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Abstract: We propose a new algorithm based on machine 
learning techniques for automatic intruder detection in visual 
surveillance networks.  The proposed algorithm is theoretically 
founded on the concept of Minimum Volume Sets.  Through 
application to image sequences from two different scenarios and 
comparison with existing algorithms, we show that it is possible for 
our proposed algorithm to easily obtain high detection accuracy 
with low false alarm rates.  
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1. Introduction 
An extensive network of multimodal surveillance systems is 
prevalent in many places in today’s world.  The London 
Underground and London Heathrow airport have more than 
5000 cameras, for instance [1].  Simultaneously monitoring 
multiple image trains becomes tedious and monotonous for 
human operators with typically short attention spans and 
cognitive limits on how many screens one may attentively 
observe simultaneously.  The goals of current research in 
autonomous surveillance are to develop algorithms that 
attract the attention of a human operator in real-time based 
on end-user requirements, process information arriving from 
a multi-sensor environment at high rates, and use 
inexpensive, standard components [1, 2]. 

We propose the One-Class Neighbor Machine (OCNM) 
algorithm [3], run using a sliding window implementation, to 
autonomously detect, in real-time, the occurrence of an 
anomalous image in a sequence of images being captured by 
a visual surveillance network.  Through application to two 
different and complementary scenarios, and comparisons 
with representative algorithms from two families of 
algorithms commonly used for novelty detection in image 
sequences, we demonstrate that our proposed algorithm not 
only achieves superior performance, but also provides near-
perfect detection accuracy with low false alarm rates. 

The applicability of the OCNM algorithm to this problem 
had previously been shown in [4], through experiments 
conducted on a sequence of images collected from an 
example Closed-Circuit Television (CCTV) surveillance 
system.  This paper, however, presents a more extensive 
treatment of the problem.  First, the size of the real-world 
CCTV data set has been increased.  Second, all experiments 
are repeated on a specially-setup indoor network of higher-
resolution cameras, using a distributed monitoring 
architecture.  This is complementary to the CCTV data set, 
which employs a centralized monitoring architecture in an 
outdoor environment.  Furthermore, an additional data pre-
processing block, namely the Canny edge detector [5], is 

employed to filter out unnecessary illumination and hue 
information from the better-quality indoor images.  Finally, 
discussions on the algorithm computational complexities 
have been added. 

This paper is organized as follows.  We motivate and 
describe our proposed OCNM algorithm in Section 2.  
Section 3 describes two related algorithms that we compare 
our proposed algorithm against.  Section 4 presents 
experimental results on real footage from an example, simple 
CCTV surveillance system that is deployed in an outdoor 
environment and uses centralized monitoring architecture.  
Section 5 presents experimental results on a network of 
cameras setup in an indoor environment that uses a 
distributed monitoring architecture.  Section 6 concludes and 
provides suggestions for further research. 

2. Automated Intruder Detection Algorithm 

2.1  Minimum Volume Sets 
We expect that the set of normal (usual) images will 

constitute a high-density region of the space spanned by the 
set of all images.  With each image constituting a 
multidimensional data point, the densest regions of this 
multidimensional space should contain the vast majority of 
the arriving points.  Estimating Minimum Volume Sets 
(MVSs) is a common approach for determining high-density 
regions in multidimensional spaces.  

Assuming that the arriving data points are drawn from a 
generic and unknown underlying probability distribution P, 
minimum volume set Gβ containing mass at least β � (0, 1), 
with respect to reference measure γ, is defined as: 

 
 ( ) ( ){ }βγβ ≥= GPG :minargG        (1) 

 
where G is a measurable set [6].  These sets are known in 

the MVS literature as density contour clusters.  Estimation of 
MVSs satisfying (1) allows the identification of high-density 
regions where the mass of the underlying probability 
distribution is most concentrated.  Points lying outside these 
regions may then be declared anomalous. 

