775 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Active vision for dexterous grasping of novel objects

    Get PDF
    How should a robot direct active vision so as to ensure reliable grasping? We answer this question for the case of dexterous grasping of unfamiliar objects. By dexterous grasping we simply mean grasping by any hand with more than two fingers, such that the robot has some choice about where to place each finger. Such grasps typically fail in one of two ways, either unmodeled objects in the scene cause collisions or object reconstruction is insufficient to ensure that the grasp points provide a stable force closure. These problems can be solved more easily if active sensing is guided by the anticipated actions. Our approach has three stages. First, we take a single view and generate candidate grasps from the resulting partial object reconstruction. Second, we drive the active vision approach to maximise surface reconstruction quality around the planned contact points. During this phase, the anticipated grasp is continually refined. Third, we direct gaze to improve the safety of the planned reach to grasp trajectory. We show, on a dexterous manipulator with a camera on the wrist, that our approach (80.4% success rate) outperforms a randomised algorithm (64.3% success rate).Comment: IROS 2016. Supplementary video: https://youtu.be/uBSOO6tMzw

    On Foveated Gaze Control and Combined Gaze and Locomotion Planning

    Get PDF
    This chapter presents recent research results of our laboratory in the area of vision an

    Development of new intelligent autonomous robotic assistant for hospitals

    Get PDF
    Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.Open Acces

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop

    Multi-focal Vision and Gaze Control Improve Navigation Performance

    Get PDF

    Gaze-contingent perceptually enabled interactions in the operating theatre.

    Get PDF
    PURPOSE: Improved surgical outcome and patient safety in the operating theatre are constant challenges. We hypothesise that a framework that collects and utilises information -especially perceptually enabled ones-from multiple sources, could help to meet the above goals. This paper presents some core functionalities of a wider low-cost framework under development that allows perceptually enabled interaction within the surgical environment. METHODS: The synergy of wearable eye-tracking and advanced computer vision methodologies, such as SLAM, is exploited. As a demonstration of one of the framework's possible functionalities, an articulated collaborative robotic arm and laser pointer is integrated and the set-up is used to project the surgeon's fixation point in 3D space. RESULTS: The implementation is evaluated over 60 fixations on predefined targets, with distances between the subject and the targets of 92-212 cm and between the robot and the targets of 42-193 cm. The median overall system error is currently 3.98 cm. Its real-time potential is also highlighted. CONCLUSIONS: The work presented here represents an introduction and preliminary experimental validation of core functionalities of a larger framework under development. The proposed framework is geared towards a safer and more efficient surgical theatre

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore