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Abstract

Photonic quantum computing is based on the use of single photons as
qubits. There are many proposed architectures for the realisation of
photonic quantum computers; however, the design of electronic control
systems for these architectures is substantially less well understood. Fur-
thermore, most of these proposals for photonic quantum computing use
measurement-based quantum computing (MBQC), or similar schemes
that avoid the necessity for long-lived photons in the system. These
schemes can appear quite abstract and theoretical, and cause a barrier
to entry for electronic engineers hoping to design control systems for
photonic quantum computing.

This thesis has two primary objectives. First, to present a methodol-
ogy for evaluating prospective control system designs for photonic quan-
tum computers based on MBQC, based on the analysis of timing con-
straints that these implementations impose on the full quantum comput-
ing system. These timing constraints are derived by analysing a concrete
design, targeting a simple model for photonic quantum computing, in a
case where the control system is simple enough to design without needing
hardware emulation to evaluate design trade-offs. Constraints in a more
complicated (and more realistic) setting, involving photonic quantum
computing using incomplete cluster states, are addressed by emulating
one possible choice of algorithms that could be used as the basis for
a control system in this case. This latter emulation provides a frame-
work for analysing other prospective algorithms, and forms the basis for
an analysis system that could be modified to investigate other photonic
quantum computing models.

The second objective is to present MBQC-based photonic quantum
computing in a simple diagrammatic form, which focuses on the control
system specification rather than the mathematics of MBQC. It is hoped
that this lowers the barrier to entry for engineers interested in photonic
quantum computing control system design.
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Chapter 1

Introduction

With the invention and subsequent development of computers, we have be-

come accustomed to a rate of technological improvement unequalled by any

other human invention. In the last 75 years, electronic computers have risen

from relatively simple arithmetic computing machines to become the basis

for an infrastructure layer that touches nearly every aspect of our lives. The

incredibly rapid rate of improvement is due to the ability to miniaturise com-

puters, and scale up their computing power, at a rate that has been exponen-

tial with time – a fact predicted by Moore in 1965 [1]: from the year 1965 to

nearly the present day, the number of transistors on a chip has doubled ev-

ery 18 months. The layered complexity of computing services that now exist

makes it nearly impossible to comprehend how the whole system works, from

the services provided by cloud computing all the way down to the functioning

of the individual transistors.

Quantum computing is a fundamentally different approach to problem

solving using physical devices. Instead of using a classical logical building

block such as the transistor, and then encoding every problem in digital terms,

quantum computers seek to use the behaviour of quantum systems themselves

to provide the solution to problems. An important motivation for this is that

quantum systems are difficult for classical computers to simulate – a fact that

Feynman noted in one of the earliest discussions of quantum computing [2] –

meaning that quantum computers may be capable of solving problems that

classical computers cannot. On the other hand, to make use of a quantum

computer, it is necessary to turn a problem into something that is equivalent to

the evolution of a quantum system. The difficulty of this task is the reason that

1



Chapter 1. Introduction

only relatively few quantum algorithms exist today, and it is an active area of

research to find practical problems that quantum computers can solve [3].

Comparisons between quantum and classical computers are inevitable. So

too are efforts to cast quantum computers in a framework similar to classical

computing. For example, the qubit, or quantum bit, is named by analogy with

the classical bit; and the quantum operations that a quantum computer per-

forms are called quantum gates, by analogy with classical logic gates. There

is also a desire to “front-run” the ideas that made classical computers success-

ful, such as quantum software frameworks and cloud-based access to quantum

computers [4]. However, there is an apparent contradiction between the state

of quantum hardware, which is analogous to the state of early classical com-

puting hardware, and the plethora of higher-level quantum tools, which, to

an outside observer, give quantum computing the impression of being “done”.

A glance at the various competing quantum computing technologies, all with

their own unique problems, shows that this is very far from the case. It has

only recently been shown that current quantum computers can do something

that a classical computer cannot [5], and the validity of this demonstration

is disputed [6, 7]. Scalability, in a sense analogous to Moore’s law, is not

currently achieved by any quantum computing technology [8].

It is universally agreed that the ideal end-goal of quantum computing

would be the construction of a large-scale, integrated, quantum computer,

analogous to the high performance classical processors that exist today.

However, the incredible performance achieved by microprocessors is due

to a very complicated mix of design choices – often trade-offs between non-

ideal systems – which have been optimised by a long process of trial-and-error

lasting decades. For example, the use of the memory hierarchy1 [9] to hide the

extremely long latency of main memory (computer RAM) is not an intrinsic

feature of computing systems; it arises from the particular memory technology

(DRAM) used as the basis for main memory. The (unlikely) discovery of a

new type of memory that has the capacity of DRAM but the speed capabilities

of SRAM (which is used for caches and other on-chip memory) would entail

an entire redesign of modern microprocessors. Current microprocessor design

1The memory hierarchy is the use of several different memory stages that optimise for
high speed and low latency (e.g. cache levels) near the processor, and optimise for large
capacity and error-correction far from the processor (e.g. main memory, and disk-based
storage). The objective is to mimic a single quite-large and quite-fast memory technology,
from the point of view of software.

2



1.1. Why investigate control system design?

involves a very complicated balancing of different competing factors to achieve

a design with improved performance compared to its predecessors [10]. None

of these factors have anything to do with the high-level design of computers;

for example, the use of the stored-program architecture, or the use of classical

logic gates or transistors in its construction2.

It is possible that the success of quantum computing will similarly rest on

a combination of specific device characteristics, and trade-offs in device de-

sign and construction. At a very high level, a prospective quantum computing

system is considered to be made up of a physical system that represents the

qubits, and an associated control system, made from digital and analog elec-

tronics and classical computing systems. In each of the computing quantum

computing technologies, there are many different proposals3 for how to realise

large-scale quantum computers; those with thousands or millions of qubits,

which are able to compete with classical computers at solving problems. In

these proposals, the quantum aspects of the system are often discussed at

length and worked out in detail. For example:

• How to make/manufacture the qubits?

• How to perform high-fidelity quantum operations (gates)?

• How to perform error correction, or build it in, so that the output from

the qubits is reliable?

What is often missing from these proposals is similarly detailed infor-

mation about how the classical control system will work. This thesis is

focused entirely on this control system design, for the case of pho-

tonic quantum computers based on measurement-based quantum

computation. The main purpose of this investigation is to establish whether

the control systems constrain the design of photonic quantum computers.

1.1 Why investigate control system design?

Analog and digital electronic circuits, and classical computing systems re-

quired to control quantum computers are often seen as an implementation

2Nowadays, different transistor technologies are being explored as a method to increase
processor performance. However, in the past, the primary technique enabling Moore’s law
was the gradual miniaturisation of transistors, not any fundamental changes in their design.

3Often called quantum computer architectures.

3



Chapter 1. Introduction

detail in quantum computing architecture design, to be worked out after the

qubits have been fully understood. The purpose of this thesis is to promote

the design of the control system as equally important, or more important,

than the design of the qubits. The reason for this is threefold:

1. Classical control system design is starting to be seen as a real engineering

problem in relation to scaling quantum computers. For example, in

superconducting qubit systems (the current leading qubit technology by

number of qubits), the control system is already a serious bottleneck.

Google’s 54-qubit superconducting qubit processor uses 277 digital-to-

analog converters (DACs) and two stages of cryogenic analog signal process-

ing (one at 3 K and one at 10 K) to interface to their qubits [5]. Outside the

cryostat, the pulse-generating hardware is mounted in four 6U-chassis (about

27 cm tall), each of which controls approximately 15 qubits.

The use of external rack-mounted electronics is infeasible for large-scale

quantum computer, containing thousands of qubits. Although custom-made

electronics can alleviate some of the problems relating to size and power con-

sumption, there still remains a physical limit to the number of wires that can

be routed into a cryostat [11], from both a mechanical and thermal point of

view. As a result, there is a large amount of current research into the de-

velopment of cryogenic electronics that can be integrated much closer to the

superconducting qubits [12].

2. Analog and digital electronics, particularly classical computing systems,

are very highly developed disciplines, where there is limited room for

improvement on the state of the art.

This means that if the electronic control system imposes a limit on a quan-

tum computing architecture, it may be very difficult to remove the imposed

limitation by trying to improve the electronics. In the context of photonic

quantum computing, the most important limitation relates to the timing char-

acteristics of the control system.

On the other hand, quantum technologies are relatively new, and may be

expected to see a great deal of development. It may therefore be much more

important to prioritise the limitations arising from the control system over

considerations relating purely to the quantum architecture of the system.

4



1.1. Why investigate control system design?

3. Like classical computers, the success of large-scale quantum computers

may come down to highly specific trade-offs between different parts of the

qubit technologies and the associated control system. Analysis of these

trade-offs requires the implementation details of the control system and

quantum system to be known in detail; these systems must be designed

in tandem, on an equal footing.

This thesis is about control system design for photonic quantum comput-

ers, where the physical system used as the qubit is a single photon. This

subject has a particularly elaborate set of proposals for realising large-scale

quantum computers [13–16], compared to other quantum computing plat-

forms, mainly arising from the limited interaction between different photons.

Despite the breadth of research into photonic quantum computing architec-

tures, there is almost no research on the subject of control systems for pho-

tonic quantum computers. This may lead newcomers to the subject to believe

that the control systems are not an important problem for photonic quantum

computers.

This is partially true, because even simple building blocks required for the

use of photonic qubits do not yet exist. For example, on-demand single-photon

sources, with the high purity required for any implementation of (discrete-

variable) photonic quantum computing, have been a subject of research for

the last 20 years, but an ideal source does not yet exist [17]. Very good quality

single-photon detectors are well established [18], but it is currently unknown

how to integrate them into a prospective large-scale photonic quantum com-

puter, and manage the cryogenic constraints they impose on the rest of the

system [19].

However, many simple details of these control systems can be worked out

now, based on available prospective architectures for photonic quantum com-

puters, without needing all the prerequisite components to exist. Based on this

analysis, it is clear that there may be substantial implementation problems

relating to the design of electronic systems for photonic quantum computing.

These problems essentially arise from the need for the speed of the electronics

to compete with the speed of light. The characteristic timescale for photons

moving through a photonic quantum computer is hundreds of picoseconds,

which imposes a serious timing constraint on how fast the electronic control

system must be able to operate. Based on point two listed above, it is very

5
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important to understand what limitations control system electronics may im-

pose, because these kind of limitations may render one architecture or another

unviable.

Another feature of photonic quantum computing architectures is that they

are relatively mathematically complicated. This may be a significant barrier

to entry for electronic engineers, who would be able to provide the most as-

sistance with the difficult control system implementation problems described

above. The complexity is due to the use of measurement-based quantum

computing (MBQC) as the basis of most architectures for photonic quantum

computing. MBQC is used in photonic quantum computing because it allows

photons to be used in a relatively short-lived manner, where each individual

photon is produced and then measured (and destroyed) quickly. This is pri-

marily necessary to mitigate the effect of propagation loss4. No single photon

corresponds to a qubit in the quantum computer, but together, the photons

interact in such a way as to simulate a set of qubits. By measuring the indi-

vidual qubits according to particular rules, it is possible to realise quantum

gates on these qubits. However, the rules are not as intuitive as the gate-based

model of quantum computation, which makes photonic quantum computing

more abstract than other quantum computing platforms (for example, super-

conducting qubits or trapped ions, where each qubit is easily mapped to a

physical device).

Therefore, this thesis seeks to achieve two goals:

• Provide a practical description of MBQC. Throughout this thesis,

the focus is on practical discussions of the implementation of MBQC

algorithms in hardware and software, rather than mathematically rigor-

ous analysis of measurement patterns, which are treated in great detail

elsewhere [20, 21].

• Investigate constraints imposed by electronic control systems

on photonic quantum computing architectures. We consider two

simple models for photonic quantum computing based on MBQC, one

involving ideal (fully-connected) cluster states, and one where the cluster

state may contain missing edges. Chapters 2, 3 and 4 contain hardware

design and verification for a control system for the first model. Chap-

4Where a photon is absorbed by its transmitting medium: an optical fibre, or a waveg-
uide.
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ters 5 and 6 contain the design of an emulation and simulation library,

MBQCSIM, whose purpose is to analyse implementation constraints in-

volved in the second model.

Even though it is not realistic, we consider the simple fully-connected

model of photonic quantum computing first, because it leads to a control

system which: does not involve complicated algorithms; does not involve diffi-

cult design trade-offs; and provides a clear indication of where control system

constraints may appear in more complicated (and more realistic) models for

photonic quantum computing. At the same time, a concrete hardware design

targeting a high-performance field-programmable gate array (FPGA) provides

a strong starting point for analysing design-imposed constraints, and offers an

introductory system for others wishing to learn about control-system imple-

mentation for photonic quantum computing.

The simplest realistic model of photonic quantum computing, based on

MBQC, uses an incomplete cluster state – one with missing edges5. These

missing edges arise because there is no known deterministic mechanism for

generating entanglement between photons, of the kind required for the cluster

state which is the basis for MBQC. Instead, fusion gates (the generators of

entanglement between photons) only succeed with some edge probability p

(e.g. 50 % [13] or 75 % [15, 22]). Therefore, any realistic system of photonic

quantum computing must be based on incomplete cluster states. For brevity,

we refer to this model as IMBQC (for incomplete-cluster-state MBQC).

The use of an incomplete cluster state introduces many new algorithmic

complications, such as the need to map measurement patterns onto random

cluster states [14], and the need to implement this mapping in real time by

searching for paths through the cluster state [23, 24]. This increased com-

plexity makes it infeasible to design a control system for photonic quantum

computing without first emulating the control system, in order to analyse de-

sign trade-offs between different algorithm choices and other implementation

questions (such as the memory model for algorithm data storage). This kind of

emulation is analogous to the techniques used in microprocessor architecture

design, to evaluate whether one design choice or another will lead to a better

overall system [10]. This emulation is not necessary for the model based on

the fully-connected cluster state discussed above, because measurement pat-

5A cluster state can be thought of as a graph, where the nodes correspond to photons,
and the edges correspond to entanglement between photons.
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Chapter 1. Introduction

terns are static in that case, and the algorithms which must be implemented

reduce to simple fixed arithmetic operations.

Hardware emulation is able to provide concrete answers to questions re-

lating to how a particular implementation will behave. Timing constraints

may be obtained from the emulation by making reasonable assumptions on

the hardware that may be used to realise the emulated system. However, this

does not replace a full system design, which is the single valid method to es-

tablish what constraints the control system will really impose on the quantum

computer.

A side-effect of the verification of the designs discussed in this thesis is the

development of an MBQC simulator, which is capable of simulating measure-

ment patterns on cluster states of arbitrary width, and height at most 146. In

addition to verification of measurement patterns and algorithms, this tool can

be used as the basis for an analysis of how noise in the analog components in

the control system affects the quantum output states from the system. This

is discussed in detail in Chapter 6.3.

This thesis aims to advocate an “engineering-focused” approach for pho-

tonic quantum computing research: by completely isolating the control sys-

tem specification from the quantum computing architecture, and approaching

it entirely as an isolated electronic engineering problem, it may be brought

within the scope of highly developed design methodologies for high-performance

electronic systems [25, 26]. The current landscape of theoretical photonic

quantum computing architectures provides almost unlimited material for this

kind of investigation. It requires, as a prerequisite, that the control system is

entirely extricated from the quantum architecture, and is presented in a form

amenable to electronic circuit design. We have tried to achieve this separa-

tion for the models we discuss in this thesis. We also present some simple

designs that satisfy these specifications. However, the true advantage of this

approach is that others may now take the same decoupled specification (or

modify it as they see fit), and improve upon and optimise the designs. Here,

we take a simple minimalist approach, and focus on the digital aspects of the

control system. However, it is the analog parts of the system (especially if the

cryogenic requirement is incorporated) that offer the real design challenge,

and will impose the toughest constraints on the overall system. The problems

involved in this latter case are simply too complicated to address without first

6On an ordinary laptop.
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obtaining a rigorously specified behaviour for all parts of the control system,

which is completely devoid of quantum mechanical considerations.

The remainder of this introduction is organised as follows. Section 1.2 con-

tains a brief historical summary of the development of quantum computers,

specifically highlighting relationships with the development of classical com-

puters, and provides some comparison between the two different approaches

to solving problems. A goal of this thesis is to point out similarities and differ-

ences between the implementation of quantum and classical computers, and

draw on the development of classical computers to inform the development of

control systems for quantum computing.

Section 1.3 provides a brief overview of the gate-based model for quantum

computing, and other aspects of quantum information theory that are nec-

essary for understanding this thesis. Section 1.4 contains an overview of the

basics of (discrete-variable) photonic quantum computing, using single pho-

tons as qubits. It does not cover in detail the substantial information avail-

able in the literature on the various components required for the realisation

of photonic quantum computers, including the underlying photonic platform

for waveguides (e.g. silicon-on-insulator or lithium niobate); heralded [27] or

multiplexed [28, 29] single-photon sources; single-photon detectors [30]; mod-

ulators [31]; and architectural components such as fusion gates [13], or the

generation of cluster states [15]. This information is covered in great detail in

the references provided, and much of the development of photonic devices is

ongoing research which is outside the scope of this thesis. Instead, it provides

a simple operational overview of the aspects of photonic quantum comput-

ing which are directly relevant for control system implementation. Finally,

Section 1.5 contains a guide for the reader about how to approach this thesis.

1.2 Comparison of classical and quantum

computers

Quantum computing is a relatively recent idea in the history of quantum

physics. While quantum mechanics originated near the turn of the 1900s, the

first ideas of quantum computing began to develop in the 1970s and 80s –

about 20 years after quantum effects had been used for the invention of the

transistor, and the subsequent development of classical computers. The idea

of quantum computers arose as the intersection of three different strands of
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Chapter 1. Introduction

thinking:

• Investigation of the boundaries of theoretical computational models such

as the Turing machine.

• Research into the possibility of extremely low-energy (classical) comput-

ers, via reversible computation.

• The question whether physics can be simulated using computers.

There was a great deal of interest in the 1970s and 80s in the question

whether are any fundamental energy limits inherent in the process of classi-

cal computation [32]. Such energy limits arise if a computational process is

irreversible, because thermodynamics guarantees that energy will be lost in

that process. Following the work of Landauer in 1961 on intrinsic energy dis-

sipation in computers [33], it was widely thought that computation was not

a reversible process. By designing a scheme of classical computation based

on ideal billiard balls, Edward Fredkin showed that this was not true [34].

The key insight was the use of a reversible classical logic gate known as the

Fredkin gate, or controlled-SWAP. Being somewhat outside academia, Fredkin

did not publish his results, and Bennett (independently) showed in 1973 that

reversible computation is possible [35], leading to the theoretical possibility

of an extremely low energy computer. Feynman, with an interest in physical

computation inspired by Fredkin, found that there are essentially no lower

energy limits due to quantum mechanics either [36]. In doing so, he created a

model of classical computation using reversible quantum mechanical elements;

a type of quantum computer.

Although presented in the context of reversible computation, Feynman’s

true interest in the problem lay in the question whether the study of the

computer simulation of physics could cast a new light on quantum theory [2].

Feynman argued that the simulation of physics could only be achieved by us-

ing computers based on the laws of quantum physics. The opposite point of

view, held by Edward Fredkin due to his strongly-held belief in finite phys-

ical laws [34], was that digital electronic computers could exactly simulate

physical phenomena. In his keynote address [2], Feynman laid out the impor-

tant concept of the exponential scaling of the classical simulation of physics,

and suggested the goal of finding a “universal” quantum computer, analogous

10



1.2. Comparison of classical and quantum computers

to the universal Turing machine. This talk is seen by many as the birth of

quantum computing.

The concept of the Turing machine has been a cornerstone of theoretical

computer science since it was introduced in 1936 [37]. A Turing machine is

a simple abstract type of (classical) computer which consists of an infinite

memory, and a processor that can read and write to the tape according to

special rules7. The importance of the Turing machine is that there exist uni-

versal Turing machines, which are able to simulate any other Turing machine.

This is achieved by using the tape to store a “program” for the computer,

in addition to its role as a scratch pad for data processing. The revolution-

ary concept of universality – via the stored-program concept – formed the

abstract basis for the design of the EDVAC, one of the first large-scale gen-

eral purpose computers. The design, laid out by von Neumann in his famous

draft [39], described the physical realisation of a universal Turing machine,

with the addition of practical details, such as the presence of higher level

arithmetic processing operations, and a mechanism for fetching instructions8.

Although the stored-program concept is often described as the crucial char-

acteristics of post-World War II computers, the really revolutionary aspect of

these computers was their universality [40].

The importance of the universal computer is cemented by the Church-

Turing thesis, which states, approximately, that any real-world problem can

be solved using a universal Turing machine. With the vast improvement in

technology, particularly the increase in the size of memory, computers have

approached the ideal universal Turing machine, implying that they can solve

any problem at all – provided they are fast and large enough. The enormous

array of applications of classical computers shows that this is certainly very

nearly the case. However, the Church-Turing thesis has received continuous

scrutiny to attempt to discover whether any computations lie outside the scope

of traditional universal digital computers.

In 1985, David Deutsch reformulated the Church-Turing thesis to spec-

ify the simulation of finitely-realisable physical systems by finite computing

systems [41]. A Turing machine does not satisfy this stronger variant of the

Church-Turing thesis, because a finite physical system (being continuous) can-

7Rules such as “move one step to the left” and “write zero to the tape” [38].
8The origins of the design of the stored-program concept and the design of the all-purpose

computer caused a great deal of controversy. See [40] for a much more complete account.
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not be simulated using a discrete Turing machine based on classical physics.

Within this framework, Deutsch introduced the concept of the universal quan-

tum computer, a machine that contained a finite processing quantum system,

and an infinite “tape” of quantum memory (like the traditional Turing ma-

chine), where quantum operations can be performed with unitary dynamics.

For Deutsch, one of the critical aspects of the quantum computer was its “pro-

grammability”; it must be possible to reconfigure the same fixed computing

system to realise different universal quantum computers, in contrast to Feyn-

man’s quantum computer. Deutsch and Jozsa introduced a simple algorithm

to exploit quantum effects in this new type of computer [42]. Despite the

contrived nature of the problem, the Deutsch-Jozsa algorithm is simple proof

that a quantum computer can solve some problems “faster” than an ordinary

classical computer9.

A much more important quantum algorithm, that kick-started widespread

interest in quantum computing, is Shor’s algorithm for factoring numbers into

their prime factors [43]. The algorithm has undoubted significance, due to the

possibility that it could undermine RSA, one of the most widely used cryp-

tographic algorithms. Later, Grover introduced an algorithm for performing

certain types of search tasks faster than ordinary computers [44]. Although

the speed-up from using this algorithm is less impressive than Shor’s algo-

rithm, Grover’s algorithm attracts interest due to its applicability to a more

general type of problem.

