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Abstract

Since state of the art simultaneous localization and mapping (SLAM) algorithms are not constant time, it is often
necessary to reduce the problem size while keeping as much of the original graph’s information content. In graph SLAM,
the problem is reduced by removing nodes and rearranging factors. This is normally faced locally: after selecting a node
to be removed, its Markov blanket sub-graph is isolated, the node is marginalized and its dense result is sparsified. The
aim of sparsification is to compute an approximation of the dense and non-relinearizable result of node marginalization
with a new set of factors. Sparsification consists on two processes: building the topology of new factors, and finding
the optimal parameters that best approximate the original dense distribution. This best approximation can be obtained
through minimization of the Kullback-Liebler divergence between the two distributions. Using simple topologies such as
Chow-Liu trees, there is a closed form for the optimal solution. However, a tree is oftentimes too sparse and produces
bad distribution approximations. On the contrary, more populated topologies require nonlinear iterative optimization.
In the present paper, the particularities of pose-graph SLAM are exploited for designing new informative topologies and
for applying the novel factor descent iterative optimization method for sparsification. Several experiments are provided
comparing the proposed topology methods and factor descent optimization with state-of-the-art methods in synthetic
and real datasets with regards to approximation accuracy and computational cost.
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1. Introduction

Simultaneous localization and mapping (SLAM) is a
well-studied problem in mobile robotics. It consists in
building a map of the environment while localizing the
robot in it. It is a challenging problem in many ways. One
of its main challenges is its increasing resource demands:
the longer the experiment, the larger the problem to solve.
Efforts to address this challenge have been focused mainly
in two directions, either reducing the computational com-
plexity of the algorithms, or tackling the problem size.

Several improvements have been made to reduce the
time complexity of the algorithms, such as the iSAM2
and SLAM++ methods [2, 3], though they have not yet
achieved constant-time, constant-memory operation. Thus
the issue of ever-increasing problem size calls for sub-optimal
strategies to maintain a tractable problem size while keep-
ing as much information as possible.
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One of the simplest SLAM approaches aimed at limit-
ing problem size growth consists in considering a temporal
or spatial window and discarding the landmarks and/or
poses that lie outside this window. This implies giving up
loop closures, such as in visual and visual-inertial odome-
try [4, 5]. Alternatively, hierarchical graph structures can
also be considered to keep the problem tractable [6]. The
graphs higher up in the hierarchy represent marginalized
small sub-graphs and if the error is low enough, only part
of the problem is solved at each level in the hierarchy. An-
other alternative is to reduce the growth of the problem by
marginalizing out poses that are close to previously visited
ones [7].

Some other methods propose to just discard some in-
formation even before it is considered for optimization.
For instance, Pose SLAM [8] only adds new robot poses
and observations depending on its entropy-based informa-
tion content. Chouldhary et al. [9] on the other hand pro-
pose an entropy-based method to decide which landmarks
should be discarded in a trade off between memory foot-
print and accuracy.

In any case, one important characteristic that must be
preserved in any strategy that limits problem size growth
is to maintain the network sparsity. The factor graph that
represents the network of geometric constraints (factors)
linking problem variables (nodes) with sensor measure-
ments is by construction sparse in the number of factors.
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Most graph-SLAM methods take profit of this sparsity to
speed up the computation of the optimal solution.

Furthermore, SLAM being a non-linear problem, those
methods that accurately handle relinearization improve
the accuracy of the solution.

Normally, the only way of reducing the problem size
without loss of information is marginalization. However,
marginalization results in a densely connected graph and
does not allow for relinearization. These respectively un-
dermine efficiency and accuracy.

Sparsification is known as the problem of finding the
best sparse and relinearizable approximation of the re-
sult of a marginalization. Kretzschmar and Stachniss [10]
present an information-theoretic compression method for
pose-graph SLAM that selects the nodes containing the
most informative laser scans. They find the subset of mea-
surements that maximize the mutual information of the
map for that subset. More recently, the problem has been
posed as finding the sparse approximation that minimizes
the Kullback-Liebler divergence (KLD) with respect to the
dense distribution resulting from marginalization [11, 12,
13]. To solve it, first, the topology of the new factors is
built, and finally the optimal mean and covariance of each
new factor is computed. While there is a closed form for
the simplest topology, e.g. the Chow-Liu tree (CLT), itera-
tive optimization is needed for more populated topologies.

The tree topology is the sparsest alternative but it can
encode only a small part of the original dense information.
To reach more accurate approximations, more populated
topologies are required. For this reason, in this paper we
focus on designing populated topologies and using iterative
optimization for sparsification.

In [1, 14] we introduced factor descent optimization.
Given a non-dense factor topology, factor descent itera-
tively optimizes each of the factors leaving fixed the rest.
For each factor, its optimal parameters (mean and infor-
mation matrix) in terms of KLD are found given the rest
of topology factors’ parameters.

In this paper, we explore the application of factor de-
scent in the pose-graph SLAM case. Pose-graph SLAM
problems are those made only of nodes representing poses,
and factors corresponding to relative pose measurements.
Its nature can be taken into account in the whole sparsifi-
cation process. Indeed, the generalized formulation intro-
duced in [1], and completed in [14], is suited to pose-graph
SLAM. We found that in such case, some conditions can
not take place and the general formulation can be simpli-
fied.

The present work focuses also on the topology of the
new factors, which was out of the scope in our previous
work. The amount of factors that constitute this topol-
ogy, what we call topology population, controls how dense
the sparsification approximation is. While a more popu-
lated topology will approximate the dense marginalization
better, a less populated one will be faster to compute. In
order to handle this trade-off, we propose a new policy to
set the topology population. This policy is intuitive, al-

Figure 1: Example of marginalization and sparsification of a node
(gray). After cropping a local problem, marginalization produces
a dense and non-relinearizable sub-graph (right figure). This sub-
graph is replaced in the original graph with a sparse approximation
(bottom).

lowing the end user to set the topology population in a
reasoned way. Finally, considering the pose-graph SLAM
specificities, we devise three new methods to build popu-
lated topologies able to encode most of the information of
the dense distribution resulting from marginalization.

Summarizing, the contributions of this paper are:

• The application of the Factor Descent formulation to
the specific case of pose-graph SLAM is presented.
It results in a simplification of the general case for-
mulation presented in our previous work.

• We propose a novel policy to set the topology popu-
lation that is more intuitive since it is based on the
desired sparsity of the new topology.

• Three new methods to build the topology are pre-
sented and compared with the state-of-the-art, in
terms of accuracy and computational cost.

