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Here we describe a gray scale object recognition system based on foveated corner 

finding, the computation of sequential fixation points, and elements of Lowe’s SIFT 

transform. The system achieves rotational, transformational, and limited scale invariant 

object recognition that produces recognition decisions using data extracted from 

sequential fixation points. It is broken into two logical steps. 

The first is to develop principles of foveated visual search and automated fixation 

selection to accomplish corner search. The result is a new algorithm for finding corners 

which is also a corner-based algorithm for aiming computed foveated visual fixations. In 

the algorithm, long saccades move the fovea to previously unexplored areas of the image, 

while short saccades improve the accuracy of putative corner locations. The system is 

tested on two natural scenes. As an interesting comparison study we compare fixations 

generated by the algorithm with those of subjects viewing the same images, whose eye 

movements are being recorded by an eyetracker. The comparison of fixation patterns is 
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made using an information-theoretic measure. Results show that the algorithm is a good 

locator of corners, but does not correlate particularly well with human visual fixations. 

The second step is to use the corners located, which meet certain goodness 

criteria, as keypoints in a modified version of the SIFT algorithm. Two scales are 

implemented. This implementation creates a database of SIFT features of known objects. 

To recognize an unknown object, a corner is located and a feature vector created. The 

feature vector is compared with those in the database of known objects. The process is 

continued for each corner in the unknown object until enough information has been 

accumulated to reach a decision.   

The system was tested on 78 gray scale objects, hand tools and airplanes, and 

shown to perform well. 
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CHAPTER 1.  

INTRODUCTION 

 

1.1 Foveated visual search.  

One of the most difficult, ill-posed, and unsolved problems in the field of image 

analysis is that of visual search. Indeed, the problem remains poorly defined from an 

engineering perspective. Does visual search mean an algorithm for finding and 

identifying a specific object or class of objects in an image? The extensive literature on 

automated target recognition (ATR) exemplifies this philosophy [29]. Or, does visual 

search imply a general framework for finding information from visual data, but without 

object-specific guidance? There is only a small literature on generic automated visual 

search. Methods include search based on contrast [40], [41]; image and depth gradients 

[10]; other edge factors [42]; proximity between objects [43]; object similarity [44]-[46], 

and combinations of randomized saliency and proximity factors [47]. These automated 

methods, while reaching in interesting directions, remain generally unsuccessful, 

although active, directed search methods show promise in reducing the complexity of this 

severely ill-posed problem [48], [49]. 

While there are merits to both strategies, great benefit would result from the 

development of basic principles guiding the design of algorithms for visual search, which 

could be applied to a diversity of search applications, and which would address some of 

the factors that limit the success of visual search. 
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Indeed, primate and other biological vision systems have taken this approach, at 

least at the mechanical and data sampling level. A striking feature of primate and other 

animal visual systems is that they are foveated, with high resolution near the center of 

gaze that falls off as a power function of eccentricity, the angle away from the center of 

gaze.  In humans, the fovea is a circular region of tightly packed cones, roughly 1.5 mm 

in diameter [3]. This density decreases rapidly with eccentricity. In the central fovea, 

receptors are packed at a density of about 120/degree [12] [13]. This corresponds to a 

resolution of .291 mm at a viewing distance of 100 cm. The optics of the eye filters out 

higher spatial frequencies, which could cause aliasing [14]. 

Foveated primate vision systems mechanically direct the fovea around a scene 

over time via very fast ballistic eye movements called saccades, resulting in series of 

static fixations [7], [11]. Foveation is an effective compromise between the demand for 

high-resolution vision and the limited transmission and processing bandwidths of the 

optic nerve and subsequent brain regions; foveation is a powerful form of visual data 

compression - the amount of information flowing from the retina to the brain is far less 

than if the entire retina was sampled at foveal density. 

The brain uses peripheral, low-resolution information to decide which region of 

the image warrants the next fixation. This is accomplished quickly – the human eye 

typically makes more than 10,000 saccades per hour, ranging in distance from a few 

seconds of arc to up to over 70º [16], [13], [12], [15]. Certainly the computation of new 

fixations must be fast, automatic, and image-driven to accomplish visual search with 

active, mobile cameras or eyes [8], [9], [10]. 

Rather than processing a wide field of view (FOV) visual stream all at once, high-

spatial-resolution search is conducted over a very small FOV (the image on the fovea) 

while wide-FOV search, rich with context but lacking detail, occurs over the peripheral 
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field of view. Candidate discoveries in the periphery can be rapidly analyzed at high 

resolution via saccadic eye movements that redirect the candidate to an area of interest; in 

the absence of candidates, eye movements may be sequentially deployed to enlarge the 

search space. 

Much more research has been applied to the problem of how visual search is 

accomplished by primate and other biological vision systems. Results from the cognitive 

and perceptual sciences provide interesting insights into how humans search visual 

environments [50]-[52]. These studies have revealed limitations imposed by low-level 

factors [52] and the relationship between stimuli and the distribution of attention [50]. 

Other studies have revealed the rules regarding where a saccade will land on a complex 

form [53]. Several workers studied the problem of integrating information across eye 

movements [54]-[58], relating shifts in attention and gaze [59], [60], relating top-down 

and bottom-up search [61]-[62], and relating visual search with visual memory [63]-[65]. 

Yet little is known about the tremendous amount of learning and plasticity needed to 

efficiently search for objects in complex visual environments. Only recently has the 

influence of learning and memory loads on search been investigated [66]. Little is known 

about fixation-selection mechanisms, how attention is distributed over time [67], and how 

these mechanisms maximize visual search efficiency. 

In any case, it is clear that visual information gathering and visual search is 

greatly augmented by deploying the highly efficient foveation-fixation-scanpath process. 

We believe that this elegant solution can, and should, be adapted into computational 

systems for visual information acquisition and processing. Most practical image 

processing systems, however, do not operate with mobile cameras, which means that the 

role of foveation in such systems takes a modified role. Such foveated systems that 

operate without moving cameras we shall call static foveated systems.  Instead of the 



 4 

foveation being determined by the fixation of the acquisition hardware (camera or eye), it 

is accomplished in software according to some criteria. One powerful and popular 

example is foveated image compression, where images or videos are foveated to achieve 

substantially increased compression [8], [9], [22]. This requires knowing where the 

spatial fixation on the image of the human observer is, and the distance of the observer 

from the image, so that the foveated fall-off can be matched to that of the observer’s eye. 

This can be accomplished by eyetracking, head tracking and other physical measurements 

[22]. 

Less work has been done on foveated computer processing algorithms that do not 

require eyetracking. Exceptions include early work by Burt [30] on scene analysis and 

Klarquist et al. [10] on computational stereopsis. Broadly speaking, the idea is to allocate 

dense visual data representation and processing resources to those regions of the image 

which seem to have promising information, while applying fewer resources to the 

peripheral data processing – while retaining potentially valuable peripheral information 

which may guide further fixations and processing. 

Biological visual systems that perform visual search certainly benefit from the 

mechanical fixation-foveation process. We believe that automated systems will realize 

similar benefit by the use of static foveated processing – even in the absence of moving 

cameras, and without the benefit of eyetracked human observers. However, since there is 

no well-developed theory of visual search – foveated or otherwise – we must begin from 

scratch. While there is no general agreement on how visual search is conducted, there is 

support for the notion that it contains both “bottom-up” elements as well as “top-down” 

elements. Top-down processing suggests that algorithms should retain internal models of 

what is being searched for, and that the search process becomes essentially that of 

matching these models to the image on a local basis. Bottom-up processing supplements 
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this concept by the idea that these internal models are constructed from simple features, 

such as contrast, contours, surfaces, disparities, colors, etc. 

In foveated visual search systems, there is also the interesting central problem of 

deciding where to place the center of foveation during the search process. In such 

systems, the goal of the placement is not to match the position of gaze, but rather, to 

optimize the gathering of information that is likely relevant to the object(s) being 

searched for. Subsequent fixations should be chosen based on the available foveated data. 

The amount of information available to the search algorithm regarding the object(s) of 

interest (assuming it is present in the image) is then determined by the proximity of the 

object to the current fixation. There is some evidence that in human visual search, the 

selection of next fixations is effected by such low-level features as contrast [31], [32], 

and also by primitive shape attributes [33], [34]. However, the visual psychophysics 

literature, while certainly more advanced on the topic of foveated visual search than the 

computational literature, still supplies little guidance towards the development of 

computational algorithms.  

 We believe that both high- and low-level factors are necessary for visual 

search, but that low-level features are a pre-requisite to high-level modeling. Determining 

which low-level features are best utilized is an open problem that will require reconciling 

high- and low-level issues. In this paper, we address both issues by proposing an 

approach to foveated search of low-level features, specifically corners - points of locally 

maximum contour curvature, and discontinuities in contour orientation. 