The development of other quantum algorithms has turned out to be a very

difficult problem; so much so that today, more than 25 years after their in-

vention, Shor’s algorithm and Grover’s algorithm are still the highest profile

quantum algorithms10. This shows that, in practice, the universality achieved

by quantum computers is significantly less than that of classical computers

(where any algorithm based on arithmetic and conditional logic is within the

scope of implementation). It also leads to significant differences between clas-

sical and quantum computers. For example, a quantum analogue for the

stored-program concept does not exist; the data in a quantum computer are

quantum states, whereas the program (the specification of a quantum algo-

9In this context, “faster” means “using fewer operations”. Quantum computers are not
well-enough developed yet to decide whether they can solve any problem faster than classical
computers, in the sense of wall-clock time.

10There are, however, many envisioned applications of variations of these algorithms to
real-world problems [45].
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rithm in terms of gates) remains in classical form11. As a result, quantum

computers will remain fundamentally under the control of classical devices.

Despite this, many aspects of classical computing have been imported

wholesale into the quantum ecosystem, under the assumption that they will

eventually be useful. For example, many quantum programming languages12

already exist, and big companies such as Microsoft and IBM have already

rolled out large-scale software stacks for quantum computing infrastructure

that does not yet exist [47, 48]. The disconnect between the apparent infras-

tructure in place surrounding quantum computing, and the actual readiness

of real quantum computers has lead to concern about the level of “quantum

hype” [49], which may negatively impact research into quantum computing.

In order to meet the high expectations laid out for quantum computers, it

is necessary that large-scale quantum computers are available at some point

relatively soon. Even if large-scale quantum computers cannot be created im-

mediately, it is certainly feasible to perform a detailed analysis of the type

of analog and digital electronics necessary to control them. This informa-

tion may be used to accelerate the process of large-scale quantum computer

development, by ruling out as quickly as possible designs that will fail due

to classical electronics-imposed constraints. This thesis is an attempt to offer

some methodologies and tools for this analysis in the case of photonic quantum

computing.

1.3 Gate-based quantum computing

The basic unit of quantum computation is the qubit, which is a two-state

system, analogous to a bit, except complex linear combinations of the zero-

state (denoted |0〉) and the one-state (denoted |1〉) are also valid states. The

states |ψ〉 of a qubit are elements of the complex vector space C2 spanned by

|0〉 and |1〉, which are expressed as

|ψ〉 = a|0〉+ b|1〉 =

[
a

b

]
, a, b ∈ C; (1.1)

the coefficients a and b are called amplitudes.

11It has been shown that there is no benefit to generalising the program to include
quantum elements. Specifically, it is not possible to create a fixed quantum gate array
that can implement universal quantum operations controlled by a finite quantum program,
unless the quantum computer is allowed to be non-deterministic [46].

12Most of which amount to gate listings.
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Figure 1.1: The state of a single qubit can be represented as a point on the
Bloch Sphere. A measurement of a single qubit can be made along any straight
line through the Bloch sphere. Measurements along lines L in the xy-plane of
the Bloch sphere are particularly important in MBQC; these are parametrised
by a single angle φ. Computational basis measurements are made along the
vertical line through |0〉 and |1〉.

For any particular physical realisation, the qubit can only ever be observed

(measured) in the basis states |0〉 or |1〉, with probabilities given by the ratio

of |a|2 to |b|2. These states correspond to the natural measurable states of

the physical system13. The absolute values of a and b have no independent

physical meaning, so the condition |a|2 + |b|2 = 1 is imposed so that the

probabilities of each outcome are |a|2 and |b|2. Likewise, only the difference

between arguments of the complex numbers a and b has physical meaning, so

it is possible to impose a ∈ R without loss of generality. The argument of b is

then the relative phase between |0〉 and |1〉.
The states of a single qubit can be identified with points on the surface

of a sphere, called the Bloch sphere, as shown in Figure 1.1. The mapping

between the coefficients a and b and the angles θ and φ is given by the identity:

13For the purposes of this discussion, we have dual-rail-encoded photonic qubits in mind
(see Section 1.4). As explained in that section, measurements correspond to clicks of photon
detectors, which can only result in the |0〉 or |1〉 state.
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1.3. Gate-based quantum computing

a|0〉+ b|1〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉.

The angle φ in the equator of the Bloch sphere is the relative phase between

|0〉 and |1〉, and the angle θ controls the probability of observing |0〉 or |1〉
upon measurement.

The states of two qubits can be expressed analogously to Equation (1.1)

as

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 =


a

b

c

d

 , (1.2)

where a, b, c, d ∈ C. The sum is taken over all four possible states that the two

qubits could be observed in, which are the basis states of the tensor product

C2 × C2. As each new qubit is added, the number of amplitudes required to

express the state doubles. This leads to the inability of classical computers

to simulate quantum circuits containing large numbers of qubits. As with

the single qubit case, the condition |a|2 + |b|2 + |c|2 + |d|2 = 1 is imposed,

and the probability of obtaining, for example, |01〉, is given by |b|2. There is

no equivalent of the Bloch sphere for graphically presenting the states of two

qubits.

In computer simulations of quantum circuits, the state of the N -qubit

system is stored in a vector of complex numbers (amplitudes), of size 2N :

|ψ〉 =


a0

a1
...

a2N−1

 . (1.3)

The vector is normalised, so that the
∑ |ai|2 = 1. We discuss the efficient

computer simulation of MBQC measurement patterns at length in Chapter 4.

1.3.1 Quantum gates

The state of a multi-qubit system can be changed by applying a quantum gate,

which is the term used in quantum computing for a unitary transformation14.

14The word gate is used to draw an analogy between the operations that can be performed
on a qubit and the classical logic gates used in digital circuit design.
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The gates U on a single qubit, called one-qubit gates, are 2×2 unitary matrices

U , which satisfy U †U = I. It can be shown that they correspond to a rotation

of the points on the Bloch sphere about any axis, by any angle. The gates

which perform rotations of the state about the x, y and z axes are denoted

Rx(α), Ry(α) and Rz(α), where α is the angle of rotation according to the

right-hand rule. They are given by

Rx(α) =

[
cos(α/2) −i sin(α/2)

−i sin(α/2) cos(α/2)

]
, (1.4)

Ry(α) =

[
cos(α/2) − sin(α/2)

sin(α/2) cos(α/2)

]
, (1.5)

Rz(α) =

[
e−iα/2 0

0 eiα/2

]
. (1.6)

An arbitrary one-qubit rotation can be formed by applying Rx- and Rz-

rotations in sequence as Rx(ζ)Rz(η)Rx(ξ) (applied from right to left). This

follows from the decomposition using Euler angles of an arbitrary rotation

into Rx- and Rz-rotations. Alternatively, it may be verified by direct matrix

multiplication of the gates in Equations (1.4), (1.5) and (1.6) [50].

The Pauli matrices are important special cases of the rotation matrices

defined above, given by X = iRx(π), Y = iRy(π) and Z = iRz(π) (the global

phase i has no effect on the quantum gate that is performed). The Pauli

operators are also important for representing measurement, as described in

Section 1.3.2.

Two-qubit gates cannot be visualised as rotations; instead, they are ex-

pressed as 4 × 4 matrices. An example of a two-qubit gate is the controlled-

NOT (CNOT) gate, which is described by the following matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.7)

If the state given by Equation (1.2) is multiplied on the left by the matrix for

the CNOT gate, then the amplitudes for the states |10〉 and |11〉 are reversed.

The interpretation of this gate is that qubit one controls whether an X-gate
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(which has the effect of a NOT gate) is applied to qubit zero15. Qubit one is

therefore called the control qubit, and qubit zero is called the target16.

Analogously to the way that a NAND gate is universal for digital logic,

the CNOT gate combined with the basic rotations Rx(α), Ry(α) and Rz(α)

are universal for quantum computation. To build up any complicated compu-

tation, all that is required is to apply the correct string of one- and two-qubit

gates, one after the other, to a set of qubits. For example, in Figure 2.1c, an

arbitrary one-qubit gate U = Rx(ζ)Rz(η)Rx(ξ) is applied to the top qubit,

and a CNOT gate is applied between the bottom two qubits.

In general, arbitrarily large multi-qubit gates may be applied to multi-

qubit systems. For example, a five-qubit gate would be described by a 25× 25

unitary matrix. Often, these larger gates are broken down into smaller gates,

because it is expected that quantum hardware will not be able to perform

arbitrary multi-qubit gates on more than two qubits.

1.3.2 Measurement

When a qubit is measured, it always collapses to either the state |0〉, with

probability |a|2, or the state |1〉, with probability |b|2. This is called a com-

putational basis measurement.

However, it is possible to generalise the concept of measurement so that

an “observation” causes the qubit to collapse into the state |0′〉 or the state

|1′〉, which are any two antipodal points on the Bloch sphere, joined by a line

L. This generalised observation is made by using one-qubit gates to transform

the line L to the line through |0〉 and |1〉, and then making a computational

basis measurement. For example, to measure along the line denoted L in

Figure 1.1, it is necessary to apply a z-rotation Rz(−φ + π/2) to align the

state |0′〉 with the positive y axis, followed by an x-rotation Rx(π/2) to obtain

|0〉. It is important to realise that these measurements involve the application

of a one-qubit gate before making a computational basis measurement.

15In this thesis, we will follow a little-endian convention and describe the rightmost qubit
as qubit zero (indexing from zero rather than one). For example, in an expression such as
|0011〉, qubit zero is in the state |1〉 and qubit three is in the state |0〉

16The (classical) CNOT gate originated in the study of reversible classical computers, as
part of a wider investigation into the minimum energy required for classical computation [36].
Since all quantum gates are reversible (being unitary), reversible classical gates such as the
CNOT naturally give rise to quantum gates as well.
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It is possible to measure along any (arbitrary) line by applying an arbitrary

one-qubit gate Rz(α)Rx(β)Rz(γ) and then measuring in the computational

basis. However, measurements that lie in the xy-plane are very important for

MBQC, and form the basis for arbitrary one-qubit measurement patterns (see

Sections 2.1.1 and 6.2.2).

Measurements with two outcomes can be characterised in terms of observ-

ables. These are Hermitian operators whose eigenvalues represent the out-

comes from the measurement, and whose associated orthogonal eigenvectors

are the states that result when each outcome is observed. The Pauli operators

are all examples of observables. For example,

Z =

[
1 0

0 −1

]
(1.8)

is already diagonal. Its eigenvalues are +1 and −1, and the corresponding

eigenvectors are |0〉 and |1〉, showing that Z represents a computational basis

measurement17. All the other Pauli operators (and all other measurements in

this thesis) have outcomes ±1. We represent the two outcomes in the form

(−1)m, where m ∈ {0, 1}. This allows the outcome to map more intuitively

onto the state produced (m = 0 when the outcome is |0〉 and m = 1 when

the outcome is |1〉). We use m exclusively throughout this thesis to refer to

measurement outcomes.

The measurement represented by

X =

[
0 1

1 0

]
(1.9)

is an xy-plane measurement along the x-axis (see Figure 1.1), because its

eigenvectors are |0〉 + |1〉 and |0〉 − |1〉, which18 are denoted |+〉 and |−〉
respectively.

The observable representing a general xy-plane measurement at an angle

φ to the x-axis is given by Rz(φ)XRz(−φ), because its eigenvectors lie along

the blue line L in Figure 1.1 (this is because the Rz rotations rotate this line

to the x-axis, which are the eigenvectors of X).

17As a result, we use the terms Z-measurement and computational basis measurement
interchangeably throughout this thesis.

18We will omit normalisation in expressions such as these (here, division by
√

2) to sim-
plify the expression.
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Figure 1.2: a) A single photon in two waveguides can be used as a qubit. If the
photon is in the top waveguide, then the qubit is in the |0〉 state, whereas if
it is in the bottom waveguide, the qubit is in the |1〉 state. b) Computational
basis measurements can be performed by placing a single-photon detector at
the end of the waveguides. Basic one-qubit operations can be realised using
linear optical elements such as c) beamsplitters and d) modulators. Complex
operations can be realised by placing the elements one after the other.

1.4 Photonic qubits

In (discrete-variable) photonic quantum computing, a qubit is realised using

a single photon. In the dual-rail encoding, a single photon passes through

one waveguide or another depending on whether the qubit it represents is in

the state |0〉 or |1〉, as shown in Figure 1.2. A qubit encoded like this can be

measured in the computational basis by placing a single-photon detector at

the end of the pair of waveguides. It is important to realise that this process

destroys the qubit (by absorbing the photon), unlike a matter-based qubit

which can be re-used after measurement.

The advantage of photonic quantum computing is that passive linear op-

tical elements (modulators and beamsplitters) can be used to realise an ar-

bitrary one-qubit gate, as follows. First, a modulator in the |1〉 waveguide

realises an arbitrary Rz-rotation, shown in Figure 1.2d. Then, the variable

beamsplitter shown in Figure 1.3 realises an arbitrary Rx-rotation. Finally, a

second modulator in the |1〉 waveguide realises another arbitrary Rz-rotation,

which completes the decomposition Rz(α)Rx(β)Rz(γ).

We consider a simple model for modulators in this thesis, where the phase
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|1〉
|0〉

φ

Vin

Figure 1.3: A variable beamsplitter, which realises an Rx(φ) rotation, is
formed by placing two fixed beamsplitters on either side of a modulator.

φ realised by the modulator is a linear function of the applied voltage Vin:

φ = πVin/Vπ. The magnitude of the voltage required to drive the modulator

is defined by Vπ: the voltage required to realise a Rz(π)-rotation. There are

other important electronic attributes of modulators (for example, small-signal

characteristics [51]) which we do not consider here, because we are primarily

interested in the digital aspects of electronic control systems for photonic

MBQC. A good review of high-speed modulator design for lithium-niobate

platforms is [31].

Similarly, we consider single-photon detectors to be devices that output

a voltage pulse, compatible with digital logic levels (e.g. ∼ 1.5 V), when

a photon arrives. We have high-speed detectors such as superconducting-

nanowire single-photon detectors (SNSPDs) in mind [30]; however, we ignore

the cryogenic amplification of the detector signal, and how to design reset

circuitry [52]. These investigations are outside the scope of the thesis, which

contains primarily digital control system analysis.

In contrast to many other physical realisations of quantum computing,

including superconducting qubits and trapped ions, that have a natural way

to implement two-qubit operations [53], there is no way to implement a de-

terministic two-qubit photonic entangling gate using passive linear optical el-

ements [54]. However, it was shown that one can implement an artificial non-

linear gate that works probabilistically by using additional auxiliary photons

and photodetection [55], giving rise to the Knill-Laflamme-Milburn (KLM)

scheme for photonic quantum computing. This approach is not robust in

the face of photon loss; as a result, modern approaches to photonic quantum

computing are based on photonic cluster states [56].

We describe a simple model for photonic quantum computing using a fully-
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connected cluster state in Section 2.2. We treat the generation of a photonic

cluster state as a black box, and consider the system inputs and outputs to

be modulator voltages and detector output pulses, respectively. In Chapter 5,

where we consider incomplete cluster states, the success/failure signal for each

edge in the cluster state is also assumed to be an input to the system. These

models are described fully in the main body of the thesis.

1.5 Reading this thesis

This thesis is partially intended to make the subject of control system design

for photonic MBQC easier to understand. In order to help achieve this goal,

important information throughout the text is highlighted in boxes, shown

below.

Key points

Key takeaways in the main text are highlighted in purple boxes. These

are intended to make it easier to find the important information con-

tained in each section.

The “key points” contain a running summary of the material covered in

each chapter. An overview of the contents of this document may be obtained

by skimming through each section looking for the purple boxes.

Diagrams have been used as a tool in this thesis to attempt to portray

complicated mathematical concepts in a simple form that can be easily im-

plemented, without needing to fully understand the underlying mathematics.

The primary target audience of the thesis is electronic engineers; consequently,

diagrams relating to quantum information have been simplified as much as

possible, and those relating to hardware implementations or algorithms are

pitched at a higher level. Detailed mathematical treatment of MBQC is avail-

able from several excellent resources [20, 21].

Many of the implementations discussed in this thesis can be extended in

various ways. These are shown in boxes like the one below:
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Next steps

These boxes contain short descriptions of how to extend the algorithms,

designs, or results presented in the main text. These are designed to

make the suggested “further work” easier to understand.

In order to make the implementation discussions in this thesis more con-

crete, specific source-code references are included showing which part of the

source code relates to the current discussion in the text. C++, VHDL, and

python source code is contained in two repositories, shown below. All the code

is documented, both inline in the source code, and in specific documentation

pages. The code is work in progress, and may continue to be updated. To

prevent references in this thesis becoming outdated, the specific (git) commits

used for all the source-code references in each repository are shown in the box

below.

Source-code reference: mbqc-fpga, MBQCSIM, QSL

Pointers to relevant parts of the source code are listed in boxes like

these. Three repositories are referenced in this thesis:

• mbqc-fpga (https://gitlab.com/johnrscott/mbqc-fpga).

All references refer to commit fde787d174 of the master branch.

• MBQCSIM (https://gitlab.com/johnrscott/mbqcsim). All

references refer to commit 5f2ecb32e3 of master branch.

• QSL (https://github.com/lanamineh/qsl). All references re-

fer to commit 7e339d2345 of master branch.

The repository for the reference is listed after the colon in the title line

of the box. It is hoped that these source-code pointers may make the

specifics of the designs and programs discussed here more approachable.

Material from Chapters 2 and 3 was adapted from the paper “Timing con-

straints imposed by classical digital control systems on photonic implemen-

tations of measurement-based quantum computing” [57]. The C++ library

QSL (Quantum Simulation Library) was developed in collaboration with Lana

Mineh.
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Chapter 2

Overview of photonic MBQC

MBQC is a suitable method for quantum computing in systems where one-

qubit gates and computational basis measurements are easy to perform, but

multi-qubit gates are hard [20]. Photonic quantum computing is one example

of such a system, because it is not possible to realise deterministic two-qubit

gates using photonic qubits [54].

Even though multi-qubit gates are not required for the main computational

step of MBQC, they are not removed entirely. What is required instead is a

special state called a cluster state, which is built up using two-qubit entangling

gates called fusion gates [13]. The primary advantage of using MBQC is that

it is only necessary for a photon to travel through an (approximately) fixed

length circuit [14], as opposed to the KLM scheme, where a single-photon

qubit must travel a distance proportional to the length of the quantum circuit

being implemented [55].

A cluster state on N qubits may be generated by placing all the qubits in

the |+〉 state, and applying CZ gates between pairs of qubits. The cluster state

is represented by a graph, whose nodes are the qubits and whose edges are the

locations where CZ gates were applied. Throughout this thesis, we consider

2D rectangular cluster states, where the nodes are laid out in a rectangular

array, and the edges are horizontal or vertical. It is common to generalise these

cluster states to three dimensions [58], or different lattice geometries [59], for

reasons mainly relating to fault-tolerance. All the results in this thesis can

be extended to arbitrary-shaped cluster states, at the expense of increased

complexity of control system design. In this chapter, and Chapters 3 and 4,

we consider an ideal cluster state, where edges can be deterministically created

23



Chapter 2. Overview of photonic MBQC

between qubits. In Chapters 5 and 6, we consider incomplete 2D rectangular

cluster states, which may be missing edges. These missing edges represent the

failure of the probabilistic fusion gates which generate entanglement between

the nodes of the cluster state [54].

Despite only using passive linear optical elements, the computational part

of MBQC is not particularly simple. The fundamental building blocks of

MBQC circuits – called measurement patterns – consist of schemes of one-

qubit operations and measurements which can have quite complicated rela-

tionships. For example, the outcome of measurements often affect subsequent

measurement settings; the outcomes of measurements must be tracked to cor-

rect for systematic errors; and the patterns themselves may introduce ad-

ditional implementation complexities due to backwards-in-time measurement

dependencies. In addition, some of these calculations must be performed in

real time, extremely fast, to keep up with the throughput of photons through

the system.

Often, the investigation of photonic MBQC has lacked information about

the control system implementations that are necessary to realise the proposals

for photonic quantum computing [13–15]. Accompanying classical control

systems are often assumed to feasible due to the “polynomial scaling” of the

algorithms required [14], or simply due to the hope that the electronic systems

required will not be too hard to build [56].

The scaling of algorithms is an argument used at a high level to justify the

development of quantum computers; for example, Grover’s algorithm searches

a set of size n in time given by O(
√
n), which is (polynomially) faster than the

classical solution to the problem (visiting each element of the set one by one),

which uses O(n) time steps [50]. Classical algorithms that scale exponentially

are often seen as a target for speed-ups for quantum computing (for example,

Shor’s algorithm achieves this for factoring integers). On the other hand, al-

gorithms that scale polynomially are seen as efficiently solved using classical

computers. However, this efficiency does not by itself justify the feasibility of

a particular algorithm for solving a particular problem in the face of design

constraints. In that case, it is necessary to know (in absolute terms) whether

hard timing or other constraints are satisfied, in the particular instance of

the problem under consideration; not in the asymptotic limit of generic large

problem sizes. For example, in the implementation of the breadth-first search

algorithm, required for the use of incomplete cluster states [14], the relevant
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question is whether it can be implemented fast enough to meet the require-

ments of photonic quantum computers. We address this question in detail in

Chapter 5.

The practical feasibility of photonic MBQC is often see as resting on the

ability to generate cluster states, not performing the computational aspect

of MBQC once the cluster state is available. In this and the following three

chapters, the practical implementation of this latter MBQC is discussed in

detail, by designing and analysing a system for performing one-qubit gates

and CNOT gates, based on an ideal cluster state. The results show that a

great deal of attention should be paid to the classical control aspects in the

problem, which may become bottlenecks in the system, both from the point

of view of speed and the ability to scale up the system.

This chapter contains a review of the practical aspects of MBQC, that

are relevant to control system design. A certain amount of mathematics is

necessary to make the subject of MBQC clear. However, the primary output

of the chapter is Figures 2.2 and 2.3, which are the measurement patterns for

the one-qubit gate and CNOT gate. These diagrams summarise what must be

implemented in a control system for MBQC using ideal cluster states. This

chapter may also be seen as a simpler version of Chapter 6, which generalises

the diagram for the one-qubit gate to a version appropriate for use with an in-

complete cluster state (see Figure 6.3). This chapter also introduces byproduct

operators and adaptive measurement settings, which are important implemen-

tation details in photonic quantum computing. Finally, it concludes with a

simple model of photonic MBQC which will form the basis for subsequent

analysis in Chapters 3, 4 and 6

Key points

This chapter introduces the main features required to implement pho-

tonic MBQC. The measurement patterns for the one-qubit gate and

CNOT gate are summarised in Figures 2.2 and 2.3. Material here is

generalised to the more complicated incomplete cluster state in Chap-

ter 6 (which is more mathematical). Section 2.2 contains a simple

model of the control system necessary for the ideal cluster state, which

is implemented using an FPGA in Chapter 3.

