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Abstract—Reliable authentication requires the devices and
channels involved in the process to be trustworthy; otherwise
authentication secrets can easily be compromised. Given the
unceasing efforts of attackers worldwide such trustworthiness
is increasingly not a given. A variety of technical solutions,
such as utilising multiple devices/channels and verification
protocols, has the potential to mitigate the threat of untrusted
communications to a certain extent. Yet such technical solutions
make two assumptions: (1) users have access to multiple
devices and (2) attackers will not resort to hacking the human,
using social engineering techniques. In this paper, we propose
and explore the potential of using human-based computation
instead of solely technical solutions to mitigate the threat of
untrusted devices and channels. ZeTA (Zero Trust Authentica-
tion on untrusted channels) has the potential to allow people to
authenticate despite compromised channels or communications
and easily observed usage. Our contributions are threefold:
(1) We propose the ZeTA protocol with a formal definition
and security analysis that utilises semantics and human-based
computation to ameliorate the problem of untrusted devices
and channels. (2) We outline a security analysis to assess
the envisaged performance of the proposed authentication
protocol. (3) We report on a usability study that explores the
viability of relying on human computation in this context.

1. Introduction

Knowledge-based authentication, usually the alphanu-
meric password, is the dominant means of authentication,
and has been for decades. Quite apart from the password’s
well-known usability flaws it is also easily compromised.
Observation, by technical or human means, is a distinct
possibility in our modern world with people authenticating
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in uncontrolled environments using multiple devices trans-
mitting secrets over questionable networks.

This reality requires us to rethink the standard approach
which relies firstly on the user and server establishing a
secret during enrolment and then has the user divulge the
full secret at each authentication attempt. In this scenario,
observation (leakage of the secret) can occur if: (1) the
device is compromised; (2) the transmission channel is
intercepted; (3) the user’s entry of the secret is observed
or overheard.

A number of technical solutions have been proposed
to mitigate the threat of untrusted channels or devices.
For example, a number of researchers propose utilising a
separate independent channel to deliver a one-time key [1]],
[2], [3] or ensuring that secure cryptography is used for
communications [4]]. Other researchers propose securing the
device more effectively, so as to minimise opportunities for
compromise [5], [6]. It is furthermore argued that deci-
sion makers have too little knowledge about strengths and
weaknesses of different authentication schemes [[7] and that
supporting them in making context-dependent decisions [S]]
would improve security.

While these are viable and worthwhile solutions they
rely on users having extra channels at their disposal or
having the requisite expertise to be able to install and use
secure software on their mobile devices. Neither of these
is a given. Moreover, they do not address the human-based
observation threat.

Thus, the question arises whether the problem can be
addressed at a more basic level. It might be possible for
the requirement for users to disclose their full secret dur-
ing an authentication attempt to be relaxed or lifted alto-
gether. Some authentication mechanisms, so-called limited-
disclosure systems, have already relaxed this requirement
by requiring only partial disclosure. Users are challenged to
provide specific parts of the secret in a challenge-response



fashion. This ensures that a single observation does not
betray the full secret [9]. This technique is often used
by telephone banking systems to prevent call centre staff
from gaining knowledge of the full secret [10]. Multiple
observations, however, still reveal the full secret.

A better way to prevent observation would be to find a
way for people to confirm knowledge of the secret without
providing the secret itself, or even a part thereof (ideally
in a zero-knowledge fashion). We propose to exploit users’
semantic knowledge of concepts related to their authentica-
tion secret, in order to prove that they have knowledge of
the underlying secret.

The ZeTA concept is that people would have to mem-
orise an authentication secret consisting of two or more
words, together with logical connections between them.
They would then be challenged by the provision of an at-
tribute, and they would have to confirm or deny whether this
particular attribute is, according to the logical connections,
semantically related to their secret. Thereby, our proposal
does not require disclosure of the user secret and makes
(even repeated) person-to-person or technical observation
unfruitful. A high level view of ZeTA is provided in Fig-
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Figure 1. ZeTA: Zero-Trust Authentication

Why do we believe ZeTA to be a viable proposal?
Humans seem to have an innate ability to build up semantic
networks of related concepts of words and objects [[11]]. In
fact, a disruption in the ability to mine this network is often
one of the first signs of brain decline such as Alzheimer’s
disease [[12]]. So, if we can expect people to have this
knowledge, does the proposed way of tapping into it seem
feasible? Lee et al. [13]] argue that the human brain stores
semantic knowledge primarily in an attribute-based fashion.
Hence, if people are prompted to confirm or deny the link
between an attribute and a particular memorised secret, this
should not be very demanding since that is the way the
information is stored anyway. Moreover, by requiring people
to confirm (recognise) rather than come up with these links
themselves (recall), the cognitive load associated with these
responses is as lightweight as possible [14].

The main contributions of this paper are:

e The formal definition of ZeTA, an authentication ap-
proach that relies on innate human-based computation.

o A security analysis of the proposed authentication ap-
proach.

« Empirical usability studies exploring the feasibility of
the proposed authentication approach.

As a minor contribution, we challenge a widely held
belief established by the work of Coskun and Herley [15]].
They question the viability of secure challenge-response
authentication approaches, and come to the daunting con-
clusion that they cannot be secure. However, their work con-
centrates on the required number of mathematical operations
and the limited ability of humans to remember long secrets.
ZeTA circumvents these constraints through the exploitation
of readily available semantic knowledge.

The remainder of this paper is structured as follows.
The next section introduces relevant background and related
approaches. Section [3] describes our proposed authentication
system ZeTA in detail. In section [4] we present a security
analysis of ZeTA. Sections [3] and [6] describe the pilot and
primary usability studies we conducted to investigate the
viability of our approach. Section [7] discusses our findings
and Section [8| enumerates the limitations of our approach
and the study methodologies. Finally, Section [0 summarises,
concludes and points out areas for future work.

2. Background

The problems of integrating authentication into systems
and services has long been established [16]. There are
numerous challenges, both technical and human, but a long-
standing concern is securing authentication between users
and verifying systems [17]. Automated Teller Machines
or ATMs are a classic example of the challenges in se-
curing the authentication process. System providers, such
as banks, need to secure hardware and channels, as well
as the surrounding environment, to have confidence in the
authentication process. Furthermore, system providers need
to ensure they are not placing users at undue risk when
providing such services.

ATMs serve as an interesting consumer example as
almost all aspects of the authentication process can be
compromised, not only by the sophisticated and organised
attacker but the opportunistic one as well. The user end-
point, i.e. the physical ATM, is susceptible to social engi-
neering, as well as eavesdropping from opportunistic attack-
ers determined to gain access to an account. A slightly more
organised attacker with appropriate skills and resources
could compromise hardware and communication channels
to compromise several accounts [[18§].

