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Abstract
Purpose Improved surgical outcome and patient safety in
the operating theatre are constant challenges. We hypoth-
esise that a framework that collects and utilises informa-
tion —especially perceptually enabled ones—from multiple
sources, could help to meet the above goals. This paper
presents some core functionalities of a wider low-cost frame-
work under development that allows perceptually enabled
interaction within the surgical environment.
Methods The synergy of wearable eye-tracking and
advanced computer vision methodologies, such as SLAM,
is exploited. As a demonstration of one of the framework’s
possible functionalities, an articulated collaborative robotic
arm and laser pointer is integrated and the set-up is used to
project the surgeon’s fixation point in 3D space.
Results The implementation is evaluated over 60 fixations
on predefined targets, with distances between the subject and
the targets of 92–212cmandbetween the robot and the targets
of 42–193cm. The median overall system error is currently
3.98cm. Its real-time potential is also highlighted.
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article (doi:10.1007/s11548-017-1580-y) contains supplementary
material, which is available to authorized users.

B Alexandros A. Kogkas
a.kogkas15@imperial.ac.uk

Ara Darzi
a.darzi@imperial.ac.uk

George P. Mylonas
george.mylonas@imperial.ac.uk

1 HARMS Lab, Department of Surgery and Cancer, Imperial
College London, St Mary’s Hospital, 20 South Wharf Road,
3rd Floor Paterson Centre, London, W21PF, UK

Conclusions The work presented here represents an intro-
duction and preliminary experimental validation of core
functionalities of a larger frameworkunder development. The
proposed framework is geared towards a safer and more effi-
cient surgical theatre.
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Introduction

The operating theatre is reportedly the environment where
unintentional patient harm ismost likely to happen [1]. Some
of the most influential factors are related to suboptimal com-
munication among the staff, poor flow of information, staff
workload and fatigue and the sterility of the operating the-
atre [2]. While new technologies may add complexity to
the surgical workflow, at the same time they provide new
opportunities for the design of systems and approaches that
can enhance patient safety and improve workflow and effi-
ciency. A number of initiatives have assessed the state of the
art in technological developments and identified key areas
where future innovative solutions could be used to opti-
mise the operating environment, such as cognitive simula-
tion, informatics, “smart” imaging, “smart” environments,
ergonomics/human factors and group-based communication
technologies [3].

In the spirit of the Internet of Things (IoT) and the
recent explosion of data-driven sciences, it is anticipated
that equipment, surgical instruments, consumables and staff
will be fully integrated and networked within a “smart”
operating suite. This could happen in a number of ways,
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such as electronically, using computer vision, RFID mark-
ers or other technologies [4,5]. Partially integrated operating
suites are already being provided by companies, such as the
Karl Storz’s OR1TM [6], where components of the surgical
environment (e.g. endoscopic devices, video/data sources,
surgical table, ceiling lights) can be tailored to and by the
user and can be controlled from a central location within
the sterile area. Such operating suites, where a large amount
of information can be made available through a unique
integrated system, offer tremendous opportunities for imple-
menting novel human–computer interfaces, context-aware
systems, automated procedures and augmented visualisation
features.

Moreover, a significant body of research has explored
“perceptually enabled” interactions in the sterile environ-
ment using technologies like 3D cameras, voice commands
or eye-tracking [7]. This way the surgeon can be kept in the
loop of decision-making and task execution in a seamless
way that is likely to help improving overall operational per-
formance and reducing communication errors. For example,
hand-gestures and a voice-driven robotic nurse introduced
by Jacob et al. has been shown to reduce the number of
movements without significantly affecting task execution
time compared to collaboration with human nurses [8]. Eye-
tracking methodologies in particular have the potential to
provide a “third hand” and a seamless way to allow percep-
tually enabled interactions within the surgical environment.
Previous work has demonstrated screen-based gaze control
of surgical instruments [9]. In robotic [10] and conventional
laparoscopic [11] surgical settings, screen-based collabo-
rative eye-tracking of multiple collaborators was shown
to significantly improve verbal and nonverbal communica-
tion, task understanding, cooperation, task efficiency and
outcome.