2.2  The One-Class Neighbor Machine 
 

The One-Class Neighbor Machine (OCNM) algorithm 
proposed by Muñoz and Moguerza in [3] provides an elegant 
means of estimating minimum volume sets.  The OCNM 
algorithm is a block-based procedure that provides a binary 
decision function indicating whether any point xt is a 
member of a certain density contour cluster or not.  The 
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algorithm requires the choice of a sparsity measure, which 
relaxes the density estimation problem by replacing the task 
of estimating the density function at each data point with a 
simpler measure that asymptotically preserves the order 
induced by the density function.  Example choices for the 
sparsity measure include the kth nearest neighbor Euclidean 
distance and the average of the first k nearest-neighbor 
Euclidean distances. 

 
We have implemented the OCNM algorithm here using 

the kth nearest-neighbor distance as the sparsity measure.  
The OCNM algorithm proceeds by sorting the values of the 
sparsity measure for the set of all points.  It subsequently 
identifies those points that lie inside the MVS as those 
having the smallest sparsity measure, up to a pre-specified 
fraction µ, of the total number of points in the set. 

 
We apply OCNM here in a sliding window manner, with 

the window advancing by one when a new image (when the 
algorithm is run locally at each node in a distributed 
monitoring architecture) or string of images (when the 
algorithm is run at the central repository in a centralized 
monitoring architecture) xt, arrives in the next timestep.  The 
binary decision value of the algorithm output regarding the 
last point in the window (i.e. the most recently arrived image 
or string of images, xt) is used to flag an anomaly in real-
time.  Varying the pre-specified fraction µ of outliers to be 
isolated yields the Receiver Operating Characteristic (ROC) 
curves presented in Sections 4 and 5.  We are then able to 
compare the performance of OCNM with representative 
algorithms from two families of algorithms commonly used 
for novelty detection in image sequences.  The results are 
discussed in Sections 4 and 5. 

 
If the kth nearest-neighbor distance is used as the sparsity 

measure and OCNM is run using a sliding window of size 
W, the algorithm must first evaluate the sparsity measure 
value of xt in the window of points.  This involves 
calculating the distance from the given point xt to every 
other point in the window.  If each point is F-dimensional, 
the computational complexity of this step is O(W2F).  The 
next task performed is the sorting of these W sparsity values, 
and most sorting functions involve an average computational 
complexity of O(WlogW) [7].  The overall computational 
complexity of OCNM on a window of W, F-dimensional 
points is thus O(W2F). 

3. Related Work 

3.1  Principal Component Analysis 
 
The technique of Principal Component Analysis (PCA) may 
be used to separate the space occupied by set of input vectors 
into two disjoint subspaces, corresponding to normal and 
anomalous behavior.  An anomaly may then be flagged in 
the timesteps where the magnitude of the projection onto the 
anomalous subspace, θt, exceeds a threshold [8, 9, 10]. 

 
 
 
 

Various approaches have been proposed in literature 
where moving objects are detected in video sequences 
directly using PCA [11], and the applicability of PCA to 
anomaly detection in image sequences have also been 
suggested [12].  Wang et al. have proposed a method which 
uses incremental two-dimensional PCA (2DPCA) to 
characterize objects, with maximum-likelihood estimation 
used for tracking [13]. 

 
We apply PCA here in the following manner.  We first 

verify using a scree plot [10] that the space is indeed over 
determined, and that the PCA subspace method of anomaly 
detection may be applied to this particular image set [12].  
The number of components to be allocated to the normal and 
anomalous are then determined based on the knee in the 
scree plot [10, 12].  We then decide on a window size, and 
evaluate the magnitude of the projection of the data points 
onto the anomalous subspace.  A binary decision regarding 
the last point in the window is taken by comparing the 
magnitude of the projection for this point, with a threshold.  
The window is then advanced in the next timestep as the 
next data point arrives, and the process is repeated.  Varying 
the threshold yields the Receiver Operating Characteristic 
(ROC) curve presented in Sections 4 and 5. 

 
Using a window of size W and assuming that the points 

are F-dimensional, assigning R principal components to 
normal subspaces provides PCA with an overall 
computational complexity of O(LF2 + F3 + RLF) [14], which 
may be simplified into O(F3) where F >> W. 

 

3.2  Normalized Compression Distance –based 
Similarity Metric 

 
Au et al. have presented an algorithm in [15] where a set of 
novel images are stored, and arriving images are compared 
to this set.  A scene is considered anomalous when the 
maximum similarity between the given scene and all 
previously viewed scenes is below a given threshold.  
Similarity is measured using the Normalized Compression 
Distance (NCD) measure [16]. 