Corners have long been recognized as rich bearers of visual information, and 

numerous algorithms have been proposed for detecting corners and using them as 

features in basic visual tasks such as object recognition, stereo matching, shape analysis 

and optical flow computation [1], [4]-[6], [17]-[19], [35]-[39]. In their early seminal work 
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on computational vision, Marr and Hildrith [2], [3], regarded corners as being of high 

visual saliency, and designated them as being members of the discontinuity class in the 

theory of the full primal sketch. They viewed corners as an important member of the class 

of image primitives that are used as building blocks for representing objects in image 

understanding systems, whether biological or computational. Other features exist, of 

course, such as edges. However, corners are more localized than edges, and as pointed 

out by Nobel [1], are superior to  edges for defining the shapes of objects, since edges 

detectors only provide location information in a single direction (normal to the edge). Shi 

and Tomasi [72] derived a simple model to determine which features are best for tracking 

in a video signal. They determined that corners belong to this class. Tommasini et. al. 

[73] extended their work by adding an algorithm to reject unreliable features. Schmidt  et. 

al. [76] discuss the detection of “interest points” - intensity changes in 2-D that include 

corners, T-junctions, dots and other features - and evaluate their usefulness for image 

registration. Kenney et. al. [77] derive a “condition number” to assess the sensitivity of 

feature/corner detectors to perturbations in feature position. Gordon and Lowe [79] used 

a scale invariant feature transform [80] to extract features defined as the extrema of a 

scale-varying Difference of Gaussian (DoG) convolved with the image. Features detected 

in this manner included edges and corners. 

In a paper with a general philosophy similar to ours, Reid and Murray [81] 

describe a method of obtaining a fixation point on a moving object in an active vision 

system using two or three cameras. They track corners in real time over a cluster of 

frames using a Kalman filter. Another feature of their system is a simple psuedo-foveated 

processing scheme with a small psuedo-fovea surrounded by a lower-resolution psuedo-

periphery [82]. 
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Certainly corners present advantages as a discrete image feature, since they are 

simultaneously information-rich, yet require minimal description. Accurate corner 

information is not easy to acquire; for example, Mehrotra et al. [4] points out that edge 

detectors tend to perform poorly near corners, suggesting that corner detection by 

locating intersections between edges can lead to poor performance. 

Here we cast the problem of corner detection as a corner search process. We 

apply principles of foveated visual search and automated fixation selection in 

accomplishing the corner search. Thus, we approach the search process from a low level, 

searching for objects without requiring building blocks to represent them, since the 

objects being searched for are the same as the features. In this way, we hope to contribute 

by supplying a case study of both foveated search, and foveated feature detection. The 

result is a new algorithm for finding corners (viewed from the perspective of foveated 

feature detection), but which may also be considered as a corner-based algorithm for 

aiming computed visual fixations (along with a computed fovea), with the eventual goal 

of extracting information that is useful for more sophisticated object recognition systems. 

With this last interpretation in mind, as an interesting comparison study we also 

compare fixations generated by this algorithm with those of subjects viewing the same 

images, whose eye movements are being recorded by an eyetracker. The comparison is 

made using an information-theoretic measure. 
 

1.2 Object recognition.  

Understanding and modeling object recognition remains one of the principal 

unsolved problems in both computational and biological vision. It is necessary both for 

the survival of living organisms as well as to advance vision-based robotics and has been 



 8 

researched for decades. Computer approaches to object recognition begin with a digitized 

image stored as an array of pixels but rapidly diverge from that common starting point. If 

the image can be converted to a binary silhouette, then relatively simple methods may be 

applied. Examples are invariant moments such as Hu [84] and Zernike [85], which are 

rotational, translational, and scale invariant. Of course, the ultimate goal would be to 

recognize objects in a natural scene with a confidence level approaching or exceeding 

that of living organisms. Since binarizing an image of an unconstrained natural scene 

seldom yields usable results, more general methods are called for. A popular framework 

is the Scale Invariant Feature Transform (SIFT) [80], which locates low-level features in 

an image, then creates rotationally invariant maps of gradients about each point, at a 

series of varying scales. 

In this paper we propose a gray-scale object recognition system that achieves 

recognition by combining an essential aspect of natural vision called foveation with 

corner finding and a modified implementation of SIFT. Foveation refers to a vision 

system implementation that has a varying spatial resolution mimicking that of the human 

eye. The finest resolution occurs at the center of gaze but falls off drastically with 

eccentricity, or angular distance from the center of the fovea. In humans, the fovea is a 

circular region of tightly packed cones, roughly 1.5 mm in diameter [3]. Outside the 

fovea, packing density decreases rapidly with eccentricity. In the central fovea, receptors 

are packed at a density of about 120/degree [12], [13], corresponding to a resolution of 

.291 mm at a viewing distance of 100 cm. The optics of the eye filter out high spatial 

frequencies, effectively preventing aliasing [14]. Foveated vision is described in detail in 

[9]-[11],[15]. 

Foveation is part of a remarkable natural engineering solution that allows human 

(and other) organisms to selectively deploy visual resources to regions of interest. By 
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mechanisms of attention the head and eyes are moved in order to place the direction of 

gaze, and hence, high-resolution visual resources beginning at the fovea, at points of 

interest. Each steady position of the fovea is called a fixation point. Even with the head 

steady, the primate eye scans a scene via very fast movements called saccades – typically 

more than 10,000 per hour, resulting in series of static fixations [11]. 

Foveation and fixations mediate the conflicting needs for high-resolution vision 

and the limited transmission and processing bandwidths of the optic nerve and 

subsequent brain regions. Certainly, these mechanisms create significant efficiencies as 

the primate organism undergoes daily tasks, such as visually searching for, and 

recognizing objects. Such efficiencies also have great potential for computational vision 

as well. For example, robotic vision systems that deploy moving cameras with foveated 

sensing by intelligent fixation strategies should prove to be highly flexible and efficient. 

Of course, much work remains to be done on developing protocols for deciding protocols 

for deciding automatic visual fixations [10], [86]. 

Foveation can also play an effective role for analyzing images that are not being 

taken by mobile cameras. For example, images and videos coded for viewing by the 

foveated human eye can achieve significant gains in compression [22], [68], [24], 

communication throughput [8], [110], stereopsis [10], [110], and for visual search of low 

levels image features, such as edges and corners [87]. 

It is our view that foveation and fixation selection are principles that will find 

significant utility for improving a wide variety of image processing and analysis 

applications. In this paper, we explore the use of foveated visual search as a way of 

making object recognition systems more efficient. Specifically, we develop a scale- and 

rotation-invariant two-dimensional object recognition system that operates on gray-scale 

images of of simple candidate objects to be recognized. The modus operandi develops in 
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two stages: first, corners are discovered using a foveated corner search algorithm 

developed in [87]; then these corners are used in a SIFT-like recognition algorithm. The 

recognition algorithm is applied incrementally as the corners are discovered, so that only 

as many corners are found as are needed to effect recognition. In this way, efficiencies 

are gained both in the corner search process and in the recognition process.  
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CHAPTER 2.  

DETECTING  CORNER FEATURES IN FOVEATED IMAGES 

While foveation presents significant advantages for visual search via an efficient 

allocation of resources, it presents new challenges for accomplishing low-resolution and 

spatially-varying object recognition, since each foveated view distorts the image away 

from fixation by reducing the resolution. Near the fixation point, fine features, such as 

edges and corners, are resolved well. Away from the fixation point, these fine details may 

be attenuated, distorted, or lost. 

The overall approach that we will take towards searching for corners in images 

will involve foveating the image, deciding a most likely location of a corner, moving the 

fixation to that vicinity, refining the corner location estimate, identifying the corner – 

then choosing a next likely corner location, and so on. The details of the overall search 

methodology will be given later. An essential ingredient for choosing likely corner 

locations is a corner detection algorithm that operates on foveated data, and the output of 

which can be analyzed and interpreted in the context of foveation. 

In the following we describe, in the following order, the method we use to create 

foveated images; the method of edge detection we use on foveated images, and the 

method of corner detection we use on the detected foveated edge maps. 

2.1. Foveation Filtering 

 There are several possible methods for creating foveated images, the most 

popular are those based on spatial-domain foveation filtering, and those based on 

wavelet-domain foveation. Foveation filtering is the most straightforward method [8], 

[22], [68] wherein a bank of low-pass filters is applied to the image on a pointwise basis, 
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with bandwidths monotonically decreasing with eccentricity. The filters used are usually 

symmetric, unit-volume 2-D Gaussians of the form [8], [22]  
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 The other popular approach is to selectively subsample and quantize the image 

data in the wavelet domain, leading to decreased resolution away from the fovea. Such 

techniques have proven very effective for image and video compression [9], [22], [68]. 

We choose to use the simple and direct method of foveation filtering with Gaussian 

filters, owing to the simplicity of the method, and since the artifacts that naturally arise in 

accomplishing wavelet-domain quantization might lead to spurious corner responses. 

While wavelet-domain methods are certainly of high interest, in this first study we choose 

to adopt the direct approach, which yields foveated images which vary smoothly. 

The cutoff frequencies of the Gaussian filters (1) can, in principle, be made to 

decrease continuously with eccentricity, to match the sampling grain of the image, it is 

also possible to more coarsely quantize the cutoff frequencies so that concentric rings of 

constant cutoff frequency are formed on the image surrounding the point of foveation. 