Overall, the work presented here draws inspiration from
the increasing utilisation of data from diverse sources in
conjunction with advances in machine learning. It is also
fundamentally driven by the need to keep the surgeon and
his/her physical interactions with the environment tightly
integrated into the decision-making process. As an introduc-
tion to a wider multi-sensor framework under development,
core functionalities presented in this paper include: real-time
free-viewing 3D fixation localisation, spatial reconstruction
and modelling of the operating theatre, co-registration of
an articulated collaborative robotic arm. One or more wear-
able eye-tracking devices can be used in combination with
RGB-D cameras and advanced computer vision techniques.
The ultimate goal is to develop functionalities, methodolo-
gies, open-source software and a low-cost generic hardware
framework that can be adapted to any operating theatre with
minor modifications and effort. The accuracy and real-time
potential of the exemplar application presented here are
assessed. To the authors’ knowledge, this is the first work

combining computer vision and theatre-wide 3D gaze track-
ing for perceptually enabled interactions.

Methodology

A core aspect of the envisaged framework is its capability
to calculate and display the 3D fixation of one or more the-
atre attendants. An early version and preliminary evaluation
of this functionality has been presented in [12] and [13].
A wearable eye-tracker and its integrated scene camera can
be used to provide 2D gaze information and video of the
scene in front of a user. After a short calibration routine,
gaze direction vectors can be mapped to unique 2D gaze
points on a virtual plane attached to the scene camera of
the eye-tracker. This plane is fixed to and rotates with the
user’s head (Fig. 1). Consequently, there is no direct quanti-
tative correlation between 2D fixations and 3D positions of
objects in space. To overcome this limitation, localisation of
3Dfixations for this project is achieved through the combined
use of conventional wearable eye-tracking and fixed in space
RGB-D cameras for 3D reconstruction of the environment. A
crucial functionality of the framework relies on the ability to
provide an accurate estimate of one’s head pose (equivalent
to the eye-tracker’s scene-camera pose) on a world coordi-
nate system fixed with respect to the operating theatre. The
pose is then used to map the 2D gaze information reported by
the eye-tracker to a unique 3D fixation in the world frame of
reference. A co-registered robot arm is used to point a laser
pointer at the position of the resolved 3D fixation.

The implementation workflow of the functionality is
shown in Fig. 2. During the off-line processing phase, the
involved components are calibrated and co-registered. This
requires determining the eye-tracker’s RGB scene-camera
intrinsic parameters, the RGB-D camera colour-to-depth
alignment and the eye-tracker’s gaze-to-scene video align-
ment. Additionally, the robot is registered to the world frame.
During the initialisationphase, an initialmappingof the space

RGB/scene camera

Eye camera

Fig. 1 Wearable eye-trackers provide 2D gaze coordinates on the
scene-camera frame of reference, which is equivalent to the head frame
of reference
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Fig. 2 The implementation of the framework comprises four main
phases: off-line processing, initialisation, pose tracking and the gaze-
guided task

and initial camera pose are estimated, a static 3D model
is captured and processed, and the necessary registrations
among coordinate systems are performed according to the
application. The pose tracking phase involves real-time RGB
scene video and gaze data recording by the eye-tracker. Then,
the camera pose is tracked, and the map is updated simulta-
neously. Eventually, during the gaze-guided task phase, 3D

fixation localisation is performed, based onmapping 2Dgaze
and camera/head pose information into 3D gaze information.
Finally, the calculated tool centre point (TCP) position is
transmitted to the robotic arm.

For the current implementation, all hardware components
are connected to a single computer. C++ is the programming
language used.