 
The NCD measure has been shown to be a versatile and 

broadly applicable tool for pattern analysis, and problem 
formulations based on it can be very general, parameter-free, 
robust to noise, and portable across applications and data 
formats [17].  Cohen et al. have proposed an information-
theoretic algorithm based on NCD to track meaningful 
changes in image sequences [18]. Yahalom has 
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(a) Normal image set at t = 200. 

 
(b) Normal image set at t = 300. 

 
(c) Pronounced anomaly at t = 99. 

 
(d) Pronounced anomaly at t = 118. 

 
(e) Subtle anomaly at t = 297. 

 
(f) Subtle anomaly at t = 400. 

Figure 1. Set of images obtained from four cameras in the BRAC University CCTV surveillance system, corresponding to six 
different timesteps.  Usual images are observed in two of the timesteps, two timesteps show situations where human forms are 

easily visible, and two show subtle cases where the foot of a person is available in one and some alien light beams are 
observed in another.  Actual time stamps on the images have been concealed because of privacy. 

 
developed an algorithm for web server Intrusion Detection 
Systems (IDS), which does not rely on signatures of past 
attacks, using an NCD-based metric [19]. 

4. Experiments: Outdoors 
In this section, we present results obtained using real footage 
from a surveillance system that is deployed in an outdoor 
environment and uses centralized monitoring architecture. 
 

4.1  Data 
 
We collected real footage from a set of four cameras from 
the centralized CCTV network in place at BRAC University.  
The raw data is comprised of a concatenated video sequence 

in the AVI format.  From the videos, we extracted 
(concatenated) still images in the JPEG format at two-second 
intervals.  The total data set consisted of 500 timesteps, of 
which 62 were identified as potential anomalies after 
performing an exhaustive, manual inspection of the data set. 

 
 
 
Figure 1 shows pictures corresponding to six example 
timesteps.  Within Fig. 1, subfigures (a) and (b) show 
regular (normal) scenarios; (c) and (d) show obvious 

cases of human forms appearing on the scene (top-left 
and bottom-right cameras, respectively); (e) presents a 
subtle case where a small portion of a person's foot is 

visible (top- 
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Figure 2. ROC curves showing performances of proposed 
OCNM versus existing PCA and Au's NCD-based 
algorithms.  OCNM is seen to substantially outperform PCA 
and NCD.  Experiments conducted on outdoor images from 
BRAC University using centralized monitoring architecture. 

 
 
 
right camera); (f) presents another subtle case where alien 
lights appear (bottom-right camera).  To be conservative, we 
also identify scenarios such as (e) and (f) as potential 
anomalies that the operator may wish to be alerted to. The 
actual timestamps have been removed from the images for 
the sake of privacy. 

4.2  Feature Extraction using Wavelet Decomposition 
After extracting JPEG images at two-second intervals from 
the AVI video, we performed standard two-dimensional 
Haar wavelet decompositions to obtain a 120 × 160 × 3 
tensor representation for each image.  Working in the 
frequency domain is preferable to working in the space 
domain in order to account for differences between specific 
pixels in different images arising as a result of minor camera 
movements, and also to consider and compare each image as 
a whole.  Wavelets provide a convenient technique for 
representing image details in the frequency domain.  The 
wavelet decomposition represents an image in a manner that 
reflects variation in neighboring pixel intensities, and also 
performs image compression.  Because this representation 
relates neighboring pixel intensities, it is also suitable to be 
fed into algorithms which look to find patterns between 
higher order statistics of the pixels. 

We finally performed 10% bilinear interpolation to rescale 
and reduce the size of each dimension.  The output of the 
four cameras was then concatenated to obtain one 120 × 160 
× 3 × 4 = 2304-dimensional row vector of input data 
corresponding to each timestep. 

