS2E4 606 37,233 3.17 9.31× 10−5

BS6E2 593 35,317 3.85 1.22× 10−4

BS6E3 598 35,366 3.35 1.03× 10−4

BS6E4 597 34,331 3.72 1.19× 10−4

BS12E4 604 34,015 3.56 1.17× 10−4

Table 4.5: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 01. SIVO uses approximately 40% fewer keyframes and
65% fewer map points than ORB SLAM2, but performs signficantly worse.

For sequence 01, ORB SLAM2 has the best rotation and translation error at 3.10 ×
10−5deg/m and 1.01% respectively, while the best SIVO configuration, BS2E4, has a ro-
tation and translation error of 9.31 × 10−5deg/m and 3.17% respectively. The rotational
error discrepancy is again negligible, however the translational error difference over an 800m
subsequence converts to a further localization error of 17.28m. Figure 4.12 illustrates the
translational errors for subsequences of length 100m to 800m on KITTI sequence 01. Un-
like the other trajectories discussed thus far, the translation errors increase for each SIVO
configuration as the subsequence length is increased. This matches the results seen in
Figure 4.11, which shows significant increasing drift as the vehicle makes its way through
the sequence.
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Figure 4.12: Translational errors for subsequences of length 100m to 800m on KITTI
sequence 01 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.

Figure 4.13: Low quality segmentation results on KITTI sequence 01. The highway se-
quence is not well represented in the semantic dataset, and the network has not generalized
for this scenario. Close features such as the highway divider are misclassified as a car and
ignored. Therefore, SIVO relies on further features for this trajectory and translation
performance suffers.
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One reason for the possible poor performance of SIVO for this sequence is poor segmen-
tation; KITTI 01 is the “highway” sequence, which is not well represented in the semantic
dataset. For example as seen in Figure 4.13, part of the highway divider as well as the
bridge in the distance are misclassified as a car, which is immediately ignored by the algo-
rithm. As these features make up most of the close features for this sequence, SIVO does
not receive a well-distributed set of features, causing translation performance to suffer.

4.3.6 Discussion

Overall, our feature selection scheme is a good first approach to incorporating neural
network uncertainty into a visual SLAM formulation. In most cases the results between
SIVO and ORB SLAM2 are comparable, with a translation error of 0.17% and a rotation
error difference of 6.2×10−5deg/m even when removing, on average, 69% of the map points
used by the optimization pipeline. SIVO successfully removed points from the environment
which are uninformative and/or dynamic.

In some cases, however, removing these map points did have an adverse effect on local-
ization performance. Some trajectories have significantly worse performance, which can be
mostly atrributed to the removal of short range feature points. As discussed in Chapter 3,
SIVO immediately removes a point if it has been designated as a dynamic class. However,
the KITTI odometry set has been curated to contain mostly static scenes, and the major-
ity of the sequences contain numerous parked cars. These cars make up the majority of
close features in the scene. This is illustrated in Figures 4.14a and 4.14b. We know that
to accurately estimate camera pose, we require an even distribution of points throughout
the image as well as in 3D space. Far points will help with rotation estimation but are
poor translation estimates, and close points can help with both. We see the effect of this
reflected in the results. For all trajectories, ORB SLAM2 and SIVO have very compara-
ble, very accurate rotation estimation, but SIVO generally performed worse in estimating
translation.

This issue is especially prevalent for trajectories 01, 03, 04, and 06, as they are “straight-
line” trajectories. For these sequences, the apparent motion of the features is quite small.
The selected features are far away from the vehicle, as is common with the other sequences,
however most of the features now lie directly ahead of the vehicle. As the vehicle navigates
through the sequence, the features selected remain directly ahead of the vehicle, and their
projected location remains fairly consistent. This lack of apparent motion leads to poor
rotation and translation estimates.

One interesting observation from Figure 4.14b is the location of the detected features on
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various objects in the scene. As discussed, the features we extract from the environment are
generally corners, which will typically lie at the boundaries between objects. However, we
notice that the neural network struggles the most at distinguishing these edges. This makes
sense; the border between objects and the different combinations of objects which can
border each other will vary drastically between examples. It is extremely difficult for the
neural network to generalize for these cases, and this is clearly illustrated in Figures 4.15a
and 4.15b, which illustrate the segmentation and variance results from our trained Bayesian
SegNet model on the KITTI semantic validation set. These images clearly demonstrate the
observation; the borders of objects typically have the highest variance, and it is extremely
difficult for the network to correctly determine which pixels belong to which object at these
boundaries. This has a significant effect on our feature selection method. These points
which lie on the boundaries will be the ones typically extracted by our feature detector, but
they will also have a higher entropy and will be discarded by our algorithm. Although our
evaluation metric accounts for the value a point provides through evaluation of the mutual
information, this could eliminate the few candidates we have, especially in a feature-poor
scene.

For a SLAM algorithm, there have been two main methods for outlier rejection which
have their pros and cons. The first is to use robust pose estimation, which discards outliers
in a multi-stage process. Typically RANSAC [9] will be used as a first outlier rejection
step, followed by the use of a robust cost function in the optimization pipeline. The use
of a robust cost reduces the impact of outliers in the estimation process. In contrast, the
outlier rejection scheme used by SIVO works to carefully select inlier features. In addition
to the matching step, we require semantic matches of the feature for over multiple frames.
Both of these methods have negative impacts on the estimation. The first method will hit
an accuracy ceiling; while the robust cost will mitigate the effect of outliers, the inclusion
of incorrect information will still degrade the quality of the optimization. However, our
method lowers the feature count and does not have the benefit of averaging all of the
feature information. This could eventually lead to the reliance on the same set of points,
even if the first method uses more map points.
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(a) ORB SLAM2 extracting features on KITTI sequence 00. There are a number of stationary
cars which ORB SLAM2 uses for localization. These points are excellent for short-term localiza-
tion, but are poor for long-term map construction.

(b) SIVO extracting features on KITTI sequence 00. SIVO ignores the points on the cars as they
are deemed as dynamic objects. While this is good for long-term map construction, this inhibits
short-term localization.