Application workflow

During initialisation, the eye-tracking glasses and the RGB-
D camera are calibrated. The local coordinate systems (robot,
3D map extracted by the eye-tracker monocular RGB scene
camera) are registered to the RGB-D camera’s world coor-
dinate system, and the laser pointer is aligned to the robot’s
end-effector. A 3D model of the operating theatre is then
extracted by the RGB-D camera, and the pose of the eye-
tracker’s scene camera is estimated within it using the
Simultaneous LocalisationAndMapping (SLAM) technique
[14]. Subsequently, the 2D fixations provided by the eye-
tracking glasses are mapped to 3D world coordinates and
provided to the robot. Finally, the appropriate robot pose is
estimated in order to highlight the 3D fixation with the laser
attached to its end-effector. Each of these steps is elaborated
in the following sections.

Equipment

For eye-tracking the SMI Eye-tracking Glasses 2 Wireless
(SensoMotoric Instruments GmbH) [15] are used. By track-
ing the position of the pupil and/or artificially generated
features using near-infrared light sources andminiature cam-
eras on the glass frame, the gaze direction of the user can
be determined. The glasses operate as a fully mobile gaze-
tracking device with 60-Hz sampling rate. An RGB scene
camera with a resolution of 1280 × 960 pixels records an
egocentric video at 24 frames per second. The field of view
of the scene camera is 80◦ (horizontal) and 60◦ (vertical).
Scene video and eye-tracking data are streamed in real time
to a PC. The output of the system is a 2D gaze point on the
image plane of the scene camera with a stated accuracy of
0.5◦ of visual angle.

For RGB-D sensing, the Microsoft Kinect V2 is used for
capturing depth and colour images concurrently. The Kinect
uses an RGB camera with a resolution of 1920× 1080 pixels
at 30 Hz, an infrared emitter and an infrared camera with
resolution of 512× 424 at 30 Hz. It has 30-ms latency and 2-
to 4-mm average depth accuracy error [16]. The field of view
of the depth sensing is 70◦ (horizontal) and 60◦ (vertical),
and it operates at distances between 50 cm and ∼4.5m. For
depth estimation, the time-of-flight method is used [17].

The robot arm is a UR5 by Universal Robots. It is a col-
laborative robot providing 6 degrees of freedom,±360◦ joint
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ranges, a reach radius of up to 850mm and±0.1mm repeata-
bility. It weighs 18.4 kg and is capable of maximum 5-kg pay
load.

To highlight the 3D fixation in the theatre, a green laser
diode is attached on the robot’s end-effector using a 3D
printed mount. As the laser beam is not exactly coincident
with its z-axis, any alignment errors are corrected using a
calibration step.

Calibration

The accuracy of the calibration process is of paramount
importance. Four types of calibrations are performed:

• Camera calibration for the eye-tracker’s RGB scene cam-
era

• User-specific eye-tracking calibration of the eye-tracking
glasses

• RGB-depth calibration for the Microsoft Kinect sensor
• Laser module to robot’s end-effector calibration

Eye-tracker’s RGB scene camera

The intrinsic and extrinsic camera parameters of the eye-
tracker scene camera are calibrated using a chessboard.

Eye-tracking

Mapping eye fixations to specific points in the image plane
of the video sequence, provided by the RGB/scene camera,
requires a calibration procedure. During this procedure, users
are asked to fixate on 3 predefined points in their field of
view. Using the API provided by SMI [15], the parameters
of a generic physiological 3D eye model are refined and the
model is used to calculate the gaze vector. The model is a
combination of shapes, light refraction and reflection prop-
erties of the different parts of the eyes. This process is not
transparent and is dealt with internally by SMI algorithms.

Microsoft Kinect sensor

Although the RGB camera and the depth sensor of the Kinect
are placed closely and capture similar planes, their slight

spatial divergence may cause significant inaccuracies. The
calibration process presented in [18] is used to align RGB
and depth images.

