248 research outputs found

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Using a mobile robot for hazardous substances detection in a factory environment

    Get PDF
    Dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáIndustries that work with toxic materials need extensive security protocols to avoid accidents. Instead of having fixed sensors, the concept of assembling the sensors on a mobile robot that performs the scanning through a defined path is cheaper, configurable and adaptable. This work describes a mobile robot, equipped with several gas sensors and LIDAR, that follows a trajectory based on waypoints, simulating a working Autonomous Guided Vehicle (AGV). At the same time, the robot keeps measuring for toxic gases. In other words, the robot follows the trajectory while the gas concentration is under a defined value. Otherwise, it starts the autonomous leakage search based on a search algorithm that allows to find the leakage position avoiding obstacles in real time. The proposed methodology is verified in simulation based on a model of the real robot. Therefore, three path plannings were developed and their performance compared. A Light Detection And Ranging (LIDAR) device was integrated with the path planning to propose an obstacle avoidance system with a dilation technique to enlarge the obstacles, thus, considering the robot’s dimensions. Moreover, if needed, the robot can be remotely operated with visual feedback. In addition, a controller was made for the robot. Gas sensors were embedded in the robot with Finite Impulse Response (FIR) filter to process the data. A low cost AGV was developed to compete in Festival Nacional de Robótica (Portuguese Robotics Open) 2019 - Gondomar, describing the robot’s control and software solution to the competition.As indústrias que trabalham com materiais tóxicos necessitam de extensos protocolos de segurança para evitar acidentes. Ao invés de ter sensores estáticos, o conceito de instalar sensores em um robô móvel que inspeciona através de um caminho definido é mais barato, configurável e adaptável. O presente trabalho descreve um robô móvel, equipado com vários sensores de gás e LIDAR, que percorre uma trajetória baseada em pontos de controle, simulando um AGV em trabalho. Em simultâneo são efetuadas medidas de gases tóxicos. Em outras palavras, o robô segue uma trajetória enquanto a concentração de gás está abaixo de um valor definido. Caso contrário, inicia uma busca autônoma de vazamento de gás com um algoritmo de busca que permite achar a posição do gás evitando os obstáculos em tempo real. A metodologia proposta é verificada em simulação. Três algoritmos de planejamento de caminho foram desenvolvidos e suas performances comparadas. Um LIDAR foi integrado com o planejamento de caminho para propôr um sistema de evitar obstáculos. Além disso, o robô pode ser operado remotamente com auxílio visual. Foi feito um controlador para o robô. Sensores de gás foram embarcados no robô com um filtro de resposta ao impulso finita para processar as informações. Um veículo guiado automático de baixo custo foi desenvolvido para competir no Festival Nacional de Robótica 2019 - Gondomar. O controle do veículo foi descrito com o programa de solução para a competição

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    Cooperative simultaneous localization and mapping framework