Figure 4.14: Feature extraction comparison between SIVO and ORB SLAM2 on KITTI
sequence 00.
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(a) Semantic segmentation results from the KITTI semantic validation set. This result is the
average of 40 stochastic passes of MC dropout.

(b) Variance image results from the KITTI semantic validation set. This result is the average
of 40 stochastic passes of MC dropout. White indicates a high variance, while black indicates
higher certainty.

Figure 4.15: Semantic segmentation and variance image from the KITTI semantic valida-
tion set. This result is the average of 40 stochastic passes of MC dropout. The variance
values are determined through the spread of the confidence values output through the
softmax layer. White indicates a high variance, while black indicates higher certainty.
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Chapter 5

Conclusion

Accurate localization is a requirement for any autonomous mobile robot. Cameras have
proven to be a reliable, cheap, and effective sensor to achieve this goal through visual
odometry (VO) or visual simultaneous localization and mapping (SLAM) algorithms. In
order to accurately determine camera motion, it is important to extract static features
from the scene which are viewpoint, scale, and rotation invariant. Due to the emergence
of deep learning techniques in recent years, we can easily supplement traditional visual
localization methods with context through the use of semantic segmentation.

In this thesis, we present SIVO (Semantically Informed Visual Odometry and Map-
ping), a novel feature selection algorithm for visual SLAM which fuses together neural
network uncertainty with an information-theoretic approach to visual SLAM. While incor-
porating semantic information into the SLAM algorithm is not novel, to the best of our
knowledge there is no algorithm which directly incorporates neural network uncertainty
into the probablistic SLAM formulation. Our method selects points which provide signifi-
cant information to reduce the uncertainty of our state estimate, while ensuring that the
feature is detected to be a static object repeatedly, with a high confidence. This is done
by evaluating the reduction in Shannon entropy between the current state entropy and
the joint entropy of the state given the addition of the new feature with the classification
entropy of the feature from the Bayesian neural network.

We evaluated our algorithm against ORB SLAM2 as well as the GPS ground truth from
the KITTI odometry dataset. Our method outperformed ORB SLAM2 on KITTI sequence
09, and performed comparably well (average of 0.17% translation error difference, 6.2 ×
10−5deg/m rotation error difference) on 6 of the 10 remaining trajectories while removing
69% of the map points used on average. The 4 trajectories with worse performance can
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be attributed to a lack of apparent motion in the features due to the straight-line motion
of the vehicle, and poor segmentation performance due to dataset limitations discussed in
Section 5.1.

Overall, this feature selection scheme is a good first approach to incorporate neural
network uncertainty into a information-theoretic visual SLAM formulation. This approach
creates sparse maps made up entirely of static objects, which will provide the most benefit
in long-term localization. Our method maintains the runtime and storage complexities of
the SLAM algorithm by selecting the most informative points in the scene while ensuring
they are excellent static long-term references.

5.1 Future Work

While this algorithm has potential, there is significant room for improvement. As discussed
in Section 4.3.6, SIVO immediately removes a point if it has been designated as a dynamic
class. This poses an issue in evaluating odometry using the KITTI dataset. Although the
sequences are mostly static, there are a significant amount of parked cars on the roads.
Features from these objects are ignored by the algorithm, however we require an even
distribution of points throughout the scene. Points which are close to the camera assist
in translation estimation as well as rotation, and the exclusion of these points inhibits
the quality of localization. One way to mitigate this effect would be to introduce further
context, and determine whether or not a car is static or dynamic. This would allow us to
use the features detected on the static cars in a visual odometry solution for local pose
estimation, while still ignoring these points in our long-term map. We leave this as future
work. One avenue of exploration would be to incorporate these objects into the algorithm
for short-term localization, but ignore them for long-term map construction. This would
maintain our goal to select static long-term references, while resulting in better localization
estimates.

Another area for future work lies in further parsing the network output. Most of the
features extracted from the environment are corners, which will typically lie on the edges of
an object. This is the area that a neural network will struggle to classify the most. Borders
are difficult to generalize, and uncertainty has been shown to be higher in these regions
(see Section 4.3.6). Our algorithm will penalize these points due to their high classification
entropy, but removing these points can be quite detrimental in feature poor areas. One
method of improving this could be to determine the class of both objects along the border,
and penalize this point less if the border is between two static objects. For example, if we
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have the border between a traffic sign and a building, either one of the points would be an
excellent candidate, and the point should still be selected.

Although our map should mostly consist of points that are valid long-term references,
this is difficult to verify due to the limitations of the datasets available to us for au-
tonomous driving. We are unable to test the performance of relocalization using our
long-term map, as the dataset scenarios are unchanging. At the University of Waterloo,
we have collected significant amounts of data using our autonomous driving research plat-
form, Autonomoose1. However, this data does not have semantic ground truth, and the
Cityscapes/KITTI-trained neural network did not generalize well to this data. To verify
long-term localization with SIVO, we require a “long-term dataset” which drives the same
route at different times in the day (or different days) with accurate ground truth as well
as detailed segmentation annotation. To the best of our knowledge, there is currently no
dataset which meets this requirement. Our use of the Cityscapes and KITTI datasets
was an attempt to achieve this by amalgamating one dataset with detailed segmentation
information, and another with limited segmentation and detailed odometry information.
Poor segmentation definitely affected the results for some of the trajectories, especially
sequences 01 (see Figure 4.13) and 06. With the demand for data and the rapid develop-
ment of deep learning approaches in visual SLAM, this will not be a limitation in the near
future.

1https://www.autonomoose.net/
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Appendix A

Fundamentals

This section will explain in detail some fundamental background material, including Lie
theory, computer vision basics, as well as probability basics.

A.1 Lie Groups and Lie Algebra

Throughout this work, we mentioned that rotation matrices are members of the Special Or-
thogonal Lie group in 3D, SO(3), and transformation matrices are members of the Special
Euclidean Lie group in 3D, SE(3). This section will quickly introduce some background
on these groups.