Laser module

The laser module requires intrinsic calibration, as it produces
an offset angle of ∼0.8◦, which is significant for projections
over large distances. A mechanical offset calibration is used
to align the laser module’s vector with the end-effector’s
z-axis. The laser module is calibrated using a 3D printed
component and screws. The pointer is first mounted on a
lathe’s drum (Fig. 3a). By rotating the lathe and observing
the laser projection on a planar surface, the projection centre
and the diode angular offset direction are determined. Then,
the pointer is mounted on a 3D printed base (mounted on
the lathe) making sure the offset direction vector intercepts
the line connecting the 2 screws (Fig. 3b). The screws are
adjusted, while the lathe rotates, until the laser projects accu-
rately to the projection centre on the planar surface. Finally,
it is mounted on the robot’s end-effector (Fig. 3c).

Registration

In the proposed system, we use the Kinect’s coordinate sys-
tem as the word frame of reference. To align multiple local
coordinate systems to the global one, two main registrations
are performed: a SLAM-to-Kinect and a Kinect-to-Robot
registration (Fig. 4).

SLAM to Kinect

The head pose estimation relies on the localisation of a
monocular camera within a local map, which is extracted
during the initialisation of the SLAM algorithm [14]. Using
a monocular camera for initialisation results to a scaled
map, which is useful for tracking the camera pose in the
3D space. However, knowing the camera extrinsic parame-
ters in relation to the world coordinates is desirable for two
main reasons. First, 3Dfixation localisation requires collision
detection of the gaze vector with a triangulated point cloud.
A sparse point cloud, as the SLAM map is, would result in

Fig. 3 The laser module’s
intrinsic calibration process

Lathe rotating drum

Laser pointer

Planar surface

Laser projection

3D printed mount

(c)

(a)

Robot

(b)
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Fig. 4 The transformations among the coordinate systems

inaccurate estimation of the 3D fixation. Second, the 3D fixa-
tion in world coordinates is necessary for gaze-guided tasks,
such as robotic arm manipulation or object recognition.

The initial camera pose is estimated by the correspon-
dences of the two initial keyframes. The first keyframe is
the frame of reference of the map. The initial pose is used
to triangulate the map and full global bundle adjustment to
refine the initial map. For the registration, fiducial markers
(for 2D–3D correspondences) and the EPnP algorithm [19]
are employed to estimate the pose of the two first keyframes
in the Kinect’s frame of reference. Defining the pose of the
reference frame and the initial pose in the Kinect’s coordi-
nates results to the extraction of the initial map in the world
coordinate system.

Kinect to Robot

Accurate registration is necessary since minor inaccuracies
can lead to significant deviation from the desired waypoints.
The coordinate system of the robot is defined with respect to
its base. The manipulation of a 6-axis robot involves calcula-
tion of 3D coordinates and rotation vectors, defining its pose.
Therefore, Kinect-to-Robot registration is performed off-line
using a chessboard pattern on the robot’s end-effector and the
hand-eye calibration methodology presented in [20].

For every gaze-guided task, the TCP position is estimated
in the world coordinate system. The robot receives the target
pose in the robot coordinate system, calculated by:

Pr = w
r T ∗ Pw (1)

where Pr is the TCP position in the robot coordinate system,
Pw is the TCP position in the world coordinate system, wr T is
the transformation matrix from the world to the robot coordi-

nate system obtained using the hand-eye calibration method
[20].

3D spatial reconstruction

An essential part of the proposed framework is the real-
time continuous spatial reconstruction of the theatre. The
Microsoft Kinect V2 is employed to acquire the depth infor-
mation of the scene as a depth image. Then, the depth image
is converted into a point cloud using the PCL library [21].
While the point cloud contains all the necessary information
about the scene, a triangulation process is required to convert
it into a meshed surface for subsequent collision detection of
the gaze vector with it, thus obtaining the 3D fixation.