4.3  Results 
Figure 2 compares the performances of OCNM with PCA 

and Au’s NCD-based algorithms through ROC curves, 
demonstrating the tradeoff between the Probability of 

False Alarms (PFA) and the Probability of Detection (PD).  
The curves were obtained by varying the anomaly 

detection thresholds for each algorithm.  A window size 
of 30 was used.  For OCNM, the nearest-neighbor 

parameter k was 

Figure 3. Progression in the anomaly detection statistics for 
each algorithm for an example setting of the relevant 
detection thresholds.  Top panel: Timesteps flagged by 
OCNM.  Middle panel: Magnitude of projection onto the 
residual subspace, θt, for PCA.  Bottom panel: 1–ρt, where ρt 
is Au's NCD-based similarity metric.  The true anomalies are 
indicated as red stems with filled circles.  Experiments 
conducted on outdoor images from BRAC University using 
centralized monitoring architecture. 

 
set to two.  For PCA, four principal components were 
assigned to the normal subspace, while Au’s NCD-based 
algorithm was run using the author’s recommended settings 
from [20]; these yielded the best results for PCA and NCD.  
It is evident from Fig. 2 that the performance of OCNM is 
substantially superior to the performances of PCA and NCD.  
Moreover, OCNM is easily able to achieve near-perfect 
detection rates.  The low performance of the NCD algorithm 
may be attributed to the fact that this algorithm requires a 
significantly longer training period, and needs to maintain a 
significantly larger database of images to compare new 
arrivals against [15, 20]. 

Figure 3 (top panel) shows the particular timesteps that 
OCNM flags as anomalous, using the representative value of 
µ = 0.90 set to identify the 10% outliers.  The locations of 
the “true” anomalies, as we manually identified, are 
indicated as red stems with filled circles.  Comparison with 
PCA (middle panel) and NCD (bottom panel) indicates that 
OCNM does the best job of isolating the identified 
anomalies, in agreement with the ROC curves from Fig. 2. 

5. Experiments: Indoors 
In this section, we present results from a controlled 
experiment on a network of cameras setup in an indoor 
environment.  Each camera processes the images and runs 
the detection algorithms locally, thus employing a distributed 
monitoring architecture. 

5.1  Data 
We setup a network of four LogitechTM webcams in a 
junction of hallways at the Department of Computer Science 
at International Islamic University Malaysia (IIUM).  Each 
webcam was connected to a Dell laptop computer which 
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(a) Normal image at t = 100.  

(b) Normal image at t = 200. 

 
(c) Anomaly at t = 93. 

 
(d) Anomaly at t = 125. 

Figure 4. Images captured during four different timesteps by Camera 1 in an indoor network of webcams set up at IIUM.  
Two timesteps show usual images and two show situations where humans appear.  Actual time stamps on the images have 

again been concealed because of privacy. 

 
 

 
(a) Normal image at t = 100. 

 
(b) Normal image at t = 200. 

 
(c) Anomaly at t = 93. 

 
(d) Anomaly at t = 125. 

Figure 5. Canny edge images corresponding to the raw images from Camera 1 at IIUM that were presented in Fig. 4.  Extra 
edges are visible in (c) and (d), corresponding to the extra physical forms present here. 
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Figure 6. ROC curves showing performances of proposed 
OCNM versus Au's NCD-based algorithm.  OCNM is seen 
to substantially outperform NCD.  Images from Camera1 in 
the indoor network with distributed monitoring architecture 

setup at IIUM. 

 
was programmed to take still snaps at every 15-second 
interval and individually run the detection algorithms.  This 
setup simulated a distributed monitoring architecture, with 
higher resolution cameras, in an indoor environment.  The 
raw data thus comprised of still images in JPEG format at 
15-second intervals.  The total data set consisted of 300 
timesteps, of which 27 were identified as potential anomalies 
after again performing an exhaustive, manual inspection of 
the data set. 

Figure 4 shows pictures from Camera 1 corresponding to 
four example timesteps.  Within Fig. 4, subfigures (a) and 
(b) show regular (normal) scenarios, and (c) and (d) show 
instances of human forms appearing on the scene.  The 
actual timestamps have again been removed for the sake of 
privacy. 