This simplifies practical implementation while effecting the foveated appearance of the 

image only slightly. The half magnitude cutoff frequency of the Gaussian (1) is 

σ
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Hence one can implement foveation filtering by making σ an increasing function 

of eccentricity. 

Several approximations serve to simplify implementation and to improve 

performance. The support of a Gaussian is infinite but a good approximation can be made 

by centering it in an array of about 3σ pixels square. Instead of continuously varying σ 

with eccentricity, the image is divided into a series of n bands, iB  that are concentric 
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about the fixation point. The innermost ring is actually a circle with center the fixation 

point, while the outermost ring extends to the borders of the image. 

We use a simple formula to determine the radius of each ring: 

∞=−=+== ni rniirr ,1...,4,3,)2(,0 6.1

0     (3) 

where the radius of the i
th

 ring is ir  (pixels). The innermost ring has a radius of 5.8 pixels, 

and the distances between the rings increases with eccentricity. This formula provides a 

reasonable tradeoff between execution time and continuity at the ring boundaries. The 

image between the i
th

 and the (i-1)
st
 ring is convolved with a Gaussian ),( yxG

iσ
, where 

σi increases monotonically with eccentricity. 

Since convolving Gaussians with small values of σ takes less processing time 

than with larger values, efficiency is achieved by implementing larger Gaussian 

convolutions via repeated convolutions of smaller Gaussians. Repeated convolutions with 

Gaussians of spatial parameters designated kii ,...,1, =σ  is equivalent to a single 

convolution with a Gaussian with spatial parameter 
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The foveation filtered image is created by the following process. The input image 

is first convolved with a Gaussian of spatial parameter 1σ  and the results stored. This 

blurred image is next convolved with a Gaussian of spatial parameter 2σ  and the results 

stored. The process continues for the maximum possible number of bands. Later, when a 

fixation point is created, each band is filled from the appropriate stored image. Hence, the 

k
th

 filtered image is  
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where I is the original input image.  
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The values of iσ  used in the algorithm are set to approximate the spatial 

frequency response of the human vision system (HVS) based on the following widely 

used formula [22], [24], [68]:  
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 .    (6) 

Here CT(f,e) is the contrast threshold expressed as a function of spatial frequency 

f (cycles/degree) and eccentricity e (degrees). CT0 is the minimum contrast threshold, α, a 

spatial frequency decay constant, and e2 is the eccentricity in degrees at which the 

contrast threshold drops to one half of maximum. The half-magnitude spatial cutoff 

frequency fc can be expressed a function of eccentricity by solving: 

2

2
0 )log(

e

ee
fCT c

+
=− α     (7) 

which yields: 

( )2

20 )log(

ee

eCT
f c +

−
=

α
     (8) 

In arriving at this formula, Geisler and Perry [24] fit (6) to various sets of 

experimental data taken from the vision literature. They found good consistency with the 

following parameter selections: α = 0.106, e2 = 2.3, and 1/76 < CT0 < 1/64. Substituting 

these values into (8) and using an average for the high and low values for CT0 yields a 

numeric relationship between cutoff spatial frequency and eccentricity: 

3.2

024.92

+
=

e
f c  .               (9) 

The spread parameters of the Gaussians may then be found from (2). 

2.2. Foveated Edge Detection 

In our approach to corner search, edges recovered from the foveated images are 

used as features input to a corner detection apparatus. Edge detection is a subject that has 

been studied with considerable intensity for more than four decades. As such, there is a 
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great variety of edge detection choices and considerable variance in edge detection 

philosophies. The most prominent categories of edge detectors are probably those which 

compute image derivatives, such the gradient, the laplacian, or directional derivatives of 

the image intensity, with appropriate smoothing either built-in or accomplished before 

implementation of discrete derivative approximations [69, Chapter 4, 13], and those 

which modify this process by using smoothing along preferred directions prior to 

differentiation, viz., anisotropic filtering [69, Chapter 4.14]. There is no doubt that a great 

variety of edge detection operators may be applied to foveated data. In the approach 

given here, we will utilize the relatively simple and straightforward Canny edge detector 

for several reasons [21]. First, the Canny operator provides excellent localization in the 

edge detection results; second it is simple and naturally defined; third, it gives good 

performance where the edge curvature is high, and lastly, it does not require any kind of 

iterative processing, unlike anisotropic schemes. Given the framework of corner-finding 

via sequential fixations that we are presenting here, direct, locally-computed approaches 

appear to be a more natural choice, because of the need for rapid, localized processing. 

We briefly describe the Canny operator in the context of foveated edge detection. 

Given an image I(x, y), the usual method is to form the Gaussian smoothed image 

),(*),(),( yxIyxGyxS σσ =          (10) 

from which an estimate of the gradient σS∇  is computed. In our application, I is not 

convolved by a single Gaussian, but is instead smoothed by a space-variant Gaussian. In 

the Canny formulation, the unit vector in the gradient direction σS∠∇ estimates the 

direction normal to the edge: 

),(

),(
),(

yxS

yxS
yx

σ

σ
σ ∇

∇
=n .    (11) 
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Putative edge locations are then marked by the zero crossings of the twice 

directional derivative in the direction of the normal (11): 













 ∇⋅∇
∇⋅=

∂

∂
22
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),(

),(

yx

yxSyxS
yx

yx

yxS

σ

σσ

σ

σ

n
n

n .         (12) 

It is easily shown [21] that the zero crossings of (12) are conveniently the same as 

those of  

D(x, y) = [ ]),(),(),( yxSyxSyxS σσσ ∇⋅∇∇⋅∇ .         (13) 

Discrete implementation of (13) is accomplished using space-varying discrete directional 

Gaussian derivatives xyxG x ∂∂ /),(,σ  and yyxG x ∂∂ /),(,σ  to compute the discrete 

gradient expressions ( , )S i jσ∇  at each discrete image coordinate (i, j). 

The zero-crossing maps obtained by a space-varying edge detector may be viewed 

as an oriented slice through edge scale-space [70], [71] as the distance from the foveation 

point increases; it is possible that this outlook may provide valuable insights into 

foveated edge detection processes. 

2.3. Detection of Corners 

Many researchers have studied corner detection, although there has not been any 

prior work that we have been able to find involving corner detection on foveated data. 

However, corners are usually regarded as points of high curvature, or of curvature 

discontinuity, along the contours of detected boundaries, edges, or local image intensity 

profiles. Of course, different definitions of curvature exist. A common and effective 

definition is to take the curvature κ  as the derivative of tangent angle, with respect to arc 

length, of a parametric curve )(),( tyytxx ==  [17]:  
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where s is arc length, φ  is the tangent angle, and where 
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arctanφ .     (15) 

Shortening the notation and taking the derivative gives: 
' '' '' '

2
'

'
1

d x y x y

dt
y

x

φ −
=

 
+   
 

,     (16) 

which substituted into (14) yields: 

( ) 2/32'2'

''''''

yx

xyyx

+

−
=κ

 .     (17) 

It can be easily shown from the definition that κ  equals the reciprocal of the 

radius of curvature. The curvature measure (17) on a digitized curve is highly sensitive to 

noise because of the computed derivatives, so commonly the curve is smoothed, e.g., a 

low order polynomial is fit to the curve in a sliding window, and the derivatives of the 

polynomial are used in (17) to calculate a value for curvature at the center of the window. 

A local maximum of |κ | may be taken to indicate the presence of a sharp bend in the 

curve or a corner. 

Mehrota et al. [4] developed corner finders based on directional first and second 

derivatives of Gaussians, which can detect half-edges at any desired angle to each other. 
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Flynn and Jain [5] describe a series of corner detectors based on a variety of curve fitting 

methods. They also mention the necessity for smoothing the curves. 

The Moravec interest operator is based on the response of a small averaging 

window to an image. If the window straddles an edge, then moving it parallel to the edge 

direction creates a small change in response whereas moving it normal to the edge creates 

a large response. If the window straddles a corner, however, moving it in any direction 

will cause a large response. The Moravec [18] detector declares a corner if the minimum 

change produced by a shift exceeds some threshold. 

The Plessey corner finder [18], [1] is based on a matrix M of products and squares 

of directional image derivatives. At points where two eigenvalues of M are large, small 

shifts of the window position in any direction will cause a large change in its average 

response, indicating that the point may be a corner. 

The SUSAN corner [20] detector applies a moving circular template to an image 

and declares a corner at points where the value at the center of the template is 

approximately equal to a small portion of the entire template. 

Mokhtarian and Suomela [19] developed a variable scale corner detector based on 

the curvature formula (14) and the Canny edge detector. They initially convolve the 

image with a wide Gaussian, smoothing corners into broad curves. Locating the position 

of maximum curvature gives an estimate of the corner position, which they refine by 

narrowing the scale of the Gaussian, and by tracking the corner as it moves. 

While there has not been any definitive study conducted which would indicate 

which corner detection algorithm is to be preferred – unlike, e.g., edge detection theory, 

where a variety of optimal criteria have led to so-called optimal edge detectors – we use 

the formula (14) for a variety of reasons: it uses a very natural definition, it is a localized 
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computation, it is widely used, and although derivative-based, the use of smoothing in 

our approach to creating foveated images reduces the sensitivity of the operator to noise. 
 