A Lie group is a smooth, differentiable manifold which is also a topological group [68].
Each Lie group has an associated Lie algebra, which represents the tangent space to the
manifold at the identity element of the Lie group. Similar to the tangent of any function,
the tangent space is an approximation of the manifold about a particular point. A tangent
space can be generated at any element of the Lie group, however it is only the tangent
space at the identity element which is the Lie algebra. All tangent spaces are isomorphic
to the Lie algebra, which allows us to perform calculations on the Lie algebra and use the
adjoint related identity to transform the results to our tangent space of interest. Lie group
and Lie algebra theory allows for convenient composition, inversion, differentiation, and
interpolation of 3D transformations, all of which are crucial for SLAM [68].
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A.1.1 SO(3): Special Orthogonal Lie Group in 3D

The Lie group SO(3) represents all rotation matrices in 3D. It is defined as

SO(3) = {R ∈ R3×3 : RTR = RRT = I3×3, det(R) = 1} (A.1)

Its associated Lie algebra is denoted as so(3).

so(3) = {A ∈ R3×3 : A = −AT} (A.2)

We see that this is the set of all 3 × 3 skew-symmetric matrices. In a similar manner to
R3, where we have 3 basis vectors to define the axes, the Lie algebra so(3) has 3 basis
generators [68].

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 (A.3)

As we only require 3 values to define a skew-symmetric matrix, we follow the notation
of Barfoot [51] and introduce the (·)∧ operator to map elements of R3 to skew-symmetric
matrices. The inverse of this operator is (·)∨. This provides us with a vector space in which
we can easily perform calculations.

ω∧ =

ω1

ω2

ω3

∧ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (A.4)

Linear combinations of the generators can create elements of so(3). This representation
has a physical equivalent that we are familiar with; each of the generators represents one
of the degrees of rotation: roll (φ), pitch (ψ), and yaw (θ). These are Euler angles, which
we will use throughout this work to parameterize rotation matrices. As the Lie algebra
represents the tangent space of SO(3), it follows that the 3 elements of ω represent an
angular velocity for roll, pitch, and yaw.

Exponential Map and Log Map

The exponential map and log map are the operators which relate the Lie group to its
associated Lie algebra. We denote the exponential map by [49]

exp : so(3) 7→ SO(3) (A.5)
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and it is equal to the exponential of the skew-symmetric matrix. Through use of Taylor
expansion and the Rodrigues formula, this results in [51, 68].

R = exp(ω∧) =
∞∑
n=0

1

n!
(ω∧)n

= I3×3 +

(
sin(θ)

θ

)
ω∧ +

(
1− cos(θ)

θ2

)
(ω∧)2

≈ I3×3 + ω∧

(A.6)

where θ2 = ωTω. The log map is denoted by

log : SO(3) 7→ so(3) (A.7)

and is the inverse of the exponential map. This is similarly defined by the Rodrigues
rotation formula

log(R) =
θ

2 sin(θ)
(R−RT ) (A.8)

where θ = cos−1
(

tr(R)−1
2

)
.

Group Operations

Unlike a vector space such as RN , Lie groups have no addition or subtraction operators.
In fact, the only operation that is defined is the group operation

◦ : SO(3)× SO(3) 7→ SO(3) (A.9)

which is just a simple matrix multiplication (composition) between two elements of SO(3) [49].
We therefore define the � operator to facilitate addition.

� : SO(3)× so(3)→ SO(3)

R,ω∧ 7→ exp (ω∧) ◦R
(A.10)

Similarly, we can define the � operator to define subtraction.

� : SO(3)× SO(3)→ so(3)

R1,R2 7→ log
(
R1 ◦R−1

2

) (A.11)

These tools allow us to blend together orientations (elements of SO(3)) with differences of
orientations (tangent elements on so(3)) with ease.
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Adjoint

As stated above, all tangent spaces are isomorphic to the Lie algebra. This allows us to
perform calculations on the Lie algebra, and then transform the results to our point of
interest. This transformation is done via the adjoint-related identity. As defined by Eade,
the adjoint “linearly and exactly transforms tangent vectors from one tangent space to
another” [68]. For R ∈ SO(3) and ω ∈ R3, this is defined by

R ◦ exp(ω∧) = exp(AdjR · ω∧) ·R (A.12)

The above equation indicates that

exp(AdjR · ω∧) = R · exp(ω∧) ·R−1 (A.13)

By replacing exp(ω∧) with the generators of so(3), Eade [68] shows that the adjoint for
SO(3) is just

AdjR = R (A.14)

This means that for SO(3), the adjoint transformation of an element is defined by the
rotation matrix of the element itself. Rotating a tangent vector will result in the rotated
tangent at the element of interest on the manifold.

A.1.2 SE(3): Special Euclidean Lie Group in 3D

The Lie group SE(3) represents all rigid body transformations in 3D. It is defined as

SE(3) = {T ∈ R4×4 :

[
R t

01×3 1

]
: R ∈ SO(3), t ∈ R3} (A.15)

Its associated Lie algebra is denoted as se(3).

se(3) = {B ∈ R4×4 :

[
ω∧ u
01×3 0

]
: u ∈ R3,ω∧ ∈ R3×3,ω∧ = −(ω∧)T} (A.16)
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There are 6 basis generators for se(3), which represent the 6 degrees of freedom for a rigid
body.

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , G6 =


0 −1 0 0
1 0 0 0
0 1 0 0
0 0 0 0


(A.17)

Elements of se(3) are created through linear combinations of the 6 generators. Our element
of se(3), a matrix ∈ R4×4, can be parameterized by 6 values: 3 for the skew-symmetric
matrix ω∧, and 3 for the vector u. We now denote a twist vector, ξ,

ξ =

[
u
ω

]
(A.18)

where u represents a velocity along the 3 axes of R3, (x, y, z), and as before, ω represents
an angular velocity in roll, pitch, and yaw. We denote the (·)∧ operator for se(3) to map
elements of R6 to an element of se(3). The inverse of this operator is (·)∨

ξ∧ =

[
u
ω

]∧
=

[
ω∧ u
01×3 0

]
(A.19)

Exponential Map and Log Map

The exponential map for this Lie group is defined as

exp : se(3) 7→ SE(3) (A.20)

and it is equal to the exponent of a linear combination of the generators [68]. This can be
expressed by [51, 68, 69]

T = exp(ξ∧) =
∞∑
n=0

1

n!
(ξ∧)n

=

[
exp(ω∧) Vu

01×3 1

]
≈ I4×4 + ξ∧

(A.21)
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where exp(ω∧) is as seen in Equation A.6, V is defined by

V = I3×3 +
1− cos(θ)

θ2
ω∧ +

θ − sin(θ)

θ3
(ω∧)2 (A.22)

and θ = ωTω, again as seen in Equation A.6.