The system-side end-point, while arguably the most
challenging to attack, could be undermined by sophisticated
attackers with sufficient resources [19]]. The reality is that
if an attacker can compromise any element of the authenti-
cation chain, they gain access to an individual’s password.
Consequently, secret knowledge is no longer secret and, as
a result, an attacker can masquerade as the legitimate user.

Lamport argues that the difficulties of securing the
authentication process could be addressed, in part, with
a disposable or one-time authentication secret [17]. The



verifying system does not store the user’s password, x, but
rather y = F(x), i.e. an encrypted authentication secret where
x is the key. Lamport argues that while this may prevent
an attacker compromising the password at the verifying
end-point, the authentication secret is still vulnerable dur-
ing transmission and at the user’s end-point. Consequently,
Lamport proposes the notion of a sequence of passwords,
X1,X2,...,X1000, Where each password in the sequence can
only be used once to authenticate. The sequence is generated
by repeatedly applying the function, i.e. using the previous
function output as input for next in sequence. The verifying
system only maintains the last element in the sequence while
the user starts from the penultimate element. The user sub-
mitted one-time password acts as the input for the function,
authentication is successful if the output matches that of
the list element maintain by the server. Upon successful
authentication, the server discards the current list element
and stores the element submitted by the user.

Haller et al. [20] implemented the aforementioned
scheme as S/KEY authentication. The implementation re-
lies on 64-bit numbers, but these are mapped to words of
varying length to reduce the burden on the user. Never-
theless, while an interesting scheme, the approach is still
vulnerable to man-in-the-middle attacks. Furthermore, the
approach typically relies on users to either manage lengthy
lists of disposable passwords or to carry a specialised device
capable of generating a disposable password when needed.

The expense and inconvenience of using the scheme
and its variants should not be discounted. This has fuelled
research into developing a knowledge-based approach for a
single untrusted channel. These schemes are often challenge-
based, whereby the user and verifier share a secret, the
verifier challenges the user to demonstrate knowledge of
the secret, ideally in a way that does not divulge the shared
secret [21].

Matsumoto and Imai [22] propose such a scheme, where
the shared knowledge is a secret string and sequenced
symbol set. The verifying system challenges the user with
a random string, i.e. str = cy,...,C, the user is expected to
substitute specific characters in the string and subsequently
return it. The alternative string is based on the following
rule: when a character within a string matches that of one
in the sequenced symbol set — the user is to substitute it.
The substitution is drawn from the secret string, using the
position of the matching symbol in the secret sequence to
select the correct character.

Similarly, Hopper and Blum [23] propose a scheme
where the shared secret is a vector. In order to authenticate,
the user is presented with a series of challenge vectors.
The user has to calculate and return the outcome of the dot
product of a each challenge vector with the secret vector, but
intentionally give a wrong answer with some pre-agreed low
probability. While the scheme is interesting and addresses
the challenges of authenticating over insecure channels, it
is undeniably difficult for users to perform [21]], [24].

Nevertheless, there have been many proposals to ad-
dress the problems of untrusted communication channels
and devices. Mannan and van QOorschot [25] outline a

protocol that relies on trusted devices while still utilising
untrusted devices. Thorpe et al. [26] theorise that advances
in technology may solve the problem of being observed
by reading a user’s thoughts. McCune [27] proposes the
use of a visual channel to secure authentication, users scan
barcodes with their smartphones. Roth ef al. 28] propose
a challenge-based approach to PIN-entry that minimises the
threat of user’s being observed entering their authentication
secret . Nevertheless, while the proposed approach is not
particularly burdensome, especially so when contrasted with
the aforementioned approaches, Roth et al. reported that
users simply did not perceive the benefits as worth the cost
of entry.

Many of the schemes designed to support authentication
in an untrusted environment do indeed resist observation
but are effectively unusable. In the next section we outline
ZeTA, a more usable scheme. We will also show that it
resists observation in untrusted environments.

3. Authentication Approach

In this section we present a high-level description of
our approach and identify constraints that arise due to the
intended technical features of ZeTA.

3.1. Pre-Considerations and High-Level Descrip-
tion

The two main features the proposed protocol should
fulfil are resistance against (1) untrusted devices and com-
munications and (2) shoulder-surfers. To achieve this, a
challenge-response style of interaction is proposed. The
user’s part needs to be executed mentally, without any
external artifacts.

The ZeTA secret consists of a number of words. The
protocol exploits users’ semantic knowledge of the meanings
of the secret words, and related attributes. Users are asked
personalised questions with general answers, i.e. answers
that constitute general knowledge about the secret. One
of the main advantages in using human processing is that
much of the knowledge stored in semantic memory has a
high inter-human correlation, i.e. a large fraction of this
knowledge is consistent among most people [29], [30]], [31],
[32], [33], [34].

For example, consider the ZeTA secrets ‘Blue OR Tree’
and ‘Red OR Bike’. The basic idea is that the user receives
challenges from the server such as ‘Can any of your terms
be used as a means of transportation?’. The answer for the
first secret would be ‘No’ and for the second one would be
‘Yes’ because you can ride the bike. If the owner of the first
secret was presented with the challenge ‘Do any of the terms
in your secret have something in common with wine?’ he or
she would answer ‘No’. If the secret were ‘Red OR Mouse’
he or she would answer ‘Yes’, because wine is likely to be
red.

The response to each challenge queries the user’s pre-
existing semantic knowledge. The user only memorises



his/her secret and understands the task: confirm or deny a
semantic association. Thus a large set of different challenges
is possible without being constrained by the user’s capabil-
ities of memorising new content.

In order to facilitate the procedure outlined above, access
to a reliable knowledge base comprising semantic rela-
tionships between its entries is required. It is needed to
issue the challenges and to verify the user’s responses. This
requirement is discussed in greater detail in the next section.

3.2. Knowledge Base

In this section we introduce relevant concepts and ter-
minologies from psychology and computational linguistics.
We first define our terminology and provide a simplified
description of semantic memory. This is followed by an ex-
planation of semantic relations and relatedness. The section
concludes with information on the measurement of semantic
relatedness and how it supports derivation of a knowledge
base.

3.2.1. Terminology. Each word or symbol can have more
than one sense, e.g. orange can be a fruit or a colour, each
with a broad meaning. The sum of the meanings of all senses
is called the semantic concept of this expression. Semantic
concepts can be simple and complex. We are only interested
in simple concepts, e.g. large and house, rather than complex
ones such as large house. Throughout this explanation, the
term ‘word’ is frequently used interchangeably to represent
of a semantic concept.

3.2.2. Semantic memory. The knowledge base for our
protocol is supposed to be largely consistent with certain
parts of the user’s semantic memory, of which we give a
basic description next.

Declarative memory (part of the long term memory)
consists of episodic and semantic parts. Episodic memory
stores information related to personal memories and expe-
riences. Semantic memory, on the other hand, is the mental
storage of our knowledge about the world in general. It
contains “organised knowledge [...] about words and other
verbal symbols, their meaning and referents, [and] about
relations among them” [35]] (p. 386). This implies that
semantic memory is, among other things, responsible for
the use of language and serves as a mental dictionary and
thesaurus [36], [37].