2.4 Sequential Computation of Fixation Points 

A fixation selection measure mi,j is then computed over the entire edge map (as 

explained below), and the next fixation is placed at the pixel with the highest value of this 

measure. A new foveated edge map is created based on the new fixation position and the 

search algorithm is invoked to produce a short saccade, using a different calculation for 

the fixation selection measure than for a long saccade. A new foveated edge map is 

created and another short saccade generated. Short saccades are generated until a corner 

is deemed found, or until a corner is not found, which is assumed when short saccades are 

continually generated. If seven short saccades are generated in succession, or if a corner 

strength measure is sufficiently large to positively identify a corner, then the search is 

deemed to have failed and a long saccade is generated, which moves the fovea to a 

different region of the image.   

We now describe the fixation selection algorithm in detail. At each fixation a 

foveated edge map is computed as described in Chapter 2.  A curvature map is computed 

along the edge (zero-crossing) loci. In order to reduce the effects of noise on the 

derivative computations, a simple third-order polynomial is locally fit at each point on the 

zero-crossing contour. The curvature (17) is then computed at each point (i, j) that lies on 

the smoothed zero-crossing contours. The curvature strength ,i jκ  is one of the multiplier 

factors in the fixation selection measure mi,j. 

Figure 1 illustrates the calculation of a curvature map: Figure 1(a) depicts a 

contour with two points indicated: A and B. Figure 1(b) depicts a close-up of point (A) - 
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a high curvature point – along with its local polynomial fit, while Figure 1(c) shows the 

same for the low curvature point B. Finally, Figure 1(d) shows the original contour in (a) 

with curvature coded by the intensity of the line (darker = higher curvature). 

We believe that curvature alone is not a suitable measure for placement of 

subsequent fixation points for two reasons. First, even if the fixation selection algorithm 

were probabilistically-driven, very high-curvature locations would be visited repeatedly. 

Our goal is to successfully search for as many corners that are in the image as possible. 

Secondly, noise or low-contrast curves may create zero-crossing loci having high 

curvatures, thus attracting the fovea to uninteresting regions or artifacts in the image. 

To address the first of these problems, an array of history information is 

maintained and used to define a second multiplier factor in the fixation selection measure 

mi,j. Let 

,

1 ; | | 12,| | 12

0 ; otherwise

fk fk

i j

i i j j
h

− ≤ − ≤
= 


       (18) 

where the coordinates of the kth fixation point are denoted by ifk and jfk. Whenever a 

fixation point is generated, a 25x25 unit square centered at the fixation is added to the 

history array. In this way, long saccades are prevented from landing too close to 

previously-visited locations. 
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Figure 1. Generation of curvature map on smoothed zero-crossing contour. (a) Zero-
crossing contour; (b) Local polynomial fit near the high-curvature point A. 
The axis coordinates are relative to A. (c) Local polynomial fit near the low-
curvature point B. The axis coordinates are relative to B. (d) Zero-crossing 
contour in (a) with curvature coded as intensity (darker = higher curvature). 
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Two observations motivate the next term used in the fixation selection measure. 

First, corners that lie further from the current fixation point (if, jf) will be more severely 

blurred by foveation, so the apparent curvature of distant corners will be reduced. 

Secondly, once a corner is found at (if, jf), a large saccade is desired to cause the 

algorithm to scan the image more quickly. Hence the distance factor 

2 2

, ( ) ( )i j f fd i i j j= − + − .     (19) 

is used as a multiplier in the fixation selection measure mi,j. This term compensates for 

the fact that corners away from the foveation point turn into broad curves by giving extra 

weight to curves far from the fovea. In addition, it forces the fixation point to move large 

distances between fixations, forcing it to scan the entire image more quickly. 

We have also chosen to include an edge strength factor in the fixation selection 

measure. Our viewpoint is that corners having large edge magnitudes are more likely to 

be associated with significant image structure. The edge strength factor is simply the 

squared gradient magnitude of the Gaussian-smoothed space-variant image.  

2
, ( , )i js S i jσ= ∇        (20) 

The use of this term introduces an additional problem. A high contrast edge of 

low curvature may attract the fovea to an uninteresting region of the image. To 

eliminate edges of low curvature, we apply a threshold τ to the curvature data:  

, ,0,i j i jifκ κ τ= <               (21) 

However, since foveation greatly reduces the apparent curvature of corners (an 

effect that increases with distance), it is possible that no computed curvature may exceed 

τ. In such instances, τ is temporarily set to zero until a new long saccade is generated. 

The overall fixation selection measure is 
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where the maxima are taken over the entire image, and where C controls the length of the 

saccade. When C = 0, a long saccade is to be generated, and when C > 0 a short saccade 

is to be generated according to the formula in (22). C is initially given a value of zero, 

and is incremented by one with each saccade, until it is reset to zero. There are two 

conditions under which C is reset to zero: (i) The measured curvature ( ),f fi j
κ

 at the 

current fixation point exceeds a threshold (0.9 in our algorithm), indicating the presence 

of a corner. (ii) Seven short saccades have been generated: C > 7. The value of 7 is 

arbitrary and is normally never reached. Its purpose is to force a long jump should the 

fixation point ever reach an empty part of the image where short saccades are unable to 

remove it.  

Note that long saccades (C = 0)  are discouraged from approaching previous 

saccades owing to the inclusion of the history term (18) in (22), but this is excluded for 

short saccades (C > 0) which attempt to zero in on strong local corners.  

The global maximum of 
jim ,
 provides the coordinates for the next fixation point. 

When the next fixation is made, the saccade length control variable C is incremented 

from 0. After reaching 7 (following 6 subsequent short saccades) it is reset to 0 forcing 

another long jump. This produces a sequence of one long saccade, intended to explore a 

new region of the image, followed by several short ones (fewer than 7), which pinpoint 

the corner accurately. 

Finally, the algorithm may be terminated in a number of ways, depending on the 

application. It may be terminated after a fixed number of fixations, or after the fixation 
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selection measure mi,j fails to exceed a predetermined threshold over several attempts, 

indicating that the pool of available and unvisited corners in the image is exhausted. 

We illustrate the steps of the algorithm by example. Figure 2(a) is the image 

lighthouse. In each image, the fixation point is designated by the symbol “X.” In this 

example, the current fixation point is presumed to be at the peak of the lighthouse, as 

indicated. Figure 2(b) shows a foveated version of lighthouse – although, of course, this 

image is not calculated by the algorithm, since (13) in discrete form is used to generate 

the zero crossings. Figure 2(c) depicts the foveated edge map calculated by the foveated 

Canny edge detector, and Figure 2(d) is the foveated curvature map, with intensity made 

proportional to curvature. 

2.5 Assessing the Fixation Points 

It is desirable to be able to assess the efficacy of any image feature extraction mechanism, 

since accurate extraction is necessary to the success of most image analysis or 

classification algorithms. However, testing the effectiveness of corner-finding algorithms 

is difficult, for reasons similar to those which limit methods for testing edge detectors. 

Corners, like edges, lack a precise definition; they manifest innumerable variations in 

attributes such as magnitude, sharpness, scale, duration, and so on. Indeed, detected 

corners are more difficult to assess since they are usually computed from already 

vaguely-defined edges. For edges and corners, there is no existing effective ground truth 

in natural images. 

Nevertheless, we have attempted to validate our method through comparisons to 

corner maps computed by humans in two different ways. 
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            (c)                                                                    (d) 

Figure 2. Example of calculation of subsequent fixations. (a) Original image lighthouse. 
(b) Foveated version by space-varying Gaussian filtering. (c) Foveated edge 
map by foveated Canny edge detection. (d) Foveated curvature map. 

X
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In the first method, we compare the corners detected by our algorithm to 

handpicked corners chosen by a human. To eliminate any questions of bias on the part of 

the human corner-finder, we have applied this method only to an image of a geometric 

object with corners that are evident. This is useful since it benchmarks our algorithm on 

an image with an effective ground truth. 

In the second method, we compare the algorithm’s results against the visual 

fixations, measured by a precision eyetracker, of human subjects viewing a naturalistic 

image. The subjects were asked to accomplish a simple task: to search for corners in the 

image. Each subject was briefed beforehand to give them idea of what was meant by a 

corner (without referring to any image used here). This experiment has the virtue of 

supplying a ground truth of sorts of images of the real world. However, the results are 

naturally limited by the fact that human visual fixations are guided by many low-level 

and high-level mechanisms, even in subjects instructed to perform a specific visual task. 
 

2.6 Method of Comparison 

Before explaining the procedures for obtaining comparison data, we explain the 

method used to make the comparisons. The method used needed to satisfy several 

criteria: (a) computed and handpicked corners and fixations are defined on sparse sets of 

singleton points in the image plane; (b) exact hits between detected corners and either 

fixations or handpicked points are likely to be relatively rare. Owing to these limitations 

we opted to use a method of comparing sparse sets of visual fixations similar to one used 

in [26]. 