2. Node removal and sparsification in pose-graph
SLAM

In graph-based SLAM methods, the problem is repre-
sented as the optimization of a graph, made of a set of
nodes (i.e. variables) and a set of factors (i.e. geometri-
cal constraints according to sensor measurements). The
state x includes variables representing poses of the vehi-
cle along its trajectory and/or some map representation.
Each factor expresses the discrepancy or error e between
a measurement z and its expectation,

e(x) = h(x)− z + v, v ∼ N (0,Ω−1) (1)
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being h(x) the sensor’s measurement model, x the state es-
timate at the current iteration, and v the associated mea-
surement Gaussian noise.

The mean conditional distribution of x given the mea-
surements is solved iteratively by minimizing the Maha-
lanobis squared norm of all linearized errors

∆x∗ = arg min
∆x

∑
k

‖hk(x)− zk + Jk∆x‖2
Ω−1

k

(2)

being Jk the Jacobian of the k-th measurement1.
Imposing a null derivative of the cost in (2) w.r.t ∆x,

the optimal step ∆x∗ is found and used to update the
estimate.

Current methods for solving for ∆x∗ use Cholesky [16,
17, 3] or QR [18, 19, 2] matrix factorizations. Important
speed-ups are obtained with incremental methods [19, 2,
17, 3], which update the problem directly on the factorized
matrix only relinearizing it periodically or partially.

Reducing the problem size in graph SLAM is usually
approached in two steps: node marginalization and spar-
sification (see Fig. 1). These two processes do not neces-
sarily have to be immediately consecutive. Sparsification
can be postponed depending on the availability of compu-
tational resources as in [12].

Once a node is selected for removal, the process is faced
locally. The process only involves the immediate surround-
ings consisting of the node’s Markov blanket (all nodes
at distance 1) and all its intra-factors (the factors involv-
ing only nodes in the Markov blanket). Optionally, this
cropped problem can be solved in order to relinearize all
intra-factors before proceeding. This yields slightly better
results especially in on-line cases [13].

Marginalization of the selected node is performed via
Schur complement. This marginalization can be under-
stood as adding a dense factor that substitutes all intra-
factors that involve the removed node. This new dense
factor has no measurement model associated to it; hence,
its error cannot be re-evaluated, and re-linearization is
not possible, thus undermining the accuracy of the solu-
tion. Moreover, despite there is no information loss in node
marginalization, the induced density in the blanket under-
mines SLAM solvers efficiency since they rely on sparsity.

This brings us to the second step, sparsification, whose
goal is to approximate the dense distribution p(x) ∼ N (µ,Σ),
resulting from node marginalization, with a sparse distri-
bution q(x) ∼ N (µ̆, Σ̆) defined by a new set of (relineariz-
able) factors. This is usually split in two phases: topology
building and factor recovery. The topology defines the
arrangement between the Markov blanket nodes and the
new set of factors, each factor with a measurement model
(see Sec. 4). Given the set of new factors of the cho-
sen topoogy, factor recovery consists on computing their

1In case of manifolds, equation (1) and the squared Mahalanobis
norm in (2) become e(x) = h(x)	z⊕v and ‖hk(x)	zk+Jk∆x‖2

Ω−1
k

,

respectively, with Jk = ∂(hk(x)	zk)/∂∆x. The operators ⊕ and 	
indicate addition and subtraction on a manifold, as described in [15].

mean and information that best approximate the original
distribution.

2.1. Factor recovery through KLD minimization
Given the topology, the aim of factor recovery is finding

its factors’ means z̆k and information Ω̆k that minimize
the relative entropy (KLD) of the sparse distribution q(x)
w.r.t. the dense one p(x). For Gaussian distributions, the
KLD reads,

DKL =
1

2

(
〈Λ̆,Σ〉 − ln |Λ̆Σ|+ ‖µ̆− µ‖2

Λ̆−1 − d
)
, (3)

where 〈·, ·〉 denotes the matrix inner product and Λ̆ = Σ̆−1

is the information matrix of q(x), given by

Λ̆ = J̆>Ω̆J̆ =
[
. . . J̆>k . . .

] 
. . .

Ω̆k

. . .




...
J̆k

...


being J̆k the Jacobian of the k-th measurement model.

Setting all measurements’ means z̆k as the expected
measurements of the dense distribution, i.e. z̆k = hk(µ),
the Mahalanobis norm term ‖µ̆− µ‖2

Λ̆
becomes null, and

to find Ω̆ that minimizes (3), the rest of the expression
can be simplified as follows. The dimension d of both
distributions is constant w.r.t the information of all mea-
surements stored in Ω̆. The log term can be decomposed
as ln |Λ̆Σ| = ln |Λ̆| + ln |Σ|, whose second term is also
constant w.r.t. Ω̆. Considering the above, the factors’ in-
formation that minimizes (3), can be obtained from the
constrained problem

Ω̆∗ = arg min
Ω̆

(
〈J̆>Ω̆J̆,Σ〉 − ln |J̆>Ω̆J̆|

)
s.t. Ω̆ ∈ D, Ω̆ � 0 (4)

where D refers to the set of block-diagonal matrices.
Sometimes the dense problem has a rank-deficient in-

formation matrix Λ, and the covariance matrix Σ is not
defined. In such cases, a projection Λ = UDU> such
that D is invertible can be applied. Then, the formulation
derived for (4) holds by substituting

J̆ 7→ J̆U

Σ 7→ D−1. (5)

This is always the case in pose-graph SLAM problems
since all factors correspond to relative pose measurements.
The projection U can be computed by re-parametrizing
the problem to relative poses w.r.t an arbitrarily chosen
node [12, 11] or using a rank-revealing eigen decomposi-
tion [13].

3



2.2. Factor recovery in closed form
Certain topologies admit a closed form solution to (4).

As proven in [13], when J̆ is invertible, imposing a null
derivative of (4) w.r.t. all factor information matrices
yields

Ω̆∗k = (J̆kΣJ̆>k )−1. (6)

In the case of a tree topology in pose-graph SLAM, using a
projection as (5), the Jacobian is invertible thus the closed
form is suitable. However, as has been said and will be
illustrated in the results, this topology is often too sparse
to accurately approximate the exact dense distribution.

2.3. Factor recovery via iterative optimization
Other topologies with non-invertible Jacobian J̆ do not

admit a closed form solution and the problem has to be
solved using iterative optimization. The state-of-the-art
literature proposes two different optimization algorithms:
Interior Point (IP) and Limited-memory Projected Quasi-
Newton (PQN) [20]. IP includes the positive definiteness
constraint in the cost function (4) as a log barrier

〈J̆>Ω̆J̆,Σ〉 − ln |J̆>Ω̆J̆| − ρ ln |Ω̆|. (7)

A stricter constraint can be applied instead of the log bar-
rier term to guarantee conservativeness [12]

〈J̆>Ω̆J̆,Σ〉 − ln |J̆>Ω̆J̆| − ρ ln |Λ− J̆>Ω̆J̆|. (8)

The Interior Point method consists of two nested loops.
For each log barrier parameter value ρi, the problem is
solved in the inner loop. After convergence of the inner
loop, the outer loop decreases the log barrier, ρi+1 = βρi
(with β ∈ (0, 1)) and the inner loop is solved again. The
optimization ends when the outer loop reaches a ρi value
close enough to 0, i.e. the solution minimizes the cost
function (7) (or (8)) without the contribution of the con-
straint term. In [13], the inner loop is solved with New-
ton’s method using the gradient and Hessian of the cost
function.