    Get PDF
    This research work is a contribution to develop a framework for cooperative simultaneous localization and mapping with multiple heterogeneous mobile robots. The presented research work contributes in two aspects of a team of heterogeneous mobile robots for cooperative map building. First it provides a mathematical framework for cooperative localization and geometric features based map building. Secondly it proposes a software framework for controlling, configuring and managing a team of heterogeneous mobile robots. Since mapping and pose estimation are very closely related to each other, therefore, two novel sensor data fusion techniques are also presented, furthermore, various state of the art localization and mapping techniques and mobile robot software frameworks are discussed for an overview of the current development in this research area. The mathematical cooperative SLAM formulation probabilistically solves the problem of estimating the robots state and the environment features using Kalman filter. The software framework is an effort toward the ongoing standardization process of the cooperative mobile robotics systems. To enhance the efficiency of a cooperative mobile robot system the proposed software framework addresses various issues such as different communication protocol structure for mobile robots, different sets of sensors for mobile robots, sensor data organization from different robots, monitoring and controlling robots from a single interface. The present work can be applied to number of applications in various domains where a priori map of the environment is not available and it is not possible to use global positioning devices to find the accurate position of the mobile robot. Therefore the mobile robot(s) has to rely on building the map of its environment and using the same map to find its position and orientation relative to the environment. The exemplary areas for applying the proposed SLAM technique are Indoor environments such as warehouse management, factory floors for parts assembly line, mapping abandoned tunnels, disaster struck environment which are missing maps, under see pipeline inspection, ocean surveying, military applications, planet exploration and many others. These applications are some of many and are only limited by the imagination.Diese Forschungsarbeit ist ein Beitrag zur Entwicklung eines Framework für kooperatives SLAM mit heterogenen, mobilen Robotern. Die präsentierte Forschungsarbeit trägt in zwei Aspekten in einem Team von heterogenen, mobilen Robotern bei. Erstens stellt es einen mathematischen Framework für kooperative Lokalisierung und geometrisch basierende Kartengenerierung bereit. Zweitens schlägt es einen Softwareframework zur Steuerung, Konfiguration und Management einer Gruppe von heterogenen mobilen Robotern vor. Da Kartenerstellung und Poseschätzung miteinander stark verbunden sind, werden zwei neuartige Techniken zur Sensordatenfusion präsentiert. Weiterhin werden zum Stand der Technik verschiedene Techniken zur Lokalisierung und Kartengenerierung sowie Softwareframeworks für die mobile Robotik diskutiert um einen Überblick über die aktuelle Entwicklung in diesem Forschungsbereich zu geben. Die mathematische Formulierung des SLAM Problems löst das Problem der Roboterzustandsschätzung und der Umgebungmerkmale durch Benutzung eines Kalman filters. Der Softwareframework ist ein Beitrag zum anhaltenden Standardisierungsprozess von kooperativen, mobilen Robotern. Um die Effektivität eines kooperativen mobilen Robotersystems zu verbessern enthält der vorgeschlagene Softwareframework die Möglichkeit die Kommunikationsprotokolle flexibel zu ändern, mit verschiedenen Sensoren zu arbeiten sowie die Möglichkeit die Sensordaten verschieden zu organisieren und verschiedene Roboter von einem Interface aus zu steuern. Die präsentierte Arbeit kann in einer Vielzahl von Applikationen in verschiedenen Domänen benutzt werden, wo eine Karte der Umgebung nicht vorhanden ist und es nicht möglich ist GPS Daten zur präzisen Lokalisierung eines mobilen Roboters zu nutzen. Daher müssen die mobilen Roboter sich auf die selbsterstellte Karte verlassen und die selbe Karte zur Bestimmung von Position und Orientierung relativ zur Umgebung verwenden. Die exemplarischen Anwendungen der vorgeschlagenen SLAM Technik sind Innenraumumgebungen wie Lagermanagement, Fabrikgebäude mit Produktionsstätten, verlassene Tunnel, Katastrophengebiete ohne aktuelle Karte, Inspektion von Unterseepipelines, Ozeanvermessung, Militäranwendungen, Planetenerforschung und viele andere. Diese Anwendungen sind einige von vielen und sind nur durch die Vorstellungskraft limitiert

    Дигитално управление на технологични процеси в говедовъдни ферми. Oбзор

    Get PDF
    The article evaluates the development of the Internet of Things (I₀T), digital technologies, various types of biological and biometric sensors and blockchain technologies in dairy and beef cattle breeding. The peculiarities, tendencies and perspectives for digital transformation and digitalization of the cattle farms and complexes have been studied. Precise technologies (PFL) make it possible to collect a sufficient cloud of data in accordance with the physiological and technological requirements of the various categories of animals of the species Bos taurus and the welfare of cattle. Biological and biometric sensors help farmers to increase the quantity and improve the quality of their products. Blockchain technologies present cattle breeding in detail, as transparent, stable and predictable in the eyes of the consumer. Cattle breeding is a sub-sector of animal husbandry in which there is no integration, but flexible digital management is applied.В статията е направена оценка на развитието на Интернет на нещата(I₀T), цифрови технологии, различни видове биологични и биометрични сензори и блокчеин технологии в млечното и месодайно говедовъдство. Проучени да особеностите, тенденциите и перспективите за цифрова трансформация и дигитализация на говедовъдните ферми и комплекси. Прецизните технологии (PFL) позволяват да се събере достатъчен облак от данни, съобразен с физиологичните и технологичните изисквания на различните категории животни на вида Bos taurus и хуманно отношение към говедата. Биологичните и биометрични сензори съдействат на фермерите да увеличат количеството и да усъвършенстват качеството на произведената продукция. Блокчейн технологиите представят детайлно говедовъдството, като прозрачно, стабилно и предвидимо в очите на потребителя. Говедовъдството е подотрасъл на животновъдството, в който липсва интеграция, но се прилага гъвкаво дигитално управление

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies
    corecore