Before triangulation, pre-processing of the point cloud is
performed. At first we remove the outliers using statistical
analysis techniques. Assuming the distribution of the points
to their neighbours is Gaussian, all points with mean dis-
tance outside the interval defined by the mean distance of all
points to all their neighbours, are removed. Then, the point
cloud is downsampled into one-fifth of its original size, using
a voxelised grid approach. A 3D voxel grid is created, and
the points are limited to the centroids of each voxel. Eventu-
ally, a Moving Least Squares (MLS) surface reconstruction
method is used to smooth and resample the noisy parts of
the point cloud. This is achieved using higher-order polyno-
mial interpolations between the surrounding data points to
recreate missing parts of the surface.

Fast triangulation of unordered clouds by Marton et al.
[22] is used. Thismethod relies onmaintaining a list of points
from which the mesh can grow and extend until all possible
points are connected. It can deal with unorganised points,
coming from one or multiple scans, and having multiple con-
nected parts. It performs optimally on smooth surfaces and
areas with smooth transitions between different point densi-
ties. The triangulation is performed locally, by projecting the
local neighbourhood of a point along the point’s normal, and
connecting unconnected points.

A live and dynamically updated 3D model would intro-
duce significant computational cost through real-time 3D
updating and re-processing. For this reason, evaluation of
the early implementation of the framework is based only on
RGB and depth information acquired once, during the ini-
tialisation phase of building a static 3D model.

Head pose estimation

The estimation of the head pose in the theatre is the most
critical part in the proposed framework. There are several
possible approaches to perform this task. Optical trackers or
stereo cameras can be used to determine accurately the head
pose in a world coordinate system. However, these would
contradict our approach, which is based on a low-cost infras-
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tructure, easy and generic deployment in several operating
theatres and the avoidance of cumbersome equipment car-
ried by the surgeon and staff. Instead, the synergyof advanced
computer vision techniques and 3D spatial reconstruction is
used to estimate the eye-tracker’s integrated scene-camera
pose. SLAM [14] is a technique of building a map of an
unknown environment by a mobile robot and estimating its
pose within it. It consists of multiple phases, each of which
can be computed in multiple ways: landmark extraction,
data association, state estimation, state update and landmark
update.

The ORB-SLAM method [23] is used with a monocular
camera to estimate its pose in a 3D environment and map
features of video frames. This method is robust to severe
motion clutter, allows wide baseline loop closing and re-
localisation and includes full automatic initialisation. The
main tasks performed are: tracking, mapping, re-localisation
and loop closing. Tracking refers to the estimation of the
relative position of the camera to the scene objects in real
time. Mapping refers to the construction of a 3D map of
the environment in which the camera moves. Using a short
video sequence, ORB-SLAM generates an initial map using
ORB features and a homography assuming a planar scene,
or a fundamental matrix assuming a nonplanar scene. Then,
it performs builds/updates of the keyframe-based map and
tracks the camera pose (extrinsic parameters) related to it.
ORB-SLAM uses bundle adjustment for the map initialisa-
tion, local mapping and loop closing.

2D to 3D fixation localisation

The mapping of 2D fixations to 3D world coordinates con-
sists of 3 main steps:

1. Classification of gaze into fixations and saccades (4-s
dwell time threshold)

2. Calculation of the ray direction of the gaze vector.
3. Calculation of the intersection between the ray and the

triangulated 3D space.

To estimate the ray direction vector, two points need to
be calculated, the 2D fixation in world coordinates and the
camera centre of projection. The ray is defined by the line
connecting these two points. First, the 2D point Xc is trans-
formed in the camera coordinate system:

Xc = K−1pc (2)

then the point is transformed in the world coordinate system:

Xw = R−1 (Xc − T) (3)

and finally the centre of projection Cop is calculated:

Cop = −R−1T (4)

where pc = [u v 1 ]T is the homogenous coordinates of the
image point, K is the matrix of intrinsic camera parame-
ters and [R|T ] are the rotation and translation of the camera
(extrinsic parameters).