Setting the IP parameters β and ρ0 as well as the inner
loop’s end conditions is a trade off between convergence
speed and robustness to divergence. The IP initial guess
must satisfy the constraint, i.e. it must be positive definite.
To ensure that the positive definiteness constraint remains
satisfied at all times, the contributions to the gradient and
the Hessian of the KLD terms and the log barrier term
have to be balanced. Relaxing the inner loop end condi-
tions or enhancing the decrease factor β lead to a lower
contribution of the log barrier term. This speeds up the
method but may converge to a non positive definite result.
Proper tuning of these parameters is oftentimes problem-
dependent.

On the other hand, PQN does not require the Hessian
(it still needs the gradient), nor a feasible initial guess. The
positive definiteness constraint is accomplished through

Algorithm 1 Factor descent sparsification
Input: Dense mean µ and covariance Σ, topology Z
// Precompute constant variables
for zk ∈ Z do

Jk ← evaluateJacobian(zk,µ)

Φk ← (J̆kΣJ̆>k )−1

end for
k := 1
while not endConditions() do
// Compute the information of the rest of factors
Ῠk ←

∑
j 6=k J̆>j Ω̆j J̆j

// k-th factor descent
Ω̆k ← Φk − (J̆kῨ−1

k J̆>k )−1

// Ensure positive semi-definite solution
if Ω̆k ≺ 0 then

V,λ← eigenDecomposition(Ω̆k)

Ω̆k ← Vdiag(max(0,λ))V>

end if
// Cycle for all factors
k++
if k > N then
k := 1

end if
end while

the projection P(Ω̆) onto the positive semi-definite sub-
space, by setting all negative eigenvalues to zero,

P(Ω̆) = V diag(max{0, λi})V>, (9)

being Ω̆ = V diag(λi)V
> the Eigen decomposition.

PQN has much slower convergence than IP, but it can
be initialized closer to the optimal solution. In [21], an
initial guess based on the off-diagonal blocks of the dense
information matrix is proposed for topologies with factors
that involve two nodes

Ω̆k = J−>k1
Λk1,k2J

−1
k2

(10)

being k1, k2 the two nodes involved in the factor k (so
Jk1 ,Jk2 are the non-zero blocks of Jk) and being Λk1,k2

the off-diagonal block corresponding to the involved nodes.
Such initial guess is normally not symmetric nor positive
semi-definite, and one usually takes its closest symmetric
positive semi-definite approximation [22]. Therefore, since
this initial guess is normally a semi-definite positive guess,
it cannot be used in the IP method.

3. Factor recovery with factor descent optimiza-
tion

Factor descent sparsification (FD) is a novel optimiza-
tion method for solving (4) inspired in coordinate descent
optimization. FD is a cyclic block-coordinate descent method;
each step of the cycle consists in solving for a (small) block
of variables, those defining one factor’s information matrix
Ω̆k, while fixing the rest.
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Consider a given topology and an initial guess Ω̆ =
diag(· · · , Ω̆k, · · · ). The derivative of (4) w.r.t the k-th
factor’s information matrix Ω̆k is

∂DKL

∂Ω̆k

= J̆kΣJ̆>k − J̆k(Ῠk + J̆>k Ω̆kJ̆k)−1J̆>k , (11)

where Ῠk is the information matrix of the problem con-
sidering only the rest of factors,

Ῠk =
∑
j 6=k

J̆>j Ω̆j J̆j . (12)

Descent of the KLD cost is achieved factor by factor.
Each time, (4) is solved for one factor while fixing the
rest, and this is done cyclically over all the factors until
convergence.

Interestingly, considering all factors other than k fixed,
the optimal Ω̆k can be computed analytically by finding
the null derivative of the KLD (11). This can take different
forms depending on the particular properties of Ῠk and J̆k,
as we explored in [14].

In the specific case of pose-graph SLAM, assuming fac-
tors with strictly positive definite information, the optimal
k-th factor’s information matrix when the rest of factors
are fixed may take two different forms, as follows.

If Ῠk is invertible, (11) is null in

Ω̆k = (J̆kΣJ̆>k )−1︸ ︷︷ ︸
Φk

−(J̆kῨ−1
k J̆>k )−1. (13)

The first term Φk can be interpreted as the information
of the dense distribution projected onto the k-th factor’s
measurement space. Analogously, the second term is the
projection of the information of the rest of the factors onto
the measurement space of the k-th factor. In a pose-graph,
Ῠk is invertible when without considering the k-th factor,
the topology is still fully connected.

Otherwise, when the topology gets disconnected with-
out the k-th factor, (11) is null in

Ω̆k = Φk = (J̆kΣJ̆>k )−1. (14)

Since Φk is constant, all factors with non invertible Ῠk

do not require to be iterated. Note that Φk is exactly
the closed form (6). Indeed, the tree topology gets discon-
nected as soon as any of its factors is not considered.

Since the optimal solution in the factor’s subspace is
computed in closed form (13), ‘iterations‘ in FD refer to
cyclically solving for each of the factors, not on fitting
a nonlinear model onto any linear or quadratic function.
Then, the FD convergence rate mainly depends on how
much the direction to the optimal solution is aligned with
the sub-spaces corresponding to each factor (see Fig. 2 for
an illustrative example).

3.1. Positive-definiteness
According to (13), Ω̆k is positive definite only if

(J̆kΣJ̆>k )−1 � (J̆kῨ−1
k J̆>k )−1. (15)

Figure 2: A simplified representation to illustrate the effect in the
convergence speed of the alignment of the variables w.r.t. the direc-
tion to the optimal solution. Analogously to FD, the optimization of
two variables (representing two factors’ information) is performed by
alternatively fixing one of the variables and analytically computing
the optimal solution for the other variable. In the badly aligned case
(orange) more iterations are required than in the good aligned case
(yellow) to reach the optimal solution.

This happens when the projection of the dense distribution
information onto the measurement space is larger than
that of the rest of the factors in any direction. When the
rest of new factors exactly explain the original distribu-
tion in some direction, Ω̆k would have a null eigenvalue
in that direction. Further, a negative eigenvalue of Ω̆k

means that the approximation without the k-th factor is
not conservative and the optimal k-th factor would be the
one that subtracts this excess of information. After each
iteration, we impose a positive definite result setting all
null and negative eigenvalues of Ω̆k, if any, to a small pos-
itive value ε, using e.g. Ω̆k = V diag(max{ε, λi})V> with
{diag(λi),V} = eig(Ω̆k).

3.2. Initial guess
Since the positive definite constraint is imposed after

each factor descent, the initial guess is not required to be in
a strictly feasible point. Thus, we can use the off-diagonal
blocks based initialization (10).

Moreover, factor descent can also be used to build an
initial guess by just applying the first cycle of (13) consid-
ering null initial information in all factors. Then, in the
first cycle, only the previously computed factors contribute
to Ῠk, and therefore it can be computed incrementally,

Ῠk = Ῠk−1 + J̆>k−1Ω̆k−1J̆k−1. (16)

4. Topology

Whichever factor recovery method is used to solve (4),
its result is only the best approximation that can be achieved
for a given topology. But different topologies produce

5



different approximations. Therefore, the selection of the
topology is critical in terms of the accuracy of the sought
sparse approximation. From this viewpoint, the accuracy
of the solution depends on how much the selected topology
can explain the dense distribution.

In this paper we focus on pose-graph SLAM problems.
In pose-graph SLAM, all factors correspond to relative
measurements between pairs of nodes of the same dimen-
sion. The simplest topology using relative measurements
is a spanning tree. The Chow-Liu tree (CLT) defines the
tree topology that can encode more information from the
dense distribution. To do this, it recalls on mutual infor-
mation (MI) between all pairs of nodes in order to measure
which nodes are more correlated.

However, in order to evaluate the MI either using the
canonical form or the information form, a non-singular
dense information matrix Λ is required. Precisely, in the
pose-graph SLAM case the information matrix resulting
of node marginalization is singular. The main objective
of computing the MI between pairs of nodes is measuring
how a potential factor between each pair would explain the
original dense distribution. Then, working on a projected
sub-space as (5) is not a suitable solution since we lose the
track of each node.

Carlevaris et al. [11] compute the MI of each pair of
nodes using the information form. Since the dense infor-
mation matrix Λ is singular, to prevent from null determi-
nants a Tikhonov regularization is used within all deter-
minants

I(xi,xj) =
1

2
log

|Λ̃ii + εI|
|Λ̃ii − Λ̃ijΛ̃

−1
jj Λ̃ji + εI|

. (17)

In order to obtain Λ̃ii, Λ̃ij and Λ̃jj , all variables different
from i and j should be marginalized out from Λ via Schur
complement.

Conversely, Mazuran et al. [13] compute the MI using
the covariance form. But first, the Tikhonov regularization
is performed to get an approximation of the covariance
matrix Σ̂ = (Λ + εI)−1,

I(xi,xj) =
1

2
log
|Σ̂ii||Σ̂jj |∣∣∣∣Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

∣∣∣∣ . (18)

Note that (17) and (18) are not strictly equivalent since the
regularization is performed in different places. No matter
how the MI is computed, the CLT tree is built by incre-
mentally taking the pair of nodes with largest MI that do
not create a cycle.

However, even being the most informative tree, since
a tree topology is the sparsest topology, the CLT is usu-
ally too simple to approximate the original distribution.
For this reason, the so-called sub-graph (SG) topology is
proposed in [13]. It is built departing from the CLT and
complementing it with more factors, also based on the al-
ready computed MI values.

Alternatively, the cliquey topology [13] takes the CLT
and converts pairs of independent factors into one single
factor by correlating them. However, it implies breaking
the homogeneity of factors creating factors that involve
more than two nodes. We propose to use only relative pose
measurement factors to maintain the pose-graph SLAM
nature.

Differently to the CLT-based methods, Eckenhoff et
al. [12] proposed an `1-regularized KLD minimization to
compute the topology that will encode the most informa-
tion

min
Λ̆

〈Λ̆,Σ〉 − ln |Λ̆|+ λ‖Λ̆‖1. (19)

Then, the topology is built setting relative measurement
factors according to the significant off-diagonal blocks of
the resulting Λ̆.

4.1. Topology population
We call population to the number of factors that are

contained in a sub-graph. Determining the topology pop-
ulation K is a compromise between sparsity and accuracy.
More populated topologies achieve better approximations,
however they undermine the sparsity of the resulting graph
and also solving the factor recovery becomes computation-
ally more expensive. While using tree topologies allows the
use of closed form factor recovery solution, complement-
ing it with some more factors (SG) leads to constrained
iterative optimization. Moreover, all mentioned iterative
factor recovery methods become slower the more popu-
lated the topologies are. While the gradient and Hessian
get larger for the IP and PQN methods, factor descent has
more factors to iterate over.

A policy to fix the population size of the topology
should be adopted. The topology must satisfy two con-
ditions: It has to connect all nodes, and there should be
no two factors connecting the same pair of nodes since
that would be redundant. Thus the topology population
K, i.e., the number of factors, for a given Markov blanket
of size n should be in the interval

K ∈
[
n− 1, n(n−1)

2

]
. (20)

In [13] the population is fixed proportional to that of
a spanning tree

K =
⌈
γ(n− 1)

⌉
, with γ ≥ 1. (21)

Then, while for small Markov blankets the result is quite
dense, for bigger ones it becomes very sparse.

In [12], a threshold is used to consider significant the
resulting off-diagonal values of (19). However, the mag-
nitude of the information matrix entries depends on the
noise of the original measurements, so the tuning of this
threshold is highly problem dependant.

A sparsification application has two opposite aims: spar-
sity and accuracy of the simplified graph. For this reason,
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we propose a new population policy proportional to the
total amount of possible factors,

K =

⌈
α
n(n− 1)

2

⌉
, with α ∈ (0, 1]. (22)

The parameter α fixes the fill-in ratio of the resulting in-
formation matrix. It is a more intuitive parameter to be
tuned by the end user depending on the application spec-
ifications. Also, given its quadratic form, the fill-in ra-
tio adapts better than a tree-proportional one to different
Markov blanket sizes.

Note that both tree-proportional and fill-in policies can
provide populations out of the allowed range (20). Then,
the resulting population of (21) and (22) must be clipped
to an admissible value.

4.2. Building populated topologies
As the formulation in Sec. 3 shows, the factors of a

populated topology affect each other in the computation of
the optimal solution. Therefore, it is important to remark
that building a sub-graph topology by incrementally tak-
ing the most informative factor does not have to produce
the most informative sub-graph topology. In consequence,
despite being the CLT the most informative tree, this does
not mean that the most informative sub-graph will contain
one or all the factors in the CLT. Unfortunately, optimally
solving this combinatorial problem would require signifi-
cant computational effort.