The log map is defined by
log : SE(3) 7→ se(3) (A.23)

and is the inverse of the exponential map. The log map for SE(3) is defined in two sections;

one for the rotation aspect, and a second for the translation. Recall that ξ =

[
u
ω

]
, and

that T =

[
R t

01×3 1

]
∈ SE(3). The two sections are defined by [68, 69]

ω = (log(R))∨

u = V−1t
(A.24)

where V is defined in Equation A.22.

Group Operations

The SE(3) Lie group also does not have an addition or subtraction operator, and the group
operation is defined by

◦ : SE(3)× SE(3) 7→ SE(3) (A.25)

We define the � operator for addition,

� : SE(3)× se(3)→ SE(3)

T, ξ∧ 7→ exp(ξ∧) ◦T
(A.26)

and the � operator for subtraction.

� : SE(3)× SE(3)→ se(3)

T1,T2 7→ log
(
T1 ◦T−1

2

) (A.27)
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Adjoint

For T ∈ SE(3) and ξ ∈ R6, the adjoint is similarly calculated from the generators just like
SO(3) [68]

T · exp(ξ∧) = exp(AdjT · ξ∧) ·T (A.28)

which indicates that
exp(AdjT · ξ∧) = T · exp(ξ∧) ·T−1 (A.29)

Replacing exp(ξ∧) with a linear combination of the 6 generators yields the following result
for AdjT [68].

AdjT =

[
R t∧R

03×3 R

]
∈ R6×6 (A.30)

A.2 Probability

SLAM is effectively the process of tracking a probability distribution through time. This
section will cover some basics of probability which are useful for this work.

A.2.1 Notation and Random Variables

Let us denote two random variables, X, Y ∈ R. We will denote the probability of a random
variable by p(·). This work will examine the probabilities of both discrete and continuous
variables.

Discrete Variables

In the event that the elements ofX are discrete, then p(X) is described by a probability mass
function (pmf). Let us imagine that X can take on N values. This would be represented
by

X ∈ {x1, x2, . . . , xN} (A.31)

The notation p(X = xi) or p(xi) represents the probability of X taking on the value of xi.
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Continuous Variables

In the event that the elements of Y are continuous, then p(Y ) is described by a probability
density function (pdf), such as Equation 2.6. We denote the probability that Y takes on
a certain value as p(Y = y), or p(y).

A.2.2 Mean, Variance, and Covariance

The mean of a random variable is the expected value. This is denoted by

µ = E[X] (A.32)

For a discrete random variable, this is equal to

µ =
n∑
i=1

xip(xi) (A.33)

and for a continuous random variable, is expressed by

µ =

∫
xp(x)dx (A.34)

The variance is a measure of the dispersion of a random variable from its mean. This
can be expressed by

σ2 = E[(X − µ)2] (A.35)

which, in the discrete case results in

σ2 =
n∑
i=1

(xi − µ)2p(xi) (A.36)

and for the continuous case, is expressed by

σ2 =

∫
(x− µ)2p(x)dx (A.37)

The variance is the square of the standard deviation, which similarly illustrates the disper-
sion of a random variable. While the variance illustrates the dispersion for a variable ∈ R,
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we require a covariance matrix to describe the dispersion of a variable ∈ RN . Covariance
a measure of variability for 2 random variables, and is defined by

cov(x, y) = E[(x− µx)(y − µy)] (A.38)

For a multidimensional variable, we use a covariance matrix to describe the variability
between each pair of variables. In the 2D example, this is written as

Σ =

[
σ2
xx σ2

xy

σ2
yx σ2

yy

]
(A.39)

where σ2
xx, σ

2
yy are the variance of each of the individual variables, and the off-diagonal

elements represent the cross-correlation. If X and Y are independent, the off-diagonal
elements will be zero.

A.2.3 Joint Probability

The joint probability is the probability of multiple variables. From our original case, this
would be written as

p(X, Y ) (A.40)

and can be extended to any number of variables. If the two random variables are indepen-
dent, then

p(X, Y ) = p(X)p(Y ) (A.41)

A.2.4 Conditional Probability

The conditional probability describes the probability of a random variable given knowledge
of another, usually dependent variable.

p(X = x|Y = y) = p(x|y) (A.42)

If X and Y are independent, then

p(x|y) = p(x) (A.43)

as any new knowledge of variable Y does not affect variable X. Lastly, conditional proba-
bility relates to joint probability by the following

p(x|y) =
p(x, y)

p(y)
(A.44)
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A.2.5 Likelihood and Posterior

One last concept to discuss in this section is the idea of a likelihood and posterior distri-
bution. The posterior distribution is the probability distribution of a random quantity,
conditional on evidence. That is, we must have some prior knowledge about the parame-
ters for the distribution describing our random variable, and we take that information into
account. This is described by

p(θ|x) =
p(x|θ)p(θ)
p(x)

(A.45)

where θ represents the parameters of our distribution (for example µ, σ in the Gaussian
case), and x represents the evidence, or realizations, of our random variable. In contrast,
the likelihood function represents expected evidence from a distribution, based on the value
of the parameters. This is represented by the first numerator term in Equation A.45, or

L(θ;x) = p(x|θ) (A.46)

For multiple measurements of the same variable, this is represented by

L(θ|x1, . . . , xn) = p(x1, . . . , xn) = p(x1|θ) · p(x2|θ) · · · p(xn|θ) =
n∏
i=1

p(xi|θ) (A.47)

which is crucial to formulating the graph-based implementation of a SLAM equation. The
last term of interest in Equation A.45 is the second term of the numerator, which represents
any prior knowledge of the parameters; this is aptly referred to as the prior. For the sake
of completeness, we note that the denominator is a normalization term.