The material from this chapter was adapted from Sections II and III of
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Chapter 2. Overview of photonic MBQC

the paper “Timing constraints imposed by classical digital control systems on

photonic implementations of measurement-based quantum computing” [57].

2.1 Measurement-based quantum computing

Quantum computing in the gate-based model (described in Section 1.3) con-

sists of the following steps:

1. An initial quantum state |φ〉 is prepared on N qubits;

2. Quantum gates are applied to the qubits;

3. The resulting state |ψ〉 is measured, which constitutes the output from

the quantum circuit.

MBQC is a different way to obtain the same resulting output state |ψ〉, by per-

forming single-qubit measurements on a more complicated initial state called

a cluster state. It consists of the following steps:

1. Prepare a special quantum state, called a cluster state, on a larger num-

ber M > N of qubits. The main feature of the cluster state is that

adjacent qubits are entangled together, which is represented using line

segments in Figure 2.1a;

2. Measure qubits from the cluster state one at a time, according to rules

that correspond to the quantum circuit, until all but N have been mea-

sured;

3. Finally, the resulting state |ψ′〉 on the N remaining qubits is measured in

the computational basis, which constitutes the output from the circuit.

In the gate-based model, if each qubit is initially prepared in the |+〉 state,

then the output states |ψ〉 and |ψ′〉 from the gate-based model and MBQC are

the same1. This means that any algorithm expressed in the gate-based model

can be equally well performed using MBQC.

Figure 2.1 shows an example rectangular cluster state, along with a schematic

representation of the measurement patterns for a quantum circuit shown in

1Up to some systematic corrections called byproduct operators, which are described in
Section 2.1.4
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a)

b) c)

Entanglement between cluster qubits

No entanglement

Order of column measurements

X

X

X X X

X

X X

X X X

Y Y Y Y

Z

Z

Z−ξ −η −ζ

CNOT

U I

|+〉 U I

|+〉

|+〉
CNOT

Figure 2.1: a) A cluster state is made from a rectangular array of qubits (the
white dots), each of which may be entangled with its four nearest neighbours.
When a computation is performed, a specific pattern of entanglement is re-
quired that matches the shape of the circuit. b) The quantum computation is
performed by measuring the cluster qubits in bases derived from the measure-
ment pattern. The shaded blue regions show which cluster qubits are involved
in implementing which gates. The identity gate is included to pad the length
of the one-qubit gate U = Rx(ζ)Rz(η)Rx(ξ) so it matches the CNOT. c) The
quantum circuit that is performed by the measurement pattern in b).

the gate-based model. The subsequent sections describes what is required to

implement these types of quantum circuits in detail.

For a comprehensive overview of MBQC, see [20]. A short pedagogical

introduction is contained in [21]. What follows is a brief description of the

main features of MBQC which are relevant to the implementation of photonic

MBQC in this thesis.

2.1.1 Logical qubits and measurement patterns in MBQC

Each horizontal line of entanglement in the cluster state corresponds to a single

qubit in the gate-based model, which we call a logical qubit, to distinguish it

from the cluster qubits that make up the cluster state. One-qubit gates in the

gate-based model are realised by measuring cluster qubits along a logical-qubit
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row according to rules that determine the basis settings of each measurement,

and define what to do with the measurement outcomes. These rules are called

measurement patterns. Two-qubit gates require vertical lines of entanglement

which join the logical qubit rows together, as shown in Figure 2.1a between

the second and third row.

Each gate G that is implemented in MBQC is defined by a measurement

pattern, which is a set of rules describing:

• How many cluster qubits are needed to realise the gate G and what

pattern of entanglement is necessary between those cluster qubits;

• Which basis to use for each cluster qubit measurement;

• How to process the outcomes from the cluster qubit measurements.

A given computation involving multiple gates, such as the one shown in

the gate-based model in Figure 2.1c, can be performed using MBQC by con-

catenating the measurement patterns for each gate (the blue shaded regions

in Figure 2.1b)2. The resulting pattern contains one row for each qubit in

the gate-based model (here, N = 3), and a number of columns defined by the

length of the concatenated measurement patterns (the total number of cluster

qubits is M = 21).

In making the measurements defined by the measurement patterns, each

cluster qubit is removed one by one until only the rightmost column remains

unmeasured. The final column of the cluster state is measured in the compu-

tational basis as shown in Figure 2.1b, and these measurement outcomes can

be used to obtain the output from the quantum circuit.

The arbitrary one-qubit gate U in Figure 2.1c is realised using a mea-

surement pattern of four cluster qubits in the top row of Figure 2.1b, and

the CNOT gate3 is realised using a measurement pattern of 12 cluster qubits

2In [20], measurement patterns are taken to include the “output” qubits, which is the
first column of qubits directly to the right of the measurement pattern. In this scheme,
measurement patterns must overlap (because the output qubit column is also the input
qubit column for the next gate pattern). Here, we associate the output qubit with the next
measurement pattern, so that patterns can be simply concatenated.

3The symbol for a CNOT gate shown in Figure 2.1 is the same as a classical XOR applied
to the target qubit. This is because the CNOT gate can be thought of as adding the value
of the control qubit to the target qubit modulo 2. We also make use of the classical XOR
operation in subsequent figures in this thesis. It should be clear from the context whether a
CNOT gate or an XOR operation is meant.
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spanning the bottom two rows of Figure 2.1b (note the vertical entanglement

link).

All measurements shown in green and purple boxes in the figure are per-

formed along lines L that lie in the equator of the Bloch sphere (Figure 1.1).

Green boxes containing X or Y are measurements along the x- or y-axis, re-

spectively. Purple boxes are measured along a line L with an angle φ derived

from the value in the box and measurement outcomes of other cluster qubits.

The grey boxes represent computational basis measurements, which are made

along the z-axis of the Bloch sphere.

Key points

Measurement patterns are the rules which allow quantum circuits to be

implemented on cluster states. The control system must be able to set

measurement bases, and process measurement outcomes from the clus-

ter qubits. As described in the following sections, measurement bases

may depend on previous measurement outcomes, and all measurement

outcomes contribute to systematic correctable errors, called byproduct

operators.

2.1.2 Performing the cluster qubit measurements

As described in Section 1.3.2, the only physical measurements that can be

performed are computational basis measurements (realised by measuring the

|0〉 or |1〉 waveguide in the dual-rail encoding). All the other measurements

relevant for MBQC are performed in the xy-plane of the Bloch sphere, by

applying a one-qubit gate to the given cluster qubit and then measuring it in

the computational basis.

It is important to understand that the one-qubit gates that set the mea-

surement bases in the measurement patterns are different from the one-qubit

gates implemented by MBQC, such as U in Figure 2.1. The former are ba-

sic operations that, together with computational basis measurements, are re-

quired for implementation of MBQC. They are analogous to the physical layer

in a communication system, because they must be realised by some physical

mechanism; for example, using photonic qubits, as we discuss in Section 1.4.

The logical one-qubit gates U do not correspond to any basic physical opera-
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Time

Commutation correction

Byproduct operator update calculation

Calculation of s

x

z

X

0

−ξ
1

−η
2

−ζ
3s

m

0

Figure 2.2: The arbitrary one-qubit gate U = Rx(ζ)Rz(η)Rx(ξ). The black
line connected to the top of the box is the adaptive measurement setting s.
The line connected to the bottom of each box is the measurement outcome
m. The byproduct operator calculation (shaded blue) is simple, but the adap-
tive measurement settings depend on previous measurement outcomes (shaded
purple). The byproduct operators must be stored because they are used in the
adaptive measurement setting calculation (shaded in orange). In Section 2.2.1,
the condition is imposed that columns are measured from left to right, so as
to be compatible with photonic MBQC.

tion, and instead arise as a result of applying the measurement pattern to the

cluster qubits. They are analogous to the logical data layers in a communica-

tion network, which use the resources of the physical layer to transmit logical

information.

Figures 2.2 and 2.3 summarise all measurement pattern rules that are

required to implement the arbitrary one-qubit and CNOT gate [20]. In the

following sections we describe in detail how to interpret these diagrams, and

provide a basic overview of the mathematics underpinning them.

2.1.3 Measurement basis angles and adaptive measurements

Every xy-plane measurement that is part of a measurement pattern is mea-

sured along a line L in the equator of the Bloch sphere, as shown in Figure 1.1.
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Figure 2.3: The measurement pattern for the CNOT gate. The line connected
to the bottom of each box is the measurement outcome m. There are no
adaptive measurement settings, because all the measurement bases are X or
Y . However, the computation of the byproduct operators (shaded in blue)
is more complicated, and involves mixing outcomes from the control C and
target T rows. The commutation correction is shaded in orange. It involves
mixing the byproduct operators before applying the pattern.

It is therefore specified by one real angle φ. In MBQC measurement patterns,

this angle is made up of a base value θ, and a sign bit s, such that φ = (−1)sθ.

The value of θ is shown in the purple boxes in Figure 2.1b. Note that θ may

be negative. In the case of the one-qubit gate, these values encode the logical

rotations that are performed by the measurement pattern.

For the green boxes in Figure 2.1, the value of θ is 0 for X and π/2

for Y , and correspond to measurements of the X and Y Pauli operators (as

described in Section 1.3.2). In the first case, the value of s does not affect the

basis angle φ at all. In the second case, the roles of |0′〉 and |1′〉 are swapped

because L is reversed; however, since the outcome of the measurement is

recorded, the control system can correct for the effect of the swap (in the

calculation of byproduct operators – see Section 2.1.4). Therefore, the X and

Y measurements are not affected by the value of s.

The value of θ is a characteristic of the quantum circuit being implemented,

and sets what logical gate is performed. The value s, however, depends on

the outcomes of other (prior) measurements in the measurement pattern. The
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measurement bases in MBQC are therefore adaptive, because the basis (the

angle ψ) in which a cluster qubit is measured may depend on the outcomes

of measurements of other cluster qubits which have been measured before it.

We will refer to s henceforth as the adaptive measurement setting.

Any measurement pattern, such as the CNOT gate, which contains only

X and Y measurements, does not involve adaptive basis settings, because the

value of s has no effect. It can be shown that the set of gates implementable

with these non-adaptive patterns is the Clifford gate set [20], which is not

universal [50]. For universal quantum computing, it is necessary to include

a gate such as the one-qubit gate which does require adaptive measurement

settings.

In Figure 2.2, the measurement pattern for the arbitrary one-qubit gate

(corresponding to a rotation of the Bloch sphere) is shown in detail [20]. The

shaded purple region (particularly the blue wires) shows how the adaptive

measurement setting for each measurement is computed from previous mea-

surement outcomes. The dependence between s and measurement outcomes

implies that the measurements must be made from left to right, which is also

indicated by the arrow of time at the bottom of the figure.

The measurement pattern for the CNOT gate is shown in Figure 2.3. This

is not the same pattern presented in the original MBQC paper [20], which uses

three logical qubit rows. The derivation of the CNOT pattern in Figure 2.3 is

contained in Appendix A. We use this modified CNOT measurement pattern

because it considerably simplifies our example digital implementation in Sec-

tion 3.2, which only supports nearest-neighbour connectivity of logical qubits

(where the control and target are on adjacent cluster-state rows).

Key points

The xy-plane measurement bases for measurement patterns are made

from a base value θ, defined by the quantum gate, and an adaptive

measurement setting s. As described above and shown in Figure 2.2,

s is calculated by combining the measurement outcomes m from other

cluster qubits, and commutation corrections, described in Section 2.1.5

below. The CNOT pattern (Figure 2.3) does not require adaptive mea-

surement settings.
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2.1.4 Byproduct operator calculations

As the measurement pattern proceeds, the random outcomes of the measure-

ments introduce correctable errors in the computation. These errors are known

as byproduct operators, because they are unintended logical operations which

occur as a byproduct of the MBQC measurements [20].

Specifically, after any N -qubit gate G has been applied to a state |ψ〉 using

its measurement pattern, the resulting state is actually BG|ψ〉, rather than

simply G|ψ〉, where B is a gate (called the byproduct operator) given by

B =

N∏
i=1

Zzii X
xi
i , xi, zi ∈ {0, 1}.

The byproduct operator for the logical qubit i is specified by two bits

xi and zi, which are updated as the computation proceeds. By an abuse of

notation, we will refer to the pair (xi, zi) as the byproduct operator as well.

For N logical qubits (N rows of the cluster state), 2N bits are needed to

store the byproduct operators. At the start of the computation, they are all

initialised to zero, because no gate has been performed so no errors have been

introduced. As the computation proceeds, the outcomes of the measurements

in the pattern are XORed into the xi and zi according to prescribed rules,

described below.

For the one-qubit gate in Figure 2.2, the new byproduct operators (x′, z′)

are calculated according to the rule

z′ = z ⊕m0 ⊕m2

x′ = x⊕m1 ⊕m3,

wheremk is the measurement outcome from the kth qubit, numbered according

to Figure 2.2.

For the CNOT pattern shown in Figure 2.3, two byproduct operators are

involved, one for the control qubit row (xc, zc) and one for the target qubit

row (xt, zt). The new byproduct operators (x′c, z
′
c) and (x′t, z

′
t) are calculated

using

z′c = zc ⊕m0 ⊕m2 ⊕m3 ⊕m4 ⊕m6 ⊕m8 ⊕ 1

x′c = xc ⊕m1 ⊕m2 ⊕m4 ⊕m5,
(2.1)

and
z′t = zt ⊕m6 ⊕m8 ⊕m10

x′t = xt ⊕m1 ⊕m2 ⊕m7 ⊕m9 ⊕m11.
(2.2)
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Unlike for the one-qubit gate, the byproduct operators for a given logi-

cal qubit row are calculated using measurements from other rows. Note the

addition of the constant 1 in the control qubit byproduct operator.

On the face of it, byproduct operators appear to introduce errors into the

computation, because the gate BG is performed instead of the desired gate

G. However, the effect of this error can be corrected after the final column of

Z-measurements in the MBQC process has been performed: the outcome from

any logical qubit row i where xi = 1 has its outcome flipped from a zero to a

one or vice versa [20]. This action undoes the effect of the byproduct operators,

leaving a circuit that effectively only implements the gate G as desired. The zi

components are not used because they correspond to a phase shift which does

not affect the probability of measuring a zero or one in a computational basis

measurement. However, as we describe in the next section, it is necessary to

keep track of their values because they can affect the value of the xi, through

the process of commutation corrections.

Key points

Byproduct operators are two bits (x, z) per logical qubit that account

for the randomness of measurement outcomes in MBQC. All mea-

surement outcomes contribute to byproduct operators. These bits are

shown along the bottom of diagrams such as Figure 2.2 and 2.3. Even

though the CNOT gate does not use adaptive measurement settings, its

byproduct operators are more complicated, involving mixing outcomes

from both logical qubit rows. This connectivity between measurement

outcomes and byproduct operators must be accounted for in the control

system design.

2.1.5 Commutation corrections

The byproduct operators are used to correct the outcomes obtained after the

MBQC circuit is finished. However, the correction only works if the byproduct

operators are the last operation before the final column computational basis

measurement, which is only the case if a single gate G is performed.

If multiple gates Gk are performed on a state |ψ〉, then the resulting state
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|φ〉 will be

|φ〉 = (BKGK) . . . (B1G1)(B0G0)|ψ〉. (2.3)

These interleaved byproduct operators cannot be corrected at the end of the

circuit. Instead, it is necessary to move all the byproduct operators to the end

(the leftmost side of the equation). To do that, after each new gate Gk+1 is

applied, it is necessary to commute the current byproduct operators Bk and

the gate Gk+1, so that the byproduct operators are always on the leftmost side

of the equation. This is illustrated below for the application of the second gate

G1:

B0G0|ψ〉 7→ B1G1B0G0|ψ〉 7→ B1B
′
0G
′
1G0|ψ〉 7→ BrG

′
1G0|ψ〉, (2.4)

where G1B0 = B′0G
′
1, and the prime indicates the change that may occur

in either gate. The byproduct operators B1 and B′0 can be combined into

a resulting byproduct operator Br by adding together the values of (xi, zi)

bitwise modulo 2 for each operator. The state on the far right of Equation (2.4)

is therefore in the same form as the state on the far left, so that on the

application of the next gate G2, the process can be repeated and the byproduct

operators are always kept on the left. We refer to the process of commuting

B through G as a commutation correction.

In practical terms, the commutation correction is an operation that is

performed before a gate is applied, by manipulating the current value of the

byproduct operators and the upcoming gate so as to have the effect of Equa-

tion (2.4). For the measurement patterns we consider in Figures 2.2 and 2.3,

the commutation corrections are quite simple. In the case of the CNOT gate

G = CNOT, there is no modification necessary for the gate itself (G′ = G),

and only the byproduct operator B changes to B′, according to the rule

z′c = zc ⊕ zt
x′c = xc

z′t = zt

x′t = xt ⊕ xc.

(2.5)

For the one-qubit gate G = U , the byproduct operators remain the same

(B′ = B) but the gate itself G must be modified. The modification is made by

using the values of the byproduct operators to affect the adaptive measure-

ment settings, by XORing the byproduct operators with previous measure-

ment outcomes to form the values of s for each cluster qubit [20], as shown in
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Chapter 2. Overview of photonic MBQC

Figure 2.2. The calculation of the adaptive measurement settings sj for each

cluster qubit j is shown in the following equations

s0 = 0

s1 = m0 ⊕ z
s2 = m1 ⊕ x
s3 = m0 ⊕m2 ⊕ z.

(2.6)

It is necessary to make a copy of the byproduct operators (x, z) before mea-

suring the cluster qubits, because otherwise they will be overwritten during

the calculations described in the previous paragraph. For example, after the

measurement of cluster qubit 1 in the arbitrary one-qubit gate in Figure 2.2,

both the x and z values have been updated by measurement outcomes from

cluster qubits 0 and 1. However, the old values of x and z are necessary in

the measurement settings for cluster qubits 2 and 3.

Key points

Commutation corrections are really an artefact introduced by concate-

nating measurement patterns, instead of considering one long pattern.

In Chapter 6, where we consider measurement patterns laid out along

paths through cluster states, the commutation corrections are absorbed

into a more accurate representation of byproduct operators. The reader

may like to compare Figure 2.2, for the one-qubit gate, with Figure 6.2,

which is a generalisation that covers any length pattern, and does not

need commutation corrections.

To illustrate the concepts in these sections, the reader may refer to the

example two-logical-qubit calculation in Table 3.3, which illustrates a two-

qubit measurement pattern comprising a randomly chosen one-qubit gate U =

Rx(0.3)Rz(0.2)Rx(0.1) on qubit 0, followed by a CNOT gate between qubits 0

(the target) and 1 (the control). The values of s are always zero on the CNOT

gate, whereas the values of s depend on the measurement outcomes as shown

in Figure 2.2.

In the remainder of the chapter, we discuss how to map these measurement

patterns to a simple implementation model, which treats the cluster-state

generation as a black box that is able to deterministically produce cluster
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2.2. Simplified model of photonic quantum computing

states with edges in the correct places for the measurement pattern, and where

the components required for the control system are specifically identified.

2.2 Simplified model of photonic quantum

computing

In this section we describe how to implement MBQC, in the ideal-cluster-state

model described above, using photons as qubits. We assume an ideal photonic

cluster-state generator, which can generate arbitrarily connected rectangular

cluster states, with the appropriate edges for the desired measurement pattern.

The main feature of the model, shown in Figure 2.4, is that the cluster

state is generated one column at a time, and each row of the cluster state

is processed by a measurement block (responsible for setting measurement

bases), an analog interface (for controlling the measurement block and ampli-

fying measurement outcomes), and a digital system (which is shared across

all rows of the cluster state).

Key points

In this thesis, we focus on the simplest part of the control system: the

digital system design. This component places timing constraints in

the form of lower-bounds on the processing time of the control system.

However, in this section we discuss the full control system model, in-

cluding an overview of what analog building blocks are necessary. This

is intended to show how the digital subsystems would fit into an overall

control system implementation.

2.2.1 Photonic MBQC

For matter-based implementations of MBQC, the grid of cluster qubits directly

corresponds to a two-dimensional array of physical systems, such as atoms.

However, for photonic quantum computing, it is not feasible to maintain a

static array of qubits for long enough to perform the measurements. This is

because a photon is always moving, so the only way to store it is to place it

in a long waveguide, called a delay line, or keep it circulating in an on-chip

cavity, such as a microresonator [60]. Both of these approaches eventually
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Chapter 2. Overview of photonic MBQC

lead to photon decay, primarily due to scattering and absorption loss in the

waveguide.

Instead, the cluster state can be generated one column at a time, and

each column is measured one after the other. This is opposite to the original

presentation of MBQC [20], where the goal was to separate the processes

of generating the cluster state and making the measurements. The original

motivation for generating the cluster state all at once in matter-based systems

was also due to physical considerations: a cluster state can be generated using

a tunable Ising interaction that acts globally on the system [21]. However, it

can be shown that the two approaches are equivalent [20, Section II.D]4.

When the cluster-state generation and the photon measurement is alter-

nated, a single photon only has to travel from its source, through the cluster-

state generator, through a fixed-length waveguide, and finish at the measure-

ment block. This is the definitive improvement enabled by MBQC, which is

not possible using the KLM scheme.

For photonic MBQC, the horizontal axis in Figures 2.2 and 2.3 can be

interpreted as time, and the vertical axis as space. Using this approach in-

troduces a restriction which is not present in the matter-based realisation of

MBQC: the scheme is only viable if the measurement settings for the currently

measured block only depend on the outcomes of previously measured columns.

This is quite a severe restriction, ruling out many of the measurement pat-

terns originally proposed in [20] (for example the CPhase gate, a two-qubit

gate that depends on a continuous parameter). However, this requirement is

satisfied for the one-qubit gate and the CNOT gate described here. In the case

of the CNOT gate, there are no measurement dependencies. For the one-qubit

gate, all the measurement dependencies (the blue lines in Figure 2.2) point

from left to right5.

2.2.2 Timing constraints on the cluster state

We do not consider the generation of the photonic cluster state, apart from

making the following remark about the choice of time delay between the gen-

eration of columns, which is crucial for our timing analysis.

4There, the successive column approach is used as tool for verifying measurement pat-
terns.

