233 research outputs found

    Entangling unitary gates on distant qubits with ancilla feedback

    Full text link
    By using an ancilla qubit as a mediator, two distant qubits can undergo a non-local entangling unitary operation. This is desirable for when attempting to scale up or distribute quantum computation by combining fixed static local sets of qubits with ballistic mediators. Using a model driven by measurements on the ancilla, it is possible to generate a maximally entangling CZ gate while only having access to a less entangling gate between the pair qubits and the ancilla. However this results in a stochastic process of generating control phase rotation gates where the expected time for success does not correlate with the entangling power of the connection gate. We explore how one can use feedback into the preparation and measurement parameters of the ancilla to speed up the expected time to generate a CZ gate between a pair of separated qubits and to leverage stronger coupling strengths for faster times. Surprisingly, by choosing an appropriate strategy, control of a binary discrete parameter achieves comparable speed up to full continuous control of all degrees of freedom of the ancilla.Comment: 8 pages, 11 figure

    Generating Optical Graph States

    Get PDF

    Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions

    Get PDF
    Physical qubits in experimental quantum information processors are inevitably exposed to different sources of noise and imperfections, which lead to errors that typically accumulate hindering our ability to perform long computations reliably. Progress towards scalable and robust quantum computation relies on exploiting quantum error correction (QEC) to actively battle these undesired effects. In this work, we present a comprehensive study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams. This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits. We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level. Finally, we study the impact of residual crosstalk errors on the performance of fault-tolerant QEC numerically, identifying the experimental target values that need to be achieved in near-term trapped-ion experiments to reach the break-even point for beneficial QEC with low-distance topological codes.Comment: 30 pages, 13 figures, 1 tabl

    Dark state adiabatic passage with branched networks and high-spin systems: Spin separation and entanglement

    Get PDF
    Adiabatic methods are potentially important for quantum information protocols because of their robustness against many sources of technical and fundamental noise. They are particularly useful for quantum transport, and in some cases elementary quantum gates. Here, we explore the extension of a particular protocol, dark state adiabatic passage, where a spin state is transported across a branched network of initialized spins, comprising one "input" spin, and multiple leaf spins. We find that maximal entanglement is generated in systems of spin-half particles, or where the system is limited to one excitation

    Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage

    Get PDF
    We numerically demonstrate an optical waveguide structure for the coherent tunnelling adiabatic passage of photons. An alternative coupling scheme is used compared to earlier work. We show that a three rib optical waveguide structure is robust to material loss in the intermediate waveguide and variations to the waveguide parameters. We also present a five rib optical waveguide structure that represents a new class of octave spanning power divider

    Using the qubus for quantum computing

    Get PDF
    In this thesis I explore using the qubus for quantum computing. The qubus is an architecture of quantum computing, where a continuous variable ancilla is used to generate operations between matter qubits. I concentrate on using the qubus for two purposes - quantum simulation, and generating cluster states. Quantum simulation is the idea of using a quantum computer to simulate a quantum system. I focus on conducting a simulation of the BCS Hamiltonian. I demonstrate how to perform the necessary two qubit operations in a controlled fashion using the qubus. In particular I demonstrate an O(N3) saving over an implementation on an NMR computer, and a factor of 2 saving over a naıve technique. I also discuss how to perform the quantum Fourier transform on the qubus quantum computer. I show that it is possible to perform the quantum Fourier transform using just, 24⌊N/2⌋ + 7N − 6, this is an O(N) saving over a naıve method. In the second part of the thesis, I move on, and consider generating cluster states using the qubus. A cluster state, is a universal resource for one-way or measurement-based computation. In one-way computation, the pre-generated, entangled resource is used to perform calculations, which only require local corrections and measurement. I demonstrate that the qubus can generate cluster states deterministically, and in a relatively short time. I discuss several techniques of cluster state generation, one of which is optimal, given the physical architecture we are using. This can generate an n × m cluster in only 3nm − 2n − 2m + 4 operations. The alternative techniques look at generating a cluster using layers or columns, allowing it to be built dynamically, while the cluster is used to perform calculations. I then move on, and discuss problems with error accumulation in the generation process
    • 

    corecore