3.2.3. Semantic relations and relatedness. When people
read a text or listen to a speaker, they subconsciously
recognise relations between words. Examples of semantic
relations are synonymy (same meaning, e.g. ‘to suggest’ is
a synonym for ‘to propose’) and hyponyms (superordinate,
e.g. ‘animal’ is a hyponym for ‘dog’). Dissimilar expressions
can be semantically related too, e.g. ‘sun’ and ‘day’ are
functionally related. These relations help give sentences
meaning, extend over sentence boundaries and contribute
to understanding the text.

Semantic relatedness is a special form of linguistic dis-
tance between words. It is designed to quantify semantic
closeness of two semantic concepts; a unit of measurement
thereof. This measurement yields high values for pairs in a
semantic relation (synonyms, hyponyms, free associations,
etc.) or any other kind of lexical, functional or logical
association that may exist between the semantic concepts,
and low values for unrelated pairs.

3.2.4. Measurement processes. We will sketch three gen-
eral directions of ongoing research into multiple ways of
measuring semantic relatedness.

The first approach arrives at scores by means of labour-
intensive experiments. Human annotators are presented with
selected word pairs and asked to rate their relatedness.
Such ratings can either be binary decisions or a value on
a specified scale. The overall relatedness is computed from
the overall average rating for each word pair. Such manual-
rating experiments have been conducted several times [38]],
[39]. More recently such experiments have frequently been
crowd sourced, e.g. Bruni et al. [40]] and Lofi [41].

WordNet [42]], [43] is slightly different since the annota-
tors in a first step were presented with sentences and asked to
tag the semantic meaning of certain words therein. Then, in a
second step, the resulting semantic concepts were evaluated
on whether certain semantic relations between them exist.

Another procedure for acquiring relatedness measure-
ments is word association experiments. Participants are pre-
sented with one word, the cue, and asked to respond with
the first associated word that comes to mind. Answers that
appear most frequently are accorded a higher relatedness.
Examples of word association experiments are [44]], [45],
[46].

The third approach uses automated systems which foster
large corpora of text, e.g. Wikipedia, and analyse them
based on different criteria. Examples of such approaches
are manifold [47], [48], [49], [50], (51], (52]I, [53].

The first approach is, for obvious reasons, the most
accurate way to construct a database that needs to sub-
sequently align with human judgment. Unfortunately, such
approaches are also costly and time consuming. Word as-
sociation experiments are promising but lack the ability to
prompt a measurement of the relatedness of chosen word
pairs. Lastly, the automated fostering of large corpora of text
is fast and cheap, but the correlation with human judgement
is unpredictable [[54]. This arguably results less from wrong
assumptions of related word pairs, but more from missing
connections and relationships.

3.2.5. Generating a knowledge base. A combination of
the three approaches seems to be better than one of them
alone. Because automated systems are fast and cheap, it is
reasonable to use the resulting generated data for either of
the following:

o As a first step, the data from automated systems could
be used as foundation. In a second step the correctness
of this data can be improved by augmenting it with
the results of human judgements or word association



tasks. Boyd-Graber et al. [55] followed this procedure
when extending WordNet with evocation relations (a
measurement of how much the first concept brings
the second one to mind). Their augmentation was
conducted by a human judgement task involving 20
participants.

e The data from automated systems, and from word
associations tasks, could be used to accelerate human
judgement tasks. In this case fewer human annotations
per word-pair would be required as long as their judge-
ments are in line with data collected elsewhere.

A complication during this process is that knowledge
can differ significantly depending on the user’s environment,
e.g. it is influenced by culture and educational background.
As stated previously, prior research has shown a significant
cross-cultural overlap [29], [30], [31]I, [32]], [33], [34] on the
relatedness ratings of certain kinds of semantic knowledge.
Relations between most natural, physical and biological
concepts, e.g. sun and warm, are expected to be similar
for the vast majority of humans. A knowledge base could
contain only such cross-culturally recognised concepts, but
these are limited by their very nature. Another possibility
would be to have multiple knowledge bases, each specific to
a certain subset of users, e.g. Western First World or Third
World South American. Such knowledge bases would be
constrained to include only those word-pairs for which the
relatedness measurement overlaps culturally and socially for
the target subset of users.

Moreover, there will always be word pairs upon which
users have significantly different opinions about whether
they are related or not. It would be useful for the knowledge
base to include anticipated agreement information, e.g. the
mean and standard deviation in human judgment tasks. The
server could infer therefrom which challenges not to use in
combination with any given secret. The exclusion of those
challenges could reduce the user’s error rate.

3.3. Definition

3.3.1. The Secret. ZeTA supports simple and complex se-
crets: an ordered list of words concatenated with logical
operators from the set AND, OR and NOT. For simplicity
sake, we can assume that the secret is in disjunctive normal
form (DNF). This assumption is without loss of generality,
as any ZeTA secret can be rewritten as a DNF.

Definition 1 (Secret).

Let D be a dictionary of words. A secret £ is w.lo.g. a
disjunctive normal formula and each literal in & consists of
a word w; € D.

The meaning of semantic relatedness between such a
secret and another word is according to sentential logic. This
means that any word is related with a secret if and only if
it is related to at least one of its terms. A word is related
with a term if and only if it is related with all of its literals.

Definition 2 (Semantic relations with the secret).
Let D be a dictionary of words.

A word w; € D is related to a secret & if and only if it is
related to at least one term of €.

A word w; € D and a term of £ are related if and only if
there is a relation between w; and every non-negated literal,
but no relation between w; and any negated literal in that
term.

3.3.2. Protocol Description. For the sake of readability, we
refer to the genuinely interacting human and the server by
H and S, respectively.

Enrollment. H claims an identity, e.g. a user name,
and either chooses a secret or is assigned one by S. By
doing so S ensures that only words in the knowledge base
can comprise part of the secret. Subsequently H has to
remember this secret. Then S chooses a distribution ¢
over the dictionary D, consisting of all words within its
knowledge base. Based on this distribution, S will draw the
challenge words for this user in the future. Finally, S saves
the triple of claimed identity, distribution and secret.

Authentication. The protocol requires two parame-
ters and two variables controlled by the system. The first
parameter n is a counter on the number of challenges used
by the server for authentication. The second parameter t is
a threshold on the required percentage of correct answers.
This allows the legitimate user to make few errors in their
responses, to be expected due to different people’s idiosyn-
cratic understandings of the world. The variables a and c
count the number of correct answers and sent challenges,
respectively.

Server S checks before any authentication whether the
claimed identity is valid for authentication. Typical system
security measures can be used here, e.g. the claimed identity
must have been enrolled, must not be suspended and must
not be suspected of being brute-forced.