5In the context of photonic quantum computing, this is sometimes referred to as feed-
forward of measurement results.
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2.2. Simplified model of photonic quantum computing

In order to entangle photons Pn and Pn+1 from two adjacent columns n

and n + 1 of the cluster state, they must be brought to the same location

(for example, a beamsplitter) at the same time. However, when performing

the cluster qubit measurement for the MBQC measurement pattern, Pn (from

column n) must arrive at the detector a finite time before Pn+1 (from column

n + 1), to allow time for the processing of measurement settings, byproduct

operators and commutation corrections. Therefore, Pn+1 must experience a

delay Tp (realised using an on-chip delay line or optical fibre) after the entan-

gling operation of adjacent columns and the measurement block. The inverse

of this delay Xp = 1/Tp is the photonic clock frequency, which is the rate at

which columns are produced and measured, and which determines the speed

at which the quantum computation progresses. We do not consider how this

value arises from the detailed construction of the cluster-state generator. In-

stead, we take it as a design parameter, and use it to derive timing constraints

on the overall system.

Two distinct physical mechanisms provide upper and lower bounds for

this delay. An upper bound is given by the loss of the on-chip delay line,

optical fibre, or routing system involved in the delay of the photon. The lower

bound is given by the time required to process the measurement outcomes.

The object of the design and timing analysis in Chapter 3 is to estimate the

lower bound. We do not consider the other constraints on Tp which arise from

the construction of the cluster-state generator, of which there are many. We

take Tp = 1 ns as an estimate for the column-generation delay, for the purpose

of making concrete calculations about timing constraints. It is difficult to

justify a particular choice for Tp without having to hand a particular design

for the cluster-state generator; however, a value in the GHz is often chosen as

a ballpark for the expected speed of photonic quantum computing systems [61,

62]. The calculations performed in this thesis can easily be modified to suit

any other value of Tp.

2.2.3 The full MBQC system

Figure 2.4 shows the full system required for processing one row of the MBQC

measurement pattern, which corresponds to one logical qubit. It consists of

the following five parts:

• Cluster-state generator, which outputs the dual-rail encoded photon
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Analog signal

Digital signal

Multiple digital signals
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M2 M1
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System
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Z- or xy-plane

Angle

|0〉

|1〉

Tp = 1/Xp

Figure 2.4: One row of the system diagram of the classical control required
to implement photonic MBQC. The cluster-state generator is assumed to be
ideal, outputting columns of photons at the photon clock frequency Xp. The
cluster qubits represented by these photons are measured in bases specified
by the measurement pattern in the measurement block, which is controlled
by the voltages α and β from the analog output system. The measurement
results are amplified by an analog system, and processed by the digital system
into subsequent adaptive measurement settings s and byproduct operators. A
copy of the system shown is required for each logical qubit, but each block is
independent apart from the cluster-state generator and the digital system.

in each column of the cluster state one after the other. The photon has

been entangled with the previous photon in the same row, and with the

photons in the rows above and below as necessary for the measurement

pattern.

• Delay line, described in the previous section, which is necessary to

temporally separate the photons in adjacent columns after they have

been entangled.

• Measurement block, which consists of passive linear optical elements

that apply a configurable one-qubit operation, followed by a computa-

tional basis measurement.

• Photon detector amplifier, which converts the output from a single-

photon detector to a logic level suitable for input to a digital system.

• Analog output system, controlled by the digital system, which pro-

duces the analog voltage levels needed to drive the modulators in the

measurement block.
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2.2. Simplified model of photonic quantum computing

z Rotation Measurement basis

1 Rz

(π
2
− φ

)
Rx

(π
2

)
xy-plane measurement at an angle φ

0 (None) Computational basis measurement

Table 2.1: The table shows the one-qubit rotations generated by analog sys-
tem modulator voltages. When z = 1, a regular xy-plane measurement is
performed, which accounts for the majority of cluster-state measurements. A
computational basis measurement is made at the end of the computation by
setting z = 0.

In addition, there is the digital system, which processes measurement

outcomes into adaptive measurement settings and keeps track of byproduct

operators. This is shared across all the logical qubit rows, because it is nec-

essary to account for the non-locality of byproduct operator calculations, as

described in Section 2.1.4.

The input to the digital system is the output pulse from the photon de-

tector amplifier. This may be, for example, an SNSPD [63] followed by a

low-noise amplifier [52]. We do not consider the design of these analog stages

in this thesis; the digital system is a more straightforward first step, which

is able to impose timing bounds on the system that may form part of the

specification of the analog systems.

The output from the digital system includes the digital form of the angle θ,

the adaptive measurement setting output s, and a signal z which determines

whether the measurement is in the xy-plane of the Bloch sphere, or if it is a

computational basis measurement.

The analog output system is responsible for generating the voltages that

control the modulators in the measurement block. It may be implemented

using a combination of fast DACs and modulator drivers. Two modulators are

necessary: one (M1 in Figure 2.4) chooses between an xy-plane measurement

and a computational basis measurement; and another (M2) controls the basis

angle φ for the xy-plane measurement. They are controlled by the voltages α
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Chapter 2. Overview of photonic MBQC

and β respectively, defined as follows6

α =
π

2
z,

β =
π

2
− φ =

π

2
− (−1)sθ.

(2.7)

These modulator voltages realise the one-qubit rotationRx(α)Rz(β), which

sets the basis for the measurement. The one-qubit rotations are summarised

in Table 2.1.

The voltage α controls the Rx rotation portion of the measurement set-

ting, which determines whether the measurement is a computational basis

measurement (z = 0) or an xy-plane measurement (z = 1). The voltage β

controls the angle of the xy-plane measurement φ, which is itself determined

by the fixed value θ and the adaptive measurement setting s.

Key points

All the timing constraints discussed in this thesis arise from the design

parameter Tp, in combination with the control system model shown in

Figure 2.4. The time Tp places an upper bound on the execution time

of the feedback loop starting at the single-photon detector and finishing

on the modulator input voltages. By designing the digital system, part

of this execution time may be determined to be Td. This leaves the

remaining time, Ta = Tp − Td, for the latency inherent in the analog

stages. If Td > Tp, then either the delay line length must be increased,

or the digital part of the control system must be improved.

2.3 Summary

This chapter provides a practical overview of MBQC, based on Figures 2.2 and

2.3, which show what logic must be implemented by the digital part of the

control system for photonic quantum computing. We assume access to an

ideal cluster state, which can deterministically entangle the cluster qubits

according to the measurement pattern. This device does not exist, because

deterministic two-qubit gates between photonic qubits are not possible [54].

6Voltages are expressed in modulator-phase units, where V = 1 is chosen such that the
modulator applies a 1 rad phase shift.
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2.3. Summary

However, it provides a simple setting in which to explore the implementation

of many features that do occur in all implementations of MBQC; for example,

the calculation of adaptive measurement settings and byproduct operators.

In Chapter 3, we focus on implementing the digital control system shown in

Figure 2.4, and present a design capable of performing the one-qubit gate and

CNOT gate shown in Figures 2.2 and 2.3. We analyse the timing behaviour

of this design by implementing it with an FPGA and performing static timing

analysis, based on the timing parameter Tp. The main objective of this anal-

ysis is to place timing constraints on the input and output analog systems,

and therefore on the overall quantum photonic clock rate of the system.

In Chapter 6, we extend the ideas in this chapter to measurement patterns

compatible with cluster states containing random missing entanglement links.
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Chapter 3

Control system design for

photonic MBQC

This chapter contains an example digital system design for implementing the

arbitrary one-qubit gate and CNOT gate described in the previous chapter.

The digital system takes measurement pulses from single-photon detectors

as input, along with a program for specifying the measurement pattern, and

outputs adaptive measurement settings and byproduct operators for each mea-

surement round.

The design and timing analysis data is available in a public repository [64].

This chapter was adapted from Sections IV and VI of the paper “Timing con-

straints imposed by classical digital control systems on photonic implementa-

tions of measurement-based quantum computing” [57].

3.1 Overall system design

The object of the design presented here is to provide a concrete implementa-

tion of a digital control system capable of realising one-qubit gates and CNOT

gates, in a manner that also lends itself to the analysis of timing constraints

relating to the system. The use of an FPGA to prototype the design is ap-

propriate for three reasons:

• Rapid prototyping. When a system is being prototyped for exploratory

reasons (for example, to assess ballpark constraints and test out imple-

mentation strategies), the ability to rapidly generate working designs is

very important. Proven designs can then easily be converted to custom
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Chapter 3. Control system design for photonic MBQC

platforms, such as application-specific integrated circuits (ASICs), which

may even amount to simply porting the hardware description language

source code.

• Automatic timing constraint analysis. FPGA designs are automat-

ically optimised and analysed for timing closure, which greatly simplifies

the process of exploring design constraints.

• Reasonable high-performance design. Although FPGA designs will

not provide an optimal digital design (a custom platform is necessary for

that), the performance of an FPGA-based design still provides a sound

indication of what is possible in modern high-speed digital design. For

example, critical path delays have been found to decrease by 3-4 times

in standard-cell ASIC designs, but this does not imply that unlimited

improvement is available [65].

We use a high-end Xilinx FPGA (7 series) for our design [66] – part number

xc7k70tfbg484-2. This series was chosen to maximise the clock frequency of

the global clock tree (710.00 MHz [67]) while offering dedicated level-sensitive

input latches [68] in order to minimise the input delay of the measurement

signal. In addition, the device and required synthesis and implementation

tools are supported by Xilinx under a free license, allowing the design to be

used and modified by the widest possible group.

The overarching intent with this design was to maximise the maximum

clock frequency of the system by fitting the computational aspects of each

measurement round into one clock cycle. To facilitate this, the clocking facil-

ities built into the FPGA were used to generate several out-of-phase clocks,

to initiate different parts of the computation process. We discuss this design

choice further in Section 3.3.

Key points

Targeting an FPGA is a good starting point for obtaining ballpark

timing information, and rapidly testing different implementations of the

logic required for photonic MBQC. Design optimisation and analysis is

performed automatically by synthesis tools, and the source code for the

design may form the basis for an improved system targeting a custom

hardware platform (e.g. an ASIC).
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3.1. Overall system design

Source-code reference: mbqc-fpga

The design is written in VHDL, contained in the folder

design/mbqc.srcs/sources 1/new. Of these files, the most in-

teresting from the point of view of implementing MBQC are

adapt.vhd and byproduct.vhd, which contain the logic for computing

adaptive measurement settings and byproduct operators, described

in Section 3.2. The full design should be viewed and modified using

Xilinx Vivado [69], by running vivado design/mbqc.xpr from the top

level of the repository.

3.1.1 Logical qubit unit cells

The digital control system consists of several digital “unit cells”, each of which

is responsible for one logical qubit row in the cluster state. These unit cells

are shaded in green in Figure 3.1, which shows the overall system design. The

majority of the complexity in the system is contained in the design of the

computational system (see Section 3.2), which is responsible for computing

adaptive measurement settings s and byproduct operators b. The unit cells are

connected together in such a way that each is able to access the measurement

outcomes and byproduct operators from the unit cells above and below. This

is necessary to support the byproduct operator calculations in the CNOT

pattern in Figure 2.3.

The photon input to the system is considered to be a voltage pulse that is

compatible with digital logic levels (here, the logic levels of the digital inputs

in the target FPGA). This signal must be converted to a constant digital level

so that it is compatible with the sequential logic used in the design. A latch

performs this conversion: when the pulse arrives at the input to the latch, the

output is held at constant logic one until the latch is reset. If no pulse arrives,

the output remains at zero.

The digital design supports arbitrary measurement patterns made by con-

catenating one-qubit gates and CNOT gates. These patterns are stored in a

simple program format (consisting of one two-byte word per clock cycle, per

unit cell), which controls what operations the computational system should

perform. The program word specifies how to calculate adaptive measurement
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Figure 3.1: The digital system diagram for multiple qubits. The unit cell for
each qubit (shaded green) has a measurement latch, a program memory, and a
control system for calculating measurement settings and byproduct operators.

settings, how to calculate byproduct operators, and whether a commutation

correction is necessary.

A summary of the notation used in this chapter is provided in Table 3.1.

3.1.2 Clock planning

We present a design that can process measurements within a single clock cycle,

by using three out-of-phase clocks, as shown in Figure 3.2. We consider a

system synchronous design, with the photonic clock Xp the common (master)

clock in the system.

On the rising edge of Xp, the photon arrives in the measurement block,

causing a pulse at the output of the single-photon detector. This measurement

outcome is amplified and triggers a latch which provides a constant digital

signal to the digital system.

The other two clocks, Xs and Xr, are internal to the digital system. On

the rising edge of the measurement sample clock Xs, the measurement latch

is sampled by the digital system. The rising edge of Xs must be sufficiently

offset from the rising edge of Xp so that the output from the latch has settled
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Signal Meaning

Xp The photonic cycle clock
Xs The measurement sample clock
Xr The latch reset clock

ops above Byproduct operator values from the logical qubit above
ops below Byproduct operator values from the logical qubit below
P[15:0] The two-byte program word input
m[2:0] Latched measurement inputs to control system

m[2] Measurement outcome from logical qubit above
m[1] Measurement outcome from current logical qubit
m[0] Measurement outcome from logical qubit below
s control system adaptive measurement setting output
ops control system byproduct operator output
ops[0] X byproduct operator bit
ops[1] Y byproduct operator bit

Table 3.1: The table contains a summary of the notation used in Fig-
ures 3.1 and 3.3. When a signal x is a bus (a bold line in the figures), consisting
of multiple parallel signals), the signals are indexed from 0 upwards, and the
range is expressed using square brackets after the signal name. For example,
x[3:0] is a bus of four signals. Subsets of the signals use the same notation
(x[2:1] is signal 2 and 1), and a single signal is identified using one index
(x[0] is signal 0).

to a steady state. This delay must include the time required to amplify the

photon detector output.

On the rising edge of the reset clock Xr, the latch is returned to its initial

state (untriggered) ready for the next measurement round. This event must

occur after the rising edge of Xs, but before the rising edge of the next photon

clock cycle Xp, to satisfy the hold time requirement of the sampling logic.

The computation of the adaptive measurement setting is performed using

combinational logic at the earliest possible time that the latch output is valid,

on the rising edge of Xs. The measurement setting for the next measurement

is then computed and becomes available a short amount of time after the

rising edge of Xs, corresponding to the combinational logic delay.

In addition, the byproduct operators are also computed on the rising edge

of Xs using combinational logic. The commutation correction, which must be

applied at the boundary of a quantum gate, is then computed on the rising

edge of Xr, because it requires the value of the byproduct operators computed
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Latch
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φps

φpr

Xp

Xs

Xr

Figure 3.2: The diagram showing the clocks used in the FPGA design. The
photon arrives on the rising edge of Xp, which triggers the latch (converting
the pulse to a persistent level). The level is sampled on the rising edge of Xs,
which represents the start of processing by the system. The latch is reset on
the rising edge of Xr, which returns the latch to the reset state, ready for the
next photon to arrive. The phase differences φps and φpr are design parameters
of the system. They may be adjusted to maximise the operational frequency,
or provide as much timing slack as possible for the inputs and outputs.

on Xs. The program which controls the measurement pattern is loaded from

memory on Xp so that it is ready for the computations that take place on Xs

and Xr.

The design of each computational subsystem is described in detail below.

Key points

The overall system is made from copies of a basic digital unit cell, which

latches measurement input pulses, provides a computational system

that calculates adaptive measurement settings and byproduct opera-

tors, and stores a program that controls the calculations. The system

is clocked using three out-of-phase clocks, in order that only one clock

cycle of Xp is required per measurement round (of a column of the

cluster state).

3.2 Computational system design

The computational system is the main subsystem that performs the computa-

tions relating to MBQC shown in Figures 2.2 and 2.3 of the previous chapter.

The inputs to the system are measurement outputs (from the latch), current
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Figure 3.3: The design of the control system. In the high level schematic
diagram of the control system, buses are denoted with bold lines, and the
bus width is written next to the wire. The circles apply bitwise operations
between their inputs: the cross stands for XOR and the dot stands for AND.
The right port of the circle is the output, and all other ports are inputs. The
logic gates are multi-input, with inputs from all the buses and wires connected
on their left (i.e. wires inside a bus will be combined in the logic operation).
Each part of the diagram is shaded according to its function, using the same
colouring as in Figures 2.2 and 2.3. Flip-flops are clocked on the rising edge of
their clock input, and elements whose output is LUT represent combinational
logic. Reset signalling is omitted from the diagram for simplicity.

values of byproduct operators, and a program word stored in memory. This

section describes how these calculations are performed, and how the program

is defined.

3.2.1 Adaptive measurement setting generation

The most important feature of the adaptive measurement setting s is that it

must be present as soon as possible, ready for the next measurement round.

The earliest possible time that s can be computed is on the rising edge of Xs.

From Figure 2.2, the value of s can depend on previous measurement settings

and stored byproduct operator values from the current qubit.

A shift register is used to store the past three measurement values1, m0,

1For more complicated measurement patterns it may be necessary to store more than
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m1 and m2, where m0 is the most recent measurement outcome. The shift

register is loaded sequentially with the next measurement on the rising edge

of Xs. The output s is then obtained using a combinational circuit from the

shift register, so it is present soon after the rising edge of Xs.

The outputs from the shift register are combined bitwise with a 3-bit mask

Am and XORed together to produce the measurement contribution to s. The

stored byproduct operators (xs, zs) are masked using a two-bit value Ab and

XORed to produce a second contribution to s. These two contributions are

XORed to produce s itself. Putting together these two contributions gives the

following expression for s:

s =

(
2⊕
i=0

Am[i]mi

)
⊕ (Ab[1]xs ⊕Ab[0]zs) , (3.1)

where square brackets denote bitwise access.

The masks Am and Ab for each measurement round are chosen in such a

way that they combine past measurement outcomes and byproduct operators

correctly to realise the one-qubit gate, as shown in Figure 2.2. The CNOT

gate has no adaptive measurement settings, so Am = Ab = 0 in that case.

The mask Am must remain valid through the rising edge of Xp, so it is

registered on the rising edge of Xs. The byproduct operator contribution due

to Ab is also registered on Xs, so that the byproduct term persists through Xp.

These registers are necessary because the program word P , which contains the

masks (see Section 3.2.4 below), is updated on the rising edge Xp.

A disadvantage of this design is that the output s may contain function

hazards [70], due to the propagation delays from each of the flip-flops to the

output s. These hazards do not affect the digital function of the (synchronous)

digital system; however, they may contribute to the power dissipation of the

system and/or noise in the analog output, depending on how it is implemented.

In order to avoid the hazards, the output s could be registered; however, this

would require another clock edge soon after Xs to preserve the setup time of

the analog output stage.

The adaptive system is shaded in purple in the control system schematic

diagram shown in Figure 3.3.

three measurements. However, for the arbitrary one-qubit gate and CNOT gate, three
measurements are sufficient.
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3.2. Computational system design

Figure 3.4: Elaborated design of the adapt entity, responsible for calculating
the adaptive measurement settings. This corresponds to the adaptive mea-
surement calculation, shown schematically in Figure 3.3. The mask reg is
used to store Am, which is combined with the measurement outcomes output
via the AND-XOR network at the top, representing the first term in Equa-
tion (3.1). The lower part of the diagram corresponds to the second term in
Equation (3.1), and the stored byproduct operator contribution to s shown in
Figure 3.3.

Source-code reference: mbqc-fpga

The file design/mbqc.srcs/sources 1/new/adapt.vhd contains the

VHDL entity adapt, which implements the logic described above. The

elaborated design (produced by Vivado) is shown in Figure 3.4.

3.2.2 Byproduct operator calculation

The byproduct operators must be updated after each measurement round.

Since they only depend on the measurement outcomes, they can also be com-

puted on the rising edge of Xs.

The byproduct operators comprise two bits (x, z), which are updated ac-

cording to the measurement outcomes from the current logical qubit, m
(1)
0 , and

the two neighbouring logical qubits, m
(2)
0 above and m

(0)
0 below. Any of these

three measurements may be XORed in any combination, together with the

old byproduct operator values (x, z), to produce new (x′, z′). Two three-bit

masks Bx and Bz control which of the three measurements outcomes should

be XORed together to produce the updated x and z, so that the byproduct
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operators are obtained using the following equations:

x′ = x⊕

 2⊕
j=0

Bx[j]m
(j)
0

 (3.2)

z′ = z ⊕

 2⊕
j=0

Bz[j]m
(j)
0

 . (3.3)

The masksBx andBz for each measurement round are chosen in such a way

that they combine measurement outcomes from the current and surrounding

logical qubit rows to form the updates to the byproduct operators that are

shown in Figures 2.2 and 2.3.

It is sometimes necessary to add a constant (the 1 in Equation (2.1) for

z′c) to the byproduct operators, as in the case of the CNOT pattern. This

constant addition is controlled by the commutation correction program, as

described in Section 3.2.3 below.

The main byproduct operator calculation is shaded blue in the top left of

Figure 3.3.

Source-code reference: mbqc-fpga

The file design/mbqc.srcs/sources 1/new/byproduct.vhd contains

the VHDL entity byproduct, which implements the logic for the

byproduct operator calculation. The elaborated design is not shown

here, because it does not fit on the page. The complexity is mainly due

to the logic for the incorporated commutation correction, described in

the next section.

3.2.3 Commutation corrections

For the CNOT gate, the commutation correction is performed by mixing

the values of the byproduct operators between the control and target logi-

cal qubits, as described in Equation (2.5).

For an arbitrary one-qubit gate, the correction is more complicated, requir-

ing the use of the byproduct operators in the calculation of the measurement

settings. However, in order to avoid overwriting these correctional byproduct

operators prematurely, it is necessary to store them in a separate register,
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Bit Meaning

0 If high then store the byproduct operators

1 If high then a commutation correction is necessary, in which case:
2 If high then current logical qubit is the control
3 If high then other qubit in CNOT is above

4 If high then add ones to the byproduct operators, in which case:
2 Constant value to add to z
3 Constant value to add to x

Table 3.2: The table contains the interpretation of the bit fields of C, which
controls the commutation correction for the arbitrary one-qubit gate and
CNOT gate, and also controls the addition of constants to the byproduct
operator. The meaning of bits 2 and 3 depend on whether bits 1 or 4 are set,
which are mutually exclusive. If C = 0 then no operation is performed.

called the stored byproduct operator register. The correction for the one-

qubit gate then amounts to loading this register from the current byproduct

operators.

Both these corrections, for the CNOT and the one-qubit gate, require the

byproduct operator values and must therefore be calculated on the rising edge

of Xr rather than Xs. The behaviour of this correction is controlled by a

five-bit value C, whose interpretation is shown in Table 3.2.

Most of the time C = 0 and the commutation correction does nothing. It

is only directly before gate boundaries that a commutation correction must be

performed. The commutation corrections are shaded in orange in Figure 3.3.

