31 research outputs found
Considerations on the Adoption of Named Data Networking (NDN) in Tactical Environments
Mobile military networks are uniquely challenging to build and maintain, because of their wireless nature and the unfriendliness of the environment, resulting in unreliable and capacity limited performance. Currently, most tactical networks implement TCP/IP, which was designed for fairly stable, infrastructure-based environments, and requires sophisticated and often application-specific extensions to address the challenges of the communication scenario. Information Centric Networking (ICN) is a clean slate networking approach that does not depend on stable connections to retrieve information and naturally provides support for node mobility and delay/disruption tolerant communications - as a result it is particularly interesting for tactical applications. However, despite ICN seems to offer some structural benefits for tactical environments over TCP/IP, a number of challenges including naming, security, performance tuning, etc., still need to be addressed for practical adoption. This document, prepared within NATO IST-161 RTG, evaluates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption
Performance Evaluation of Caching Policies in NDN - an ICN Architecture
Information Centric Networking (ICN) advocates the philosophy of accessing
the content independent of its location. Owing to this location independence in
ICN, the routers en-route can be enabled to cache the content to serve the
future requests for the same content locally. Several ICN architectures have
been proposed in the literature along with various caching algorithms for
caching and cache replacement at the routers en-route. The aim of this paper is
to critically evaluate various caching policies using Named Data Networking
(NDN), an ICN architecture proposed in literature. We have presented the
performance comparison of different caching policies naming First In First Out
(FIFO), Least Recently Used (LRU), and Universal Caching (UC) in two network
models; Watts-Strogatz (WS) model (suitable for dense short link networks such
as sensor networks) and Sprint topology (better suited for large Internet
Service Provider (ISP) networks) using ndnSIM, an ns3 based discrete event
simulator for NDN architecture. Our results indicate that UC outperforms other
caching policies such as LRU and FIFO and makes UC a better alternative for
both sensor networks and ISP networks
Security for the Industrial IoT: The Case for Information-Centric Networking
Industrial production plants traditionally include sensors for monitoring or
documenting processes, and actuators for enabling corrective actions in cases
of misconfigurations, failures, or dangerous events. With the advent of the
IoT, embedded controllers link these `things' to local networks that often are
of low power wireless kind, and are interconnected via gateways to some cloud
from the global Internet. Inter-networked sensors and actuators in the
industrial IoT form a critical subsystem while frequently operating under harsh
conditions. It is currently under debate how to approach inter-networking of
critical industrial components in a safe and secure manner.
In this paper, we analyze the potentials of ICN for providing a secure and
robust networking solution for constrained controllers in industrial safety
systems. We showcase hazardous gas sensing in widespread industrial
environments, such as refineries, and compare with IP-based approaches such as
CoAP and MQTT. Our findings indicate that the content-centric security model,
as well as enhanced DoS resistance are important arguments for deploying
Information Centric Networking in a safety-critical industrial IoT. Evaluation
of the crypto efforts on the RIOT operating system for content security reveal
its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201
HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things
This paper revisits NDN deployment in the IoT with a special focus on the
interaction of sensors and actuators. Such scenarios require high
responsiveness and limited control state at the constrained nodes. We argue
that the NDN request-response pattern which prevents data push is vital for IoT
networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme
for typical IoT scenarios that targets IoT networks consisting of hundreds of
resource constrained devices at intermittent connectivity. Our approach limits
the FIB tables to a minimum and naturally supports mobility, temporary network
partitioning, data aggregation and near real-time reactivity. We experimentally
evaluate the protocol in a real-world deployment using the IoT-Lab testbed with
varying numbers of constrained devices, each wirelessly interconnected via IEEE
802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support
experiments using various single- and multi-hop scenarios
The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions
In recent years, the current Internet has experienced an unexpected paradigm
shift in the usage model, which has pushed researchers towards the design of
the Information-Centric Networking (ICN) paradigm as a possible replacement of
the existing architecture. Even though both Academia and Industry have
investigated the feasibility and effectiveness of ICN, achieving the complete
replacement of the Internet Protocol (IP) is a challenging task.
Some research groups have already addressed the coexistence by designing
their own architectures, but none of those is the final solution to move
towards the future Internet considering the unaltered state of the networking.
To design such architecture, the research community needs now a comprehensive
overview of the existing solutions that have so far addressed the coexistence.
