328,834 research outputs found

    A Bayesian methodology for estimating uncertainty of decisions in safety-critical systems

    Get PDF
    Published as chapter in Frontiers in Artificial Intelligence and Applications. Volume 149, IOS Press Book, 2006. Integrated Intelligent Systems for Engineering Design. Edited by Xuan F. Zha, R.J. Howlett. ISBN 978-1-58603-675-1, pp. 82-96. This version deposited in arxiv.orghttp://arxiv.org/abs/1012.0322Uncertainty of decisions in safety-critical engineering applications can be estimated on the basis of the Bayesian Markov Chain Monte Carlo (MCMC) technique of averaging over decision models. The use of decision tree (DT) models assists experts to interpret causal relations and find factors of the uncertainty. Bayesian averaging also allows experts to estimate the uncertainty accurately when a priori information on the favored structure of DTs is available. Then an expert can select a single DT model, typically the Maximum a Posteriori model, for interpretation purposes. Unfortunately, a priori information on favored structure of DTs is not always available. For this reason, we suggest a new prior on DTs for the Bayesian MCMC technique. We also suggest a new procedure of selecting a single DT and describe an application scenario. In our experiments on the Short-Term Conflict Alert data our technique outperforms the existing Bayesian techniques in predictive accuracy of the selected single DTs.Supported by a grant from the EPSRC under the Critical Systems Program, grant GR/R24357/0

    Flat Surfaces

    Full text link
    Various problems of geometry, topology and dynamical systems on surfaces as well as some questions concerning one-dimensional dynamical systems lead to the study of closed surfaces endowed with a flat metric with several cone-type singularities. Such flat surfaces are naturally organized into families which appear to be isomorphic to the moduli spaces of holomorphic one-forms. One can obtain much information about the geometry and dynamics of an individual flat surface by studying both its orbit under the Teichmuller geodesic flow and under the linear group action. In particular, the Teichmuller geodesic flow plays the role of a time acceleration machine (renormalization procedure) which allows to study the asymptotic behavior of interval exchange transformations and of surface foliations. This long survey is an attempt to present some selected ideas, concepts and facts in Teichmuller dynamics in a playful way.Comment: (152 pages; 51 figures) Based on the lectures given by the author at the Les Houches School "Number Theory and Physics" in March of 2003 and at the workshop on dynamical systems in ICTP, Trieste, in July 2004. See "Frontiers in Number Theory, Physics and Geometry. Volume 1: On random matrices, zeta functions and dynamical systems'', P.Cartier; B.Julia; P.Moussa; P.Vanhove (Editors), Springer-Verlag (2006) for the entire collection (including, in particular, the complementary lectures of J.-C. Yoccoz). For a short version see the paper "Geodesics on Flat Surfaces", arXiv.math.GT/060939

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Spectral convergence in tapping and physiological fluctuations: coupling and independence of 1/f noise in the central and autonomic nervous systems.

    Get PDF
    When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over 20 years, with one common explanation serving as a default: humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling vs. independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions vs. those arising from autonomic nervous system (ANS) functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior

    Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

    Get PDF
    Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measured with functional Magnetic Resonance Imaging (fMRI). We analyzed temporal fluctuations in BOLD connectivity and their electrophysiological correlates, by means of long (≈50 min) joint electroencephalographic (EEG) and fMRI recordings obtained from two populations: 15 awake subjects and 13 subjects undergoing vigilance transitions. We identified positive and negative correlations between EEG spectral power (extracted from electrodes covering different scalp regions) and fMRI BOLD connectivity in a network of 90 cortical and subcortical regions (with millimeter spatial resolution). In particular, increased alpha (8-12 Hz) and beta (15-30 Hz) power were related to decreased functional connectivity, whereas gamma (30-60 Hz) power correlated positively with BOLD connectivity between specific brain regions. These patterns were altered for subjects undergoing vigilance changes, with slower oscillations being correlated with functional connectivity increases. Dynamic BOLD functional connectivity was reflected in the fluctuations of graph theoretical indices of network structure, with changes in frontal and central alpha power correlating with average path length. Our results strongly suggest that fluctuations of BOLD functional connectivity have a neurophysiological origin. Positive correlations with gamma can be interpreted as facilitating increased BOLD connectivity needed to integrate brain regions for cognitive performance. Negative correlations with alpha suggest a temporary functional weakening of local and long-range connectivity, associated with an idling state

    Voronoi-Like grid systems for tall buildings

    Get PDF
    In the context of innovative patterns for tall buildings, Voronoi tessellation is certainly worthy of interest. It is an irregular biomimetic pattern based on the Voronoi diagram, which derives from the direct observation of natural structures. The paper is mainly focused on the application of this nature-inspired typology to load-resisting systems for tall buildings, investigating the potential of non-regular grids on the global mechanical response of the structure. In particular, the study concentrates on the periodic and non-periodic Voronoi tessellation, describing the procedure for generating irregular patterns through parametric modeling and illustrates the homogenization-based approach proposed in the literature for dealing with unconventional patterns. To appreciate the consistency of preliminary design equations, numerical and analytical results are compared. Moreover, since the mechanical response of the building strongly depends on the parameters of the microstructure, the paper focuses on the influence of the grid arrangement on the global lateral stiffness, therefore on the displacement constraint, which is an essential requirement in the design of tall buildings. To this end, five case studies, accounting for different levels of irregularity and relative density, are generated and analyzed through static and modal analysis in the elastic field. In addition, the paper focuses on the mechanical response of a pattern with gradual rarefying density to evaluate its applicability to tall buildings. Displacement based optimizations are carried out to assess the adequate member cross sections that provide the maximum contribution in restraining deflection with the minimum material weight. The results obtained for all the models generated are compared and discussed to outline a final evaluation of the Voronoi structures. In addition to the wind loading scenario, the efficiency of the building model with varying density Voronoi pattern, is tested for seismic ground motion through a response spectrum analysis. The potential applications of Voronoi tessellation for tall buildings is demonstrated for both regions with high wind load conditions and areas of high seismicity

    Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques

    Get PDF
    Accurate classification or prediction of the brain state across individual subject, i.e., healthy, or with brain disorders, is generally a more difficult task than merely finding group differences. The former must be approached with highly informative and sensitive biomarkers as well as effective pattern classification/feature selection approaches. In this paper, we propose a systematic methodology to discriminate attention deficit hyperactivity disorder (ADHD) patients from healthy controls on the individual level. Multiple neuroimaging markers that are proved to be sensitive features are identified, which include multiscale characteristics extracted from blood oxygenation level dependent (BOLD) signals, such as regional homogeneity (ReHo) and amplitude of low-frequency fluctuations. Functional connectivity derived from Pearson, partial, and spatial correlation is also utilized to reflect the abnormal patterns of functional integration, or, dysconnectivity syndromes in the brain. These neuroimaging markers are calculated on either voxel or regional level. Advanced feature selection approach is then designed, including a brain-wise association study (BWAS). Using identified features and proper feature integration, a support vector machine (SVM) classifier can achieve a cross-validated classification accuracy of 76.15% across individuals from a large dataset consisting of 141 healthy controls and 98 ADHD patients, with the sensitivity being 63.27% and the specificity being 85.11%. Our results show that the most discriminative features for classification are primarily associated with the frontal and cerebellar regions. The proposed methodology is expected to improve clinical diagnosis and evaluation of treatment for ADHD patient, and to have wider applications in diagnosis of general neuropsychiatric disorders

    A Path to Implement Precision Child Health Cardiovascular Medicine.

    Get PDF
    Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene-environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine
    corecore