TheMöller–Trumbore ray-triangle intersection algorithm
[24] is used to calculate the intersection between the ray and
a triangle in 3D. Ray tracing computations that are performed
between a gaze ray and all triangles of the 3D reconstructed
space carry significant computational cost. To improve the
3Dfixation localisation’s performance,we implement a pyra-
mid model of the 3D reconstructed mesh. This consists of
a triangulated model with N scaled triangles, and each of
them consists of M triangles of the original model. The ray-
triangles intersection algorithm is performed in two steps,
between:

1. The ray and the N scaled triangles.
2. The ray and the M triangles included in the scaled trian-

gle, which was intersected in step 1.

N and M are defined as:

N = √
2 ∗ nmodel (5)

M = nmodel

N
(6)

where nmodel is the number of the points of the 3D recon-
structed mesh.

Robotic laser task

To highlight the 3D fixation in the operating room using a
robotic laser, the estimated 3D fixation should be converted
to a corresponding robot pose. To this end, the Kinect-to-
Robot registration is not sufficient. We need to define one of
the multiple poses with which the z-axis of the robot’s end-
effector intersects the 3D fixation (Fig. 5). A sphere with
a predefined radius is defined, and its centre is placed on a
point along the z-axis of the robot. The intersection of the
ray—defined by the coordinates of this centre point and the
3D fixation—with the sphere will be the translation of the
robot’s end-effector. The rotation is defined by the z-axis of
the robot’s end-effector,which should be alignedwith the line
defined by the sphere intersection and the 3D fixation. The x-
and y-axes are set arbitrarily. Finally, the pose is transformed
to the robot’s coordinate system and transmitted to it.
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Robot’s base z axis

Offset / centre of sphere

Robot’s tool z axis

Robot’s tool x axis

3D fixation in space

Fig. 5 Estimation of robot’s pose to highlight the 3D fixation (sphere
approach)

Experiments and results

For the experimental evaluation of the application presented
here, 20 targets are placed in the operating theatre (Fig. 6,
Online Resource 1). The distance range between the sub-
ject and the targets is 92–212cm and between the robot and
the targets 42–193cm. The task involves fixating on the tar-
gets for more than 4 s, and this process is repeated 3 times.
The accuracy and the real-time performance of the system
are evaluated over 60 fixations. The real-time performance
is evaluated based on the time interval between a user fixa-
tion being detected and the corresponding 3D fixation being
calculated.

The accuracy of the system can be affected by multiple
factors: the eye-tracker intrinsic error, the head pose estima-
tion (ORB-SLAM) error, the robot calibration error and the
Kinect sensor. In this validation we measure:

• The eye-tracker error, which is a 2D distance in pixels
on the eye-tracker’s scene-camera frame, expressed as a

% of its resolution (720p) and based on comparing the
actual and the expected 2D fixations.

• The framework error comparing the actual and the
expected 3D fixations (compounded by the eye-tracker’s
error).

• The robotic laser error derived by the Kinect-to-Robot
calibration and the laser module’s intrinsic offset, by
manually repositioning the robot to accurately highlight
the 3D targets.

• The overall system error, comparing 3D target coordi-
nates with the 3D coordinates of the laser projection.
This also depends on the geometry of the surface where
the laser is projected.

The results summarised in Fig. 7 show the median error,
distribution, minimum/maximum values for the performance
and the error over allmeasuredfixations.Theoverall system’s
median error is 3.98cm with 1.98-sec delay interval between
the detection of the fixation and the activation of the robot.

Discussion and conclusions

An early implementation of a novel framework has been
presented that allows gaze-driven interactions within a 3D
environment and a collocated robotic manipulator. This is
achieved by the combination of unrestricted wearable gaze
tracking, theatre 3D reconstruction and advanced computer
vision concepts. The experimental results presented here
demonstrate an improvement of 31% on 3D fixation localisa-
tion accuracy compared to earlier implementations, while the
overall system’s accuracy is 3.98cm. Future work will focus
on further reducing this error. Segmenting the 3D space and
magnetising the fixation to objects of interest could further
reduce the error. The current performance is 1.98 s for each
3D fixation localisation, which limits its use in applications
that demand lower time intervals. This can be addressed with
further software and GPU optimisation or statistical analy-