1. H contacts S and informs it about his claimed identity.
2. S checks whether this identity is valid for authentica-
tion.
If yes, S loads parameters n and t, distribution ¢, the
user’s secret, and initialises variables a = ¢ = 0.

a) S draws a challenge from the dictionary D according
to the distribution ¢ and sends it to H.
S further sets ¢ = ¢ + 1.
b) H responds whether the challenge is related to his
secret or not.
¢) S validates the response based on its knowledge
base.
If and only if the answer is consistent to the knowl-
edge base, S sets a = a + 1.
3. If ¢ is smaller than the predefined counter n, the
protocol returns to step 2.a).
4. S checks whether a divided by c is greater than or
equal to the predefined threshold t.
If this check is successful, H is accepted. Otherwise H
is declined.



4. Security Analysis

The primary purpose of every authentication system is
protecting access to restricted resources and services. Con-
sequently, for any newly proposed mechanism, security is
of high concern. The following three aspects are addressed:

1) Online trawling attacks;
2) Untrusted devices and shoulder surfers;
3) Authentication secret storage.

4.1. Online Trawling Attacks

The first serious concern in securing online authen-
tication are guessing attacks. Usually servers block user
accounts after a few unsuccessful log-in attempts in order to
avert brute-force attacks. During an online trawling attack,
an adversary makes only a few guesses for many user
accounts. Those guesses usually follow heuristic patterns
(e.g. password dictionaries) and are constrained by lock-out
policies. The adversary’s ambition is to corrupt at least a
small percentage of random user accounts and its success
chance is closely related to the schemes effective password
space [56].

Our proposed protocol is based on multiple binary re-
sponses. The legitimate user must achieve a certain threshold
of correct answers to be authenticated. A successful online
trawling adversary would have to analogously guess the
required number of correct responses.

Evenly distributed responses (i.e. the same number of
“yes” and “no” answers) minimise this threat, which is
easy to achieve. The distribution of responses (as given by
the legitimate user) is directly related to the distribution of
challenges posed by the system. ZeTA does not require a
distinct challenge distribution. The distribution can, in fact,
vary for each user if so desired. Therefore, without loss of
generality, we can assume an even distribution of responses
for all users. The protocol’s vulnerability to online trawling
attacks, or guessing attacks in general, is thus minimal.

4.2. Untrusted Devices and Shoulder Surfers

Untrusted channels could leak the credentials to an
adversary. With this knowledge, the adversary could gain
access to the user’s account. This attack is thus a targeted
version of the aforementioned online trawling attack.

With ZeTA we are concerned about the adversary’s
capabilities in terms of predicting the user’s responses based
on observed challenge-response pairs. In our analysis, we
will first formalise the threat model and the subsequent im-
personation attack. Then, we describe the probably approxi-
mately correct (PAC) learning model which is used to model
the adversary’s endeavour to learn from observed authenti-
cations. Thereafter, we introduce the Vapnik-Chervonenkis
dimension which is used to measure the complexity of
approximating an unknown function. Finally we present a
security analysis based on an existing lower bound in the
PAC model.

4.2.1. Threat Model and Impersonation Attack. The
threat model, as introduced by Matsumoto & Imai [22]], has
the following properties:

« The user has access to a terminal and wants to prove
his/her identity to a remote server.

o The adversary is a computer-assisted human and has
access to every computational device, as well as the
communication channels between those devices, but
not to the server itself. This capability describes the
context of untrusted devices.

o The adversary has visual access to the user, i.e. the
adversary sees the human himself. This capability de-
scribes an adversarial shoulder surfer.

The adversary wants to impersonate a targeted user. The
impersonation attack could run in two phases:

Phase 1: The adversary observes several authentication
sessions of a particular targeted human. Observations
can be internal, i.e. on the untrusted device, as well as
external, i.e. as a shoulder surfer.

Phase 2: The adversary tries to use the observed creden-
tials to convince the server and masquerade as the
legitimate user.

4.2.2. Probably Approximately Correct Learning. The
attempt to learn from observed challenge-response pairs is
an instance of machine learning. The probably approxi-
mately correct (PAC) learning model [57]] is a framework
for mathematical analysis in machine learning.

In an instance of PAC learning, an algorithm has to pro-
duce a close approximation of an unknown binary function
based on labelled examples. The unknown function is an
element of a known class of functions and the labelled ex-
amples are drawn according to an unknown distribution. An
algorithm is said to learn a class C of functions c¢: X — {0, 1}
(where X denotes any set of arbitrary elements) if, with high
probability, it can find a close approximation for any such
function.

In the PAC learning model with classification noise, the
label of each example is corrupted with error probability 7.

Definition 3.

An algorithm A is said to learn a binary class C with noise
rate 1), accuracy parameter € > 0 and confidence parameter
0 < 1 if, given a random set of data points (x,c(x)) €
(X,{0,1}) (sampled according to any distribution ¢) from
any function ¢ € C, it outputs a hypothesis h: X — {0, 1}
such that, with probability at least 1—0

}Zr[h(x) #c(r)] <e

4.2.3. Vapnik-Chervonenkis Dimension. In determining
the difficulty of approximation in the PAC model, the com-
plexity of the considered class of functions C is an important
element. The complexer this class, the more difficult an
approximation. The Vapnik-Chervonenkis dimension [58] is
a measurement of this complexity.

Any set X’ C X is shattered by C if, for each of
the 21X possible labellings of the points in X', there



exists some function in C consistent with that labeling. The
Vapnik-Chervonenkis dimension of C, denoted VC(C), is the
maximal integer d such that there exists a set X’ C X of
cardinality d that is shattered by C.

4.2.4. Security. Theorem [I| by Aslam and Decatur [59,
Theorem 6] provides a lower bound on the required sample
size to learn any (non-trivial) class C. It holds for all
algorithms and independent of computational resources. The
lower bound is parametrised by the desired quality of the
approximation e, the success probability of the algorithm §,
as well as the Vapnik-Chervonenkis dimension of C. €
and ¢ depend on the algorithm, as described in the PAC
model. The Vapnik-Chervonenkis dimension depends on the
complexity of the class C.

Theorem 1 ( [59]).

PAC learning a function class C in the presence of clas-
sification noise 1, and with respect to € and 0, requires a
sample of size

V(e
o <e<1 BEWE

log(1/9) )
e(1—2n))"

Corollary 1.

Any algorithm which learns about a ZeTA secret based on
the observations of corresponding challenge-response pairs
is restricted by the lower bound of theorem [I]

Proof. We show that any knowledge about (and from) the
ZeTA protocol, that is accessible to the adversary, is con-
sidered in theorem [I] Without loss of generality, we assume
that the adversary observes successful authentications of the
legitimate user only.

The possible knowledge of the adversary can be sum-
marized as the following:

1) A copy of the server’s knowledge base.

2) An estimation of a limit on the size of the secret.

3) A certain amount of available challenge-response pairs
from observed authentications by the legitimate user.

4) Knowledge of the maximum possible error rate on the
observed challenge-response pairs.