Three new alternative methods to build an informative
topology are proposed below: downdated mutual informa-
tion; expected KLD decrease; and off-diagonal block deter-
minant. Figure 3 shows an example of the different factor
recovery results, compared to the CLT and to a brute force
search of the optimal solution.

4.2.1. Downdated mutual information
As introduced early, mutual information (MI) between

pairs of nodes is a useful metric to indicate to what extent
a factor relating those nodes contributes to explain the
dense distribution. However, once the CLT is built, the MI
between the rest of pairs of nodes computed either using
(17) or (18) may not be a reliable metric about the amount
of information that each new factor contributes since the
already present CLT factors already explain some of these
correlations.

To tackle this, our first proposal is a variation of the
MI-based method to complement the CLT. First the CLT
is computed in the same manner, using the MI. After-
wards, instead of directly complementing the CLT with
the subsequent MI pairs of nodes, the MI of the remaining
pairs of nodes are recomputed taking into account the al-
ready added CLT factors. To do this, before recomputing
these MIs, we perform a downdate on the regularized co-
variance Σ̂ with the information of all CLT factors. Since
we are working in the covariance space, we can rely on the

Kalman equations to find an optimal value for the covari-
ance increment,

∆Σ̂ =
∑

j∈CLT

Σ̂J̆>j (Ω̆−1
j + J̆jΣ̂J̆>j )−1J̆jΣ̂. (23)

Note that equation (23) is obtained by substituting the
Kalman gain into the covariance update, for each factor of
the CLT, and then adding them all up. Contrary to the
Kalman update, however, this increment is added to the
covariance, removing information and thus constituting a
downdate, Σ̂← Σ̂ + ∆Σ̂.

To evaluate (23), all CLT factors information matrices
Ω̆j are required. Therefore and ideally, factor recovery
for all CLT factors should be performed. However, the
factor recovery solution for these factors depends on the
rest of the factors that will be finally added to the topology,
which have not been decided yet. To resolve the situation,
we resort to estimating the final CLT factors information
Ω̆j as they would be without complementing with more
factors. Hence, we approximate each Ω̆j with the closed
form factor recovery (6).

After downdating the CLT estimated contribution to
the regularized covariance Σ̂, the MI of the remaining
pairs of nodes can be computed again. Hence, we named
it downdated mutual information. It provides a measure
of where there is still information that has not been ex-
plained by the CLT. Finally, until the topology popula-
tion is achieved, new factors are added to the topology
corresponding to the pairs of nodes with most downdated
mutual information.

The more complementary factors are added to the topol-
ogy, the more unreliable the downdated mutual informa-
tion becomes, for the same reason as the initial MI values.
Then, the downdate could be performed once or recur-
sively after adding each new factor. However, in our ex-
perience, this does not contribute significantly to improve
the resulting topology compared to its computational cost.
Then, we only perform a single downdate after building the
CLT.

4.2.2. Expected KLD decrease
Taking profit of our FD method, we propose a new

topology building methodology. Departing from the CLT
topology, we incrementally build the topology by finding
the factor candidate that will decrease the KLD the most.
To compute this, for each remaining factor candidate we
compute an estimation of its factor recovery solution. Af-
terwards, the KLD decrease of including each factor in
the topology is computed. The candidate with the most
expected KLD decrease is chosen.

In order to compute the factor recovery solution esti-
mate, we perform one single FD instance, without iterat-
ing.

Despite a single instance of Factor Descent does not
provide the final factor recovery solution, it is enough to
evaluate how much new information can be provided by
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Dense CLT MI Downdated
MI

Expected
KLD Off-diagonal Optimal

0 0.659 0.173 0.106 0.0709 0.0379 0.0363

Figure 3: Example of factor recovery results using different topology building methods (top). In the middle row, the information pattern of
Λ̆ (or Λ in the first case), colors depict log absolute values. In the bottom row, the KLD of each factor recovery solution from the dense
distribution.

each factor candidate. This alternative requires several
evaluations of KLD and Factor Descent instances. How-
ever, note that the resulting topology already provides a
good initial guess for the factor recovery equivalent to the
first Factor Descent cycle.

4.2.3. Off-diagonal block determinant
Taking inspiration from the off-diagonal block initial-

ization (10), we propose a third method to build the topol-
ogy. The off-diagonal block entries of the dense informa-
tion matrix Λ correspond to different pair of nodes and
can only be explained by a factor between both nodes.
Therefore, this method adds a factor to the topology cor-
responding to the off-diagonal blocks with the most signifi-
cant values. To identify them, we make use of the absolute
determinant of each off-diagonal block of the information
Λ.

Note that in this case, since we are dealing with an
information matrix, adding factors does not affect the rest
of off-diagonal blocks. Thus, no downdating is needed.

Differently from the other methods proposed, this topol-
ogy is built from scratch using this measure instead of com-
plementing the CLT. For this reason one has to take care in
the end of producing a fully connected topology. To guar-
antee this, the first n − 1 pairs of factors are chosen such
that they build a spanning-tree. Analogously to the CLT
procedure, the pairs of nodes that do not create a cycle
with largest off-diagonal block absolute determinant, are
incrementally added to the topology. Once a tree topol-
ogy is reached, the no-cycle restriction is no longer applied
and other factors can be added until reaching the desired
population.

5. Results

In order to test the performance of the Factor Descent
sparsification method and the influence of the topology in

the factor recovery approximation, three different types of
experiments were run on a computer with an Intel Core
i7 − 4770 CPU (@3.40GHz x 8). To do so, the Factor
Descent and Interior Point MATLAB prototypes were re-
implemented in C++ and integrated with our own non-
linear least squares SLAM based on Ceres [23]. Based
in our preliminary results indicating its very poor conver-
gence, PQN was discarded from the comparison and it was
not implemented.

In order to make a fair comparison available, a spar-
sification dataset was built. This dataset contains several
sparsification problems (i.e. node marginalization dense
results µ,Λ) of different Markov blanket sizes. To build it,
an experiment was run for the Manhattan M3500 dataset
[24] storing the result of each marginalization (µ,Λ) of the
80% of the nodes.

As explained, the Interior Point method required a tun-
ing session for its outer loop parameters (initial log barrier
factor ρ0 and log barrier decrease factor β) and the inner
loop end condition (minimum gradient threshold ∇min).
An extensive search was performed solving all sparsifica-
tion dataset problems for several combinations of the three
parameters. We took the combination that did not di-
verge in any case and provided the fastest convergence.
For our specific experimental conditions, the found values
are ρ0 = 1, β = 0.5 and ∇min = 1.