The first step is to create a dense fixation-point (or handpicked point, or corner 

point) image by a process of interpolation. Begin with a zero array with domain the same 
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as the image. Then, at the coordinates of each fixation point (for eyetracked results), 

handpicked point, or algorithm-computed corner, compute an isotropic 2-D Gaussian 

with space constant chosen such that the half-peak width is equal to the diameter of the 

foveola – or about 1º of visual angle – for the eyetracked observers. Each Gaussian has 

unit peak value. The same space constant is used for the Gaussians that interpolate the 

handpicked and computed results. In each dense fixation/corner image, the Gaussians are 

summed to create an overall “fixation” map. As each Gaussian is generated, it is 

integrated into the current dense fixation map using the summed weighting 1-(1-p)(1-q), 

where at any coordinate p is the value of the existing map and q is the value of the 

Gaussian centered at the new fixation. When the map is completed, it is normalized to 

have unit volume (unit array sum). This makes it possible to interpret the dense fixation 

images as probability maps (2-D empirical mass functions) of fixation placement 

associated with each image. 

This process is illustrated in Figure 3, which shows the Gaussians computed from 

a set of sample fixation points (marked as ‘X’), with overlapping envelopes summed. 

Replacing each fixation point by a 2D Gaussian is a simple method for approximating the 

probability that a neighborhood region around the fixation could have been selected as a 

fixation point. Using a Gaussian to interpolate each fixation point allows for uncertainty 

in its location which can arise from small errors in the calibration, and allows for 

imperfect accuracy of the eye movement measurements. 

To compare the probability maps from visual fixations, from handpicked corners, 

and from computed corners, we use a standard information-theoretic measure of the 

similarity between probability density functions: a modified Kullback-Leibler distance 

(KLD). The KLD measure the relative entropy between two probability functions 
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The KLD is not a true distance function, since it is not symmetric and does not obey the 

triangle inequality. However, it is convex and 0)||( =qpD  if and only if p(x) = q(x) [27]. 

Since there is no reason to prefer an asymmetry, we use the symmetric distance [28]: 
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to quantify the distance between (interpolated) corner locations computed using our 

proposed algorithm with either (interpolated) handpicked corners, or with (interpolated) 

recorded eye fixations (measured from observers looking for corners). 
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Figure 3. Sample fixation points with Gaussian interpolation. 
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2.7. Comparison with Handpicked Corners 

Our first comparison is made with an image of an object with reasonably well-

defined corners. The algorithm was run on this and the resulting computed corners 

compared with those obtained by human handpicking of corners. Figure 4 contains 

images of a polyhedron. We counted 85 vertices in this image and handpicked the 

coordinates of each using a graphics program with a crosshair cursor. While many of the 

vertices result in unambiguous corners, other vertices present less obvious corners owing 

to their geometric placement, the shading of the object, and so on. 

We ran the algorithm until it computed 85 fixations on the polyhedron, for three 

different values of τ (see (21)), and calculated the KLD between the algorithmic and 

handpicked vertices. Results are shown in Figs. 4(b)-(d). 

2.8. Comparison With Eyetracked Fixations 

In addition to testing algorithm generated fixations with handpicked ones, we 

have compared the algorithm generated ones with those of four human subjects viewing 

each test image through an eyetracker. The experimental protocol is described in the 

Appendix. 
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                 (c)                                                   (d) 

Figure 4. Polyhedron image used to compare the corner detection algorithm with 

handpicked corners for 85 fixations. (a) raw image(b) For τ = 0.1, the KLD 

= .1323. (c) For τ = 0.2, the KLD = .1490. (d) For τ = 0.3, the KLD = .3702. 

 

Here we test the algorithm on the two images shown above: the lighthouse on a 

seashore shown above in Figure 2(a) and the polyhedron shown in 4(a). Table I provides 
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KLD values of algorithm vs. eyetracker generated fixations for each of the seven 

subjects. It also has a KLD value for polyhedron handpicked versus algorithm generated 

fixations. Values were calculated using the symmetrical KLD shown in (24). Each 

subject ran about 50 fixations on the eyetracker, so the algorithm was run for 50 

fixations, as shown in Table I. The threshold τ was set to 0.1 since that yielded the lowest 

measured value of the KLD for the case of the polyhedron handpicked versus algorithm. 

Table II shows algorithm versus handpicked for 50 and 85 algorithmic fixations. 

The lowest measured distance is between the polyhedron handpicked and algorithmic, 

demonstrating that the algorithm performs its intended task of finding corners well. Since 

there were 85 handpicked vertices, it was to be expected that the run with 85 algorithmic 

fixations would give a lower distance than the one with 50 fixations, which was the case. 

The polyhedron handpicked versus eyetracker comparison is consistently worse than the 

handpicked versus algorithm. The eyetracker versus algorithm is worse still. From this 

one might deduce that corners are poor predictors of visual fixations, yet, in a complex 

scene such as this, corners are one of many different classes of features that attract 

fixations.  

To test the accuracy of the algorithm for finding corners, we calculated (for the 

polyhedron image) the distance from each algorithmic fixation to the nearest handpicked 

one, and repeated the process for all eyetracker fixations. If the minimum distance for 

each fixation point was less than or equal to a given value, a “match” was declared. 

Figure 5 shows a comparison of matches as tolerance varies from zero to one degree. At 

zero tolerance, neither method shows matches. As tolerance increases, the handpicked 

matches increase much faster than the eyetracker ones. This further demonstrates that the 

algorithm locates corners far more accurately than human subjects. 
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Table I. KLD values for eyetracker vs. algorithm and eyetracker vs. handpicked 50 
fixations.  

Comparison Subject

  HHC IVDL UR YL 

Polyhedron - Eyetracker vs. Hand Picked 0.411 0.603 0.876 0.398

Polyhedron - Eyetracker vs. Algorithm 0.317 0.492 1.065 0.408

Lighthouse - Eyetracker vs. Algorithm 2.743 2.216 2.505 1.927

 

Table II. KLD values for algorithm vs. handpicked for 50 and 85 fixations. 

 

 

 

 

 

Figures 6 and 7 show algorithmic versus eyetracker fixations for four subjects 

apiece, for the lighthouse and polyhedron. The polyhedron images include the 

handpicked vertices. In addition, Figure 8 shows algorithmic fixations on an image of 

tools from the Rutgers Tool Database [78] and on a natural scene from the van Hattern 

database of naturalistic images [83]. Figures 9 and 10 show runs of the algorithm on eight 

additional images. 
 

Comparison 

Polyhedron - Random vs   Hand Picked 85 Fixations 2.033

Polyhedron - Algorithm vs. Hand Picked 50 Fixations 0.269

Polyhedron - Algorithm vs. Hand Picked 85 Fixations 0.132
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Figure 5. A comparison of the accuracy of corner locations, algorithm vs. eyetracker 50 
fixations. 
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Figure 6. Four observers vs. 50 algorithmic fixations – lighthouse. 
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Figure 7. Four observers vs. 50 algorithmic fixations – polyhedron. 
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Figure 8. Test of algorithm on tool image (top) and natural scene (bottom). 
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Figure 9. Test of algorithm on other images - part A. 
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Figure 10. Test of algorithm on other images. 
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CHAPTER 3.  

 TWO-DIMENSIONAL FOVEATED OBJECT RECOGNITION 

Two broad approaches toward object recognition are described in this section. 

The first approach deals with objects that can be easily segmented via binarization or 

contour detection. The second set deals with object recognition in natural images.  

Sclaroff [97] and Sclaroff and Pentland [111] perform recognition of tool, animal, 

and fish images by means of models of object deformation models. They calculate the 

energy to deform an unknown image to a model in the database of known objects. 

Objects requiring less deformation energy are better fits. 

Chung & Wang [88] used Hu moments for recognition of binary images of hand 

tools. They calculate a feature vector of seven moments for each object to be recognized, 

and then compare the results of a backpropagation artificial neural network (ANN) with 

two statistical classifiers, single nearest-neighbor and minimum mean distance. The ANN 

gives somewhat better results then the other two classifiers. 

Tsang & Au [89] used a genetic algorithm for projective invariant object 

recognition of hand tools. First, they take a picture of the unknown object, then extract a 

contour. Finally, using a genetic algorithm, they compare the contour of the unknown 

object with a data set of contours of known objects. 

Cai and Liu [90] combined HMM with Fourier spectral features for recognition of 

hand tools and handwritten numerals. They also extract contours and sample them at 

equidistant points along each contour. 

Sossa and Palomino [35] perform recognition based on polynomial 

approximations of contours of binary images of geometrical objects. They first locate 

corners of 2D objects and then connect the corners with straight line segments. Next, they 
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extract geometric invariant features from metasegments, groups of consecutive line 

segments and use these features to compare with a database of known objects. This 

system provides independence of camera viewpoints.    

Stein and Medioni [91] use a system somewhat similar to [35] to recognize 

animal and airplane shapes. They also use polygonal approximations to contours and 

group adjacent segments, calling these groups super segments. They then quantize 

features of the super segments into a Gray Code to improve robustness. Matching is done 

with a hash table. 