Next steps

The most complicated logic in the design is contained within the com-

mutation correction subsystem. This complexity is artificial, because

it corresponds to gate boundaries (which are removed in the patterns

discussed in Chapter 6). The design could likely be improved and sim-

plified by incorporating a better scheme for byproduct operator calcu-

lation, based on the material discussed there. This would also entail

reviewing the design of the program word, discussed in the next section.
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Qubit 0 Qubit 1

Gate A m0 P0 θ0 s0 b0 m1 P1 θ1 s1 b1

U 0 0 0302 0 0 00 0 0002 0 0 00
1 1 0510 -0.1 1 10 1 0010 0 0 10
2 1 0342 -0.2 1 11 0 0002 0 0 10
3 0 3010 -0.3 0 11 1 5010 0 0 00

CNOT 4 1 0003 0 0 10 0 0002 0 0 10
5 0 0010 π/2 0 10 1 0030 0 0 00
6 0 a013 π/2 0 10 0 0022 0 0 00
7 1 0002 0 0 10 1 0010 0 0 10
8 1 0012 π/2 0 01 0 0002 0 0 10
9 1 0010 π/2 0 11 0 0010 0 0 10

Table 3.3: Example two-qubit computation comprising a one-qubit gate U =
Rx(0.3)Rz(0.2)Rx(0.1) on qubit 0, followed by a CNOT between qubits 0
and 1 (qubit 0 is the control). The program Pi (written in hexadecimal in
the table) combines the measurement outcomes mi (randomly generated) to
produce the adaptive measurement setting si and the byproduct operators
bi (the least significant bit is z) for the ith qubit. The basis measurement
angles θi are included for completeness (si is combined with θi to produce the
measurement angle φi).

3.2.4 Program word

The digital system is controlled using a 16-bit program word P which is formed

by concatenating the masks and control bits in the previous sections as follows:

P = CAbAmBxBz. (3.4)

Each logical qubit requires its own set of program words, one per measurement

round.

Table 3.3 shows an example calculation for the two qubit circuit contain-

ing an arbitrary one-qubit gate U = Rx(0.3)Rz(0.2)Rx(0.1) on the first qubit,

followed by a CNOT gate between the first and second qubit. The table con-

tains randomly chosen measurement outcomes, and the adaptive measurement

settings and byproduct operators that result from the measurement pattern,

including the program word that is used to make the calculations.

It is clear that the program word could be compressed to save on memory

usage. In our example design, we have prioritised program simplicity over

memory usage.
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3.3. FPGA implementation of the design

Key points

The computational system implements the logic required to realise the

one-qubit gate and CNOT measurement patterns. The adaptive mea-

surement settings arise predominantly from the one-qubit gate, and lead

to a simple implementation involving a shift register to store measure-

ment outcomes (the adapt entity). On the other hand, the CNOT

gate entails more complicated byproduct operator calculations (the

byproduct entity), and commutation corrections that must be stored

in the program word. These aspects of the program could likely be

simplified and optimised, by considering better measurement patterns,

or refactoring the byproduct operator calculations.

3.3 FPGA implementation of the design

The previous section laid out a control system design, written in VHDL, tar-

geting a 7-series Xilinx FPGA device. In this section, we elaborate on several

technical details of the design.

We used the mixed-mode clock manager (MMCM) [71] to generate the two

out-of-phase clocks Xs and Xr from the (external) system clock Xp, in order

to fit the computation inside a single clock cycle. The use of out-of-phase

clocks in a digital design complicates timing closure (the requirement to meet

specification-imposed timing constraints) [25, 72].

Next steps

As we show in Section 3.4, the design choice to use out-of-phase clocks

does not pay off, because the maximum frequency achievable by the sys-

tem is quite low (∼ 150 MHz), which is much lower than the maximum

supported frequency of the FPGA (710.00 MHz). An improved design

might be obtained by removing the out-of-phase clocks, and refactoring

the design to split the calculations over multiple clock cycles.

The program word is stored in memory generated by an instance of the

distributed memory generator IP [73], configured as ROM. This enabled stor-

57



Chapter 3. Control system design for photonic MBQC

age of the program in a coefficients file for the purpose of verifying the design

(the subject of Chapter 4).

The utilisation of logic and input/output (I/O) pads in the design is pro-

vided for one logical qubit and 20 logical qubits in Table 3.4. The data was

obtained from the utilisation report generated by Vivado after implementing

the system for each number of logical qubits. The number of logic elements

scales more than linearly between one and 20 logical qubits because the syn-

thesis tool optimises away logical qubit interconnects in the single logical qubit

case. However, the overall utilisation of flip-flops and look-up tables in the de-

sign is very low (< 1 % of device resources), because the calculations involved

in the design are quite simple.

The use of I/O pads is quite high, due to the need for one measurement

input m, one adaptive measurement setting s and two byproduct operator

lines per logical qubit. In our design, the total number of I/O pads required

is

K = 4N + 4,

where N is the number of logical qubits. This includes four common signals:

the input clock Xp; the clock-is-locked output signal from the MMCM; a reset

signal; and an enable signal. By accessing the byproduct operators via a low

speed serial interface, it would be possible to reduce this pin count to

K ∼ 2N,

which includes only the measurement inputs m and adaptive measurement

setting outputs s. On the largest FPGA in the 7-series family [66], the Virtex-

7 xc7v2000t device (which has 1200 user I/O pads), this provides an upper

bound on the number of logical qubits (cluster-state rows) of N ∼ 600.

I/O delays are also a bottleneck for performance in the FPGA design, as

we show in Section 3.4. The Xilinx 7-series devices were chosen because they

have a level-sensitive latch built into their input logic slice (LDCE) [68], which

forms the first stage of the digital system.

A disadvantage of the design is that it is not possible to place the output s

in the output logic slice, because there is combinational logic between the final

register and the output port [68]. It is also not possible to place the byproduct

operator registers in output logic slices, because the output is rerouted to the

internal FPGA fabric for use in updating the byproduct operators (see the

feedback loop in Figure 3.3).
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3.3. FPGA implementation of the design

Flip-flops Look-up tables I/O

N CS Full Util. CS Full Util. Full Util.

1 10 24 0.03 % 5 11 0.03 % 8 2.8 %
20 237 476 0.89 % 137 364 0.58 % 84 29.5 %

Table 3.4: Utilisation of flip-flops, look-up-tables and I/O pads in the design,
for N = 1 logical qubit and N = 20 logical qubits, for the computational
system (CS) in Figure 3.3 and the full design in Figure 3.1. The proportion
of device resources is included in the utilisation (Util.) columns.

As we show in Section 3.4, the clock frequency is not a bottleneck in the

system, so it may be possible to create another design with multi-cycle latency,

where the outputs are stored in separate registers and eligible for placing in

the output logic slice. This may remove some of the output delay and allow a

slightly higher clock frequency. It would also remove the logic hazards present

in the output s.

Before performing timing analysis of the design, we performed functional

verification of the design, in order to establish that the logic described above

is correct. This is described fully in Chapter 4.

Key points

The use of out-of-phase clocks is only viable because the device contains

a clock manager that can generate these clocks. The design does not

make significant use of the logic slices in the FPGA, because the algo-

rithms are very simple (in comparison to typical embedded applications

for FPGAs). However, a large number of inputs and outputs are used,

due to the high number of measurement inputs, adaptive measurement

settings, and byproduct operators.

Next steps

There is no reason to route byproduct operators to FPGA outputs, be-

cause they are not required by the measurement block (see Figure 2.4).

It may be possible to simplify the system and improve its timing be-

haviour by removing these outputs.

59



Chapter 3. Control system design for photonic MBQC

Figure 3.5: The diagram shows the critical path on the input side of the
design, which is the path through the logic which creates the timing bottleneck
between clocks Xp to Xs. The measurement pulse at the FPGA input m
coincides with the rising edge of Xp, and this signal must propagate though
the latch to the byproduct operator system before the signal is sampled on
the rising edge of Xs.

3.4 Timing analysis

We used static timing analysis, performed automatically in Vivado, to estab-

lish the maximum operating frequency of the design and to obtain the I/O

delays associated with the system. The critical timing path is made up of two

components:

• Input path from the input port m (clocked on the rising edge of Xp) to

the byproduct operator register (loaded on the rising edge of Xs). This

path is shown in Figure 3.5.

• Output path from the shift register output (loaded on the rising edge

of Xs) to the output port s (clocked on the rising edge of Xp). This

path is shown in Figure 3.6.

By modifying the phase shift of Xs relative to Xp (φps in Figure 3.2),

it is possible to allocate more time to one path or the other. The phase

of Xr (φpr in Figure 3.2) must also be adjusted to allow timing closure of

paths between the Xs and Xr clock domains. We established the maximum

operating frequency Fmax of the system by manually adjusting the phase of Xs

and Xr to balance the worst negative setup slack between the critical paths,
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3.4. Timing analysis

Figure 3.6: On the output side of the design, the critical path begins on the
output from the shift register (clocked on the rising edge of Xs) and ends on
the FPGA output s (the adaptive measurement setting). This output must be
ready for the next photon to arrive at the next rising edge of Xp. The setup
time for this output is the total time available for the analog output system
to prepare the phase shifts on modulators M1 and M2 (see Figure 2.4) before
the next photon arrives.

while increasing the frequency of the design, until both paths fail to meet

timing. Using this method, we obtained Fmax = 190 MHz using φps = 220◦

and φpr = 300◦. The phase difference 80◦ between Xs and Xr represents the

amount of the time taken for the internal FPGA logic to process the latched

measurement outcome before it is reset.

We then performed the timing analysis at each frequency between 10 MHz

and 190 MHz, in steps of 10 MHz, to establish the most generous input and

output constraints that still allow timing closure at each frequency. All I/O

constraints are expressed with respect to the external clock Xp (the system

clock).

The input constraint is specified by the clock-to-out time tco of the input

signal m, which is equal to the time delay between the rising edge of Xp and

the pulse generated by the input analog system at m. This time constrains

the analog characteristics of the single-photon detector amplifier.

The output constraint is the setup time tsu of the output signal s with
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Figure 3.7: The most generous input and output delay constraints that allow
implementation of the design at each frequency. The total delay, which can
be apportioned between input and output analog systems by adjusting the
phase of Xs, represents the maximum amount of time available to the analog
system shown in Figure 2.4.

respect to the system clock Xp, which is the delay between the time that s

transitions at the boundary of the FPGA and the next rising edge of Xp. This

time determines the required operating speed of the output DAC system and

modulator drivers, which must be able to set the voltages of the modulators

before the next photon arrives on the rising edge of Xp.

The I/O timing constraints are plotted as a function of frequency in Figure

3.7. The input constraint is systematically more generous than the output

constraint, because of the choice of phase of Xs. The sum of the input and

output constraints must be less than the total I/O slack, also shown in the

figure.

Figure 3.8 shows a graph of the proportion of the clock cycle Xp taken up

with digital processing, as a function of frequency. It is clear that at higher

frequencies, the digital processing dominates the clock cycle, leaving very little

time for the analog amplifier systems.

At a representative clock frequency of 150 MHz, the photons would need

to be delayed for 6.67 ns in either an optical fibre or a waveguide delay line.
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Figure 3.8: The proportion of the clock cycle devoted to processing the adap-
tive measurement settings and the byproduct operators, as a function of pho-
ton clock frequency. At the higher frequencies, nearly all of the cycle is spent
processing the measurements, leaving almost no time for the analog amplifi-
cation at the input and output (shown in green and red).

Assuming a standard silicon-on-insulator (SOI) platform, the delay line must

be approximately 83 cm, assuming a mode index of ∼ 2.4 [74].

Key points

By adjusting the phases φps and φpr of the out-of-phase clocks, it is

possible to maximise the operating frequency of the FPGA design, up

to a maximum of Xp = 190 MHz. As the frequency is increased, the

proportion of this clock cycle devoted to digital processing increases,

leaving less time for the analog systems at the input and output of the

control system, as shown in Figure 3.8. This imposes a timing constraint

on the design of the analog and photonic systems, if the control system

is realised in the FPGA considered here.
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We re-implemented the design targeting a higher end FPGA (Xilinx Kintex

Ultrascale+, part no. xcku5p-ffvd900-3-e), to see whether the maximum clock

frequency could be improved. We found that the maximum clock frequency

increased to Fmax = 220 MHz using φps = 140◦ and φpr = 230◦. In this case,

at the maximum clock frequency, less time is allocated to the input analog

system compared to the 7-series FPGA. The phase difference of 90◦ between

Xs and Xr indicates that approximately the same time (1.125 ns) is taken by

the internal digital system compared to the 7-series FPGA (1.152 ns).

3.5 Discussion of extensions to the design

There are several improvements that could be made to the simple digital sys-

tem presented in this chapter. It is likely that some performance improvement

could be obtained by implementing the digital design using an ASIC, due to

the average reduction in critical path delays [65]. However, this may not trans-

late to a performance improvement in this design because the majority of the

critical path delays come from the I/O buffers, not the logic. To improve this,

it may be possible to utilise very high speed latches and output buffer designs,

with delays on the order of 100 ps [75]. A full analysis of the I/O buffer delays

should be performed in tandem with the design of the I/O analog systems, to

ensure compatibility between the two systems. At this point, the requirement

for absolute synchronisation between the cluster-state generator and the digi-

tal control system, using a system synchronous architecture [76] may become

the bottleneck to the design. Such schemes are often limited to speeds up to

200 MHz–300 MHz, due to clock skew and data path delays [26].

The design could be extended to support a greater degree of non-locality in

the byproduct operator calculation. In the design discussed here, the byprod-

uct operators depend only on measurement outcomes from adjacent logical

qubits. However, there are measurement patterns for which byproduct oper-

ators for a given logical qubit may depend on cluster qubits that are further

away [20, Section IV.C.]. This may lead to a routing problem in FPGA and

ASIC designs, especially as the number of qubits increases, which are impor-

tant to quantify.

The design presented here shows that, even in the ideal (unrealistic) sce-

nario where a deterministic cluster-state generator is available, the design of a

control system that does not impose significant timing constraints may present
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a significant challenge. We have used an FPGA for prototyping the design,

which favours rapid prototyping of the design over thorough optimisation of

the logic. On the other hand, the design presented here could only reasonably

be expected to operate at 150 MHz, more than a factor of six less than the

target photonic clock rate of 1 ns highlighted in Section 2.2.2. At 150 MHz,

the total time available for the input and output analog processing is 1.59 ns,

out of the total period 6.67 ns. The remaining 5.08 ns is consumed by logic

delays inside the FPGA design. At the same time, a photon clock period of

6.67 ns corresponds to a long delay line (∼ 83 cm), that will occupy quite a

large footprint in an integrated implementation of photonic MBQC. A certain

amount of work is necessary to show that these timing constraints can be

managed and accounted for in a better electronic control system design.

Key points

The design presented here cannot operate much faster than 150 MHz.

This is despite implementing algorithms that only involve fixed, small

amounts of arithmetic, and target a high-performance FPGA with a

maximum clock frequency of 710.00 MHz. The problem is the simulta-

neous requirement for low-latency in the adaptive measurement setting

calculation, and high-throughput of measurement outcomes – conflict-

ing requirements in digital system design. We argue in this thesis that

this highlights the necessity to investigate electronic control systems for

photonic quantum computing, as an optimisation problem in its own

right.

Next steps

Although some improvements may be made by using custom ASICs, a

better approach would be to extend the analysis to the analog parts of

the control system. This would make it possible to address the main

component of the critical path delays, due to the I/O buffers. This

investigation could be performed in a high-speed mixed-signal process,

using the control system design presented in this chapter as a basis, to

assess what timing constraints arise from the analog/digital interface.
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3.6 Summary

We have presented a simple, concrete, control system design, for a model of

photonic quantum computing that uses a deterministic cluster state. Even

though this model of photonic quantum computing is not possible to realise

in practice, it forms a useful entry-level model in which to explore control

system implementations. However, even in this simple case, the control system

design is not a trivial exercise, because of the simultaneous high-throughput

and low-latency requirements of the photonic system. This control system

is freely available, and may be used as a practical basis for learning about

control systems for photonic quantum computing, or optimising the designs

for custom hardware. We extend the investigation of control system design to

the case of non-deterministic cluster states in Chapter 5.

Before beginning there, we address in detail (in Chapter 4) how the system

described in this chapter was verified for correctness. This functional verifica-

tion is very important in any digital design, where the resulting system (for

example, Figure 3.3) is complicated enough that it may contain logic errors.

In the case of photonic MBQC, it is also important to bring the measurement

patterns themselves within the scope of the verification, so that there is some

assurance that the overall quantum computer based on the control system

would realise the correct quantum gates. In the development of the verifica-

tion of measurement patterns, we develop a quantum simulator for MBQC,

which is re-used in Chapter 6 for the investigation of voltage noise on the

operation of the control systems models discussed in Chapter 5.
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Design simulation and

verification

In any complicated digital system, functional verification is very important,

to ensure that hard-to-find bugs are not present in the synthesised design.

However, in the case of MBQC, where quantum gates are performed using

non-intuitive measurement patterns, it is also important to check that the

measurement patterns themselves do not contain errors. This is less impor-

tant for well established patterns such as the arbitrary one-qubit gate [20].

However, non-standard patterns, for example the reduced CNOT gate de-

rived in Appendix A.1, may contain errors (e.g. resulting from mistakes in

the derivation) and must therefore be checked for correctness1.

In the previous chapter, we presented an FPGA design for the digital part

of the control system for photonic MBQC, written in VHDL. However, the

design may contain errors, due to simple (typographical) mistakes in the source

code, or more fundamental logic errors in its design. One established method

for reducing the chance of these type of errors is to write VHDL testbenches

– source files that probe the digital design in a simulated environment, and

verify that the outputs from the digital system are correct [77]. This type of

verification is fully supported by Vivado as part of the recommended design

flow [78].

In this chapter, we present a verification system which consists of the

following components:

1In an earlier iteration of the hardware design, the reduced CNOT pattern did contain
an error which was discovered using the methods presented in this chapter.
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• MBQC simulator. This is used for verifying measurement patterns

and outputting data that can be used as reliable inputs/outputs for the

digital control system verification.

• VHDL testbenches. These use the simulation data to verify that

the digital control system produces the correct outputs (adaptive mea-

surement settings and byproduct operators) for a given set of inputs

(random measurement outcomes and program words corresponding to

the quantum circuit).

Section 4.1 describes the design and verification of the MBQC simula-

tor, including the underlying resizeable quantum computing simulator for the

simulation of cluster states and measurement patterns. The use of the output

data from this program in VHDL testbenches is described in Section 4.2.

The simulation program and testbenches are available in the digital system

design repository mbqc-fpga [64].

Key points

Hardware verification of the design described in Chapter 3 is neces-

sary to attempt to eliminate mistakes in the design. Three steps are

required for the verification: checking that the measurement patterns

themselves are correct; generating valid input and output data based

on the measurement-pattern simulation; and using this data to probe

the digital system in a simulated environment. This chapter describes

how these steps are performed.

4.1 Measurement pattern verification

An important component of the verification system is an MBQC simulator,

written is C++, which performs two operations:

• Verification that a given measurement pattern performs the correct quan-

tum operation.

• Generation of valid input and output data in a format that can be used

in VHDL testbenches for the functional verification of the digital system

described in Chapter 3.
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The design of the MBQC simulation program is quite specific to the hard-

ware design: the subsystems described in Section 3.2 correspond quite closely

to subsystems in the C++ program. The advantage of this approach is that

writing and debugging the VHDL testbenches is easier, because the inter-

nal state of the verification program corresponds more closely to the internal

state of the digital design. However, as a result, the program cannot be easily

modified to cover MBQC simulations in other contexts.

The core of the program is the quantum simulator and cluster-state simu-

lator described in Sections 4.1.2 and 4.1.1. The main novelty of this simulator

is the efficient mapping of a cluster state of bounded height (≤ 14) and arbi-

trary width onto a simulation containing a finite number of qubits, which can

be simulated on an ordinary laptop.

Source-code reference: mbqc-fpga

The C++ code for the simulator is contained in the folder

simulator/src/. The files cluster.hpp and cluster.cpp contain the

cluster-state simulator used for verifying measurement patterns. This

simulator is based on QSL, which is discussed in more detail in the

sections below. Most other files are highly specific to the FPGA design

under discussion here.

4.1.1 Cluster-state simulation by recycling the state vector

Direct simulation (simulation of the entire state vector) of a quantum com-

puter is a memory intensive task. For M qubits, the state vector (containing

2M complex amplitudes) has length 2k2M bytes, where k is the number of

bytes required to store a floating point real number. For the purposes of the

simulator discussed here, we assume that each floating point value is stored

using double precision, where k = 8. Therefore, M = 28 qubits (using 4 GiB)

is the practical upper limit to the number of qubits that can be simulated on

a computer with 8 GiB of main memory.

It is therefore clearly not feasible to simulate a cluster-state computation

by simulating all the cluster qubits directly. The number of cluster qubits re-

quired for the simple circuit shown in Figure 2.1 is 27, which is one qubit short

of the maximum. Adding another logical qubit (a total of four logical qubits)

would increase the number of cluster qubits to 36, beyond what is possible
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to simulate with a normal laptop. Furthermore, the number of cluster qubits

depends on the length of the circuit, which is an undesirable feature; even a

circuit containing one logical qubit could contain at most seven concatenated

arbitrary one-qubit gates before it is too large to simulate.

Instead, it is possible to simulate a cluster-state computation one column

at a time. The justification of this method is the same as the method of gate

verification [20]. Specifically, there is no difference between generating the

cluster state all at once at the start of a computation, and generating the

cluster state “patch-by-patch” (interleaving the entangling of a new patch of

the cluster state, with performing the measurement pattern on that patch).

As a result, it is only necessary to store two columns of cluster qubits in

memory at any one time2. Therefore, a quantum simulation of 2N cluster

qubits (where N is the number of logical qubit rows) is sufficient to simulate

an MBQC-based computation of height N and arbitrary width. Using this

method, it is possible to simulate arbitrarily long MBQC circuits containing

up to 14 logical qubits on a computer with 8 GiB of memory. The state vector

is recycled in the sense that the same set of simulated qubits is used to simulate

each column of the measurement pattern one by one.

The steps that are required to perform an MBQC simulation of N logical

qubits using this method are as follows. The process is shown in Figure 4.1

for N = 5.

1. Begin with the left-most column. Create a state vector of N qubits,

all in the |0〉 state, representing the left-most column of cluster qubits

in Figure 2.1b. Prepare it in the equal-superposition state by applying

Hadamard gates to all the qubits.

2. Add a new column of qubits to the right, by extending the state

vector with N qubits (all in the state |0〉), resulting in a new state vector

of 2N qubits. These new qubits represent the column immediately to

the right of the current column in the state vector.

3. Generate the cluster state in the new column, by applying Hadamard

gates to the new qubits, and apply CZ gates anywhere that an entan-

glement link is desired between the two columns.

