74 research outputs found

    Information-Theoretic Analysis of Underwater Acoustic OFDM Systems in Highly Dispersive Channels

    Get PDF

    Achievable Rates of Underwater Acoustic OFDM Systems over Highly Dispersive Channels

    No full text
    International audienceUnlike the capacity of other channels, the capacity of the shallow water UAC channel has been seldomly addressed. Motivated by recent results in information theory, this paper investigates achievable rates of underwater acoustic OFDM systems. We consider channels where time and frequency dispersion is high enough that (i) neither the transmitter nor the receiver can have a priori knowledge of the channel state information, and (ii) intersymbol/intercarrier interference (ISI/ICI) cannot be neglected in the information theoretic treatment

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited

    A Parametric Replay-Based Framework for Underwater Acoustic Communication Channel Simulation

    No full text
    International audienceThis paper lays the foundation of an underwater acoustic channel simulation methodology that is halfway between parametric modeling and stochastic replay of at-sea measurements of channel impulse responses. The motivation behind this approach is to extend the scope of use of replay-based methods by allowing some parameterization of the channel properties while complying with some level of realism. Based on a relative entropy minimization between the original channel impulse response and the simulated one, the idea is to deliberately distort the original channel statistics in order to meet some specified constraints

    Doppler Shift Compensation Schemes in VANETs

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationThe use of multicarrier techniques has allowed the rapid expansion of broadband wireless communications. Orthogonal frequency division multiplexing (OFDM) has been the most dominant technology in the past decade. It has been deployed in both indoor Wi-Fi and cellular environments, and has been researched for use in underwater acoustic channels. Recent works in wireless communications include the extension of OFDM to multiple access applications. Multiple access OFDM, or orthogonal frequency division multiple access (OFDMA), has been implemented in the third generation partnership project (3GPP) long- term evolution (LTE) downlink. In order to reduce the intercarrier interference (ICI) when user's synchronization is relaxed, filterbank multicarrier communication (FBMC) systems have been proposed. The first contribution made in this dissertation is a novel study of the classical FBMC systems that were presented in 1960s. We note that two distinct methods were presented then. We show that these methods are closely related through a modulation and a time/frequency scaling step. For cellular channels, OFDM also has the weakness of relatively large peak-to-average power ratios (PAPR). A special form of OFDM for the uplink of multiple access networks, called single carrier frequency division multiple access (SC-FDMA), has been developed to mitigate this issue. In this regard, this dissertation makes two contributions. First, we develop an optimization method for designing an effective precoding method for SC-FDMA systems. Second, we show how an equivalent to SC-FDMA can be developed for systems that are based on FBMC. In underwater acoustic communications applications, researchers are investigating the use of multicarrier communication systems like OFDM in underwater channels. The movement of the communicating vehicles scales the received signal along the time axis, which is often referred to as Doppler scaling. To undo the signal degradation, researchers have investigated methods to estimate the Doppler scaling factor and restore the original signal using resampling. We investigate a method called nonuniform fast Fourier transform (NUFFT) and apply that to increase the precision in the detection and correction of the Doppler scaling factor. NUFFT is applied to both OFDM and FBMC and its performance over the experimental data obtained from at sea experiments is investigated

    Cooperative underwater acoustic communications

    Get PDF
    This article presents a contemporary overview of underwater acoustic communication (UWAC) and investigates physical layer aspects on cooperative transmission techniques for future UWAC systems. Taking advantage of the broadcast nature of wireless transmission, cooperative communication realizes spatial diversity advantages in a distributed manner. The current literature on cooperative communication focuses on terrestrial wireless systems at radio frequencies with sporadic results on cooperative UWAC. In this article, we summarize initial results on cooperative UWAC and investigate the performance of a multicarrier cooperative UWAC considering the inherent unique characteristics of the underwater channel. Our simulation results demonstrate the superiority of cooperative UWAC systems over their point-to-point counterparts. © 1979-2012 IEEE

    Optical wireless communication systems

    Get PDF
    The emerging field of optical wireless communication (OWC) systems is seen as potential complementary technology to the radio frequency wireless communications in certain applications. It is deemed as a possible technology in the future 5th Generation communication networks to address the spectrum congestion and improve the system's capacity. More research and developments in OWC is still needed in order for it to be adopted in current and future communication systems. This special issue brings together research papers on OWC covering free space optic, visible communications and ultraviolet communications

    Performance evaluation of T-transform based OFDM in underwater acoustic channels

    Get PDF
    PhD ThesisRecently there has been an increasing trend towards the implementation of orthogonal frequency division multiplexing (OFDM) based multicarrier communication systems in underwater acoustic communications. By dividing the available bandwidth into multiple sub-bands, OFDM systems enable reliable transmission over long range dispersive channels. However OFDM is prone to impairments such as severe frequency selective fading channels, motioned induced Doppler shift and high peak-to-average-power ratio (PAPR). In order to fully exploit the potential of OFDM in UWA channels, those issues have received a great deal of attention in recent research. With the aim of improving OFDM's performance in UWA channels, a T-transformed based OFDM system is introduced using a low computational complexity T-transform that combines the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT) into a single fast orthonormal unitary transform. Through real-world experiment, performance comparison between the proposed T-OFDM system and conventional OFDM system revealed that T-OFDM performs better than OFDM with high code rate in frequency selective fading channels. Furthermore, investigation of different equalizer techniques have shown that the limitation of ZF equalizers affect the T-OFDM more (one bad equalizer coefficient affects all symbols) and so developed a modified ZF equalizer with outlier detection which provides major performance gain without excessive computation load. Lastly, investigation of PAPR reduction methods delineated that T-OFDM has inherently lower PAPR and it is also far more tolerant of distortions introduced by the simple clipping method. As a result, lower PAPR can be achieved with minimal overhead and so outperforming OFDM for a given power limit at the transmitter
    • …
    corecore