Fred, Marques, and Jorge [92] compare hidden Markov models (HMM) against 

stochastic finite state grammars for 2D hand tool recognition. They first extract the 

contour of the object then sample it at equidistant points, and convert it to a differential 

chain code, which they then model with an HMM. 

A great deal of effort has been applied to the problem of recognizing objects in 

two-dimensional gray-level images, where it is assumed that the object being searched 

for has a known pose and hence projection (viz., this is not 3-D search). In our approach, 

we do not make any assumption that the object to be identified can be segmented or the 

image binarized to reveal the object easily, and no segmentation process is used. Instead, 

features are extracted from the gray-level images and used for object recognition 

purposes on naturalistic images. Other approaches have operated under these more 

general assumptions. For example, SIFT is a general-purpose recognition philosophy 

invariant under rotation, translation, and scale that in [80], utilizes histograms of 

gradients around points of interest called keypoints. The essential philosophy of SIFT is 

used in our own work described below, but operating in a foveated framework and using 

specific localized features. 
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In [93], an object class recognition system is described that operates by 

decomposing an object into its component parts. SIFT is then used to locate keypoints 

and feature vectors based on location, scale, and “appearance.” A maximum likelihood 

method is then used to determine whether each vector belongs to a component, and hence 

a particular object. In [105], a system based on pyramid matching is described for 

recognizing categories in natural scenes. This technique hierarchically partitions images 

into sub-regions and calculates SIFT and other features.  

A complex recognition system is described in [94], and extended in [95], based on 

models of visual cortex. A network consisting of four alternating layers of simple and 

complex cells implemented using the local maxima of Gabor filters and radial basis 

functions fed to a linear classifier. In [96], a recognition system based on saliency 

(measured as high local entropy), scale, and image content is described using a Bayesian 

framework for recognition. Another Bayesian approach to category recognition is 

described in [2], using the saliency features developed in [96]. Their system requires only 

a few images to learn a category of complex objects, with perhaps hundreds of 

parameters.  Their method uses probabilistic knowledge accumulated from previously 

accumulated categories, even if unrelated. 

In all of the preceding approaches described, and in fact all that we know of, 

images containing the objects to be recognized are processed in a uniform manner: the 

features that are used are computed from the full resolution image at every location, and 

once collected, are then used to attempt recognition. By contrast, in what we describe the 

features are detected in a foveated manner, and the process of recognition proceeds in a 

sequential manner as the features are computed. In this sense, the overall object 

recognition system may be viewed as foveated. 
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3.1 Foveated Edge and Corner Features  

There is no consensus opinion yet formed regarding which low-level image 

features can be used to best advantage for generic object recognition applications. 

Depending on the application, low-level primitives such as edges, lines, corners, textures 

(and so on) have been proposed. An argument can be made for any of these; in our 

demonstration of the possibility of conducting foveated visual search, we choose to use 

gray-level corners. Corners as bearers of visual information are described above in the 

introduction and in [87]. Above in Chapter 2 and in [87] we described a foveated corner 

search algorithm that sequentially seeks corners using a foveated search protocol, and 

which is the basic feature selection mechanism used here. The approach is very briefly 

recapped here and changes to the algorithm for object recognition duly noted.  

In the simple approach to foveated object recognition described here, the 

following steps are therefore taken: a sequence of points of foveation (“fixations”) are 

serially computed as described in the next section 3.2. At each fixation a foveated edge 

map using the new concept of foveated Canny edge detector is computed as described in 

the preceding. A curvature map is computed along the zero-crossing ZC loci. Stable 

results are obtained by fitting a third-order polynomial at each point on the ZC contour. 

The curvature ,i jκ  (17) is then computed at each coordinate (i, j) on the smoothed zero-

crossing contours. This general procedure is described in more detail above. 

The curvature strength ,i jκ  at each (i, j) is one factor used in three ways: First, 

whether a corner has been found at the current fixation coordinates (if, jf), which occurs 

when 

( ),f fi j
κ > 0.9.      (25) 
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Secondly, the curvature strength ,i jκ  is used to determine the next fixation point 

to be reached by a short or long saccade, if one is needed, as described in Sections 2.4 

and 3.2 Thirdly, the corners computed thus far at each fixation, and their curvature 

strengths κ, are used to attempt recognition of the object, as described in Chapter 3. 
 

3.2 Sequential Computation of Fixation Points (redux) 

The fixation selection algorithm used here differs from that above and in [87] in 

that it is configured for the specific application of object recognition. Fixation points are 

serially generated in an effort to find usable corner points for the object recognition 

process. In the absence of computed information, the first fixation point is taken to be the 

center of the image. This is largely an expedient, although we observe that according to 

Kowler [12], in humans participating in experimental visual search tasks, “saccades often 

land in the center of the entire stimulus configuration.” While this is certainly overly 

broad and task-dependent, in the absence of any other information this choice seems 

sensible, since the image center minimizes the maximum distance to any other point in 

the image, hence provides the best overall “look” when foveating. 

A foveated edge map is computed over which a fixation selection measure mi,j is 

computed. The next fixation is coincident with the highest value of mi,j. The search 

process then proceeds in two modes: first, local search, where small changes in fixation, 

or short saccades are computed as corners are locally searched for. Either a corner is 

found or the local search fails. If a corner is found, an attempt is made to recognize the 

object using the corners found thus far. The second mode is global search. If the object is 

not recognized with sufficient confidence, or if no new corner was found, then a larger 
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change in fixation, or long saccade, is made. The criteria for fixation selection for the two 

modes differ, as described next. 

 When a new fixation point has been selected using a long saccade, a foveated 

edge map is created that is centered at the new fixation position. The local search 

algorithm is then invoked. At each local fixation coordinate, the corner strength measure 

is computed to decide whether a corner is deemed present. If it is not, then a short 

saccade is produced. A new foveated edge map is created, the corner measure, computed 

and, if necessary, another short saccade generated. Short saccades are generated until a 

corner is deemed found, or until a corner is not found. If seven short saccades are 

generated in succession without a corner being found (the computed corner strength 

measure is insufficiently large to positively identify a corner), then the search is deemed 

to have failed and a long saccade is generated, which moves the fovea to a different 

region of the image. 

The fixation selection measure mi,j for both long and short saccades is composed 

of a variety of factors, most of which are detailed above: curvature strength ,i jκ ; a re-visit 

inhibit factor hi, j that takes value P when a new fixation lies within Nh rows or columns of 

any P prior fixations (Nh = 11 in this implementation), thus discouraging long saccades 

from landing too close to previously-visited locations; the Euclidean distance di, j that 

gives more distant potential fixations/corner greater weight, to compensate for the fact 

that the curvature strength ,i jκ  diminishes with distance owing to foveation; and the 

squared gradient magnitude si, j of the gaussian-foveated image, which gives edges of 

larger magnitude greater weight in the fixation selection process. An important 

modification to the algorithm in [87] is made to ensure that only sharp corners are 

detected. Since high contrast edges of low curvature may attract fixations to uninteresting 

(in the sense of low-curvature corner information) regions of the image, the overall 
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measure mi,j is set to zero if κi, j < τ. The principle here is that for corner-based object 

recognition, points of higher curvature will yield better recognition discrimination than 

relatively smooth corners. This also effects the features that are used in the modified 

SIFT implementation, described below. In the rare instance that κi, j < τ for all (i, j), then 

τ is temporarily set to zero until a new long saccade is generated. 

The overall fixation selection measure, a modification of (22),  is given by: 
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(26) 

where maxima are taken over the entire image, and where C controls the saccade lengths. 

When C = 0, a long saccade is generated, and when C > 0 a short saccade is generated. C 

is initially zero when the first (center) fixation is assigned, and incremented by unity with 

each succeeding saccade, until it is reset to zero. It is reset to zero whenever a corner is 

found according to (25), or whenever seven consecutive short saccades are generated (C 

> 7). The value of 7 is arbitrary and is normally never reached. Its purpose is to force a 

long jump should the fixation point ever reach an empty part of the image where short 

saccades are unable to remove it.  

Long saccades (C = 0) are discouraged from approaching previous saccades 

owing to the presence of hi, j in (26), but not for short saccades (C > 0) which zero in on 

strong local corners.  

The global maximum of 
jim ,
 provides the coordinates for the next fixation point. 

When the next fixation is made, the saccade length control variable C is incremented 

from 0. After reaching 7 (following 6 subsequent short saccades) it is reset to 0 forcing 

another long jump. This produces a sequence of one long saccade, intended to explore a 
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new region of the image, followed by several short ones (fewer than 7), which pinpoint 

the corner accurately. 

One particular of our implementation for this application is that corners are not 

found within a distance of 50 pixels from any border of the image edge. So that 

information is not lost near the image borders, the images are extended in size by a 

process of reflection them across each image boundary. The fixation selection measure 

and all of the constituent calculations are accomplished on the reflected image. 
 