MAP and MLE

For SLAM, we are trying to determine the best estimate of our robot pose and map point
positions through knowledge of uncertain measurement information. Depending on the
information we have available, we will try to determine the maximum a posteriori (MAP)
or maximum likelihood (ML) estimate.

The MAP estimate indicates the most probable value for the parameters of the posterior
distribution, based off of all the information we have [51]. This is equal to the mode of the
posterior distribution, which for a Gaussian distribution, is equal to the mean. The ML
estimate is very closely related to the MAP estimate, however there is no prior information
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involved; the ML estimate is a special case of the MAP estimate where we can assume a
uniform prior is applied to the parameters. The MAP estimate is denoted by

θ̂MAP (x) = argmax
θ

p(x|θ) (A.48)

and the ML estimate is denoted by

θ̂ML(x) = argmax
θ
L(θ;x) (A.49)

As we are assuming our camera poses are Gaussian in nature, the MAP or ML estimate is
effectively calculating the most probable value for our poses (the parameter mean), given
all of our measurements (realizations of our pose).

A.3 Computer Vision

This section will outline some fundamentals for computer vision which this work builds
upon.

A.3.1 Oriented Fast and Rotated BRIEF (ORB) Features

In a visual SLAM application, camera motion is determined through the apparent motion
of points in the scene. These points in 3D pass through the projection function above,
and their 2D representations are used as feature measurements. As this work focuses on
selecting better features from the environment, we will first discuss how our baseline points
of interest are selected.

The front end for most visual SLAM algorithms consists of a feature detector, and a
descriptor. The goal of the detector is to determine which aspects of the image are the
most important and distinctive, while the goal of the descriptor is to efficiently encode
this information into a representation which can be easily compared against in multiple
frames. The most common features selected for visual SLAM are corners from various
points in the scene. Harris [70] was one of the first to use corners as salient image features,
and this has inspired a wide variety of work including SIFT [3], SURF [4], FAST [5], and
ORB [6]. Although we are referring to these detectors as “corner” detectors, in reality
they are selecting all image areas with a sufficient gradient in multiple directions [3]. The
Oriented Fast and Rotated BRIEF, or ORB, feature detector and descriptor was created in
order to improve on performance of SIFT and SURF, primarily with regards to speed [6].
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The ORB feature detector is based off of the FAST corner detector proposed by Rosten
and Drummond [5] (Figure A.1). A point is deemed a corner if there are n contiguous
points in the surrounding circle which are all brighter or darker than the candidate point.
While Figure A.1 illustrates a scenario where n = 12, ORB uses a variant which only

Figure A.1: Corner detection using the FAST corner detector with 12 contiguous points
required to deem the point a corner. Image retrieved from Rosten and Drummond [5].

requires 9 contiguous points. The authors further supplement this method to include
multi-scale features and calculate an intensity centroid to ensure the selected points are
rotation-invariant.

The ORB descriptor builds on the work of Calonder et al. [71], Binary Robust Inde-
pendent Elementary Features (BRIEF), which is a 256 bit binary vector constructed from
intensity comparisons between two points. This was selected as it is extremely efficient to
compute and construct, and the ORB descriptor improves on this work by ensuring it is
rotation invariant.

Overall, this detection and description scheme drastically outperformed the state of the
art in terms of speed without compromising quality. It has since been used as the primary
feature detector for several Visual SLAM algorithms, such as ORB SLAM [10, 27].
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Appendix B

SIVO Jacobians

This section will outline the Jacobian matrices required to determine the covariance of a
measurement. Recall from Chapter 3 that in order to calculate the mutual information
between the state and measurement, we need to construct the marginal covariance matrix
between the two quantities. This matrix, Σ̂i, is defined by

Σ̂i =

Σxx Σxzi

Σzix Σzizi

 =

 Σt Σt
∂hi
∂x

T

∂hi
∂x

Σt
∂hi
∂x

Σt
∂hi
∂x

T
+ Qi


The Jacobian of interest is the value ∂hi

∂x
.

B.1 Jacobian of Rectified Stereo Projection

This section introduces the Jacobian of the rectified stereo projection function with respect
to the point in the camera frame. Our measurement model is the rectified stereo projection
model, where we assume that the transformation between the right and left cameras is
defined by a horizontal translation equivalent to the baseline. This is defined by the
function πs

hi = πs(cp) = πs


cx

cy

cz

 =


fx c

x
cz

+ cx

fy
cy

cz
+ cy

fx
(cx−b)
cz

+ cx

 (B.1)
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where x, y, z represent the x, y, and z-coordinates of the point in the camera frame cp,
fx, fy, cx, cy represent the camera intrinsic matrix parameters, and b is the baseline between
stereo cameras.

The Jacobian of the projection function with respect to the point is defined by

∂πs
∂cp

=


fx
cz

0 −fx cx
cz2

0 fy

cz
−fy cy

cz2

fx
cz

0 −fx cx−b
cz2

 (B.2)

B.2 Jacobian of the Transformed Point

This section introduces the Jacobian matrix of the transformed point (in the camera frame)
with respect to the state. Recall that our state at any given point in time, x, can also be
represented as the pose of the camera frame with respect to the world frame, or Tcw. This
is represented by

∂Tcwwp

∂Tcw

(B.3)

with Tcw ∈ SE(3), and wp ∈ R3. As our state is an element of SE(3), it is common
practice to first linearize about this quantity using perturbation theory [51], and then take
the derivative with respect to the linearized point. Therefore, let us define a twist element
ξ ∈ R6, with its skew symmetric form ξ∧ ∈ se(3). We can therefore rewrite the Jacobian
as

