165,107 research outputs found

    Understanding and modeling the small-world phenomenon in dynamic networks

    Get PDF
    The small-world phenomenon first introduced in the context of static graphs consists of graphs with high clustering coefficient and low shortest path length. This is an intrinsic property of many real complex static networks. Recent research has shown that this structure is also observable in dynamic networks but how it emerges remains an open problem. In this paper, we propose a model capable of capturing the small-world behavior observed in various real traces. We then study information diffusion in such small-world networks. Analytical and simulation results with epidemic model show that the small-world structure increases dramatically the information spreading speed in dynamic networks

    Smoothed Analysis of Information Spreading in Dynamic Networks

    Get PDF

    Structure and Dynamics of Information Pathways in Online Media

    Full text link
    Diffusion of information, spread of rumors and infectious diseases are all instances of stochastic processes that occur over the edges of an underlying network. Many times networks over which contagions spread are unobserved, and such networks are often dynamic and change over time. In this paper, we investigate the problem of inferring dynamic networks based on information diffusion data. We assume there is an unobserved dynamic network that changes over time, while we observe the results of a dynamic process spreading over the edges of the network. The task then is to infer the edges and the dynamics of the underlying network. We develop an on-line algorithm that relies on stochastic convex optimization to efficiently solve the dynamic network inference problem. We apply our algorithm to information diffusion among 3.3 million mainstream media and blog sites and experiment with more than 179 million different pieces of information spreading over the network in a one year period. We study the evolution of information pathways in the online media space and find interesting insights. Information pathways for general recurrent topics are more stable across time than for on-going news events. Clusters of news media sites and blogs often emerge and vanish in matter of days for on-going news events. Major social movements and events involving civil population, such as the Libyan's civil war or Syria's uprise, lead to an increased amount of information pathways among blogs as well as in the overall increase in the network centrality of blogs and social media sites.Comment: To Appear at the 6th International Conference on Web Search and Data Mining (WSDM '13

    Dynamic Control of Fraud Information Spreading in Mobile Social Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordMobile social networks (MSNs) provide real-time information services to individuals in social communities through mobile devices. However, due to their high openness and autonomy, MSNs have been suffering from rampant rumors, fraudulent activities, and other types of misuses. To mitigate such threats, it is urgent to control the spread of fraud information. The research challenge is: how to design control strategies to efficiently utilize limited resources and meanwhile minimize individuals' losses caused by fraud information? To this end, we model the fraud information control issue as an optimal control problem, in which the control resources consumption for implementing control strategies and the losses of individuals are jointly taken as a constraint called total cost, and the minimum total cost becomes the objective function. Based on the optimal control theory, we devise the optimal dynamic allocation of control strategies. Besides, a dynamics model for fraud information diffusion is established by considering the uncertain mental state of individuals, we investigate the trend of fraud information diffusion and the stability of the dynamics model. Our simulation study shows that the proposed optimal control strategies can effectively inhibit the diffusion of fraud information while incurring the smallest total cost. Compared with other control strategies, the control effect of the proposed optimal control strategies is about 10% higher.National Natural Science Foundation of China (NSFC)Fundamental Research Funds for the Central Universitie
    • …
    corecore