5.1. Topology
The first experiment had the purpose of evaluating the

performance of the proposed methods to build the topol-
ogy and the new population policy. All proposed topology
methods were compared: decreased mutual information
(dMI), expected Kullback-Liebler divergence (eKLD) and
off-diagonal determinant (ODD). The comparison includes
also the state-of-art method based on mutual information
(MI) and the optimal (BEST) topology found using brute
force combinatorial search.
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Figure 4: Comparison of topology building methods using different fill-in population policies. The plots show KLD to the optimal factor
recovery solution (left) and computational cost (right) for different Markov blanket sizes. In dashed black, the best topology, shown as a
baseline. In dotted black, the solution of the best topology fixing the population proportional to the spanning tree population.

Then, for each dense distribution defined by µ,Λ stored
in the sparsification dataset, each method built a topology
using the same amount of factors. The amount of factors
were fixed with a fill-in population policy with α = 0.75.
The computational cost of the topology building process
and the KLD of the optimal factor recovery were stored.
The optimal factor recovery was computed using FD and
the off-diagonal blocks based initial guess (10). Neverthe-
less, IP could be used instead without any changes in the
experiment, since the KLD difference of the solution using
FD or IP is negligible, as demonstrated in our previous
work.

The optimal topology is obtained in a brute-force search,
for all possible topology combinations keeping the best set
of factors in terms of KLD to the original problem. This
alternative is only considered as a baseline for comparison
since it is computationally prohibitive.

Figure 4 (left) shows the mean KLD of the factor re-
covery using the different topology methods. The frame
to the right in the same figure shows the time required to
recover each topology. Note that the plot does not include
the time required for factor recovery.

The most computationally expensive method is the ex-
pected KLD since it requires a Factor Descent instance
and KLD evaluation in all remaining factors for each new
factor that is included in the topology. Despite its com-
putational cost, eKLD performs best in terms of KLD for
the largest Markov blanket sizes.

The dMI method improves significantly in terms of
KLD to the case of MI but slightly increasing its compu-
tational cost. It confirms that downdating the regularized
covariance avoids adding factors between nodes whose mu-
tual information is already explained by the CLT factors.

The ODD method is the fastest method given its sim-
plicity and provides topologies that can still accurately
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Figure 5: Mean KLD and variance (dashed line) of all three initial
guesses (identity matrix, off diagonal blocks, and first factor descent
cycle) as a function of the Markov blanket size for the Manhattan
experiment with 80% node removal.

approximate the original distribution.
The best topology found with brute force combinato-

rial search using the tree-proportional population policy
is plotted in dashed black. It can be observed how the
tree-proportional population policy becomes sparse for big
Markov blankets leading to higher KLD values.

5.2. Initial guess and convergence rate
Further experiments were designed in order to test the

convergence rate of different combinations of optimization
method and initial guess on several factor recovery prob-
lems.

The IP method using the identity matrix as initial
guess as proposed in [13] is compared with FD using all
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Figure 6: Mean KLD evolution of all factor recovery combinations
(methods and initial guesses), for problems with Markov blanket size
= 3 (top) and 8 (bottom) in the Manhattan experiment with 80% of
node removal.

three mentioned initial guesses: identity matrix (Id), off-
diagonal blocks (ODB) [21], and the first FD cycle (FFD)
of Sec. 3.2.

This experiment is also performed using the sparsifica-
tion dataset. For each stored problem, the same topology
is built using a fill-in population policy with α = 0.75. Af-
terwards, the factor recovery problem is solved using all
four method-initial guess combinations.

Figure 5 shows the mean and variance of the KLD of
each initial guess (i.e. before solving using any optimiza-
tion method) as a function of the Markov blanket size.
It can be observed how the identity matrix is the worst
initial guess (note the log scale in the y-axis). The ODB
initial guess is much closer to the optimal solution, how-
ever it becomes worse for bigger Markov blankets. Despite
that FFD is significantly worse than ODB in small Markov
blankets in terms of KLD, it achieves similar approxima-
tions in big problems.

Figure 6 shows the mean KLD evolution for all four
method-initial guess combinations, for Markov blankets of
size 3 (top) and 8 (bottom). Obviously, for larger Markov

blankets, the convergence of all methods is slower since a
bigger Hessian is inverted in IP and more factors should
be refined in FD. As explained, FD has a steeper initial
converge rate, and the availability of ODB initial guess
enhances the performance of FD compared with IP.

5.3. Application
In the two previous experiments, all compared meth-

ods solved the same sparsification problems stored in the
sparsification dataset. Conversely, in this last battery of
experiments, each compared method has its own SLAM
system and accumulates the sparsification approximations
along the whole experiment.

This was made on two different datasets: the Man-
hattan M3500 sequence and the Intel Research Lab se-
quence [24]. The Manhattan M3500 sequence is a large
and highly connected problem. Then, it has big Markov
blankets, meaning big sparsification problems. Contrarily,
the Intel Research Lab sequence has very few loop closures
and smaller Markov blankets.

Several combinations of population policy and topology
methods were compared. Both tree-proportional and fill-in
population policies were used with two different values of
their corresponding parameters γ and α, respectively. For
each four population combinations, four topology methods
are compared, MI, dMI, ODD and eKLD. Additionally, we
included in the comparative the CLT topology with closed
form factor and the MI topology for all populations combi-
nations with the IP factor recovery initialized by the iden-
tity matrix. Note that CLT topology is exactly equivalent
to the MI topology method using the tree-proportional
population policy with γ = 1.0.

For each combination of topology method and popula-
tion policy, an independent experiment was run. In all ex-
periments, the same 80% volume of nodes were marginal-
ized. Since node selection is out of the scope, we applied
the simple strategy of marginalizing and sparsifying 4 of
every 5 nodes. This is performed periodically every 100
nodes. Therefore, each experiment accumulates the spar-
sification approximations along the whole dataset showing
the differences induced exclusively by the mentioned dif-
ferences.

The original SLAM graph without removing any node
is taken as a baseline. The global KLD between each
method and the baseline is computed using (3) for the
whole SLAM problem. The same end conditions for all
factor recovery methods was used, KLD gradient norm
lower than 10−3 and a maximum time of 0.20 ms.

As in [13], factors involving previously removed nodes
were redirected to the closest existing node. This emulates
the effect of data association in real experiments: a loop
closure with a removed node will not be detected; instead,
the loop will be most probably closed with the closest ex-
isting node. In order not to distort the results, this was
also applied to the baseline graph.

The results of all experiments are listed in Table 1.
Global KLD and position and orientation RMSE of the
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Table 1: Comparison of different combinations of population policy, topology building method and factor recovery in different
datasets at 80% node reduction.