∂(Tcw � ξ∧)wp

∂ξ
=
∂ exp(ξ∧)Tcwwp

∂ξ
(B.4)

Blanco [69] shows that this Jacobian is equal to

∂(Tcw � ξ∧)wp

∂ξ
=
(
I3×3| − cp

∧) =

1 0 0 0 cz −cy
0 1 0 −cz 0 cx
0 0 1 cy −cx 0

 (B.5)

B.3 Full Projection Jacobian

We can now compose the above results together to obtain the full Jacobian of the projection
function with respect to the state. This is equal to

∂hi
∂x

=
∂πs(cp)

∂Tcw

=
∂πs
∂cp
· ∂ exp(ξ∧)Tcwwp

∂ξ
(B.6)
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Combining Equations B.2 and B.5 yields

∂hi
∂x

=
∂πs
∂cp
· ∂ exp(ξ∧)Tcwwp

∂ξ
=


fx
cz

0 −fx cx
cz2

0 fy

cz
−fy cy

cz2

fx
cz

0 −fx cx−b
cz2




1 0 0 0 cz −cy

0 1 0 −cz 0 cx

0 0 1 cy −cx 0



∂hi
∂x

=


fx
cz

0 −fx cx
cz2

−fx cxcy
cz2

fx

(
1 + cx2

cz2

)
−fx cy

cz

0 fy

cz
−fy cy

cz2
−fy

(
1 + cy2

cz2

)
fy

cxcy

cz2
fy c

x
cz

fx
cz

0 −fx cx−b
cz2

−fx (cx−b)cy
cz2

fx

(
1 + cx(cx−b)

cz2

)
−fx cy

cz


(B.7)

Using this Jacobian, we can now construct the marginal covariance matrix required to
evaluate the mutual information between the state and any feature measurement.

B.4 Motion Model Propagation

Once we have optimized for our state and map estimates, we can extract the state covari-
ance. To initialize the state and covariance for the next timestep, we must propagate our
state through the motion model. Both SIVO and ORB SLAM2 use a constant-velocity
motion model for state propagation. In order to determine the transform to the next
timestep, we look at the previous transformation, and apply this to the current state. Let
us imagine we have 3 states: Tt−1

cw ,T
t
cw, and Tt+1

cw , where t indicates the current timestep.
We are looking to apply our motion model to provide a prediction for Tt+1

cw . We will
now slightly abuse notation, and denote a twist vector between our two previous states,
ξ ∈ se(3) as

ξ = Tt
cw �Tt−1

cw = log
(
Tt
cw(Tt−1

cw )−1
)

(B.8)

Note that in contrast to the example above, ξ is an element of se(3), instead of R6. The
constant-velocity motion model then applies this transformation to the current state to
determine the next state. That is,

Tt+1
cw = Tt

cw � ξ (B.9)
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Substituting Equation B.8 into B.9 yields

Tt+1
cw = Tt

cw � ξ

= exp(ξ)Tt
cw

= exp
(
log
(
Tt
cw(Tt−1

cw )−1
))

Tt
cw

= Tt
cw(Tt−1

cw )−1Tt
cw

∴ Tt+1
cw = f(Tt

cw) = f(x)

(B.10)

As discussed previously, our current state, x, is equivalent to the pose of the camera frame
with respect to the world frame, Tt

cw. We define our motion model as f(x).

We know that our current state also has a covariance matrix associated with it, Σt. It
is well known that the propagation of the covariance matrix through the motion model is
defined by

Σt+1 = FΣtF
T + Rt (B.11)

where F represents the Jacobian of the motion model with respect to the current state,
and Rt represents the random noise associated with the motion model.

B.4.1 Jacobian of Motion Model Propagation

We will now determine the Jacobian of our motion model propagation with respect to the

current state, F = ∂f(x)
∂x

= ∂f(Ttcw)
∂Ttcw

. We will apply first principles and define this derivative

using the limit [49].

∂Tt+1
cw

∂Tt
cw

∂f(Tt
cw)

∂Tt
cw

= F = lim
ξ→0

(Tt
cw � ξ)(Tt−1

cw )−1(Tt
cw � ξ)�Tt

cw(Tt−1
cw )−1Tt

cw

ξ

= lim
ξ→0

exp(ξ)Tt
cw(Tt−1

cw )−1 exp(ξ)Tt
cw �Tt

cw(Tt−1
cw )−1Tt

cw

ξ

(B.12)

To simplify the equation, let us define A = Tt
cw(Tt−1

cw )−1Tt
cw, and B = Tt

cw(Tt−1
cw )−1. We

can now rewrite Equation B.12 as

F = lim
ξ→0

exp(ξ)B exp(ξ)Tt
cw �A

ξ
(B.13)

We can apply the adjoint related identity (see Section A.1.2) in order to move the twist
vector to another tangent space. This is applied as follows

B exp(ξ) = exp(AdjBξ)B (B.14)
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Substituting Equation B.14 into B.13 yields

F = lim
ξ→0

exp(ξ) exp(AdjBξ)BTt
cw �A

ξ
(B.15)

Recall that B = Tt
cw(Tt−1

cw )−1, therefore BTt
cw = Tt

cw(Tt−1
cw )−1Tt

cw = A. We substitute
this into Equation B.15 and apply the � operator.

