797 research outputs found

    Multi-Scale Edge Detection Algorithms and Their Information-Theoretic Analysis in the Context of Visual Communication

    Get PDF
    The unrealistic assumption that noise can be modeled as independent, additive and uniform can lead to problems when edge detection methods are applied to low signal-to-noise ratio (SNR) images. The main reason for this is because the filter scale and the threshold for the gradient are difficult to determine at a regional or local scale when the noise estimate is on a global scale. Therefore, in this dissertation, we attempt to solve these problems by using more than one filter to detect the edges and discarding the global thresholding method in the edge discrimination. The proposed multi-scale edge detection algorithms utilize the multi-scale description to detect and localize edges. Furthermore, instead of using the single default global threshold, a local dynamic threshold is introduced to discriminate between edges and non-edges. The proposed algorithms also perform connectivity analysis on edge maps to ensure that small, disconnected edges are removed. Experiments where the methods are applied to a sequence of images of the same scene with different SNRs show the methods to be robust to noise. Additionally, a new noise reduction algorithm based on the multi-scale edge analysis is proposed. In general, an edge—high frequency information in an image—would be filtered or suppressed after image smoothing. With the help of multi-scale edge detection algorithms, the overall edge structure of the original image could be preserved when only the isolated edge information that represents noise gets filtered out. Experimental results show that this method is robust to high levels of noise, correctly preserving the edges. We also propose a new method for evaluating the performance of edge detection algorithms. It is based on information-theoretic analysis of the edge detection algorithms in the context of an end-to-end visual communication channel. We use the information between the scene and the output of the edge-detection algorithm, ala Shannon, to evaluate the performance. An edge detection algorithm is considered to have high performance only if the information rate from the scene to the edge approaches the maximum possible. Therefore, this information-theoretic analysis becomes a new method to allow comparison between different edge detection operators for a given end-to-end image processing system

    Design of a hybrid measure for image similarity: A statistical, algebraic, and information-theoretic approach

    Get PDF
    Image similarity or distortion assessment is fundamental to a wide range of applications throughout the field of image processing and computer vision. Many image similarity measures have been proposed to treat specific types of image distortions. Most of these measures are based on statistical approaches, such as the classic SSIM. In this paper, we present a different approach by interpolating the information theory with the statistic, because the information theory has a high capability to predict the relationship among image intensity values. Our unique hybrid approach incorporates information theory (Shannon entropy) with a statistic (SSIM), as well as a distinctive structural feature provided by edge detection (Canny). Correlative and algebraic structures have also been utilized. This approach combines the best features of Shannon entropy and a joint histogram of the two images under test, and SSIM with edge detection as a structural feature. The proposed method (ISSM) has been tested versus SSIM and FSIM under Gaussian noise, where good results have been obtained even under a wide range of PSNR. Simulation results using the IVC and TID2008 image databases show that the proposed approach outperforms the SSIM and FSIM approaches in similarity and recognition of the image

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Automated Intruder Detection from Image Sequences using Minimum Volume Sets

    Get PDF
    We propose a new algorithm based on machine learning techniques for automatic intruder detection in surveillance networks.  The algorithm is theoretically founded on the concept of minimum volume sets.  Through application to image sequences from two different scenarios and comparison with some existing algorithms, we show that it is possible for our proposed algorithm to easily obtain high detection accuracy with low false alarm rates

    An Approach to the Detection of Retinoblastoma based on Apriori Algorithm

    Get PDF
    Retinoblastoma is a rare kind of cancer, typically designated as leukocoria (white-eye pupillary reflex) that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common malignant cancer of the eye in young children. Early detection of leukocoria can improve the overall treatment duration.There is intensification in interest for setting up medical system that can monitor a large number of people for sight threatening diseases, likely Retinoblastoma and Diabetic Retinopathy.Developed an image processing application for the discovery of retinoblastoma by exploiting graph theory based apriori algorithm as a novel approach and different image processing techniques.The application will review the image with different phases and identifies region of interest of the threatened area in the retina.The software is implemented using MATLAB and developed a graphical user interface for smooth proceedings during identification stages of the disease
    • …
    corecore