2It is not possible to store just one column; in that case, there is no way to generate
entanglement between columns, which is necessary for MBQC.
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Figure 4.1: Diagram showing how column-wise simulation of measurement
patterns is performed, for the case N = 5. Each column is entangled with the
column to the right, before being measured out according to the measurement
pattern. In the example, the CNOT pattern (see Figure 2.3), starting from
the column with the vertical entanglement link, is simulated in rows 2 and 3.
An arbitrary one-qubit gate is laid out along row 0. Any qubits not involved in
a measurement pattern are measured in the Z-basis and the results discarded.
In an implementation of this scheme, both columns are stored in the same
state vector, which alternates in size between 2N and 22N .

4. Measure out the left-most of the two columns, according to the

measurement pattern given by the quantum algorithm. Store the mea-

surement outcomes for processing into adaptive measurement settings

and byproduct operators. After this step, the state vector is reduced to

a single column, which now becomes the left-most column. If there are

any more columns to the right in the measurement pattern, go back to

step 2.

5. Output state. If there are no more columns to add, then the current

state vector of N qubits contains the result of the quantum computation

(up to byproduct operators).

The algorithm above consists of the repeated process of appending a new

column of qubits to the right, measuring out qubits to the left, and shifting

the remaining column to the left-most position. A description of an efficient

program capable of performing these operations is described in the next sec-

tion.
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4.1.2 A resizeable quantum computer simulator

A quantum simulator that is capable of performing the algorithm described

in the previous section must have the following features:

• Ability to add qubits. Adding a new column of photons to the right

in Figure 4.1 is achieved by adding qubits one at a time to the state

vector.

• Ability to measure-and-remove qubits. This is required when the

left-most column is measured according to the measurement pattern.

• Ability to perform one- and two-qubit gates. CZ gates are neces-

sary to add entanglement links, and one-qubit gates are required to set

the bases for the measurement pattern.

In addition, the simulator must be efficient enough that the simulations finish

in a timely fashion.

The special-purpose resizeable simulator in QSL [79] was designed to sat-

isfy these criteria. The efficient implementation of gates and measurement

in QSL is described in [80, Chapter 6]. Here, we focus specifically on the

implementation of the addition and removal of qubits from the state vector.

Key points

When the scheme shown in Figure 4.1 is implemented, the state vec-

tor may alternate between two very different sizes; for example, when

N = 5, one cluster-state column contains 32 amplitudes, and two

columns contains 1024 amplitudes. Care is required to implement this

system in a manner that limits the number of expensive memory-related

operations that may be involved, as we discuss in the sections below.

Source-code reference: QSL

The relevant source code for the resizeable quantum simulation, re-

quired for the implementation of the scheme shown in Figure 4.1, is

contained in the folder src/qubits/resize. In particular, the file

measure.cpp contains the implementation of the efficient measurement-

and-removal of qubits, described in the following sections.
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Efficient measurement and removal of qubits from a state vector

Consider a state vector |ψ〉 for the simulation of N qubits, given by

|ψ〉 =


a0

a1
...

a2N−1

 . (4.1)

If the index i of a given amplitude ai is represented in binary as

xN−1xN−2 . . . x1x0, xk ∈ {0, 1}, (4.2)

then that amplitude corresponds to the state of the system where qubit k is in

the computational basis state |xk〉. This uses a little-endian convention (where

lower-index qubits correspond to less significant bit positions). From now on,

the kth bit of an index i will be written using square brackets i[k]. The set of

valid indices in the state vector will be written I = {0, 1, 2, . . . , 2N − 1}.
To measure and remove a qubit from the state vector, it is first necessary

to measure it (without removing it) according to the methods described in [80,

Chapter 6]. Briefly, a random measurement outcome is chosen based on the

probability p of measuring zero on that qubit, which is obtained by summing

the squared amplitudes ai where the kth bit of i is zero:

p =
∑
i∈I
i[k]=0

|ai|2 . (4.3)

After obtaining the random measurement outcome z ∈ {0, 1}, all the ampli-

tudes ai of the state vector where i[k] 6= z are set to zero, and the state vector

is renormalised.

In order to then remove the qubit k from the state vector, all that is

required is to delete the amplitudes ai from the state vector where i[k] = 0.

The amplitudes are completely removed, in the sense that amplitudes ai−1

and ai+1 surrounding a removed amplitude ai will be adjacent in the new

state vector. The state vector will halve in size as a result of this operation

(corresponding to the difference between 2N and 2N−1).

Assuming that the state vector is stored as a std::vector in C++, a näıve

implementation of the procedure above would involve calling std::erase re-

peatedly to remove amplitudes from the vector. However, each time std::erase
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Figure 4.2: The method for removing an arbitrary qubit k in one pass of the
state vector, for different values of k and outcome z. The distance S = 2k is
the stride length, which is the size of the (green) blocks that must be copied.
The red blocks are discarded (these are the amplitudes that are deleted). If
the outcome of the measurement of the qubit is one, then the first block to be
copied starts at offset S, rather than 0. The result of the copying operation
is that only half of the state vector is used (the other half is greyed out).

Algorithm 1 Removal of qubit k from the state vector

for n← 0 to 2N−k−1 − 1 do . Loop over all the blocks
for m← 0 to S − 1 do . Loop inside a green block

i← 2Sn+ Sz +m . Source index
j ← Sn+m . Destination index
aj ← ai . Copy the amplitude ai to the index j

end for
end for

is called on the index i, all the elements of the vector at indices j > i must

be copied so as to maintain the contiguous storage of the vector required by

the C++ standard [81]. In addition, the resizing of the vector may trigger

memory reallocation, especially when the vector is increased in size with the

addition of new qubits, outlined in the next section. Using std::erase to

remove qubits was found to limit the overall MBQC simulator to N = 6 logi-

cal qubits, due to the prohibitive amount of time spent removing and adding

qubits to the state vector.

A much more efficient scheme is to perform the required deletion operations
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manually, by copying the amplitudes that are retained to their new (lower-

index) positions in the state vector, and leaving the state vector the same size

as before3. Figure 4.2 shows how this copying operation can be done using

one pass of the state vector. The algorithm is summarised in Algorithm 1.

The important feature of this algorithm is that the state vector is traversed

from low to high indices (top to bottom in the diagram), and each amplitude

is only read or written once. In addition, higher-index amplitudes end up

overwriting lower index positions, so that the end result is a state vector whose

lower half is correct, and whose higher half contains random values. These

random values can simply be ignored by the program. For a cluster state of

height N , only 2N−1 memory reads and 2N−1 memory writes are required to

remove one qubit.

Adding a qubit to the state vector

To add a qubit to the state vector, the procedure described in Algorithm 1

is essentially reversed, with some modifications; the goal of this algorithm is

to insert zeros into the correct locations in the state vector. This operation

corresponds to taking the tensor product of the state with a single qubit in the

|0〉 state, in the desired index position. This may be interpreted as copying

amplitudes from the right to the left in Figure 4.2, instead of left to right.

Firstly, it is necessary to loop over the blocks of green (destination) indices

backwards, otherwise valid data at higher indices in the state vector would

be overwritten by data that is copied from lower indices. For example, in

Figure 4.2c, copying amplitudes 0 and 1 would overwrite amplitudes 2 and 3,

unless those amplitudes are copied first. Secondly, it is possible to always set

z = 0, which sets the new qubit in the |0〉 state. It is possible to obtain any

other state after inserting the qubit by applying a one-qubit gate to the new

qubit. Finally, it is necessary to set the red indices to zero – these are the

amplitudes corresponding to the |1〉 state of the newly added qubit (z = 1).

The procedure for adding a new qubit is shown in Algorithm 2. It corre-

sponds to the copying operations shown in Figure 4.2, with the modification

that amplitudes are copied from left to right instead of right to left.

3In terms of free-store-allocated memory; the logical size of the state vector has still
halved, because the program simply ignores the higher half of the vector.
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Algorithm 2 Adding a qubit of state |0〉 at position k to the state vector

for n← 2N−k−1 − 1 down to 0 do . Loop over all the blocks
for m← 0 to S − 1 do . Loop inside a green block

i← Sn+m . Source index
j ← 2Sn+m . Destination index
aj ← ai . Copy the amplitude ai to the index j
j ← 2Sn+ S +m . Index to zero-out (corresponds to z = 1)
aj ← 0 . Set the |1〉-amplitudes to zero

end for
end for

Key points

By using Algorithms 1 and 2 the transition between the one-column

state vector and the two-column state vector is achieved in one pass of

the state vector, without needing to write to any amplitude in the state

vector more than once. This is a substantial improvement based on a

näıve use of C++ standard library functions, and makes it possible to

use the algorithm with N = 14 on a regular laptop.

4.1.3 Performing measurement patterns

The measurement pattern consists of two parts:

• The pattern of entanglement between cluster qubits. Logical qubit rows

are always entangled in simple patterns, but vertical entanglement is

only necessary when a two-qubit gate is implemented.

• What bases to use for cluster qubit measurements, and how to process

the measurement outcomes.

The first of these requirements is achieved by applying CZ gates in the

correct locations when a new column of qubits is added to the state vector

in step 3 of the main recycling algorithm in Section 4.1.1. More specifically,

a CZ gate is applied between qubits i and i + N , due to the column-major

ordering of the qubits in the columns shown in Figure 4.1. If a vertical link is

required, a CZ gate is applied between qubits i and i + 1, where i ≥ N (i.e.

in the newly added column).
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Algorithm 3 Processing measurement outcomes from the nth round into
adaptive measurement settings and byproduct operators for the kth logical
qubit. The variable M stores all the past measurement outcomes from all
logical qubit rows. The program P controls how the byproduct operators,
adaptive measurement settings, and commutation corrections are computed.

procedure storeOutcome(n,k,M ,P )
b[n, k]← b[n− 1, k]⊕ bypUpdate(n, k,M,P )
bs[n, k]← bs[n− 1, k] . By default, bs does not change
s[n]← adaptiveSetting(n, k,M,P, bs)
if storeByproduct(P [n, k]) then

bs[n, k]← b[n, k] . Store byproduct operators for one-qubit gates
end if
b[n, k]← b[n, k]⊕ cnotCommCorrect(n, k, P, b)

end procedure

The main processing step required by the scheme described in Section 4.1.1

is the measurement of the left-most column in appropriate bases, and calcu-

lations of adaptive measurement settings and byproduct operators from the

resulting outcomes. For this step, we use the same program word described

in Section 3.2.4, augmented with measurement basis information, to specify

how to measure the left-most column of cluster qubits in each measurement

round.

The subroutines that process measurement outcomes are written to em-

ulate the operation of the FPGA control system in Figure 3.3. This has the

benefit that the internal state of the control system maps closely to the internal

state of the verification program, which aided debugging both systems.

Source-code reference: mbqc-fpga

The program word P controlling the measurement pattern is de-

fined in the file simulator/src/program.hpp. The calculation of

the adaptive measurement settings and byproduct operators based on

this program are performed analogously to the FPGA design as part

of the storeOutcome method of the LogicalQubit class, defined in

qubit.hpp. This implementation of MBQC simulation is highly spe-

cific to the FPGA design, and is not easily generalised. Part of the

motivation for MBQCSIM (discussed in Chapter 5) was to extend the

simple program discussed here to a wider variety of scenarios.
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The main subroutine storeOutcome in the program is shown in Algo-

rithm 3. The internal state of the program consists of the set of measure-

ment outcomes M , the program P , the byproduct operators b and the stored

byproduct operators bs. All these variables are indexed with two variables k

(the logical qubit index) and n (the measurement round).

At each newly completed measurement round n, the byproduct operators

are updated using the most recent measurement outcomes according to Equa-

tions (3.2) and (3.3), via the function bypUpdate. This corresponds to the

byproduct VHDL entity in the FPGA design. Then the next adaptive mea-

surement setting is calculated using the function adaptiveSetting based on

Equation (3.1), which corresponds to the adapt VHDL entity. By default,

it is not necessary to change the stored byproduct operators bs, unless the

program P indicates (see Table 3.2) that the byproduct operators should be

stored. Similarly, if a CNOT commutation correction is required, the function

cnotCommCorrect provides the necessary correction. If a correction is not

required, it returns zero (so as not to affect the byproduct operators).

Key points

The implementation of the column-measurement step of the simulation

scheme is designed to map as closely as possible to the FPGA design,

to make verification of the design easier. However, this has the disad-

vantage that the simulator is not easily modified for other situations.

This issue is partially addressed in MBQCSIM, which contains a more

general-purpose MBQC simulator.

4.1.4 Verification of the simulator

It is important to determine that the program is producing valid simulations

of MBQC measurement patterns, before using it to verify the digital control

system design. This is achieved by simulating the target quantum circuit in

the gate-based model alongside the MBQC simulation, and checking that the

two simulations agree.

At the end of the MBQC simulation (see step 5 of the recycling algorithm

in Section 4.1.1), the final column of the measurement pattern remains un-

measured. This column of qubits is the outcome from the quantum circuit
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(up to byproduct operator corrections). After applying these corrections, the

resulting state |ψ〉 should be the same as the state |φ〉 that is obtained using

a direct gate-based simulation of the quantum circuit.

These two states are compared in the simulator using the Fubini-Study

distance, defined as follows:

d(|ψ〉, |φ〉) = arccos

( |〈φ|ψ〉|
‖φ‖‖ψ‖

)
. (4.4)

If the states are normalised, then d reduces to the arc cosine of the fidelity [50].

The distance d(|ψ〉, |φ〉) = 0 if and only if the states |ψ〉 and |φ〉 represent

the same state. This is used as verification that the measurement patterns

used in the MBQC simulation perform the correct quantum operation4.

Key points

This verification forms the basis for the noise simulations described in

Chapter 6. By introducing errors into the measurement process (for

example, due to the noise in modulator voltages), it is possible to use

the fidelity between the simulation state |ψ〉 and the true state |φ〉 to

quantify the errors that occurred due to the noise.

4.1.5 Simulator input and output

The input to the simulation program consists of the set of program words

P [n, k] (see Equation (3.4)) for each logical qubit k and each measurement

round n. To simplify this process, the program contains some utilities for

automatically producing the correct set of program words on the correct logical

qubits for one-qubit gates and CNOT gates, which can be read from a file.

The format of the “circuit file” is very simple, as follows:

N=3

u 0 0.1 0.2 0.3

cnot 0 1

4Due to the finite-precision of the computer simulation, the distance results are not
exactly zero even for a correctly working measurement pattern. In practice, on the x86 64
architecture used for to develop and run the program, distance values of 1× 10−8 were
typically obtained. Errors often caused distances on the order 1, making it easy to identify
problems.
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Option Meaning

-h Print a brief summary of command line options
-c The file name of the input circuit file to be simulated
-o The file name of the output log file (optional)
-p The output program file base name (optional)
-s The single logical qubit testbench data file base name (optional)
-m The multiple logical qubit testbench data file base name (optional)
-q Specify which qubit to store (optional)

Table 4.1: The command line options for the MBQC simulator program. If
the optional arguments are omitted, then those files will not be written. The
“base name” refers to the beginning of the filename – the qubit index will be
appended to the end.

u 1 -0.3 -0.2 -0.1

cnot 1 2

u 2 0 0 1

...

The first line of the file is the line N=n, which specifies that there are n

logical qubits in the circuit. After that, the quantum gates are listed in the

order that they should be applied. The lines u k xi eta zeta apply one-

qubit gates U = Rx(ζ)Rz(η)Rx(ξ) to the kth logical qubit. Lines such as

cnot c t apply a CNOT gate between the control qubit c and the target

qubit t.

After the simulation has completed, the measurement outcomes, byprod-

uct operators and adaptive measurement settings are written to a file in a

format that can be used in VHDL testbenches. The program is packaged into

a simple command line utility called mbqcsim, with command line options

shown in Table 4.1. The options -s and -m produce data files for use in the

VHDL testbenches, described in Section 4.2.

Key points

The mbqcsim program reads an input gate listing, simulates the MBQC

realisation of this circuit (checking the patterns for correctness), and

outputs a file of control system inputs and outputs suitable for use with

the VHDL testbenches discussed in the next section.
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4.2 Verification of the FPGA design

Section 4.1 contains the design of an MBQC simulator for verifying MBQC

measurement patterns and generating known-valid inputs and outputs for the

control system at each measurement round. The use of this data in verifying

the digital control system for a single logical qubit and for multiple logical

qubits is described in the following sections.

4.2.1 One logical qubit

Before verifying the hardware in the most general case of multiple logical

qubits (i.e. using multiple rows of the unit cell in Figure 3.1), it is important

to check that the computational system for a single logical qubit shown in

Figure 3.3 works as intended. For the purpose of this test, the measurements

and byproduct operators associated to the logical qubits above and below the

unit under test are tied to zero. This means that it is not possible to test the

CNOT gate, which uses these inputs. If the test passes, then the calculation of

adaptive measurement settings works, along with the storing and processing

of byproduct operators associated to the one-qubit gate.

Source-code reference: mbqc-fpga

The testbench file for the single-qubit system is called mbqc1 tb.vhd.

It may be run using Vivado’s behavioural simulation [78], and outputs

information to the Vivado console about whether the test passed or

failed. The behavioural simulation also produces traces of the internal

state of the control system during execution, shown in Figure 4.3.

On the rising edge of Xp (the photon cycle clock), the testbench reads

comma separated variable (CSV) input data from a file obtained from the

mbqcsim program using the -s option. Each row of the file corresponds to a

measurement round, which contains the following fields:

• m, the random measurement outcome for that round. The measurement

is written to the input of the control system immediately (on the rising

edge of Xp)

• b′, the correct value that the byproduct operators should take after the

rising edge of Xs in the current measurement round.
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Figure 4.3: Functional simulation of the single qubit control system using data
generated from the MBQC simulation program. At each measurement round
R, the testbench compares s and b, generated by the control system under
test, with s′ and b′ which are read from a file. The program word P for each
measurement round is shown at the bottom.

• s′, the correct value that the adaptive measurement setting should take

after the rising edge of Xs in the current measurement round

There are also other fields that are useful for debugging the internal state of

the control system, such as the stored byproduct operators.

The program is loaded into the control system via the distributed memory

generator IP block in Vivado, using a memory coefficient file [73] which is

generated using the -p option of the mbqcsim program.

On the rising edge of Xs, the control system computes the byproduct oper-

ators and adaptive measurement settings for the current measurement round.

On the rising edge of Xr, the testbench reads these outputs and compares

them with the true values taken from the file. If there is a discrepancy, an

error is recorded in the simulation log file. If there are no errors at the end

of the simulation, then the values of the byproduct operators and adaptive

measurement settings produced by the control system in each measurement

round are correct.

An example of the output from the functional simulation based on the

single qubit testbench is shown in Figure 4.3. Data for the simulation was

generated using the following circuit file, which consists of four one-qubit

gates:

N=1

u 0 0.1 0.2 0.3

u 0 -0.3 -0.2 -0.1
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u 0 0 0 1

u 0 0 1 0

The sequence of program words that represent the one-qubit gate is 0302,

0510, 0342, 0810 (written in hexadecimal). This sequence is repeated four

times in the P row of Figure 4.3. In each measurement round, the correct

values b′ and s′ slightly lead the control system outputs b and s, which are

produced on the rising edge of Xs. However, it is clear from Figure 4.3 that

the control system is correctly calculating adaptive measurement settings and

byproduct operators.

The simulation was run using the “behavioural simulation” in Vivado. As

a result, no timing information is present in the simulation. A frequency of

100 MHz was arbitrarily chosen for the functional verification.

Key points

Functional verification, of the type performed here, is normally the

first step of verification performed in FPGA design, followed by static

timing analysis of the kind discussed in Chapter 3, to ensure that the

(functionally correct) design also meets its timing specification. Here,

we perform the steps in reverse, because the primary goal of this the-

sis is to obtain exploratory timing constraints on control systems for

quantum computing systems. However, functional verification is still

important, even if the system is never built, to ensure that the design

being analysed for timing is a fair representation of what is required in

the real system.

4.2.2 Multiple logical qubits

Verification of the full system (see Figure 3.1) is required to check that the

connections between logical qubit modules do not contain errors. The purpose

of the multiple qubit testbench is to ensure that interactions between the

byproduct operators on different logical qubits are correct when arbitrary

CNOT gates and one-qubit gates are performed.

Similarly to the single-qubit case, the multiple qubit testbench reads a file

produced using the -m option of the mbqcsim program, resulting in a CSV
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Figure 4.4: The functional simulation of the multiple qubit system with four
logical qubits. The inputs and outputs are concatenated and expressed in hex-
adecimal. For example, the input m consists of four bits (shown in the four
rows below m), and is therefore represented as a single hexadecimal character.
The output b contains two bits per logical qubit, and is therefore represented
by two hexadecimal characters. The equality between the primed and un-
primed variables indicates that the control system performs correctly.

file where each row (corresponding to a measurement round) contains the

following fields:

• m, the random measurement outcome for that round. This time, the

field is an N -bit value, where each bit corresponds to the measurement

outcome from a different logical qubit row.

• b′, the correct value of the byproduct operators in the current measure-

ment round. The byproduct operators from each logical qubit row are

concatenated, leading to a 2N -bit field.

• s′, the correct value of the adaptive measurement setting in the current

measurement round. The measurements settings for each logical qubit

row are concatenated to form an N -bit field.

An example functional simulation based on the multiple qubit testbench

with four logical qubits is shown in Figure 4.4. The circuit file used to test

the multiple qubit system was:

N=4

u 0 0.1 0.2 0.3

u 1 -0.3 -0.2 -0.1
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cnot 0 1

cnot 1 2

u 2 0 0 1

u 3 0 1 0

In the simulation results presented in Figure 4.4, inputs and outputs over

multiple logical qubits are expressed by concatenating the corresponding fields

for each logical qubit, placing lower-index logical qubits at less significant po-

sitions. For example, the measurement inputs are mi for each logical qubit

i are concatenated to form the four bit value m, which is expressed in hex-

adecimal in the figure. The byproduct operators are expressed using 8 bits,

because each logical qubit contributes two bits. Similarly to the single qubit

case, the control system is verified by observing that the byproduct operators

b and b′ agree, as do the adaptive measurement settings s and s′.

Although the simulation shows a relatively small circuit, it is possible

to generate data for arbitrary long circuits with up to 14 logical qubits, to

increase the chance of catching edge cases. In this case, it is not practical

to check manually that all the outputs agree between the simulation and the

control system. However, the testbench automatically checks for equality in

each clock cycle, and reports the results at the end of the simulation.

Next steps

Functional verification via behavioural simulation is one route to check-

ing that a digital design is correct. However, a stronger form of veri-

fication could be obtained by using an approach based on formal veri-

fication (proof-based verification) [77]. It is likely that MBQC control

systems would be amenable to this type of verification technique, due to

the simple fixed rules that must be applied to realise measurement pat-

terns. This type of formal verification is compatible with VHDL [82].