F = lim
ξ→0

log(exp(ξ) exp(AdjBξ)AA−1)

ξ

= lim
ξ→0

log(exp(ξ) exp(AdjBξ))

ξ

(B.16)

We apply a 0th order Baker-Campbell-Hausdorff (BCH) approximation [51], which states
that log(exp(A) exp(B)) = A+B. Applying this to Equation B.16 yields our final Jacobian

F = lim
ξ→0

ξ + AdjBξ

ξ

∴ F = I6×6 + AdjB

(B.17)

which is used to propagate the current state covariance, Σt to the next timestep, Σt+1.
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Appendix C

Detailed Results on the KITTI
Dataset

This section will present detailed results on the KITTI trajectories. Results on sequences
00, 01, 08, and 09 can be found in Chapter 4, while this section contains the results for
sequences 02, 03, 04, 05, 06, 07, and 10.
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C.1 Trajectory 02

Figure C.1 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 02. Sim-
ilarly to trajectory 00, ORB SLAM2 outperforms SIVO, but not by a significant margin.
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Figure C.1: Overlaid trajectory results for sequence 02 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.1 compares the keyframes and map points used by the various algorithms on
KITTI sequence 02 as well as the translation and rotation errors. SIVO uses 30% fewer
keyframes and 70% fewer map points than ORB SLAM2 on average. For trajectory 02, we
see that ORB SLAM2 uses the most map points at 202,293, while the BS12E4 configuration
of SIVO uses the least at 58,894.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 1,836 202,293 1.37 3.95× 10−5

BS2E4 1,364 59,039 1.86 5.83× 10−5

BS6E2 995 63,316 1.92 5.05× 10−5

BS6E3 1,075 61,172 1.95 5.54× 10−5

BS6E4 1,442 60,704 1.80 5.61× 10−5

BS12E4 1,422 58,894 1.70 4.86× 10−5

Table C.1: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 02. All algorithms used a similar number of keyframes,
and SIVO used 70% fewer map points.

For sequence 02, ORB SLAM2 has the best rotation and translation error at 3.95 ×
10−5deg/m and 1.37% respectively, while the best SIVO configuration, BS12E4, has a
rotation and translation error of 4.86 × 10−5deg/m and 1.70% respectively. The rotation
error discrepancy is negligible, while the translation error difference corresponds to a 2.64m
difference over an 800m subsequence. This performance is comparable considering the
removal of over 140,000 map points.

Figure C.2 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 02. ORB SLAM2 had the lowest translation error over all subse-
quences.
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Figure C.2: Translational errors for subsequences of length 100m to 800m on KITTI se-
quence 02 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.2 Trajectory 03

Figure C.3 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 03.
The results for this trajectory are similar to those obtained from sequence 01, where
ORB SLAM2 significantly outperforms SIVO. This is not immediately apparent from Fig-
ure C.3.
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Figure C.3: Overlaid trajectory results for sequence 03 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.2 compares the keyframes and map points used by the various algorithms
on KITTI sequence 03 as well as the translation and rotation errors. ORB SLAM2 uses
approximately twice the amount of keyframes and 70% more map points on average. For
trajectory 03, we see that ORB SLAM2 uses the most map points at 27,209, while our
BS12E4 configuration of SIVO uses the least at 8,449.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 228 27,209 2.72 3.75× 10−5

BS2E4 112 8,534 4.79 1.28× 10−4

BS6E2 102 8,941 4.91 1.45× 10−4

BS6E3 105 8,956 4.73 1.26× 10−4

BS6E4 110 8,467 4.72 1.29× 10−4

BS12E4 115 8,449 4.65 1.29× 10−4

Table C.2: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 03. SIVO used approximately half of the keyframes and
68% fewer map points compared to ORB SLAM2.

For sequence 03, ORB SLAM2 has the best rotation and translation error at 3.75 ×
10−5deg/m and 2.72% respectively, while the best SIVO configuration, BS12E4, has a
rotation and translation error of 1.29 × 10−5deg/m and 4.65% respectively. The rotation
error discrepancy is negligible, while the translation error difference corresponds to a 9.65m
difference over an 500m subsequence.

Figure C.4 illustrates the translational errors for subsequences of length 100m to 500m
on KITTI sequence 03. ORB SLAM2 consistently has the lowest translation errors over
all subsequences.
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Figure C.4: Translational errors for subsequences of length 100m to 500m on KITTI se-
quence 03 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.3 Trajectory 04

Figure C.5 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 04.
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Figure C.5: Overlaid trajectory results for sequence 04 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.3 compares the keyframes and map points used by the various algorithms on
KITTI sequence 04 as well as the translation and rotation errors. ORB SLAM2 uses the
same amount of keyframes and 70% more map points on average. For trajectory 04, we
see that ORB SLAM2 uses the most map points at 21,056, while our BS6E4 configuration
of SIVO uses the least at 6,152.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 173 21,056 0.67 2.20× 10−5

BS2E4 166 6602 1.52 1.97× 10−5

BS6E2 81 7128 1.62 2.73× 10−5

BS6E3 103 6880 1.71 2.93× 10−5

BS6E4 110 6152 1.55 3.73× 10−5

BS12E4 184 6328 1.50 4.73× 10−5

Table C.3: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 04.

For sequence 04, ORB SLAM2 has the best translation error at 2.72%, but SIVO con-
figuration BS2E4 had the best rotation error at 1.97× 10−5deg/m. ORB SLAM2 still had
the best translation error at 0.67%, while the BS12E4 SIVO configuration had a transla-
tion error of 1.50%. The rotation error discrepancy is negligible, while the translation error
difference corresponds to a 2.49m difference over a 300m subsequence.

Figure C.6 illustrates the translational errors for subsequences of length 100m to 300m
on KITTI sequence 04. ORB SLAM2 consistently has the lowest translation errors over
all subsequences.
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Figure C.6: Translational errors for subsequences of length 100m to 300m on KITTI se-
quence 04 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.4 Trajectory 05

Figure C.7 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 05. This
sequence has several loop closures which help correct for drift.
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Figure C.7: Overlaid trajectory results for sequence 05 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.4 compares the keyframes and map points used by the various algorithms on
KITTI sequence 05 as well as the translation and rotation errors. ORB SLAM2 uses the
same amount of keyframes and 70% more map points on average. For trajectory 04, we see
that ORB SLAM2 uses the most map points at 73,463, while our BS12E4 configuration of
SIVO uses the least at 21,590.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 753 73,463 0.59 2.70× 10−5

BS2E4 676 22,313 0.81 3.54× 10−5

BS6E2 477 22,662 0.76 3.24× 10−5

BS6E3 512 22,237 0.76 2.93× 10−5

BS6E4 718 21,929 0.81 4.00× 10−5

BS12E4 709 21,590 0.88 4.78× 10−5

Table C.4: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 05.