For any secret, the ZeTA protocol represents a binary
function c: X — {0, 1}, whereby any x € X represents a
challenge and {0, 1} represents the binary response. The set
of all unique such functions is a binary class C.

In the following, we will treat the ordered list of knowl-
edge accessible to the adversary and describe how they are
depicted in theorem [T}

1) Access to the server’s knowledge base does help the
adversary. Then, without loss of generality, the user’s
secret is the minimum necessary and sufficient infor-
mation required to reconstruct any ¢ € C. Thus, if
the adversary has access to the knowledge base, the
complexity of approximating any ¢ € C is reduced
and equivalent to the complexity of approximating the
corresponding secret.

2) The secrets in ZeTA are either in disjunctive normal-
ized form (DNF) or can be rephrased as such. The set

of all secrets in the ZeTA protocol is limited in its
maximum possible size by the user. Therefore, the set
of all possible user secrets C is the set of all 1-term
k-DNF (for some 1 and k).

It follows that the VC dimension of C can be defined
by the VC dimension of the class of I-term k-DNF.
This VC dimension’s lower bound is the VC dimension
of I-term monotone k-DNEF, i.e. I-term k-DNF without
negations. Littlestone stated such a lower bound:
Lemma 1 ( [60]).

Forl <k<nandl <Il< (Z), let C* be the class of
concepts expressible as l-term monotone k-DNF over
domain {0,1}™ and let m be any integer, k < m < n
such that (7]:) > I. Then VC(C*) > k- l|loga 7~ |.

3) Every observed authentication leaks a fixed number of
labelled examples c(x) = {0, 1}. At any given time, the
amount of all previously leaked examples is the sample
size.

4) If users are allowed to answer 7 percent of challenges
wrong, the adversary has to expect an equal noise rate.

It follows that the adversary, independent of it’s algo-
rithm and computational resources, is limited by the above
bound on the required sample size. O

If legitimate users were not allowed to make errors,
the following theorem by Ehrenfeucht et al. [61] would be
applicable instead of theorem

Theorem 2 ( [61]).
Let C be a non-trivial concept class. Then any (€, §)-learning
algorithm A for C must use sample size

Q <1log1 + VC(C)) .
) €

4.3. Authentication Secret Storage

There are different approaches to the problem of storing
authentication secrets on the server. The challenge is to store
the secret in such a way that it is usable for the purposes of
authentication and remains resilient to internal and external
threats, e.g. plain-text observation or brute-force dictionary
attacks. The practical approach to address such a challenge,
in many scenarios, is to store salted hashes rather than the
authentication secrets themselves [62].

However, utilising salted hashes for the proposed proto-
col is unrealistic since it relies on the logical evaluation of
arbitrary combinations of elements, drawn from a knowl-
edge base, as well as elements known only to the user.
Nevertheless, a realistic deployment of the proposed pro-
tocol needs to address the challenge of internal and external
threats. Consequently, an alternative approach could be to
utilise secret sharing or splitting to address the deployment
challenge of secret storage.

Mayer and Volkamer propose such an approach [63], a
(t,n)-threshold verification scheme that relies on Blakley’s
secret sharing [64] and key derivation functions to facilitate
derivation of a common secret from all authorised subsets.
Here n denotes the size of the authentication secret and



t denotes the size of the authorised subsets. The scheme
can easily be adapted for ZeTA as the only conceptual
requirement imposed by this (¢, n)-threshold verification is
that each authentication secret must be representable as a set
of elements, which ZeTA secrets fulfil due to their sentential
logic structure.

Therefore, ZeTA authentication can be considered as
users evaluating and entering the logic of arbitrary com-
binations of elements drawn from the knowledge base and
elements known only to users. An appropriate key derivation
function (KDF) along with elements drawn from the knowl-
edge base and responses are used to determine the shares.
Then, as outlined in [63]], a system of equations Mz = y is
solved for = and the corresponding server side stored s is
compared to ' = KDF(x1).

4.4. Example Parameters

In Table [I] we compare the security provided by sev-
eral ZeTA parameters with alphanumeric passwords and
four digit PINs. To investigate the feasibility of ZeTA we
present example parameters in Tables [2] and [3] We chose
parameters such that several combinations emerged which
we considered interesting from both security and usability
perspectives.

4.4.1. Comparison of example parameters. We present
a comparison of the security properties against guessing
adversaries of several ZeTA parameters with passwords and
PINs in Table [T} a listing of the bit strength of alphanumeric
passwords in practice, as reported by Bonneau [65], and 4
digit PINs both in theory and in practice, as reported by
Bonneau et al. [[66], as well as several theoretical values for
ZeTA as presented in Table [2]

Comparing values of bit strength from theory with those
from practice doesn’t provide optimal insight and one has
to be careful with conclusions, as it has to be expected that
user-chosen ZeTA secrets contain some kind of bias, too,
and this will negatively influence the security. Nonetheless,
as can be seen in Table [T} the security of ZeTA against
guessing adversaries looks promising.

TABLE 1. SECURITY AGAINST GUESSING ADVERSARIES FOR
ALPHANUMERIC PASSWORDS, 4 DIGIT PINS AND ZETA.

Authentication method || Security provided

Alphanurr_]erlc pa§sw0rds 10 bit
in practice [65]
4 digit PINs in practice [66] 12.9 bit
4 digit PINs in theory 13.29 bit
ZeTA with 25 challenges .
& 22 correct responses 13.64 bit
ZeTA with 14 challenges .
14 bit
& 14 correct responses
ZeTA with 21 challenges 16.54 bit
& 20 correct responses
ZeTA with 25 challenges .
& 24 correct responses 20.3 bit

4.4.2. Parameters Regarding Guessing Adversaries. Ta-
ble [2] depicts the probability of a false positive based on
guessing. The data are valid under the assumption that
correct responses are evenly distributed between ‘yes’ and
‘no’. This is a realistic assumption, as argued in Section {.1]

The table highlights the importance of determining how
well people can cope with the ZeTA protocol. The fewer
mistakes ZeTA needs to tolerate, the fewer challenges need
to be used in order to achieve a required security level. Ta-
ble 2] further demonstrates that a security level high enough
for most settings can easily be achieved if the error rate is
sufficiently small.

4.4.3. Parameters Regarding Untrusted Devices. Table
depicts the required sample size for an adversary that at-
tempts to learn from observed authentications to raise its
success rate. The data is derived according to theorem [I]
and lemma [1

It presents the minimum number of challenge-response
pairs required by the adversary to improve its probability to
guess correct responses for the sketched scenario. It contains
three constant and two variable parameters:

For the constant parameters, we chose the knowledge
base to consist of 65,536 words. We assume this to be
reasonable and not to difficult to accomplish. This as-
sumption is reasonable when considering the size of other
knowledge bases available. The Never-Ending Language
Learner (NELL) [67], for example, contains a knowledge
base of more than 80 million so-called beliefs. It is partly
constructed from human judgement, which was (mainly)
collected by a specially purposed web-page, and mostly
via the World Wide Web. NELL can not be directly used
for ZeTA, unfortunately, since the authors admit that this
ongoing research project contains many incorrect beliefs.
The noise rate (i.e. percentage of mistakes made by the user)
of 10% was chosen as a realistic but slightly pessimistic
assumption. The probability § = 0.25 denotes that the
adversary outputs a hypothesis of error rate lower than e
with probability at least 1 — § = 75%.