5.2  Pre-processing using the Canny Edge Detector 
A high-resolution camera captures a lot of details which 

may be unnecessary given our objective of detecting 
physical intruders in the camera’s field of vision.  An elegant 
way of eliminating such noise is provided by the Canny edge 
detector [5].  The Canny edge detector filters out information 
such as illumination and hue from the original image, while 
preserving the important structural properties [15].  The 
result is an “edge” image where the step edges are enhanced.  
Figure 5 shows the Canny edge images corresponding to the 
example raw images from Fig. 4.  The edge images instantly 
draw our attention to the essential difference between 
subfigures (c) & (d) from subfigures (a) & (b), in the 
additional physical shapes present in subfigures (c) & (d). 

5.3 Feature Extraction using Wavelet Decomposition 
 

After obtaining the Canny edge images (also in the JPEG 
format) at 15-second intervals, we again performed 

standard two-dimensional Haar wavelet decompositions 
to obtain a 120 × 160 vector representation for each 

image at each camera, corresponding to each timestep.  
Transformation 

Figure 7. Progression in the anomaly detection statistics for 
each algorithm for an example setting of the relevant 

detection thresholds.  Top panel: Timesteps flagged by 
OCNM.  Bottom panel: 1–ρt, where ρt is Au's NCD-based 
similarity metric.  The true anomalies are indicated as red 

stems with filled circles.  Images from Camera1 in the indoor 
network with distributed monitoring architecture setup at 

IIUM. 

into the frequency domain is still necessary to account for 
differences between specific pixels in different images 
arising as a result of minor camera movements, and to 
consider and compare each image as a whole. 

We finally performed 25% bilinear interpolation to rescale 
and reduce the size of each dimension.  This yielded one 30 
× 40 = 1200-dimensional row vector of input data at each 
camera corresponding to each timestep. 

5.4  Results 
Figure 6 compares the performances of OCNM with Au’s 

NCD-based algorithm through ROC curves, demonstrating 
the tradeoff between the Probability of False Alarms (PFA) 
and the Probability of Detection (PD).  The curves were 
obtained by varying the anomaly detection thresholds for 
each algorithm.  Again, a window size of 30 was used, the 
OCNM nearest-neighbor parameter k was set to two, and 
Au’s NCD-based algorithm was run using the author’s 
recommended settings [20].  It is evident from Fig. 6 that the 
performance of OCNM is again substantially superior to that 
of NCD. Moreover, OCNM is again easily able to achieve 
near-perfect detection rates.  It may also be observed that 
both OCNM and NCD show relatively better performances 
here compared to the outdoor image sequence collected from 
the BRAC University CCTV network (Section 4).  This is 
because the raw images here are of higher resolution.  PCA 
yielded unacceptably low detection performance in this 
indoor experiment where we use wavelet transforms of the 
Canny edge images (instead of wavelet transforms of the raw 
JPEG images) as the image representation.  Hence, we do 
not present results using PCA here. 

Figure 7 (top panel) shows the timesteps that OCNM 
signals as anomalous, again for the representative setting of 
µ = 0.90 identifying the 10% outliers.  The locations of the 
“true” anomalies, as we manually identified, are indicated as 
red stems with filled circles.  Comparison with NCD (bottom 
panel) indicates that OCNM a better job of isolating the 
identified anomalies, in agreement with the ROC curves 
from Fig. 6. 
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6. Conclusions and Future Work 
In this paper, we have presented a novel approach to 

performing real-time intruder detection in a surveillance 
system using inexpensive components.  We have proposed 
the One-Class Neighbor Machine algorithm that is based on 
the theoretical concept of Minimum Volume Sets.  We have 
demonstrated high detection rates and performance superior 
to representative existing algorithms through applications to 
image sequences from two different scenarios: a real, run-of-
the-mill, already-deployed Closed-Circuit Television 
outdoor surveillance system employing a centralised 
monitoring architecture, and a camera network specifically 
constructed indoors using a distributed monitoring 
architecture. 

Our future work will focus on integrating face detection 
algorithms to learn the characteristics of the regular visitors 
to the applicable premises [21].  In addition, we wish to 
investigate other real-time, adaptive anomaly detection 
algorithms such as Kernel Estimation-based Anomaly 
Detection (KEAD) [14], and explore different Principal 
Component Analysis (PCA) variants [22]. 
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