Fig. 6 a The experimental
set-up (view from the Kinect
sensor): as the subject fixates on
predefined targets, the pose of
the eye-tracker scene camera is
estimated. When a fixation is
detected, the 2D gaze is mapped
to 3D coordinates and the
robotic laser highlights the
fixated spot. b The error ranges
within the main fixated areas of
interest

Targets

Robot

Laser

Eye-tracker

2.8-3.0cm

5.7-5.9cm

6.0-6.1cm

5.9-6.1cm

(a) (b)
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Fig. 7 Error analysis represented in box plots generated by MATLAB software package. The median (line in the box), first and third quartiles
(box), minimum/maximum values (lines on top and bottom of the box) and outliers (cross) are demonstrated

Depth error

Camera Localisation 
error (SLAM)

Eye-tracking error

Laser intrinsic error

3D fixation localisation

Kinect -to-SLAM 
registration

Kinect coordinates

Gaze-guided 
robotic laser task

Kinect -to-Robot 
calibration error

Fig. 8 Sources of error and their interrelation. TheKinect sensor intro-
duces a depth inaccuracy, which propagates to the system through its
calibration with the robot, its registration with the SLAM local map and
the 3D fixation localisation (in Kinect coordinates). Moreover, error is
introduced and propagated towards the output of the system through the

eye-tracker’s inaccurate gaze estimation, the inaccuracy of the ORB-
SLAM algorithm, which localises the camera within the 3D space, and
the error produced by the offset of the laser pointer (reduced after its
calibration)

sis of the user’s gaze behaviour. Another current limitation
is the use of a static 3D model of the environment to allow
near-real-time performance. This will be overcome by using
point-based fusion [25] and other optimisations on a separate
CPU. A dynamically updated 3D model will allow safety-
critical tasks, such as real-time obstacle detection and robot
path planning and occlusions avoidance of the laser projec-
tion.

It is of paramount importance to quantify the contribution
of each constituent component of the implementation (hard-
ware and methodologies) to the overall system error (Fig. 8).
The Kinect sensor produces an average error of 2–4 mm, but

depending on the distance from the target this may increase
to over 4mm [16]. This error propagates tomultiple stages of
the system and can be reduced usingmultiple Kinect sensors.
Eye-trackingmay introduce variable error due to the parallax
effect [26] occurring over largefixation distances. This can be
eliminated by performing multiple use-specific calibrations
over multiple distances and then accordingly switch or inter-
polate between the derived calibration parameters based on
a resolved fixation depth. The Kinect-to-Robot registration
method used [20] exhibits an error of 0.75 cm for calibration
using ∼25 poses. Automating calibration with more than 80
poses would reduce the error to ∼0.5 cm. Last but not least,

123



Int J CARS

the head pose estimation is one of the most significant stages
of the framework and is speculated to introduce an error due
to the complexity of the computer vision approach. There-
fore, we aim to set up an optical tracking system to provide
ground truth for clinical studies, further development of the
SLAM-based approach and accurate validation.

It should be noted that the laser-holding robotic arm serves
no clinical use case as presented. On this occasion the robot
is used to demonstrate its integration and achieved accuracy
by means of the presented application. Additionally, more
economic ways are available for displaying one or more laser
points in the theatre.

The work presented here represents an introduction and
preliminary experimental validation of core functionalities of
a larger framework under development. The proposed frame-
work is geared towards a safer and more efficient surgical
theatre. Applications, which aim at enhancing safety, collab-
oration and training, include: gaze-guided object recognition
and tracking, robotic manipulation, augmented visualisation
of gaze relevant information, behavioural analysis andwork-
flow segmentation based on perceptual information provided
by the framework. It is envisaged that an open-source and
hardware-agnostic framework will allow large-scale deploy-
ment in several theatres. This would provide a large amount
of easily anonymised data, which will help generate a large
evidence base and critical mass for clinical use.
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