By using formal verification, it would not be necessary to generate

(pseudo-random) inputs and outputs to test the system – the formal

properties would establish that the system works for all combinations

of inputs and outputs.
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4.3 Summary

The verification of the control system described in Chapter 3 is necessary to

ensure that the implemented design is free of inaccuracies. There are two

main places that bugs can occur: in the measurement patterns themselves; or

in the implementation of the control system.

In Section 4.1, we described the design of an MBQC simulator capable

of checking that the measurement patterns perform the correct quantum op-

erations. Due to the efficient recycling of the state vector, the simulator is

capable of simulating arbitrarily long quantum circuits up to a cluster-state

height of 14 logical qubits.

The control system was verified by comparing its outputs (the byproduct

operators and adaptive measurement settings) with known-true outputs from

the simulator, using VHDL testbenches described in Section 4.2. We showed

the results of the testbenches for MBQC circuits containing one and four

logical qubits. The simulation and verification framework provides evidence

that the digital control system is free from errors.

This chapter marks the end of the analysis of control systems for pho-

tonic MBQC using deterministic cluster states. Chapters 5 and 6 extend the

control system ideas and simulation techniques developed so far to the realm

of MBQC based on incomplete cluster states (IMBQC). Although many of

the ideas relating to measurement patterns carry over to IMBQC in principle,

there is a substantial increase in algorithmic complexity, due to the need to

map measurement patterns dynamically onto a cluster state where random

edges may be missing. This means that it is not possible to progress immedi-

ately to designing a prototype FPGA-based control system to analyse timing

constraints in this case. Instead, an additional emulation step is required, to

establish what performance and timing implications follow from making the

various algorithmic choices involved in searching incomplete cluster states.

Even though the simple FPGA-based control system designed here cannot

be used as the basis for photonic quantum computing, it does provide a basic

illustration of the methodologies required for the design of the electronic con-

trol system. The approach of using static timing analysis to investigate the

feasibility of electronic control systems for use in photonic quantum comput-

ing can be applied to any prospective control system designs, including more

advanced implementations based on Chapters 5 and 6.

86



Chapter 5

Algorithmic overheads due to

incomplete cluster states

Chapters 2 and 3 contain a description of photonic MBQC in the presence of

an ideal (deterministic) cluster state, and present a timing analysis of a simple

control system implementation of one-qubit gates and CNOT gates targeting

an FPGA. This chapter and Chapter 6 consider the implementation of control

systems for photonic quantum computers based on incomplete cluster states

– those which may have random missing entanglement links between cluster

qubits. The randomness is caused by the inability to deterministically entangle

photonic qubits [54].

Accounting for randomness in the structure of the cluster state causes a

significant increase in the complexity of a digital control system designed to

realise a measurement-based photonic quantum computer. This increase in

complexity is primarily due to the need to dynamically generate and perform

a suitable measurement pattern, compatible with the edges present in the

cluster state.

The design discussed in Chapter 3 was based on a scheme of photonic

MBQC containing almost no algorithmic complexity. However, even in that

case, producing and analysing a prototype control system design for simple

fixed measurement patterns was a non-trivial task, involving choices relating

to the clocking structure of the design, the optimal choice of I/O logic, and

the relative placement of different computational processes throughout the

photonic clock cycle. This level of detailed analysis was only possible because

decisions relating to the measurement patterns and implementation of MBQC

87



Chapter 5. Algorithmic overheads due to incomplete cluster states

were not required. For example, the two measurement patterns considered

were both fixed, and involved only simple Boolean logic calculations.

IMBQC, on the other hand, does not involve the same level of concrete-

ness in its specification. Initial proposals for MBQC-based photonic quantum

computing do not contain details regarding what control systems must be im-

plemented, in a form that electronic engineers can easily understand [13, 14].

Much subsequent work has focused on photonic aspects of the problem, par-

ticularly the generation of cluster states and architectural requirements [83].

Even recent works do not present results in a form that are easily amenable

to control system design, lacking information about exactly what operations

the classical control system is expected to perform, and what target electronic

hardware is required [16, 61]. Other research into “realistic” aspects of pho-

tonic quantum computing often adopt a software-focused approach1 [24], or

provide a variant of the scaling argument discussed in Chapter 2 [23]. There

are no specific conclusions relating to how the algorithms should be imple-

mented in hardware, or what concrete constraints these implementations may

impose on photonic quantum computing implementations.

The object of this chapter is to offer an alternative route to the investiga-

tion of control-system feasibility in these more complicated regimes. We adopt

the search-type strategies described in the context of cluster-state renormal-

isation by way of example [14, 23, 24], and present a concrete, fully spec-

ified, set of algorithms for implementing one-qubit gates in the presence of

an incomplete cluster state. In doing so, we define the problem in a sim-

ple diagrammatic manner, which should make the scheme understandable to

electronic engineers, or others who do not wish to become familiar with the

details of MBQC. In addition, we provide an open-source and verified library,

MBQCSIM, to emulate the system, and derive high-level timing constraints

that may follow from control systems that implement these algorithms.

In deriving timing constraints from emulation, the results strongly depend

on the implementation model under consideration, which describes what con-

trol system architecture is under investigation. An implementation model is

1By software focused, we mean that the feasibility of the algorithms discussed is justified
by efficient implementation on microprocessors. This is not valid, because microprocessors
are an entirely different type of device from the hardware which must be considered for
photonic control systems. Very simplistically, microprocessors are heavily optimised for high-
throughput of general purpose instructions, at the expense of exceptionally long interface-
latency. However, both throughput and latency must be simultaneously optimised in control
system design.
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necessary to define exactly what behaviour is within the scope of the emula-

tion, and specify the region of validity of the timing results. Here, we choose

to analyse the memory operations required by the algorithms we implement,

based on a simple implementation scheme that uses a ring buffer to store

cluster state and algorithm data. The model and assumptions underlying the

emulation are laid out in Appendix 5.1.3.

By taking this chapter as a starting point, it may be possible to design

a digital system in the manner presented in Chapters 3 and 4. However,

there are also many other variants of photonic quantum computing that may

be considered. As with earlier chapters, we aim to lay out an approach to

the analysis of control systems that may be applicable to other proposals for

photonic quantum computing.

Key points

Control systems for IMBQC are substantially complicated by the need

to dynamically generate measurement patterns onto a random cluster

state. This extra complexity must be emulated to assess the perfor-

mance of alternative algorithmic solutions to the problem. By provid-

ing an implementation model defining certain aspects of the control

system design, this emulation can be used to derive timing constraints

on control systems designed within the scope of the model.

In Chapter 6, we extend the simulation techniques developed in Chap-

ter 4 to obtain estimates for the logical qubit errors introduced by modulator

voltage noise for the emulated implementation we consider in this chapter.

5.1 Photonic MBQC using incomplete cluster

states

The simplified model of photonic MBQC (using an ideal cluster state) con-

sidered in Chapters 2 and 3 contains essential elements of any control system

design, for example, the need to encode measurement patterns, and imple-

ment them by setting modulator voltages and interpreting photon detector

outcomes. However, it is not possible to realise this simple system in practice,

due to the inability to deterministically perform a CZ gate between dual-rail

encoded photonic qubits – one of the factors that prevents the realisation of a
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simple gate-based photonic quantum computer in the first place [54]. Instead,

various mechanisms have been introduced to non-deterministically entangle

two photons; for example, fusion gates [13], or boosted fusion gates [15]. The

use of these gates is heralded, meaning that it is known whether the entan-

glement operation has succeeded or not.

Compared to Chapter 2, this means that it is not possible to lay out logical

qubits along rows in the cluster state; instead, they must be mapped to paths,

which track successful edges in the cluster state. This approach is called

renormalisation [83], where a large incomplete cluster state is course-grained

into blocks, each of which contains at least one “accessible” cluster qubit that

is connected to the accessible cluster qubits in surrounding blocks, via winding

paths. It has been shown that, depending on the randomness in the cluster

state and the size of the blocks, this process will always succeed in providing

a higher-level deterministic cluster state (where all edges – now paths – are

present) between accessible qubits [14].

Although of theoretical importance in establishing the possibility of us-

ing incomplete cluster states in photonic quantum computing, the conceptual

framework of renormalisation is not helpful for control system design. This

is because the primary processes – finding paths through cluster states, and

dynamically generating the measurement pattern – are not explicitly empha-

sised. A much more suitable approach is based on the explicit consideration

of algorithms used for pathfinding [23]. We extend these methods here to a

framework that can provide concrete timing constraints on hardware imple-

mentations of the algorithms required.

Therefore, the model of photonic quantum computing considered in the

remainder of this thesis is the following:

• Random cluster states. MBQC is realised using an incomplete 2D

cluster state, meaning one with random missing entanglement links be-

tween some qubits.

• Column-wise photon entanglement. Photons are produced one col-

umn at a time, as described in Chapter 2, using a black-box cluster-state

generator that may fail to entangle photons.

• Heralded entanglement. The mechanism that produces the entangle-

ment is heralded, meaning that it is known to the control system when

an edge is present and when it is not.
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5.1. Photonic MBQC using incomplete cluster states

• Fixed edge probability p. The probability of successful entanglement

is given by p, which is the same across the cluster state. Furthermore,

the presence or absence of the edges are independent from one another.

• No photon propagation loss. This means that the control system

may assume that heralded edges are valid, and will not change with

time2.

• Realise one-qubit gate paths. We are specifically interested in how

to realise arbitrary one-qubit gates, by dynamically generating a mea-

surement pattern that is mapped onto a path through the cluster state.

The primary addition to a control system in the model above is that there

are a new set of inputs, corresponding to which edges are present in the

cluster state. This may be seen as a new set of photon detectors outputs

feeding into the digital system in Figure 2.4 of Chapter 2, corresponding to

the heralded outputs from fusion gates. This data is produced when each

column is produced, and is stored for use by the digital implementation. We

will refer to the model of photonic MBQC described above as IMBQC (for

incomplete-cluster-state MBQC).

Key points

Renormalisation [14] is an important theoretical framework for

analysing the effect of non-deterministic entangling gates in MBQC.

However, the pertinent information relating to control system design

is what algorithms should be used to identify paths through cluster

states, and what algorithms should generate measurement patterns. An

overview of how cluster-state edge information can be used to generate

a one-qubit measurement patterns is described in Section 5.1.1.

5.1.1 Steps involved in implementing IMBQC

A high level summary of what is required for the implementation of the scheme

is shown in Figure 5.1. One immediate consequence of having an incomplete

cluster state is that multiple columns of photons must remain unmeasured

2If photons were lost, then this would remove any entanglement edges connected to that
photon, and remove the possibility of using these edges in paths.
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Figure 5.1: Diagram of the overall algorithm for implementing a single logical
qubit in photonic IMBQC, which is mapped to a winding path through the
cluster state. The incomplete cluster state is searched one block at a time
(shaded green), to establish a path for the qubit. The search process is de-
coupled from the path extension through the establishment of right-nodes on
the path (see Section 5.3). Once the path is established, the measurement
pattern is generated, taking account of qubits which must be cut out around
the path; then the left-most column of the block is measured out. In the im-
plementation considered here, data relating to the nodes in the shaded green
region is stored in a ring buffer, as described in Appendix 5.1.3.

simultaneously [23], shown as the shaded green region in Figure 5.1a. On the

right of this region, columns are generated, and the corresponding edge data

is recorded. On the left side, the column is measured in the dynamically gen-

erated measurement basis that is required for the realisation of the quantum

circuit. This may be seen as a generalisation of the control system presented

in Chapter 3, which only kept one column of photons in delay lines at any one

time, as described in Section 2.2.

The buffer window is necessary to ensure that the dynamic measurement

pattern, mapped to a path, can be propagated to the right as the cluster state

is generated, without hitting dead-ends. Throughout this chapter, this buffer

will be called the “block subwindow”, or just “block” for short3. As each new

3The “subwindow” terminology arises from how this aspect of the system is realised in
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column of photons is measured on the left, and a new column is added on

the right, the block moves one step to the right. Blocks are characterised by

their width B and starting column x. This block width is a very important

implementation parameter, because it determines how long a photon must be

delayed in the system before being measured. The block width can be related

directly to the timing constraints of the digital system implementation, for

example the memory latency, as we describe in Section 5.5.2.

Figure 5.1b shows the steps required to implement IMBQC using the block-

search method. In order to find a path, a search algorithm is required in the

current block. In order to separate the algorithm which performs the search

from the algorithm which extends the path based on the search results, we

make use of the concept of right-nodes, defined in Section 5.3. From this point

of view, the search algorithm may be replaced by any algorithm which outputs

right-nodes.

Many search algorithms have been considered for this purpose [14, 23, 24].

The main objective of this chapter is to take the simplest proposed search

algorithm – the breadth-first search (BFS) – and emulate a full implementation

of IMBQC based on this algorithmic choice. We consider two variants of

BFS, described in detail in Sections 5.4.1 and 5.4.2, and show that one has

extremely high algorithmic overhead, and the other does not succeed in finding

paths through the cluster state. In the process, we lay out a framework for

analysing algorithmic overheads in IMBQC, which may be used to analyse

other proposed algorithms for finding paths through incomplete cluster states.

Once a path extension has been obtained, the measurement pattern for

the one-qubit gate can be laid out along the path. A one-qubit measurement

pattern consists of a set of measurement bases along a path P through the

cluster state, together with a set of adaptive measurement setting dependen-

cies and byproduct operator update rules; and a set of Z-measurements on

cluster qubits which are connected to P via an edge. For example, the iden-

tity pattern (the pattern that would perform the identity gate on the logical

qubit) consists of a set of X measurements along the path P (shown in green

in Figure 5.1), and a set of Z-measurements on adjacent cluster qubits (shown

in red in Figure 5.1). There are no adaptive measurement setting dependen-

cies in this case; however, there are byproduct operator update rules which

the program described in Section 5.2; the terminology is kept throughout for the sake of
consistency.
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are described fully in Chapter 6.

In more complicated measurement patterns, for example, in a full imple-

mentation of renormalisation, consideration must also be paid to the interac-

tion between different logical qubit paths (or even more general measurement-

pattern constructs). In this chapter, only the implementation of one-qubit

paths is discussed. However, the same approach presented here is applicable

to other more advanced implementations.

Key points

A control system for IMBQC must use the edge data of the cluster state

to find a path, and map a measurement pattern onto it, in real time.

The steps to do this are shown in Figure 5.1. Compared to Chapter 2,

it is now necessary to store multiple columns of photons in delay lines.

The number of stored columns, B, is the origin of the timing constraints

we discuss in Section 5.5.2.

5.1.2 The need for hardware emulation of IMBQC

The complexity involved in implementing and analysing the trade-offs in all

the steps shown in Figure 5.1b, and how they relate to the timing character-

istics of the photonic system, means that the design of a prototype system for

IMBQC, of the kind presented in Chapter 3, is not immediately feasible. How-

ever, it is possible to undertake a prerequisite intermediate step, and analyse

what constraints may arise from generic classes of control system implemen-

tation. The object of this analysis is to narrow down the set of algorithmic

choices by ruling out those which impose more significant timing constraints

on the system. Two key components are required as the basis for this analysis:

• Implementation model. A specification defining how certain aspects

of the implementation will work, but without providing implementation

details such as a digital design of the subcomponents.

• Software emulation of the model. A simulation of the internal

behaviour of the implementation model, as a function of various design

choices, for the purpose of analysing how the design choices affect the

overall performance of the system.
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Emulation provides three key benefits. Firstly, it shows whether a par-

ticular proposal for a control system implementation of IMBQC will work,

in the sense of the verification described in Chapter 4. This verification is

much more complicated in the case of IMBQC based on Figure 5.1b than it

was in the simple model presented in Chapter 2, because of the diversity and

complexity of the algorithms involved.

Secondly, the emulation shows how the algorithms will perform in real-

istic operating conditions. We use this to derive timing constraints on the

behaviour of control system implementations in Section 5.5.2.

Finally, the design and implementation of the emulation4 provides a con-

crete written draft of all the steps involved in all the algorithms that must

be implemented in hardware. This may be taken as the starting point for

a hardware design written in a specific language such as Verilog or VHDL.

If the design is open source, it may serve as the starting point for others to

better appreciate the details involved in IMBQC implementation. Further-

more, once a hardware design is in place, the emulator may form the basis of

the functional verification of the hardware, using the techniques discussed in

Chapter 4.

In the next section, we describe explicitly the implementation model, based

on a ring buffer for storing the block, and provide an overview of how the

algorithms in Figure 5.1b map onto this model.

Key points

Emulation of IMBQC algorithms provides a framework for understand-

ing timing constraints due to various algorithmic choices, without need-

ing to implement the hardware realising the algorithms. To define the

scope of this analysis, an implementation model is necessary, which we

describe in the next section. The emulation of the model also provides

evidence that the algorithms work, and the source code may serve as

the basis for hardware design and functional verification.

4Note that this refers to the design of the emulator itself, not the design of the imple-
mentation model.
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Figure 5.2: Schematic representation of the ring-buffer implementation model
for IMBQC. Each entry in the ring buffer stores information relating to a
column of cluster qubit data. At the buffer head, edge data comprising entan-
glement success or failure is recorded as a new column of photons is generated.
The advantage of a ring buffer is that this data is only written once. At the
tail end, the buffer is reduced in size by one when a column is photons is mea-
sured out. The ring buffer also stores implementation specific secondary data
that may be required by the pathfinding and pattern generation algorithms
that are used.

5.1.3 The ring-buffer model of control system

implementation

This section contains an implementation model of IMBQC based on the use

of a ring buffer5 for storing block information. We focus here on the details

of the underlying data structure of the implementation, which provides the

basis for the analysis of memory related timing constraints in this chapter,

and the memory layout for the local measurement-pattern rules discussed in

Chapter 6.

A ring buffer is an implementation of a first in, first out (FIFO) data struc-

ture [84] which consists of a bounded buffer region whose ends are logically

5Also called a circular buffer.
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connected, as shown in Figure 5.2. The advantage of this structure is that it

may be implemented simply in hardware or software by utilising a contiguous

block of memory, and storing the next available location for writing (one past

the head in Figure 5.2), and the last valid location for reading (the tail).

When data is added to the buffer, the head is incremented once (advances

one position anticlockwise in Figure 5.2), and when data is read, tail is in-

cremented once. This way, old data is continually overwritten by new data,

and no error occurs provided that tail is always strictly in front of head.

The advantage of block-based IMBQC as shown in Figure 5.1a is that

the block is a fixed size, so the buffer need only be as large as the block

width (B+ 1, to account for the possibility of write-before-read). In addition,

even though the block subwindow logically moves to the right in Figure 5.1a,

appearing to require the rewriting of all data at each new block, the ring-

buffer model means that each column is only written once. Instead of moving

the data, the head and tail pointers are moved, and old column data is

overwritten by new column data as the head pointer moves anti-clockwise

around the buffer.

Each entry in the buffer shown in Figure 5.2 stores a column of block

information, and its associated data. This includes the vertical edge data for

that column, and the horizontal edge data connecting one column to the next.

We refer to this data as primary data, because any implementation of IMBQC

in this model must store this information6.

In addition to primary edge data, the buffer must also store local infor-

mation required by the implementation of the various algorithms required by

IMBQC. For example, path information may be stored locally as an offset from

one cluster-qubit node in the buffer to the cluster-qubit node which follows

it on the path. Or, the search algorithms may store information relating to

the search process, for example, cluster-qubit predecessors and distance data.

This information is algorithm specific, and we refer to it as secondary data.

Secondary data is also stored in the ring buffer, and consequently we im-

pose the following two conditions on the data:

• Locality. The data must be storable in the entries of the ring buffer,

which correspond to qubit positions in the block. Secondary data must

6Exactly how the data in the buffer is laid out, including alignment and data size, is an
implementation detail outside the scope of this implementation model. These kind of details
would be specified by a full hardware design of the kind discussed in Chapter 3.
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therefore be cast in a form that is local to cluster qubits.

• Homogeneity. The data structure must be the same at all cluster-qubit

positions in the ring buffer.

Both requirements are intended to simplify a hardware realisation of the

implementation model as much as possible. The first requirement removes the

need to consider another data structure in addition to the ring buffer for the

storage of secondary data. The second requirement guarantees straightforward

alignment of the ring buffer in memory (by requiring that each buffer location

be the same size), which ensures that hardware logic for processing buffer

entries does not have to depend on which entry is being read.

Key points

The ring buffer contains primary data consisting of cluster-state edge

data, which is required for all algorithms. Algorithm specific data (aris-

ing from the search process or the pattern generation process) is con-

tained in secondary data. Conditions are imposed on this secondary

data to ensure that it fits in the ring buffer and does not impose un-

wieldy implementation constraints.

5.2 Overall design of MBQCSIM

This section describes the design of MBQCSIM, which is a C++ library to-

gether with associated analysis software for the ring-buffer implementation

model described in Appendix 5.1.3. The design goals of MBQCSIM are as

follows:

• Open source, so that the design is available for others to analyse and

use.

• Modular, so that it is straightforward to plug in different algorithms

for analysis.

• Tested and verified, so that there is some assurance that the program

works correctly and the results are valid.
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Figure 5.3: Block diagram of the design of MBQCSIM. The library contains
two parts: a C++ library, which contains the main framework for emulating
and simulating MBQC systems; and a python interface for easily analysing
the data produced by two example executables: pathf, and esim (described
in this chapter and the next). Regions shaded in green predominantly relate
to the emulation of pathfinding algorithms, and regions shaded red relate to
the simulation of the quantum aspects of the MBQC system. Regions shaded
in blue are generic aspects of the program. The locations where randomness
is used in the program is indicated by the location of the four seeds. The thick
red line shows the sequence of operations that are performed on a given block.

• Reproducible, so that it produces the same results in different en-

vironments, and edge cases in program behaviour can be isolated and

analysed.

The design of this system is provided schematically in Figure 5.3. The
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diagram shows a high-level overview of how the program is constructed. At

the lower levels is a C++ library that contains utilities for modelling a rect-

angular window of cluster qubits, and provides a facility for obtaining block

subwindows that model the data in the ring buffer at any one time. Based

on these components, the C++ library contains an emulation of the search

and path extension algorithms (shaded green in the diagram), which can be

run via the program pathf. For the purpose of analysing the effect of noise

in the system, the library provides a full quantum simulation of the resulting

measurement pattern for a one-qubit path (shaded in red), which is exposed

through the program esim. This latter aspect of the program is discussed

fully in Chapter 6.

In order to make output from the library reproducible, every element of the

program that models randomness is controlled using a seed, which uniquely

defines the random numbers that it will generate. The programs pathf and

esim are accessed via python wrappers, which manage the seeds necessary for

running the library components that involve randomness, which is described

fully in Appendix B.2. These wrappers take arguments that configure various

parameters that control the library components, such as the block width B,

the search algorithm used, and a root seed which uniquely defines the results

from the experiment.