The error of approximation as first variable parameter
denotes that a successful adversary would make fewer than
€ percent mistakes on answering future challenges for the
targeted user. The other variable parameter depicts three
upper limits on the secret size — all monotonous (i.e. the
secrets do not contain negations). Recall two important
considerations:

e The VC dimension of general I-term k-DNF is un-
known and can thus only be described by the inferior
lower bound on l-term monotonous k-DNF. Nonethe-
less it is assumed that they are not equal and therefore
the security against untrusted devices would consider-
ably raise from the inclusion of negations.

o The secret sizes do not represent the actual size of
a targeted user’s secret, but rather what the adversary
expects to be possible. If the adversary underestimates
this size, his chances of success worsen considerably.

Especially when considering the second point, it becomes
clear that these were moderate choices.



TABLE 2. PROBABILITY TO GET AUTHENTICATED BASED ON GUESSES WHEN ‘YES’ AND ‘NO’ RESPONSES ARE EQUALLY LIKELY.

A = authentication probability when responses are guessed

Number of challenges posed by ZeTA
14 18 21 25 30
% A % A % A % A % A

S 0| 100 1/16384 100 3.81x 1076 100  4.77 x 1077 100 2.98 x 1078 100 9.31 x 10710
N

S

2 1 94.4 1/13797 95.2 1/95325 96  7.75x 107 96.7 2.89 x 1078
) 90.5 1/9039 92 9.72x 1076 933 4.34x 1077
4

g

5}

5 3 88 112777 90  4.22x 1076
2

E

Z 4 86.6 1/33626

% = percentage of correct answers required

TABLE 3. MINIMUM NUMBER OF CHALLENGE-RESPONSE PAIRS REQUIRED BY THE ADVERSARY TO REACH THE DESIRED ERROR RATE €.
(SIZE OF THE KNOWLEDGE BASE 216, NOISE RATE 10%, AND § = 0.25)

Estimated upper bound on secret size
2-term monotone 2-DNF [ 3-term monotone 2-DNF [ 3-term monotone 3-DNF

e=0.25 58

83 121

e=0.1 146

Intended upper
bound on error

The values in the cells denote the lower bound of
how many challenge-response pairs are required given the
corresponding parameters. As can be seen in the data, the
parameter e (which is chosen by the adversary) heavily influ-
ences this bound. A value of € worse than 7 is likely to cause
many wrong responses and this decreases the likelihood of
successful impersonation — especially if the user account is
at risk of being suspended after few unsuccessful attempts.

There are three main ways to improve the resistance of
ZeTA against untrusted devices and observations:

o Teaching/enabling users to cope with larger secrets
requires the adversary to make assumptions towards
larger upper limits on the secret size.

« Reducing the legitimate user’s rate of mistakes requires
the adversary to choose a small € to maintain the
likeliness to impersonate. A smaller € leads to more
required observations.

o When increasing the size of the knowledge base (even
though it is known to the adversary) more challenges
become available and this significantly improves the
security properties.

The conclusion of how many observed authentications
ZeTA can withstand depends on the interaction of many
parameters, including the number of challenge-response
pairs that can be observed at each authentication attempt.
Improving security against guessing adversaries by asking
more questions negatively influences the security against
untrusted devices. Improving the security against untrusted
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devices by providing fewer examples per observed authen-
tication decreases the security against guessing adversaries.
On the other hand, increasing the size of the knowledge base
improves the security against untrusted devices and reducing
the amount of errors made by legitimate users positively
influences the security against both attacks.

5. Pilot Usability Study

The primary usability concern with the proposed pro-
tocol is that individuals are not able to respond to issued
challenges. The reality is that individuals may struggle to
evaluate the logic of arbitrary combinations of elements
known to them and those drawn from the knowledge-base.

Consequently, the focus of the usability studies was
to assess the ability of users and not to replicate actual
usage conditions. The adopted approach was to conduct a
series of preliminary studies followed by a primary study,
incorporating lessons learnt at each iteration. The main mo-
tivation was to ensure the concept of ZeTA was introduced
to participants carefully and correctly. Hence, eleven distinct
preliminary studies, successively refining instructions and
examples. The results of the eleventh iteration with 20
participants, comprising the final pilot study, are reported
here.



5.1. Apparatus

The apparatus for the preliminary studies comprised of
secret-challenge sets and questionnaire.

5.1.1. Secret-Challenge Sets. A set of related and unrelated
word pairs was analytically determined, i.e. handpicked. The
approach is sensitive to idiosyncrasies, potentially biasing
the outcome of the preliminarily study. Nonetheless, the
procedure is common in computer linguistic research (e.g.
see human judgement experiment by Cramer [54]). The set
of word pairs constituted the server-side knowledge base.

The client-side secrets consisted of two words, both po-
tentially preceded by NOT, concatenated with either AND
or OR such that, from the view point of sentential logic,
the answers are assumed to be unambiguous.

5.1.2. Questionnaire. The questionnaire consisted of four
parts:

« Instructions: The instructions introduced the purpose
of the experiment and explained the task.

« Examples: The examples were presented to foster un-
derstanding of the task. For example, they were given
the pair ‘Day OR Cactus’ with the attribute ‘Cloudy’
and shown that the answer would be ‘Yes’. Eleven
examples were given, five being affirmative and six
non-relationships.

o Challenges: There was 24 secret pairs, accompanied
by an attribute for each. Participants had to respond
‘Yes’ or ‘No’ for each. Secret words were concatenated
with ‘AND’ six times, there were 6 ‘OR’ secret pairs,
5 ‘AND NOT’ and 6 ‘OR NOT’ secret pairs, and one
‘NOT AND NOT” secret pair. The secret-challenge sets
were presented in random order on each sheet.

o Demographics: The end of the questionnaire contained
standard demographic questions. The age was stratified
in the following groups: 18-24, 25-34, 35-44, 45-54,
55-64 and 65+.

5.2. Interview Procedure

The procedure and instructions were refined by conduct-
ing eleven iterations of the pilot study. The lessons learnt
from each iteration fed into the next, the expectation being
that it improved the clarity of instructions and procedure.
Ten sets of between 10 and 23 participants (188 participants
total) helped us to refine our instructions and procedure.

