114,932 research outputs found

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    Using webcrawling of publicly available websites to assess E-commerce relationships

    Get PDF
    We investigate e-commerce success factors concerning their impact on the success of commerce transactions between businesses companies. In scientific literature, many e-commerce success factors are introduced. Most of them are focused on companies' website quality. They are evaluated concerning companies' success in the business-to- consumer (B2C) environment where consumers choose their preferred e-commerce websites based on these success factors e.g. website content quality, website interaction, and website customization. In contrast to previous work, this research focuses on the usage of existing e-commerce success factors for predicting successfulness of business-to-business (B2B) ecommerce. The introduced methodology is based on the identification of semantic textual patterns representing success factors from the websites of B2B companies. The successfulness of the identified success factors in B2B ecommerce is evaluated by regression modeling. As a result, it is shown that some B2C e-commerce success factors also enable the predicting of B2B e-commerce success while others do not. This contributes to the existing literature concerning ecommerce success factors. Further, these findings are valuable for B2B e-commerce websites creation

    ZETA - Zero-Trust Authentication: Relying on Innate Human Ability, not Technology

    Get PDF
    Reliable authentication requires the devices and channels involved in the process to be trustworthy; otherwise authentication secrets can easily be compromised. Given the unceasing efforts of attackers worldwide such trustworthiness is increasingly not a given. A variety of technical solutions, such as utilising multiple devices/channels and verification protocols, has the potential to mitigate the threat of untrusted communications to a certain extent. Yet such technical solutions make two assumptions: (1) users have access to multiple devices and (2) attackers will not resort to hacking the human, using social engineering techniques. In this paper, we propose and explore the potential of using human-based computation instead of solely technical solutions to mitigate the threat of untrusted devices and channels. ZeTA (Zero Trust Authentication on untrusted channels) has the potential to allow people to authenticate despite compromised channels or communications and easily observed usage. Our contributions are threefold: (1) We propose the ZeTA protocol with a formal definition and security analysis that utilises semantics and human-based computation to ameliorate the problem of untrusted devices and channels. (2) We outline a security analysis to assess the envisaged performance of the proposed authentication protocol. (3) We report on a usability study that explores the viability of relying on human computation in this context

    User-Behavior Based Detection of Infection Onset

    Get PDF
    A major vector of computer infection is through exploiting software or design flaws in networked applications such as the browser. Malicious code can be fetched and executed on a victim’s machine without the user’s permission, as in drive-by download (DBD) attacks. In this paper, we describe a new tool called DeWare for detecting the onset of infection delivered through vulnerable applications. DeWare explores and enforces causal relationships between computer-related human behaviors and system properties, such as file-system access and process execution. Our tool can be used to provide real time protection of a personal computer, as well as for diagnosing and evaluating untrusted websites for forensic purposes. Besides the concrete DBD detection solution, we also formally define causal relationships between user actions and system events on a host. Identifying and enforcing correct causal relationships have important applications in realizing advanced and secure operating systems. We perform extensive experimental evaluation, including a user study with 21 participants, thousands of legitimate websites (for testing false alarms), as well as 84 malicious websites in the wild. Our results show that DeWare is able to correctly distinguish legitimate download events from unauthorized system events with a low false positive rate (< 1%)

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers
    • …
    corecore