The purpose of this paper is to reach this goal by providing the first
comprehensive survey and classification of the coexistence architectures
according to their features (i.e., deployment approach, deployment scenarios,
addressed coexistence requirements and architecture or technology used) and
evaluation parameters (i.e., challenges emerging during the deployment and the
runtime behaviour of an architecture). We believe that this paper will finally
fill the gap required for moving towards the design of the final coexistence
architecture.Comment: 23 pages, 16 figures, 3 table
Decoupling Information and Connectivity in Information-Centric Networking
This paper introduces and demonstrates the concept of Information-Centric Transport as a mechanism for cleanly decoupling the information plane from the connectivity plane in Information-Centric Networking (ICN) architectures, such as NDN and CICN. These are coupled in today\u27s incarnations of NDN and CICN through the use of forwarding strategy, which is the architectural component for deciding how to forward packets in the presence of either multiple next-hop options or dynamic feedback. As presently designed, forwarding strategy is not sustainable: application developers can only confidently specify strategy if they understand connectivity details, while network node operators can only confidently assign strategies if they understand application expectations. We show how Information-Centric Transport allows applications to operate on the information plane, concerned only with the namespace and identities relevant to the application, leaving network node operators free to implement ICT services in whatever way makes sense for the connectivity that they manage. To illustrate ICT, we introduce sync*, a synchronization service, and show how a) its use enables applications to operate well regardless of connectivity details and b) its implementation can be completely managed by network operators with no knowledge of application details
Where is in a Name? A Survey of Mobility in Information-Centric Networks
Host mobility has been a long standing challenge in the current Internet architecture. Huge proportions of traffic are now attributed to mobile devices [1]; however, despite this promi-nence, mobility often remains a badly handled concept. Some have recently argued that the main reason for this lies in its choice of what to name [2]. The Internet Protocol (IP
Social-aware Forwarding in Opportunistic Wireless Networks: Content Awareness or Obliviousness?
With the current host-based Internet architecture, networking faces
limitations in dynamic scenarios, due mostly to host mobility. The ICN paradigm
mitigates such problems by releasing the need to have an end-to-end transport
session established during the life time of the data transfer. Moreover, the
ICN concept solves the mismatch between the Internet architecture and the way
users would like to use it: currently a user needs to know the topological
location of the hosts involved in the communication when he/she just wants to
get the data, independently of its location. Most of the research efforts aim
to come up with a stable ICN architecture in fixed networks, with few examples
in ad-hoc and vehicular networks. However, the Internet is becoming more
pervasive with powerful personal mobile devices that allow users to form
dynamic networks in which content may be exchanged at all times and with low
cost. Such pervasive wireless networks suffer with different levels of
disruption given user mobility, physical obstacles, lack of cooperation,
intermittent connectivity, among others. This paper discusses the combination
of content knowledge (e.g., type and interested parties) and social awareness
within opportunistic networking as to drive the deployment of ICN solutions in
disruptive networking scenarios. With this goal in mind, we go over few
examples of social-aware content-based opportunistic networking proposals that
consider social awareness to allow content dissemination independently of the
level of network disruption. To show how much content knowledge can improve
social-based solutions, we illustrate by means of simulation some
content-oblivious/oriented proposals in scenarios based on synthetic mobility
patterns and real human traces.Comment: 7 pages, 6 figure
NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT
This paper takes a comprehensive view on the protocol stacks that are under
debate for a future Internet of Things (IoT). It addresses the holistic
question of which solution is beneficial for common IoT use cases. We deploy
NDN and the two popular IP-based application protocols, CoAP and MQTT, in its
different variants on a large-scale IoT testbed in single- and multi-hop
scenarios. We analyze the use cases of scheduled periodic and unscheduled
traffic under varying loads. Our findings indicate that (a) NDN admits the most
resource-friendly deployment on nodes, and (b) shows superior robustness and
resilience in multi-hop scenarios, while (c) the IP protocols operate at less
overhead and higher speed in single-hop deployments. Most strikingly we find
that NDN-based protocols are in significantly better flow balance than the
UDP-based IP protocols and require less corrective actions
An efficient pending interest table control management in named data network
Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming
Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and
performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research
methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring,
controlling and managing the PIT contents for Internet architecture of the future