For sequence 05, ORB SLAM2 has the best rotation and translation error at 2.70 ×
10−5deg/m and 0.59% respectively, while the best SIVO configuration, BS6E3, has a rota-
tion and translation error of 2.93× 10−5deg/m and 0.76% respectively. The rotation error
discrepancy is again negligible, while the translation error difference corresponds to a 1.36m
discrepancy over an 800m subsequence. This is an insignificant difference considering the
70% reduction in map size.

Figure C.8 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 05. ORB SLAM2 has the lowest translation errors over all subse-
quences.
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Figure C.8: Translational errors for subsequences of length 100m to 800m on KITTI se-
quence 05 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.5 Trajectory 06

Unfortunately, we were not able to extract a full set of results for this trajectory, as SIVO
lost tracking. The threshold of 4 bits used in other trajectories was too high for this
sequence, and so we we only extracted results for BS6E2 and BS6E3. Similar to sequence
01, this trajectory had significant out-of-domain data for the network which resulted in
poor segmentation quality. Figure C.9 shows an overlaid trajectory including the ground
truth, the 2 SIVO configurations mentioned above, as well as the ORB SLAM2 localization
result for KITTI sequence 06.
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Figure C.9: Overlaid trajectory results for sequence 06 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.5 compares the keyframes and map points used by the various algorithms
on KITTI sequence 06. ORB SLAM2 uses significantly more map points, however the
translation and rotation error are significantly better than SIVO.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 490 47,461 0.67 3.91× 10−5

BS6E2 284 12,607 12.06 5.40× 10−4

BS6E3 338 11,396 7.10 3.27× 10−4

Table C.5: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 06.

Figure C.10 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 06. ORB SLAM2 consistently has the lowest translation errors over
all subsequences.
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Figure C.10: Translational errors for subsequences of length 100m to 800m on KITTI
sequence 06 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.6 Trajectory 07

Figure C.11 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 07.
Although this sequence does form a loop, the termination of the sequence prevents the
algorithm from actually performing the loop closure optimization. The results for this
sequence contain all accumulated drift.
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Figure C.11: Overlaid trajectory results for sequence 07 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.6 compares the keyframes and map points used by the various algorithms on
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KITTI sequence 07 as well as the translation and rotation errors. SIVO uses a similar
amount of keyframes to ORB SLAM2 but 70% fewer map points on average. For trajec-
tory 07, we see that ORB SLAM2 uses the most map points at 29,632, while the BS2E4
configuration of SIVO uses the least at 9,029.

Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 266 29,632 0.58 4.43× 10−5

BS2E4 197 9,029 0.93 6.15× 10−5

BS6E2 193 9,139 0.86 6.65× 10−5

BS6E3 180 9,684 0.80 5.08× 10−5

BS6E4 171 10,151 0.81 5.93× 10−5

BS12E4 187 9,088 1.06 8.82× 10−5

Table C.6: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 07.

For sequence 07, ORB SLAM2 has the best rotation and translation error at 4.43 ×
10−5deg/m and 0.58% respectively, while the best SIVO configuration, BS6E3, has a rota-
tion and translation error of 5.08× 10−5deg/m and 0.80% respectively. The rotation error
discrepancy is negligible, while the translation error difference corresponds to a 1.32m
discrepancy over a 600m subsequence. This is an insignificant difference considering the
removal of 70% of the map points.

Figure C.12 illustrates the translational errors for subsequences of length 100m to 600m
on KITTI sequence 07. ORB SLAM2 has the lowest translation errors over all subse-
quences, however we see for the 500m and 600m subsequences, BS6E3 effectively has the
same translation error.
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Figure C.12: Translational errors for subsequences of length 100m to 600m on KITTI
sequence 07 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
ORB SLAM2 has the lowest translation error over all subsequences.
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C.7 Trajectory 10

Figure C.13 shows an overlaid trajectory including the ground truth, the 5 different SIVO
configurations, as well as the ORB SLAM2 localization result for KITTI sequence 10.
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Figure C.13: Overlaid trajectory results for sequence 10 from the KITTI odometry set
comparing various SIVO configurations, ORB SLAM2, as well as the ground truth.

Table C.7 compares the keyframes and map points used by the various algorithms
on KITTI sequence 10 as well as the translation and rotation errors. SIVO uses 40%
fewer keyframes and 70% fewer map points on average. For trajectory 10, we see that
ORB SLAM2 uses the most map points at 33,181, while the BS12E4 configuration of
SIVO uses the least at 9,136.
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Algorithm Keyframes Map Points
Trans. Error

(%)
Rot. Error

(deg/m)
ORB SLAM2 335 33,181 0.95 4.85× 10−5

BS2E4 198 9,369 0.97 7.34× 10−5

BS6E2 202 9,335 1.14 8.63× 10−5

BS6E3 208 9,769 1.26 9.00× 10−5

BS6E4 206 9,248 1.26 1.02× 10−4

BS12E4 204 9,136 1.14 7.06× 10−5

Table C.7: Keyframe and map point comparisons between ORB SLAM2 and various SIVO
configurations on KITTI sequence 10.

For sequence 10, ORB SLAM2 has the best rotation and translation error at 4.85 ×
10−5deg/m and 0.95% respectively, while SIVO configuration BS2E4 has a rotation and
translation error of 7.34× 10−5 deg/m and 0.97% respectively. The rotation error discrep-
ancy is negligible, while the translation error difference corresponds to a 16cm discrepancy
over an 800m subsequence. This is an insignificant difference considering the removal of
70% of the map points.

Figure C.14 illustrates the translational errors for subsequences of length 100m to 800m
on KITTI sequence 10. ORB SLAM2 has the lowest translation errors over subsequences
of length 100m to 700m, with BS2E4 having a lower error for the 800m subsequences.
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Figure C.14: Translational errors for subsequences of length 100m to 800m on KITTI se-
quence 10 comparing various SIVO configurations and ORB SLAM2 to the ground truth.
Overall, ORB SLAM2 outperforms SIVO, but for 800m subsequences SIVO BS2E4 out-
performs the state of the art.
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