Participants were approach and recruited from a busy
public park. We identified ourselves as researchers from
the local university. We asked individuals whether they
would be willing to participate in a 3 to 5 minute study.
Individuals were informed that the purpose of the study
was to see whether people were able to confirm or deny
relationships between words. The participants were neither
paid nor otherwise compensated and were all fluent in the
language of the survey.

Participants were handed a clipboard containing the
questionnaire and requested to read the instructions and
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examples before answering questions. Participants were re-
quested, once they had completed the questions, whether the
instructions were clear, and how they could be improved.
Participants were offered a verbal debriefing that explained
the background and reasons for the study, once they had
completed the questionnaire. The time taken to read the in-
structions, and to respond to all the challenges was recorded
(in minutes).

5.3. Results

There were 20 participants in the final pilot, with 40%
being male. The average participant was 24-35 years old.
70% were currently, or had previously been, students. 19
rated their understanding of the questionnaire language at
mother tongue level. The participants gave the correct an-
swers 93.125% of the time. Participants took, on average,
2.15 minutes to read the instructions and 4.2 minutes, on
average, to complete the 24 challenge questions. Gender did
not impact the correctness of the responses.

Error rates were as follows: AND=1.6%, OR=3.3%,
AND NOT=11%, OR NOT=12.5%. From these numbers it
becomes clear that the negations led to far more errors than
the AND or OR conjunctions.

6. Primary Usability Study

The pilot study helped us to refine our instructions, and
we learnt a number of lessons from it:

o It was clear that we should exclude secrets with nega-
tions, because participants experienced difficulties cop-
ing with these secrets.

o We decided to record how long it took for people to
complete the questionnaire in minutes and seconds (the
pilot study only recorded minutes) since recording only
in minutes was not fine grained enough.

o The purpose of the pilot study was to refine the instruc-
tions but we realised that giving people 24 ‘secrets’ was
not really mirroring an actual ZeTA authentication. We
realised that we ought to reduce the number of secrets,
and introduce more than one challenge per secret, as
ZeTA would.

This usability study would give us greater insight into
how people handle ZeTA-type challenges with secret pairs
concatenated only with AND or OR.

6.1. Apparatus

6.1.1. Secret-Challenge Pairs. From the pilot study’s
secret-challenge pairs, we chose the five worst performing
ones. Then, for each secret, we again analytically determined
four new challenges. This time, the challenges were chosen
such that three of the authors agreed on whether they were
related or not. The procedure matches a human judgement
task with a three person agreement. We had a total of 5
challenges for each secret word pair. We settled on the final
set of secret-challenge sets shown in Table [4]



6.1.2. Questionnaire. The questionnaire consisted of three
pages on two sheets.

o Demographics: We collected some basic demograph-
ics (but no identifying details) and the current time.
We did not collect gender since no gender impact
was detected in the pilot study. We also explained the
purpose of the study, as we did for the pilot study.

« Instructions: We explained the task, and explained the
concept of semantic similarity.

« Examples: Since the task was different from the pi-
lot study we provided only two examples of secret
pairs, one AND, and one OR. Each was shown with
a number of attributes which are semantically related,
and a number that are not semantically related. The
AND example was ‘Nature AND Edible’, and one of
the semantically related attributes was ‘Nut’. The OR
example was ‘Politics OR Machine’. An example of
something that is not semantically related was ‘Desert’.

o The Questionnaire: Five secrets were presented, each
with 5 different attribute challenges. The order of both
the challenges and the attributes was randomised.

TABLE 4. SECRET-CHALLENGE SETS

Secret Challenges

Pair

Glass Wine (y) | Birthday | Toothpick| Window | Tomato
OR Gift (y) (n) (y) (n)

South Penguin Craftsman| Ice (y) Sand (y) | Metropolis
Pole OR (y) (n) (n)

Desert

Cat OR Statue Cup (n) Plant (n) | Fur (y) Pet (y)
Memo- (y)

rial

Airplane Ballpoint | Wedding | Airport Window | Security
AND Pen (n) (n) y) (y) Area (y)
Building

Cold Mulled Refresh- | Cola (y) | Iced Tea | Cappuccino
AND Wine ment (y) (n)

Bever- (n) y)

age

6.2. Interview Procedure

We followed a procedure similar to the one described
for the pilot study. Participants were, again, able to ask
questions before the researcher thanked them and departed.

6.3. Results

42 participants completed our survey, aged 18-54. The
mean completion time was 1 minute and 29 seconds (for
5 ‘secret pairs’ each having 5 attribute challenges). The
maximum time taken was 2 minutes and 22 secondd'|and the
fastest completion took 52 seconds. 83% of the participants
were, or had previously been, students. 41 were mother
tongue speakers of the language the questionnaire was in.

1. This was the only participant who rated his understanding of the
language to be only close to native, but made no errors.
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All participants answered 25 challenges. Overall, par-
ticipants answered the challenges correctly 95.24% of the
time. The percentages of correct answers for each of the
sets is shown in Figure [5] Five participants made one error,
one made 4 errors, two made 3 errors.

TABLE 5. SUCCESS RATES FOR SECRET-CHALLENGE SETS

Secret Challenges

Pair

Glass Wine Birthday | Toothpick| Window | Tomato
OR Gift (90%) (95%) (100%) (95%) (98%)
South Penguin Craftsman| Ice Sand Metropolis
Pole OR (95%) (100%) (98%) (98%) (100%)
Desert

Cat OR Statue Cup Plant Fur Pet
Memo- (100%) (98%) (100%) (100%) (98%)

rial

Airplane Ballpoint | Wedding | Airport Window | Security
AND Pen (100%) (100%) (67%) Area
Building (100%) (90%)
Cold Mulled Refresh- | Cola Ice Tea | Cappuccino
AND Wine ment (95%) (100%) (90%)
Bever- (93%) (81%)

age

The worst performing was the pair: secret: ‘Airplane
AND Building’, challenge: ‘Window’. Only 67% considered
these two concepts to be semantically related.

At least one participant did not notice the switch from
OR to AND between the two secrets, answering the AND
questions as if they were OR questions. The participant was
not excluded from the analysis since these kinds of problems
are important to include in usability studies.

Two participants were not sure whether penguins lived
at the South or North Pole, which caused some confusion
for that question but overall people seemed to perform well
for that challenge.

7. Discussion

We devised the ZeTA authentication approach because
we felt it provided a way to authenticate people over
untrusted channels, using untrusted devices, observed by
untrustworthy people. The literature suggested that people
would find it relatively easy to respond to challenges com-
posed of semantically-related concepts, but we could not be
sure, given the need to have multiple secrets with logical
operators. We thus ran usability tests, first a pilot then a
final test.

The pilot study revealed that people could manage ZeTA
challenges if the requirements were explained to them prop-
erly. Even so, we noted that they performed most poorly
with secrets of the type ‘a AND NOT b’ and ‘a OR NOT b’.
This is to be expected, since the human brain cannot store
negations [68]]. It means that someone needs to search all
semantic relationships with a given secret in order to ensure
that there is no match for the given challenge. This is
cognitively demanding, time consuming and error prone.