3.3 Foveated Object Recognition By Corner-Based SIFT 

We have chosen to implement and demonstrate the principles of our method by 

adapting a well-known general approach. The Scale Invariant Feature Transform (SIFT) 

algorithm [80] operates by extracting low-level features from images. The features used 

in [80] are chosen to be invariant to translation, scale, rotation, and at least partially 

invariant to changing viewpoints, and variations in illumination. The feature 

representations computed by SIFT are argued to be analogous to those of neurons in 

inferior temporal cortex, a region believed used for object recognition by primates. 
 

3.4 Review of SIFT 

Here follows a brief, simplified description of the processing steps in the original 

SIFT algorithm [80]: 

3.4.1 KEYPOINT LOCALIZATION. Difference-of-gaussians (DoG) bandpass 

filters are applied to the image over a range of dyadic scales. Local extrema of the DoG 

responses are found at each scale. These local extrema are candidate keypoints, or points 

of interest. 
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3.4.2 ORIENTATION INVARIANCE.  A local neighborhood about each keypoint is 

defined. A rotation, scale- and translation-invariant keypoint descriptor is then computed, 

as follows. Over each neighborhood, a histogram is computed of gaussian-weighted 

summed gradient magnitudes at each orientation, and divided into 36 10° gradient 

orientation bins. The histogram is locally smoothed. The neighborhood is then rotated by 

the gradient orientation corresponding to the peak histogram value. Finally, a 16x16 sub-

window is extracted following the rotation, yielding a rotation-invariant keypoint 

descriptor. 

3.4.3 KEYPOINT DESCRIPTOR. The 16x16 rotated sub-window is blurred by a 

gaussian with space constant equal to that of the scale of the keypoint. The sub-window is 

weighted by another gaussian centered at the keypoint, thus masking small localization 

errors. The window is divided into 4x4 sub-windows; over each of which a histogram of 

gradient magnitudes is computed, and divided into 8 bins by gradient orientation. The 

result is a 4x4x8 or 128 element feature vector description of the image about the 

keypoint. This vector is trilinearly interpolated to reduce errors from small mislocations. 

Lastly, normalization and thresholding are applied to make the keypoint less sensitive to 

variations in illumination.  

3.4.4 OBJECT RECOGNITION. A database is created of keypoints from known 

objects called the “training set,” although no training takes place in the sense of a neural 

network. For each keypoint from an unknown object, a set of Euclidean distances is 

calculated. The ratio of the lowest distance to the next lowest between the keypoint and 

the database indicates whether a match has been found. A ratio much smaller than one 

indicates a high probability of a match.  

Our adaption of the SIFT shares similar functionality to SIFT although it differs 

in regard to the feature sets used and in the foveated operating environment. Rather than 
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defining keypoints to be scale-space extrema, we use corners located by the foveated 

algorithm described above and in [87]. In addition, the algorithm runs on only two scales, 

rather than a range of scales, and at both scales the same located corners are used. The 

viewpoint taken here is that since we seek local sharp corners on objects, it should be 

adequate to utilize highly localized representations of the discovered corners; of course, 

this also reduces the overall computational complexity. The second and third steps in our 

method are essentially the same as those in the original algorithm, though the keypoints 

receive no postprocessing.  

 

3.5 SIFT-Like Preprocessing Using Foveated Corners 

A blurred version of each detected corner at location i is available as the response 

of a local foveation filter (with local space constant σi) that was used to discover the 

corner, as described above and in [87]. A small 16x16 neighborhood is extracted around 

this smoothed corner, which defines the finer spatial scale of the “keypoint” corner. To 

create a coarser scale, the local neighborhood is filtered again so that the local scale of 

the twice-blurred neighborhood is 2σi. These smoothed corner features and their local 

neighborhoods serve as the “keypoints” in our adaptation of SIFT. 

We next describe our mechanism for handling orientation-invariance, which 

slightly modifies SIFT. Briefly, gradient orientation is computed as a gradient magnitude-

weighted average of phases, taking into account phase wraparound. We have found that 

this delivers results that are superior, in our application, to the maxima of phase 

histograms method used in the original SIFT. 

In a non-foveated multi-scale system, features such as edges and corners will 

appear, move, and disappear as the scale changes. In a foveated system, however, where 
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the image is relatively sharp in the vicinity of the fovea, the locations of corners should 

be roughly independent of scale.  Therefore, for corner location we only use the smaller 

scale, which greatly accelerates the algorithm. 

Figure 11 shows two corners on a rectangle, designated Corner 1 and Corner 2, to 

be used to demonstrate the method of orientation handling. Figures 12(a) and 12(b) 

depicts details (zooms) of the corners after foveation filtering. The gradients of these are 

plotted as needle diagrams (length and orientation coding gradient magnitude and 

orientation, respectively) in Figures 12(c) and 12(d). Next, the histograms of are 

computed for each keypoint neighborhood, defined as the (gaussian-weighted) sum of 

gradient magnitudes corresponding to each orientation. The overall orientation of the 

keypoint neighborhood is then calculated as the weighted average of the histogrammed 

orientations  

 

 

 

Figure 11. Two corners located on a rectangle. 

1 

2 
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where the pi are the neighborhood gradient orientations (phase unrolled for averaging), 

and the mi are the associated gradient magnitudes. Continuing our idealized example, 

Figure 13(a) and 13(b) depict the gradient orientation histograms from the gradient maps 

in Figs. 12(c) and 12(d). Once the local keypoint neighborhood orientation o has been 

calculated using (6), the neighborhood is rotated CCW by the amount o. Figures 13(c) 

and 13(d) show the rotated Corner 1 and Corner 2, respectively. 
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      (a)                                                                                (b) 

 

 

 

 

 

 

 

 

 

      (c)                                                                                 (d) 

Figure 12. Illustration of orientation pre-processing. (a) (b) Foveation-filtered versions of 
corners 1 and 2 in Figure 11, respectively. (c), (d) Needle diagrams showing 
the gradients of (a), (b), respectively, with needle length coding (scaled) 
gradient magnitude and needle angle indicating gradient orientation. 
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(a)                                                                               (b) 

 

 

 

 

 

 

 

 

 

(c)                                                                             (d) 

Figure 13. Rotation of corners. (a), (b) Histograms of gradient orientations demonstrated 
on Corners 1 and 2. The neighborhood orientations computed on (a), (b) 

using (6) were -5.0° and -114.3°, respectively. (c), (d) Gradient maps of the 
two corners following rotation. 
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3.6 Recognition Using Foveated Corners 

Two related algorithms are used in the recognition system. One creates a database 

of SIFT-like features of known objects, with features from both scales intermixed. We 

call this the training set. The other identifies an unknown object by comparing its SIFT 

feature for each located corner with the features stored in the database. Of course, 

different objects may possess different numbers of corners. Figure 14 illustrates the 

organization of the database. Objects are grouped by category. The keypoints belonging 

to each object are placed together in the order in which the corner finding routine reports 

them. A separate file contains the categories and names of the object belonging to each 

entry.   

Not all of the corners located by the corner finding algorithm are used as SIFT 

features. Some detected corners are duplicates or near-duplicates of ones that have 

already been located. Others have relatively low curvature or gradient strength. The 

routine that creates the database collects a set of trial corners, each element of which 

contains curvature and location, and filters out those having a curvature κ < 0.2 or a 

gradient strength s < 0.2 times the maximum gradient strength of the entire foveated 

image. The set of filtered trial corners is sorted by decreasing curvature. The corner 

having the highest curvature is saved into a final set. From then on, corners from the trial 

set are placed into the final set if they are at a distance greater than 10  pixels from all 

other corners in the final set. This prevents clustered corners from being used for 

recognition.  
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Figure 14. Illustration of the corner-keypoint database. Keypoints are shown as 2-D 
images. Objects labeled are X1, X2, and Y1. Here, X1 and X2 are examples 
of the same type of object and are adjacent in the database, while Y2 is a 
different type. Object X1 has three corners labeled a through c; X2 and Y1 
each have two corners, labeled a and b. 

 

Identification of an unknown object occurs somewhat differently, since corners 

are passed to the recognition algorithm “on the fly.” Each corner on the unknown object 

is located, then filtered as described above, and if accepted, compared with the database. 

A correlation is calculated between it and each corner in the database: 
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where Cab is the (normalized) correlation between features a and b. 

Object recognition is based on a voting system that is based in turn on the 

correlations calculated in (28). The algorithm is complicated by the fact that there is no 

simple way to match corresponding corners between known (database) and unknown 

objects.  

The following describe the database in set theoretic terms. The j
th

 object is 

represented in the database by the set of SIFT features at both scales in no particular 

order: 

{ }1 2, ,...,j j j jN j
s s s=O                           (29) 

where sji is the SIFT feature from the  i
th

 corner of the j
th

 object, and Nj is the number of 

features on the j
th

 object.  

Several objects that are adjacent in the database are grouped together to form a 

category. The k
th

 category is: 

{ }klk Kl ∈= |OC      (30) 

 

where Kk is the set of objects in the k
th

 category. 

Finally, the entire database is the set of the sets of categories in consecutive order. 