Population Topology Factor KLD RMSE Sparsification Topology Number
policy recovery position (m) orientation (rad) total time (s) total time (s) of factors

M
an

h
at
ta
n T
re
e-
pr
op

or
ti
on

al

γ = 1.0 MI Closed form 32.33 0.114 0.0055 0.08 0.058 1605

γ = 1.5

MI IP-Id 7.45 0.062 0.0032 6.11 0.070 2281
MI

FD-ODB

7.04 0.069 0.0031 5.54 0.071 2282
dMI 6.65 0.055 0.0029 5.92 0.117 2269
ODD 7.99 0.045 0.0027 5.42 0.072 2246
eKLD 7.18 0.039 0.0023 6.64 0.371 2270

γ = 2.0

MI IP-Id 2.92 0.025 0.0017 3.23 0.069 2624
MI

FD-ODB

2.63 0.034 0.0018 1.95 0.073 2624
dMI 2.24 0.024 0.0015 3.31 0.103 2623
ODD 1.94 0.056 0.0021 3.35 0.071 2625
eKLD 2.66 0.037 0.0016 7.07 0.393 2661

F
ill
-i
n

α = 0.75

MI IP-Id 3.24 0.105 0.0032 6.81 0.074 2482
MI

FD-ODB

2.97 0.119 0.0035 5.36 0.076 2483
dMI 2.58 0.020 0.0019 7.17 0.128 2482
ODD 3.14 0.047 0.0020 7.05 0.075 2528
eKLD 4.13 0.053 0.0021 14.36 0.562 2584

α = 0.85

MI IP-Id 1.13 0.034 0.0014 4.03 0.073 2895
MI

FD-ODB

0.85 0.046 0.0016 2.17 0.078 2895
dMI 0.73 0.025 0.0011 1.90 0.116 2898
ODD 0.76 0.031 0.0012 1.63 0.077 2931
eKLD 1.71 0.029 0.0014 6.51 0.686 2949

In
te
l

T
re
e-
pr
op

or
ti
on

al

γ = 1.0 MI Closed form 29.16 0.065 0.0105 0.03 0.016 366

γ = 1.5

MI IP-Id 10.45 0.052 0.0071 1.86 0.018 492
MI

FD-ODB

9.95 0.045 0.0063 1.96 0.017 492
dMI 8.92 0.033 0.0051 2.36 0.028 492
ODD 9.58 0.023 0.0050 1.77 0.017 488
eKLD 5.75 0.029 0.0024 2.57 0.074 507

γ = 2.0

MI IP-Id 5.46 0.024 0.0038 2.37 0.018 558
MI

FD-ODB

5.01 0.023 0.0036 2.99 0.018 558
dMI 4.72 0.029 0.0034 2.82 0.024 560
ODD 4.07 0.032 0.0025 2.82 0.018 564
eKLD 3.15 0.031 0.0028 3.78 0.070 577

F
ill
-i
n

α = 0.75

MI IP-Id 4.91 0.044 0.0047 2.98 0.019 544
MI

FD-ODB

4.51 0.035 0.0039 3.05 0.020 545
dMI 3.52 0.022 0.0024 3.90 0.034 546
ODD 3.51 0.030 0.0024 3.41 0.019 547
eKLD 3.71 0.014 0.0019 6.20 0.114 554

α = 0.85

MI IP-Id 2.74 0.015 0.0018 1.98 0.019 610
MI

FD-ODB

2.20 0.016 0.0015 2.17 0.019 610
dMI 2.06 0.016 0.0017 3.14 0.028 611
ODD 2.09 0.021 0.0012 3.29 0.019 611
eKLD 2.18 0.022 0.0016 3.89 0.110 617

final graph w.r.t. the baseline were computed. Addition-
ally, the table contains the total computational time spent
on sparsification and topology building, and the amount
of factors of the final graph.

As expected, the closed form factor recovery is the
fastest sparsification alternative and the one that produces
the sparsest final graph. However, the simplicity of the
topology produces worse approximations leading to higher
global KLD and RMSE values. In contrast, for the same
population policy, the most populated options (γ = 2.0, α =
0.85) produce much more accurate approximations both
in terms of KLD and RMSE. Indeed, as repeatedly stated,
more populated topologies can better approximate dense

distributions.
For the same topology, both IP and FD achieve similar

KLD and RMSE values. However, IP becomes slower in
the Manhattan dataset due to the larger Markov blankets.

Comparing dMI and MI, one can see how downdat-
ing the regularized covariance always produces a topology
that is able to encode more information producing bet-
ter approximations. While in some cases, eKLD produces
informative topologies that can better encode the dense
information, in some cases it produces worse approxima-
tions and its computational cost is significantly higher than
the rest of topology methods. While ODD outperforms
MI in terms of KLD for the most populated topologies
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(γ = 2.0 and α = 0.85), it produces similar or worse re-
sults in sparser cases. ODD is in some cases the fastest
method competing with MI. This is because both MI and
ODD only evaluate the information of all factor candidate
once.

Obviously, for a given population policy option, all four
topology methods produce similarly sparse final graphs.
Differences are due to concatenating sparsification pro-
cesses. As we observed in the first results, the fill-in popu-
lation policy produces more populated topologies in big
Markov blankets. Then, to achieve similar approxima-
tions in big Markov blanket problems, a higher value of
γ is needed for the tree-proportional policy leading to too
much populated topologies in small problems. For this
reason, the fill-in policy with α = 0.75 achieves similar
KLD and RMSE than tree-proportional with γ = 2 using
less factors.

The benefits of performing marginalization and sparsi-
fication instead of solving the entire graph highly depend
on the application: the duration of the experiment, com-
putational resources, etc. To provide an estimate of such
benefits, we compare the execution of SLAM sessions with
and without applying the marginalization and sparsifica-
tion strategies discussed in this paper. Table 2 compares
the CPU time required to solve the SLAM problem in
each of the experiments compared in Table 1. That is, the
computational cost of solving the whole SLAM problem
versus the time needed to solve the reduced versions at
20% the original size with the different population policy
and topology methods.

In all the experiments, the SLAM problem was solved
each time a node was added, using our solver based on
Ceres (batch algorithm) performing one iteration of the
NLS problem (2), and marginalization and sparsification
was performed periodically. On average, the reduced SLAM
problems were solved 2.4 to 4.7 times faster than the whole
SLAM problem depending on the topology population used
in the sparsification. In our implementation, the accumu-
lated time saved ranged from 93s to 117s (a decrease of
60% to 77%) for the Manhattan world, and from 7.6s to
8.2s (a decrease of 70% to 78%) for the Intel map. The
more populated the topology, the lower the time savings
in computing a solution, but the closer the approximation
to that of the original problem.

6. Conclusions and future work

Marginalization and sparsification are valuable tools to
reduce the size of SLAM problems without undermining
the accuracy and efficiency of the solution. This proce-
dure can be understood as a time investment. A small
computational time is spent once to reduce the problem
size, and the benefits (time savings) are obtained each time
the SLAM problem is solved. Furthermore, the marginal-
ization and sparsification of nodes can be distributed along
the experiment and even postponed depending on resources
availability.