We then improved the instructions in preparation for
the primary usability study. To test the efficacy of the



refined instructions we chose the weakest performing secrets
from the first study, removing negations since it was clear
that they imposed too much of a load. We ended up with
three ‘OR’ secrets and two ‘AND’ secrets. We posed five
different challenges for each. Now that we had removed
negation we noted that the five worst-performing challenges
were all related to secrets of the type ‘a AND b’. With
two kinds of secrets, the AND combinations were clearly
more cognitively demanding than the OR secrets, since they
essentially constitute twice the effort required of the OR
secrets.

The poor performance of ‘AND’ secrets could be an
artifact of the way we tested the protocol, with the protocol
as a stand-alone challenge with participants who did not
really care about providing correct answers. It might be
different when access to a desired resource is in the balance.
On the other hand, participants might have been confused
about the task itself, leading to a failure to identify the
semantic relationship with both secrets, since there was a
switch between ‘OR’ and ‘AND’. They could also have be-
come distracted during completion of a particular challenge.

We now examine the worst performing combinations to
see whether any patterns emerge.

o Airplane AND Building. The most poorly performing
challenges were:

Security Area — Only buildings of specific types
have security areas. For example a home is a build-
ing, but it does not really have a security area.
Perhaps this confused people.

Window — Since buildings obviously have windows
the problem might have resulted from people not
considering the non-opening apertures in airplanes
to be windows in the strict sense of the word. They
may consider them to be more akin to portholes
than windows. On the other hand, this is also the
only challenge that tests an attribute of both pairs, as
opposed to categories, instances or subparts. We are
somewhat at a loss to explain the difficulties people
had with this challenge.

e Cold AND Beverage. In English the fact that this
was the only secret that involved an adjective and a
noun might have caused errors. The study was con-
ducted in German though and there was consequently
no ambiguity regarding the interpretation of the word
cold as a noun: the German adjective kalt can be
clearly distinguished from the noun Erkdltung. The
most poorly performing challenges for this secret were:

— Cappuccino — 10% of participants thought that
the answer was positive. We then realised that in
many places Cappuccinos are actually served cold.
This finding demonstrates the ambiguity of semantic
relationships, and emphasises the need for some level
of tolerance for disagreement in the protocol.

Refreshment — One possible explanation might be
that people acknowledge that a refreshment can be a
beverage, but that no refreshment is needed in a state
of cold (be it that they are cold or their surrounding is
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cold e.g. in winter). Since only a combination of both
attributes satisfies the secret such an interpretation
would lead to a negative answer. Another explanation
might be that people simply consider cold drinks to
be less refreshing than hot drinks.

What we learned from our evaluation was that it is non-
trivial to choose secret pairs and challenges. Three authors
agreed on the secrets and challenges we chose but, even
so, some of the semantic relationships were not confirmed
by our participants. This is clearly something that needs to
be addressed if ZeTA is ever to be a viable authentication
protocol. We were well aware, embarking on this research,
that semantic relationships can be ambiguous, idiosyncratic
and fluid. Hence we have to tolerate a certain number of
“incorrect” answers from a legitimate user. We will have to
implement ZeTA and test it in order to find out where the
sweet spot is with respect to such tolerance. We also need
to discover how tolerance levels ought to be mapped to the
value of the asset being protected by ZeTA.

There is another sweet spot to be identified: where
usability and security are maximised. On either side of this
sweet spot either usability or security are sacrificed in order
to bolster the other. One can maximise ZeTA’s security by
requiring people to remember 5 secrets, for example, and
then answering 20 ‘AND’ challenges in order to authenti-
cate. The unusability of this scheme would render it useless
since people are likely to refuse to use it. On the other
hand, reducing the number of secrets and challenges would
improve usability but at the expense of security, which
would render it useless as an access control mechanism.
We need to find the spot at which we can maximise these
two essential characteristics.

This kind of authentication is undeniably time consum-
ing, far more so than entering a password. We argued earlier
that people might be willing to tolerate such inconvenience
if they are clearly uncomfortable with the trustworthiness of
their current environment. We merely surmise in this respect
and such intuition might be flawed. We would have to test
ZeTA in the field to find out whether this is the case or not.

We do feel, however, that ZeTA demonstrates promise.
We are keen to carry out further research to see whether
such promise delivers in more stringent evaluations.

8. Limitations

A number of limitations must be acknowledged. Similar
to text passwords, the protocol is not resistant to humans
deliberately divulging their secrets to other people, but ZeTA
does not claim to address this flaw which is inherent to
nearly all knowledge-based authentication systems.

The usability evaluation, and the pilot usability study, is
undeniably not a concrete implementation of the protocol:
a ZeTA user would only have one secret per account and
successful authentication would provide access to a desired
resource. These limitations seem acceptable at this stage
because we sought only to test the validity of this protocol
by broadening the scope. The switching between secrets



makes the task more challenging and thus is not expected
to whitewash the results.

The combination of active adversaries and untrusted
devices was not specifically replicated in this study. This
will be addressed in future work.

9. Conclusion and Future Work

In this paper we reconsider the arguments of Coskun and
Herley [15] by suggesting that, instead of challenging people
to either conduct mathematical operations or remember long
secrets, we challenge them to confirm, or deny, semantically
related attributes of their secrets. We presented a security
analysis and carried out a usability proof-of-concept show-
ing that people can indeed handle this kind of challenge.

We do not claim that we have a ready-made solution
for untrusted environments. What we do believe is that our
findings are interesting and suggest that ZeTA might hold
potential. We still clearly have to carry out further even more
realistic studies, where ZeTA controls access to something
of value, to see whether it finds favour with end-users.

As ZeTA, in it’s current form, clearly has limitations,
future work could evaluate it’s applicability to specific areas
such as fallback authentication, e.g. recovering access to a
resource after the password is lost, and single sign on ser-
vices, e.g. online password managers. It furthermore could
be fruitful to investigate whether users could be enabled to
judge the trustworthiness of their environment and either
conduct the ZeTA protocol or enter the ZeTA secret ’in the
clear’ based on their judgement, e.g. given the ZeTA secret
’Red OR Bike’ the user could decide to enter the password
’RedBike’.

Investigations into how errors could be minimised could
strengthen the security. We envisage three main directions:

o Investigating whether certain kinds of semantic rela-
tionships cause more difficulties than others.

o Coming up with a rule for choosing secrets, and sets
of secrets. For example, should they be related, as
Cold and Beverage were, or should they be completely
unrelated, as South Pole and Desert were?

o The user’s task in the ZeTA protocol is somewhat
abstract. One particular concern is related to how peo-
ple could be primed on a similar threshold of when
a word pair is related and when not. As our studies
in Sections [5] and [6] show, people seem to be able to
cope with this easily once they grasp the principle.
More investigation into variations of instructions and
explanations could lead to further improvements.
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