155 research outputs found

    Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Get PDF
    The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature

    Aplicación de Autómatas Celulares y Algoritmos Genéticos en la Creación de una Técnica Esteganográfica

    Get PDF
    This article describes the creation of a Steganographic technique focused on image analysis, supported by Artificial Intelligence (AI) methods and mathematical optimization models [18]. Initially, a two-dimensional Cellular Automaton (AC) (d=2) with Moore's vicinity (N(1)=8) is used, evolution is semitotalistic in order to select the most suitable pixels (cells), from those defined in Eden, by applying a set of transition rules, defined in terms of the Game of Life, over several generations. Then through Genetic Algorithms the CA rules will be improved, to finally obtain a position vector, which will be given by the implementation of a one-dimensional AC, whose operation is executed using the rules of Wolfram 30 or 150 as the case may be [1]. This method has been called Modular Steganography,El presente artículo describe la creación de una técnica Esteganográfica enfocada en el análisis de imágenes, soportada en métodos de Inteligencia Artificial (IA) y modelos matemáticos de optimización [18]. Inicialmente, se utiliza un Autómata Celular (AC) bidimensional (d=2) con vecindad de Moore (N(1)=8), la evolución es semitotalista con el fin de seleccionar los píxeles (células) más aptos, de aquellos definidos en el Edén, mediante la aplicación de un conjunto de reglas de transición, definidas en términos del Juego de la Vida, a través de varias generaciones. Luego mediante Algoritmos Genéticos se mejorarán las reglas del AC, para finalmente obtener un vector de posición, que estará dado por la implementación de un AC unidimensional, cuya operación se ejecuta mediante las reglas de Wólfram 30 o 150 según el caso [1]. Este método ha sido denominado Esteganografía Modular

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Large-capacity and Flexible Video Steganography via Invertible Neural Network

    Full text link
    Video steganography is the art of unobtrusively concealing secret data in a cover video and then recovering the secret data through a decoding protocol at the receiver end. Although several attempts have been made, most of them are limited to low-capacity and fixed steganography. To rectify these weaknesses, we propose a Large-capacity and Flexible Video Steganography Network (LF-VSN) in this paper. For large-capacity, we present a reversible pipeline to perform multiple videos hiding and recovering through a single invertible neural network (INN). Our method can hide/recover 7 secret videos in/from 1 cover video with promising performance. For flexibility, we propose a key-controllable scheme, enabling different receivers to recover particular secret videos from the same cover video through specific keys. Moreover, we further improve the flexibility by proposing a scalable strategy in multiple videos hiding, which can hide variable numbers of secret videos in a cover video with a single model and a single training session. Extensive experiments demonstrate that with the significant improvement of the video steganography performance, our proposed LF-VSN has high security, large hiding capacity, and flexibility. The source code is available at https://github.com/MC-E/LF-VSN.Comment: Accepted by CVPR 202

    Hybrid information security system via combination of compression, cryptography, and image steganography

    Get PDF
    Today, the world is experiencing a new paradigm characterized by dynamism and rapid change due to revolutions that have gone through information and digital communication technologies, this raised many security and capacity concerns about information security transmitted via the Internet network. Cryptography and steganography are two of the most extensively that are used to ensure information security. Those techniques alone are not suitable for high security of information, so in this paper, we proposed a new system was proposed of hiding information within the image to optimize security and capacity. This system provides a sequence of steps by compressing the secret image using discrete wavelet transform (DWT) algorithm, then using the advanced encryption standard (AES) algorithm for encryption compressed data. The least significant bit (LSB) technique has been applied to hide the encrypted data. The results show that the proposed system is able to optimize the stego-image quality (PSNR value of 47.8 dB) and structural similarity index (SSIM value of 0.92). In addition, the results of the experiment proved that the combination of techniques maintains stego-image quality by 68%, improves system performance by 44%, and increases the size of secret data compared to using each technique alone. This study may contribute to solving the problem of the security and capacity of information when sent over the internet
    corecore