Table 2: Computational times for solving the SLAM problem for
the original and the sparsified graphs (80% of node reduction).

SLAM % of solving
solving time original graph

M
an

h
at
ta
n

Original graph 0.0558 s 100%

Tree-prop.
γ = 1.0 0.0139 s 25.0 %
γ = 1.5 0.0170–0.0190 s 30.4–34.0 %
γ = 2.0 0.0195–0.0221 s 35.0–39.7 %

Fill-in
α = 0.75 0.0199–0.0224 s 35.7–40.1 %
α = 0.85 0.0225–0.0238 s 40.3–42.7 %

In
te
l

Original graph 0.0127 s 100%

Tree-prop.
γ = 1.0 0.00277 s 21,7 %
γ = 1.5 0.00329–0.00361 s 25.7–28.2 %
γ = 2.0 0.00368–0.00404 s 28.8–31.6 %

Fill-in
α = 0.75 0.00356–0.00396 s 27.8–30.9 %
α = 0.85 0.00384–0.00408 s 30.1–31.9 %

Deciding the topology of the new factors to approxi-
mate the original distribution is a trade off between accu-
racy and computational cost. For the simplest topologies,
e.g., spanning tree, factor recovery has a closed form so-
lution but the approximations are less accurate. On the
contrary, more populated topologies prevent the use of a
closed form, thus iterative optimization is required to solve
for factor recovery. Furthermore, the more populated the
topology is, the more computationally expensive the fac-
tor recovery becomes, regardless of which iterative factor
recovery method is used. In exchange, the more populated
the topology is, the better the original graph information
can be encoded, reaching better approximations.

We described the Factor Descent optimization method
for factor recovery and its application to the pose-graph
SLAM case. Factor Descent achieves a KLD-optimal fac-
tor recovery solution with less computational cost than
state-of-the-art methods.

Furthermore, three new methods for building popu-
lated pose-graph topologies and a new policy to determine
the topology population are proposed, outperforming the
state-of-art approaches.

In future work we consider the application of factor
descent and new topologies for different SLAM setups such
as visual-inertial systems.

7. References

[1] J. Vallvé, J. Solà, J. Andrade-Cetto, Factor descent optimiza-
tion for sparsification in graph slam, in: Proc. Eur. Conf. Mobile
Robots, IEEE, Paris, 2017, pp. 1–6.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,
F. Dellaert, iSAM2: Incremental smoothing and mapping using
the Bayes tree, Int. J. Robotics Res. 31 (2) (2011) 216–235.

[3] V. Ila, L. Polok, M. Solony, P. Svoboda, SLAM++-A highly
efficient and temporally scalable incremental SLAM framework,
Int. J. Robotics Res. 36 (2) (2017) 210–230.

[4] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, P. Furgale,
Keyframe-based visual-inertial odometry using nonlinear opti-
mization, Int. J. Robotics Res. 34 (3) (2015) 314–334.

12



[5] M. Li, A. I. Mourikis, High-precision, consistent EKF-based
visual-inertial odometry, Int. J. Robotics Res. 32 (6) (2013) 690–
711.

[6] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, C. Hertzberg,
Hierarchical optimization on manifolds for online 2D and 3D
mapping, in: Proc. IEEE Int. Conf. Robotics Autom., Anchor-
age, 2010, pp. 273–287.

[7] H. Johannsson, M. Kaess, M. Fallon, J. Leonard, Temporally
scalable visual SLAM using a reduced pose graph, in: Proc.
IEEE Int. Conf. Robotics Autom., Karlsruhe, 2013, pp. 54–61.

[8] V. Ila, J. M. Porta, J. Andrade-Cetto, Information-based com-
pact Pose SLAM, IEEE Trans. Robotics 26 (1) (2010) 78–93.

[9] S. Choudhary, V. Indelman, H. Christensen, F. Dellaert,
Information-based reduced landmark SLAM, in: Proc. IEEE
Int. Conf. Robotics Autom., Seattle, 2015, pp. 4620–4627.

[10] H. Kretzschmar, C. Stachniss, Information-theoretic compres-
sion of pose graphs for laser-based SLAM, Int. J. Robotics Res.
31 (11) (2012) 1219–1230.

[11] N. Carlevaris-Bianco, M. Kaess, R. M. Eustice, Generic node
removal for factor-graph SLAM, IEEE Trans. Robotics 30 (6)
(2014) 1371–1385.

[12] K. Eckenhoff, L. Paull, G. Huang, Decoupled, consistent node
removal and edge sparsification for graph-based SLAM, in:
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Daejeon, 2016,
pp. 3275–3282.

[13] M. Mazuran, W. Burgard, G. D. Tipaldi, Nonlinear factor re-
covery for long-term SLAM, Int. J. Robotics Res. 35 (1-3) (2016)
50–72.

[14] J. Vallvé, J. Solà, J. Andrade-Cetto, Graph SLAM sparsification
with populated topologies using factor descent optimization,
IEEE Robotics and Automation Letters 3 (2) (2018) 1322–1329.

[15] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial
relationships in robotics, in: Autonomous Robot Vehicles, 1990,
pp. 167–193.

[16] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, W. Bur-
gard, g2o: A general framework for graph optimization, in:
Proc. IEEE Int. Conf. Robotics Autom., Shanghai, 2011, pp.
3607–3613.

[17] L. Polok, V. Ila, M. Solony, P. Smrz, P. Zemcik, Incremen-
tal block Cholesky factorization for nonlinear least squares in
robotics, in: Robotics: Science and Systems, Berlin, 2013.

[18] F. Dellaert, M. Kaess, Square root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing, Int.
J. Robotics Res. 25 (12) (2006) 1181–1204.

[19] M. Kaess, A. Ranganathan, F. Dellaert, iSAM: Incremental
smoothing and mapping, IEEE Trans. Robotics 24 (6) (2008)
1365–1378.

[20] M. Schmidt, E. Berg, M. Friedlander, K. Murphy, Optimiz-
ing costly functions with simple constraints: A limited-memory
projected quasi-newton algorithm, in: Artificial Intelligence and
Statistics, 2009, pp. 456–463.

[21] M. Mazuran, G. D. Tipaldi, L. Spinello, W. Burgard, Nonlin-
ear graph sparsification for SLAM, in: Robotics: Science and
Systems, Berkeley, 2014, pp. 1–8.

[22] N. J. Higham, Computing a nearest symmetric positive semidef-
inite matrix, Linear algebra and its applications 103 (1988) 103–
118.

[23] S. Agarwal, K. Mierle, Others, Ceres solver, http://ceres-solver.
org.

[24] L. Carlone, http://www.lucacarlone.com/index.php/resources/
datasets.

13