 

{ }1 2, ,..., NC C C=DB       (31)  

where N is the number of object categories. In our simulations, we will use N= 8 

categories of objects. Each category will receive a number of votes that is stored in an 

array having the same number of categories as the database: 

{ }1 2, ,..., Nv v v=V .     (32)  

The vector V is initialized to zero prior to corner discovery. 
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To recognize an unknown object, each corner is compared in succession with 

each corner in the database, and the correlations calculated using (28), creating a set of 

correlations whose cardinality equals that of the database. 

We describe the sequence of steps in the object recognition process next. First, a 

corner on the object is located through the foveated search process. If it is of sufficient 

curvature and gradient strength, then the correlation Cij between it and each corner in the 

database is calculated, where i represents the corner in the unknown object and j 

represents a corner in the database. The category, jmax, corresponding to the maximum of 

all the correlations of corner i over the database is then determined 

ij
j

Cj maxargmax = .      (33) 

The category or categories corresponding to jmax ,which can be multivalued, each receive 

a vote:  

max

1
jk

kk
∈

+=νν
     (34) 

The algorithm accumulates information as it seeks corners and calculates SIFT 

features. The criterion for stopping the algorithm and declaring a winner is consistency of 

selected winners. After at least 8 corners have been selected, the algorithm will stop when 

at least 70% of the selected winners have the same classification. If no such condition is 

reached, the algorithm stops after 12 corners have been found. 

When the stopping point is reached, the category with the highest number of votes 

is declared the winner. Since votes are small integer values, they are subject to frequent 

ties. If a tie is detected, the following procedure is used to calculate the winner. 

Let Mj be the sum of the correlations of the first I features of the unknown object 

against the j
th

 object in the database. 
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Then, the winning category for tie breaking is the one which corresponds to the 

maximum value of Mj. A further tie is virtually impossible since Mj is the sum of floating 

point correlations. 
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CHAPTER 4.  

 RESULTS AND DISCUSSION 

In order to test the efficacy of the algorithm in terms of recognition performance, 

we assembled a diverse database containing eight categories of objects. These include 

hand tools from the Sclaroff database [97], the Rutgers University Tool Image Database 

[98], [78], and images of fighter and passenger jets. Figure 15 shows sample images 

taken from each category. It should be noted that these images are true gray-scale images 

that are not always easily segmented from their backgrounds. The object images also 

display internal non-uniformities, so that object recognition does not reduce to simple 

boundary matching. It is likely that internal corners are discovered on any of the objects 

during the foveated corner search process. Also, the images are not all of the same size. 

The overall database on which the algorithm was run was comprised of 78 objects with 

the number in each category shown in Table III. Table III also gives the number of 

objects in each category, the number of objects that were used for training, and the 

number of objects (and percentages) correctly identified. As shown, the overall 

recognition rate was 84.6% correct. Among those objects which were in the training set, 

there were 35 correct, 1 incorrect for a total of 97.2% correctly recognized objects. This 

indicates the approach to be resilient in consistently recognizing objects with known 

attributes. Among those not in the training set, the recognition rate was naturally lower, 

with 31 correct and 11 incorrectly recognized objects for an overall success rate of 73.8% 

correct. 

It is worthwhile to make comparisons with other, related efforts. In [80], the SIFT 

algorithm was used to detect and locate objects in gray-level scenes, but did not report 
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statistics on recognition performance. In a later study [95], the SIFT algorithm was tested 

on a database of 102 categories: the Caltech-101 image dataset [100] and a background 

category. They choose 15 or 30 training images at random from each category, place the 

remaining items in the test set. Their result was 51% correct for 15 training images, and 

56% for 30 training images. In another experiment they detected and located automobiles 

in the UIUC car dataset [104]. The results varied between 90% and 100% correct 

depending on the details of the experiment. In [105], the authors tested a spatial pyramid 

matching technique for recognizing object categories in natural scenes, using a 

combination of SIFT and other features. A dataset with fifteen scene categories of 200 to 

400 images each was used. They used 100 images per class for training and the remainder 

for testing, and obtained classification rates between 72.2% and 74.7%. In another set of 

experiments, they used the Caltech-101 dataset, which contains 31 to 800 images per 

category. Their best reported result was a recognition rate of 64.6% correct.  

Although the greatest value of our approach lies in the exploration of the under-

utilized, yet sensible approach of fixation-foveation in problems such as visual search and 

recognition, we are pleased by the performance of the algorithm developed using these 

principles. We envision that other foveated features, including original (foveated) SIFT 

features, features derived from foveated human attention studies [86], or features from 

receptive field models [106]-[108] might be used to good effect.  
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    (d)                                                         (e)                                                          (f) 

 

 

 

 

 

 

 

                                     (g)                                                               (h)  

Figure 15. Sample images of each category. (a) A brush; (b) a fighter jet; (c) a claw 
hammer; (d) a passenger jet; (e) a pair of pliers; (f) a screwdriver; (g) a 
sledge hammer; (h) a wrench. 
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Table III. Object categories and two-letter ID codes. The number of each object type is 
indicated, as well as the number used from each object type for training 
purposes. Finally, the number of correctly recognized objects in each dataset 
(and the percentage of correctly-recognized objects) are given. 

 

Code Tool/Object 

Type 

Number 
Available 

In 
Training 

Set 

Num  
Correct 

     Pct. 
Correct 

Br Brush 5 3 3 60.0 

Fj Fighter Jet 7 3 5 71.4 

Ha Hammer 

(Claw) 

5 3 4 80.0 

Pj Passenger 

Jet 

8 4 8 100 

Pl Pliers 8 4 8 100 

Sc Screw 

Driver 

10 5 9 90.0 

Sl Sledge 

Hammer 

10 5 6 60.0 

Wr Wrench 25 9 23 92.0 

 Total 

Objects 

78 36 62 84.6 
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Foveated search techniques have great potential to improve the efficiency of 

robotic vision systems equipped with movable camera(s). The system here accomplishes 

foveation by software, hence requires more computation and memory than hardware 

foveation, e.g, using combinations of wide angle lenses (generating peripheral vision) and 

telephoto lenses (generating foveal vision) [101], other lens-based foveation methods that 

preferentially magnify the image near the “fovea” [102], and foveated CCD silicon 

retinae [103]. Such hardware foveation devices may lead to foveated object recognition 

systems requiring relatively little computing power relative to non-foveated systems. 
 

4.1. Concluding Remarks 

We have proposed and developed a gray-level object recognition system based on 

the sequential foveated detection of high-information corners used as features in a SIFT-

like recognition system. The algorithm has two logical sections: The first uses a multi-

fixating strategy for locating corners in natural images. It combines foveation, directional 

detection, and calculation of edge curvatures with generation of long and short saccades 

to establish foveal locations. Similar foveated search processes in biological vision 

systems served as an inspiration to this approach. We demonstrate the corner location 

system on a complex natural scene and on a view of a polyhedron. Results show that the 

algorithm performs well on strong edges with sharp corners and less well in areas of fine 

detail. The results demonstrated by our simulations of the corner search routine are quite 

promising, as they compare well with other studies on true gray-scale images.  

The object recognition system uses the output of the corner finder routine as input 

to a modified SIFT transform. The system places SIFT features of known objects into a 

database and compares features from corners of an unknown object, as they are located. 
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The recognition system was tested on a series of grayscale images of hand tools and 

airplanes and like the corner finder, gave good results.   

However, we feel that the primary contribution that we have made is the proof-of-

principle that foveation can be used productively in computed visual processes such as 

search and recognition. Progress in this direction is still very young, of course, and our 

work has focused on searching for low-levels features only in a foveated environment, 

and using these features for planar object recognition. There remains considerable efforts 

towards understanding how foveation search and recognition might be deployed in 

unconstrained environments, 3-D environments, and in the presence of motion. 

Applications might include robotics directed applications involving scenes 

containing corners. Naturally, the method could be improved by the introduction of richer 

features, such as color [99]. One can also imagine improving the algorithm by employing 

information regarding the spatial relationships of corners on objects. 



 66 

 

Appendix 

 

Four male observers, aged 32, 28, 29, 29, none of them familiar with the corner 

finding algorithm or the objectives of this work, were used for the experiment. All 

observers either had normal or corrected-to-normal vision. The stimuli consisted of two 

images: the lighthouse on the seashore, and the view of a polyhedron illustrated in Figure 

4(a). The images were 1024 x 768 pixels and were displayed on a 21” monitor at a 

distance of 134 cm. from the observer. This set-up corresponds to about 60 pixels/degree 

of visual angle, so the images extend 20.67 by 12.8 degrees. Observers were presented 

with each image for 30 seconds and instructed to look for corners in the displayed image. 

About 50 fixations were recorded for each observer. Human eye movements were 

recorded using an SRI Generation V Dual Purkinje eye tracker. It has an accuracy of < 

10' of arc, precision of ~ 1' of arc and a response time of under 1 ms. A bite bar and 

forehead rest was used to restrict the observer’s head movements. The observer was first 

positioned in the eye tracker and a positive lock established onto the observer’s eye. A 

linear interpolation on a 3x3 calibration grid was then done to establish the linear 

transformation between the output voltages of the eye tracker and the position of the 

observer's gaze on the computer display. The output of the eye tracker (horizontal and 

vertical eye position signals) was sampled at 200Hz and stored for offline data analysis. 
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