Instead of running the program wrappers directly with fixed parameters,

it is more useful to automatically be able to run multiple versions of the

program, sweeping over various parameters (such as edge probability p, or

block width B). This functionality is provided by the multiparameter sweep

near the top of Figure 5.3, which aggregates the results from multiple calls

to pathf or esim into one dataset. Based on this sweeping function, it is

possible to define various experiments that answer specific questions relating

to the implementation model (for example, how many memory operations

occur, as a function of algorithm and parameter choices). The ellipsis is meant

to indicate that the user of the library can write their own experiments.

MBQCSIM has been designed with correctness in mind, rather than per-

formance7. Partly as a result of this, and partly due to the intrinsic complex-

ity of the program (especially the quantum simulation), the running time of

7High performance is a long term goal, and the reason for choosing C++ as the language
for library implementation. However, many decisions designed to enforce correctness (for
example, the often redundant use of internal program checks) harm performance. These will
be removed once correctness is fully established.
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pathf and esim can be quite long. To mitigate this, the multiparameter sweep

caches results that have been previously performed. This is possible because

the random behaviour of an instance of the program is uniquely defined by

a seed, which can be used to reproduce exactly the same results. Providing

this caching function makes it easy to decouple the running of the experiment

from the subsequent data analysis.

Source-code reference: MBQCSIM

All the source code for the C++ library of MBQCSIM is contained

in the src/ folder. Throughout the following sections, we will

point out where important parts of the program are implemented

by referencing files in this folder. The Python library is located in

scripts/py mbqcsim/.

5.3 Path extension using right-nodes

An important design feature of MBQCSIM is the potential to easily imple-

ment different algorithms in order to see how they perform. For this to make

sense, some kind of separation must be imposed between different algorithms.

One such separation is between the search process, which establishes potential

paths through a block, and the algorithm which extends the path. This sep-

aration is enforced by the calculation of right-nodes, discussed in Section 5.4.

Here, we discuss how right-nodes are used to extend the path. In addition,

right-nodes constitute one way to mitigate against problems caused by back-

tracking (when the path doubles back on itself).

Given a starting point for the path in column x, the path must be extended

to column x + 1. After the path has been extended, column x is measured

out, meaning the path may not re-enter column x (which no longer exists).

In order to avoid this re-entry, the path must be advanced to a right-node in

column x+ 1, defined below:

Definition 1 (Right-node). Given a path P comprising a sequence of edge-

connected nodes ((x0, y0), (x1, y1), . . . , (xN , yN )) in a 2D cluster state, a right-

node in column x is a node (xn, yn) in P which satisfies two conditions:

1. xn = x;
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Chapter 5. Algorithmic overheads due to incomplete cluster states

2. xm ≥ x for all m > n.

The (unique) minimal right-node in column x is the right-node (xn, yn) that

minimises n.

A right-node in column x has the property that all path successors lie

in or to the right of column x. This condition is what is needed to ensure

that a path does not backtrack into the region of the graph that has been

measured out. Right-nodes have been considered implicitly in the context of

pathfinding [23]. In MBQCSIM, the calculation is made explicit, and the cost

of the calculation is explicitly quantified.

The importance of avoiding backtracking is not related to the requirement

to time-order adaptive measurement settings and outcomes in the measure-

ment pattern. For example, the identity pattern, which consists entirely of X

and Z measurements, does not have any adaptive measurement dependencies,

and therefore may be measured in any order (including an order which splits

the path in two due to backtracking). Instead, backtracking must be avoided

in order to prevent the “false dead-end” that would arise if an undiscovered

part of the future path happens to backtrack into the measured region of the

window. In this case, because the path has not yet been uncovered, it would

not have been possible to assign X and Z measurements at all before the

measurement occurs.

A path can be extended to a right-node by following the algorithm laid

out in Figure 5.4. The algorithm is quite simple, and involves stepping along

the path until a right-node is reached in the target column, making random

choices at any potential branch points in the path. (There are many alterna-

tive approaches to random choice which we do not consider here [23].) The

procedure requires that the search algorithms, described in Section 5.4, store

potential path successors for each qubit, and compute right nodes along each

of these potential paths.

The separation of the path extension from the calculation search process

(or equivalent algorithm) places a restriction on the types of algorithms which

may be modelled using MBQCSIM. For example, an algorithm which non-

trivially combines the search process with the path extension does not fit

within this framework. Analysing these more complex scenarios falls outside

the scope of this investigation into the implementation of IMBQC.
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Start at node n

n has a
successor?

No viable path

Select a suc-
cessor m of n

m in next
column?

n = m

m a
right-node? Path extension found

no

yes

no

yes

no yes

Figure 5.4: Algorithm for extending the path to a right node in the next
column.

Figure 5.5 shows example output from the program, where right-nodes

are highlighted on the diagram as arrows pointing to the right (instead of

dots). Minimal right-nodes are highlighted in red. The utility of right-nodes

in preventing backtracking is highlighted in the path extension from (6, 6) to

(7, 3), where the path progresses two columns forward, before returning to

column x = 6 and eventually terminating on the right node (7, 3).

Key points

When a one-qubit path is advanced forward one column, it is important

to progress to a right-node in the target column, so that all of the

forward path lies in the region that will remain after the column to the

left is measured out. The calculation of right nodes is the output from

the search algorithm, and the input to the path extension algorithm

(see Figure 5.4). This separation is important for the modular design

of MBQCSIM, and enables the independent modification of both these

algorithms.
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(6, 6)

(7, 3)

Figure 5.5: Program output showing example right-nodes along a path. The
path is extended one column at a time by progressing from one right node (the
red highlighted nodes) to the next. Sometimes this involves backtracking, as
shown in the path extension from (6, 6) to (7, 3).

5.4 Search algorithm implementation

This section contains a detailed description of the two block-search algorithms

implemented in MBQCSIM. The purpose of the algorithms is to write path

successors and calculate right-nodes for use in the path extension algorithm.

The GBFS algorithm is a standard proposal for how to perform pathfinding

in the context of photonic MBQC [14, 23]. It comprises a fresh BFS of the

block subwindow at each photonic clock cycle, for the purpose of establishing

viable path extensions8. The number of operations involved in the algorithm

is large, because most of the block must be visited by the algorithm during

each cycle. In addition, most of the search appears to be repeated, because

the block does not change much from one photonic cycle to the next.

The simplest possible improvement that can be made to GBFS is to at-

tempt to re-use some of the search data that is already present in the ring-

buffer after the previous search has completed. This is the spirit of the IBFS

algorithm (the use of “incremental” is supposed to indicate that each search

builds upon the previous one). Although the operation count is significantly

reduced compared to GBFS, the algorithm is more complicated, and a number

8The use of the word “global” is meant to indicate this full search process.

104



5.4. Search algorithm implementation

of defects in the implementation presented here cause it to fail. The resolution

of these defects, along with a thorough analysis of this class of algorithms, may

help to find an optimal solution for the block-search approach to IMBQC.

Key points

There are many other potential methods for finding paths through clus-

ter states, other than using search algorithms based on the BFS. For

example, one option would be to simply use a heuristic-based guess

to establish path extensions. This multiplicity of algorithmic choices

is part of the reason why a digital control system design cannot be

immediately presented for IMBQC. The goal of MBQCSIM is to pro-

vide concrete algorithms for the search-based approach, described in

the following sections, which is an established proposal for dealing with

incomplete cluster state [14, 23].

5.4.1 Global breadth-first search

The GBFS algorithm is shown in Figure 5.6. The algorithm begins after a new

column of photons has been generated, and edge data has been recorded in

the ring buffer. It comprises a forward search over the nodes in the ring buffer,

which calculates distance and predecessor information (described below), fol-

lowed by a reverse pass which calculates the successors (that form candidates

for the path extensions) and the right-nodes. This information constitutes the

secondary data, which must be stored at each node in the ring buffer. The

data used by GBFS is summarised in Table 5.1.

Source-code reference: MBQCSIM

The implementation of GBFS is contained in global-bfs.hpp. In the

class GBFS, the search method performs the forward pass, and the

makeSPT (make shortest-path tree) method performs the reverse pass.

The class counts the memory operations that are performed as the

algorithm is executed, which forms the basis for the timing analysis in

Section 5.5.
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Forward pass Reverse pass

Start at block x,
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search data

Push (x, y) to Q

Q empty?
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n has
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Done
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Figure 5.6: Flowchart outlining the GBFS algorithm.

Breadth-first search

The first step of the algorithm is a BFS. The BFS begins at the last node on

the path (x, y). First, the algorithm must reset all the secondary data (see

Table 5.1) in the ring buffer, which constitutes temporary information from

one photonic cycle to the next.
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Data Meaning

Distance The distance from the root node to
node n

Predecessor The unique BFS predecessor of n
Inaccessible flag (IBFS only) A Boolean flag to indicate whether n is

an inaccessible exit node
Right-node flag A Boolean flag to indicate whether n is

a right-node
Successors The set of successors of n

Table 5.1: Secondary data required for the implementation of GBFS and
IBFS. In traversing the graph forwards from the starting node, the distance
to each node is recorded. In addition, each node apart from the starting node
stores a predecessor, the node from which it was visited. These predecessors
are reversed to generate a successor set for each node, which is used in the
path extension algorithm (see Figure 5.4). Finally, a flag is used to indicate
whether a given node is a right node. For IBFS, an additional flag is required
as part of the failed-path pruning step.

Next, a standard implementation of the BFS algorithm [85] is used to con-

struct a tree of predecessors, and each node is assigned a distance d that is

one greater than its predecessor. Although distance is not important in this

context (any path is desired, not only shortest-paths), the distance cannot be

removed because it is a proxy for whether or not a node has been visited:

initially, all nodes have distance −1, and as the algorithm progresses, nodes

whose distances are not −1 are taken to be visited. (The distance may, how-

ever, be replaced with a visited/un-visited flag.) A queue (FIFO) structure Q

is used to maintain the breadth-first order of traversal of the nodes.

Key points

GBFS uses a standard implementation of the BFS algorithm to generate

a tree of predecessors. However, these predecessors cannot be used by

the path extension algorithm, because they “point the wrong way”.

Instead, a reverse pass over this tree is necessary to obtain potential

path successors, as described below.
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Reverse pass and right-node calculation

The tree of predecessors is used in the reverse pass of the algorithm to iterate

from exit nodes (visited nodes in the right-most column of the block) back

to the root node. At each node, the predecessor relationship is recast as

a successor relationship, which forms the basis for path extensions. It is

important to note that this step cannot be optimised away – it is not possible

to obtain path extensions using local predecessor information, because there

is no (local) way to obtain viable successors from a given node, based only

on the predecessors information. The right-node along each potential path is

computed by marking the first node encountered in column x+ 1 during the

reverse pass. Since the potential path is being traversed backwards, the first

node encountered in a given column is guaranteed to be a right-node for that

path.

Performance problems in GBFS

The performance issue involved in GBFS is immediately apparent from the

algorithm. First, secondary data for all the nodes must be unconditionally

cleared at the beginning of the algorithm, resulting in a lower bound of HB

writes to those memory locations. Then, with high probability (depending

on the edge probability p), a high proportion of the block nodes are visited

again and assigned predecessor and successor information, much of which likely

duplicates the data that was already there before it was cleared. All these

writes have to happen in the timescale of a single photonic clock cycle.

This is the primary motivation for developing an alternative, such as the

IBFS algorithm in the next section. However, as we show, such an attempt is

fraught with problems, that will likely require detailed analysis of these types

of algorithms to overcome.

5.4.2 Incremental breadth-first search

The IBFS algorithm is the simplest possible attempt to remove the main

defect of GBFS – the resetting of all the search data at the beginning of each

new clock cycle. The algorithm begins after a new column of photons has

been generated, and edge data has been recorded. However, this time, only

the region between the penultimate column and the right-most column of the

block is searched. This represents a significant reduction in search complexity
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Figure 5.7: Flowchart outlining the IBFS algorithm.

compared to the full search in the GBFS algorithm. However, as a result of

keeping the data from previous searches, several changes must be made in the

reverse pass of the algorithm.

The IBFS algorithm is shown in Figure 5.7, and described in the sections

below. Secondary data used in IBFS is shown in Table 5.1. This data includes

a new flag, to mark when an exit node becomes inaccessible. This relates to

the main new feature of IBFS compared to GBFS – the need to prune failed
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paths.

Key points

By not clearing the secondary data at the start of each iteration, IBFS

encounters a problem relating to paths that become invalid when a new

column of photons is added. In the simplest possible case, this occurs

when a path is not connected to the final (new) column of photons, and

is therefore a dead-end. This type of path is called a failed path. In

order to prevent the path extension algorithm from using one of these

failed paths, it is necessary to remove them – this pruning process

must be incorporated into the reverse pass of the algorithm, shown in

Figure 5.7.

Source-code reference: MBQCSIM

The implementation of IBFS is contained in iterative-bfs.hppa. The

search of method of the IBFS class performs the forward pass, and

makeSPT performs the reverse pass, including pruning failed paths.

aThe name “iterative” instead of “incremental” is a misnomer that will be cor-
rected in a future version of the source code.

Incremental breadth-first search

The implementation of BFS in this algorithm is quite similar to the version in

GBFS, with a few differences. Firstly, it is not necessary to reset the secondary

data in the ring buffer, because the main purpose of IBFS is to use this data.

Secondly, the BFS does not start with just one root node; instead, it begins

with all the exit nodes from the previous block. These are the visited nodes

that were in the right-most column of the previous block, and are now in

the penultimate column due to the newly added column of photons. These

nodes are already assumed to be in the queue from the previous iteration

of the algorithm9. This behaviour best exhibits the incremental nature of

9For simplicity, we do not consider in detail how all the edge-cases for these algorithms are
implemented (for example, the initial block and final block of the window). The interested
reader should consult the code for MBQCSIM, which is publicly available.
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the algorithm – the starting state for this algorithm would only occur in the

middle of the regular BFS algorithm.

As a result of the need to begin each iteration with the queue populated

by exit nodes, it is necessary to fill Q with the exit nodes at the end of the

search process. This is achieved by looping over the right-most column of the

block and pushing any visited node to the queue.

Although it would appear that IBFS performs an identical search process

to GBFS, albeit over several photonic clock cycles instead of one, the two al-

gorithms are not equivalent. Not only may they produce different predecessor

relationships, it is not even necessarily the case that they will assign the same

distances to nodes10. This is because a newly added column on the right may

expose a shorter path to an already visited node inside the block. Because

nodes are only ever visited once, the distance data is not rewritten. This is

not a problem, because shortest paths are not an important criterion for this

implementation of IMBQC. However, it exhibits a type of effect that occurs

because secondary data is not being overwritten in the block.

What is a much more of a problem is the possibility that a path may be

invalidated when a new column is added – for example, if it turns out that path

leads to a dead-end. This problem is addressed in the section on failed-path

pruning below.

Key points

Although it appears that the IBFS and GBFS algorithm perform equiv-

alent BFS search processes, this is not the case: IBFS may not output

shortest paths, because of the requirement that each node is only ever

visited once (in contrast, in GBFS, nodes are visited at most once per

photonic clock cycle).

Reverse pass and right-node calculation

Like the GBFS algorithm, it is necessary to perform a reverse pass over the

block in order to establish right nodes. Due to the incremental nature of the

10In the regular BFS, the distances to the nodes are invariant, whereas the predecessor
relationships are implementation defined. This is because there is only one minimum distance
to each node, and BFS finds it. However, there may be multiple shortest paths, and BFS
finds one valid shortest-path tree.
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algorithm, it is only necessary to traverse the predecessor paths up to an exit

node in column x + B − 2 (the penultimate column), on the grounds that a

previous iteration of IBFS will have established successor information before

that point.

However, it is not possible to compute right-nodes in this way. Although

one could try to establish right-nodes in column x+B−2, by marking the first

node in column x+B− 2 a right node, this will not work, because it is highly

likely the path may backtrack into the left region of the block via a path not

yet visible to the algorithm (because those photonic columns have not been

created yet). As a general rule, it is best to calculate right-nodes at the left

side of the block, because this maximises the forward path length on which the

right node is based. Therefore, it is still necessary to make at least one reverse

pass over the entire block, even though no full forward pass is necessary. This

is still a substantial saving compared to GBFS, because the reverse pass only

involves checking for right nodes, not writing all the successor information.

Key points

Even though IBFS only requires a relatively short forward pass, it is

still necessary to perform a full reverse pass (to the left side of the

block), in order to compute right-nodes correctly.

Failed-path pruning

The most important new part of the algorithm is the need to prune failed

paths. Failed paths arise because a string of successors established during

the searching of block x may become invalid when block x+ 1 is searched, if

the path leads to a dead-end. This cannot happen in the GBFS algorithm,

because all data is reset at the start of each block search.

To establish failed paths, it is necessary to establish failed exit nodes.

These are exit nodes in the penultimate column that have not lead to exit

nodes in the right-most column. These exit nodes are easily established as

part of the reverse pass. First, any exit node in the penultimate column

encountered during the reverse pass is marked as accessible. Then, after the

reverse pass is complete, one loop over the penultimate column can be used

to check which exit nodes have not been marked as accessible – these are the
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Breadth-first search predecessors

Reverse path tree subset

Selected path subset

Figure 5.8: Diagram showing the most common failure case in the IBFS al-
gorithm. Even though the path can clearly be extended, the algorithm is not
able to extend the path because it cannot “see” a way around the dead-end
(the reverse-path tree is missing valid edges that could be used in the path).
The problem is due to the inability of IBFS to re-write the path predecessors
more than once.

failed exit nodes.

Once failed exit nodes have been established, a final reverse pass of the

block can be used to prune any successor paths that lead to these failed exit

nodes. This is achieved by deleting the successor from the root of any tree

which only leads to successor nodes. In MBQCSIM, this is achieved by it-

erating through predecessors until a node is discovered with more than one

successor. The successor pointing to the failed exit is then removed, meaning

that the path extension process will not incorrectly follow this path.

Other failure cases

There are a number of other subtle issues that arise in the implementation of

IBFS. The one that ultimately causes the version of the algorithm presented

here to fail is shown in Figure 5.8.

This failure case occurs when BFS finds a horizontal path through a fully

connected region of cluster state. In this case, along this section, all path

predecessors point backwards to the left. If a column is reached that is missing
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a horizontal segment to extend this path, then IBFS will fail, even though the

path could extend up or down in order to circumvent the missing horizontal

link. This failure occurs because the BFS algorithm does not “know” about

edges above and below the horizontal line, that it could use to avoid this

missing edge, because it cannot revisit the nodes along the path from different

directions.

This deficiency dramatically reduces the effectiveness of the IBFS algo-

rithm, as we show in Section 5.5.2. A solution to this problem would require

a modification to the BFS process. Whatever modification is necessary may

increase the algorithmic complexity of the solution to a level comparable with

GBFS.

Key points

The IBFS algorithm is less costly than GBFS, in the sense that it uses

fewer memory operations. However, it is more complicated, due to the

need to incorporate failed path pruning, and contains some subtle fail-

ure modes which render it ineffective for pathfinding in IMBQC. How-

ever, it may be possible to modify IBFS in order to fix these deficiencies.

Given the extremely high overhead of GBFS (shown in Section 5.5), al-

gorithms such as IBFS are more promising contenders for search-based

approaches to IMBQC.

Next steps

A potential starting point for improving IBFS may be to add a limited

depth- or breadth-first search process just after the detection of an

inaccessible exit, in the right-hand column of Figure 5.7, to discover if

there are any local edges that could be used to reconnect the node to a

successful path. This might eliminate, or mitigate, the main issue that

causes IBFS to fail.

5.5 Analysing algorithm performance using pathf

In this section, we use results from the program pathf to draw conclusions

about the behaviour of the GBFS and IBFS algorithms, as a function of
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Figure 5.9: Average maximum path depth achieved using GBFS, as a func-
tion of the block width parameter (given in the legend), for cluster states with
varying edge probabilities. The graph shows that the block width has a sig-
nificant impact of the achievable depth, but there is limited benefit available
from arbitrarily increasing the block width. The upper bound depth 2000
is due to only simulating cluster states of width 2000. The vertical dashed
line shows the edge probability achieved by using boosted type-II fusion gates
to generate the cluster state. This line may be used to establish what block
width is necessary to achieve a particular target depth.

implementation parameters such as the block width B and edge probability

p. The primary objective is to show whether the algorithms presented in

the previous sections work, and derive timing constraints on implementations

based on the ring-buffer model discussed in Appendix 5.1.3.

5.5.1 Average maximum path depth

A straightforward metric for whether a pathfinding algorithm works is whether

it is able to find paths to a requisite depth. We show here that GBFS is very

successful at finding these paths, and IBFS is not. These results support

the conclusions drawn in a previous numerical simulation of pathfinding algo-

rithms [23].

Figure 5.9 shows the maximum path depth (obtained as the average of

1000 repeated simulations for each parameter combination) using GBFS, as

a function of cluster-state edge probability, and block width B (shown in the
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legend), in a cluster state of width 2000 and height 20. It is clear that both the

block width and the edge probability strongly affect the maximum path depth.

As the edge probability increases, the average path length increases. Similarly,

as the block width increases, the average path length also increases strongly,

but limited improvement is obtained at much higher block widths > 10. The

initial vertical position of the path was not found to affect the probability of

finding paths substantially, provided it is near the middle. When it is near

the edges, there is slightly less freedom for finding paths in one direction or

the other. For all experiments, the path was initiated at row 10, roughly

halfway up the 2D grid. For a working algorithm like GBFS, the probability

of finding paths through any given block is very high when the percolation

threshold (p = 0.5) is exceeded, in line with general results on percolation

through incomplete graphs [23]. However, the slight chance of failing to find

a path becomes more pronounced as more blocks are searched, as shown in

Figure 5.9.

Key points

GBFS is substantially better than IBFS at finding paths through in-

complete cluster states. However, the ability to find paths also strongly

depends on the edge probability p (a property of the cluster state), and

the block width B. For GBFS, a block width of B = 5 is sufficient

to obtain an average maximum path length of 1000, for a cluster state

with edge probability p = 0.75 (arising from the use of boosted type-II

fusion gates).

Figure 5.10 shows the same analysis performed using IBFS. It is clear that

IBFS is significantly worse at finding long paths, although it does not fail

altogether. There is a slight dependence of the maximum path length on the

block size, but this is much less marked than with GBFS. As the edge prob-

ability approaches one, the average path length increases substantially as the

search process enters a degenerate state that succeeds with unit probability.

5.5.2 Algorithmic overhead of pathfinding

The main purpose of MBQCSIM is to emulate the block-search algorithms

discussed in Section 5.4, for the purpose of placing timing constraints on the
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Figure 5.10: Average maximum path depth achieved using IBFS, as a function
of the block width parameter (given in the legend), for cluster states with
varying edge probabilities. The graph shows that the IBFS algorithm performs
substantially worse than GBFS for nearly all edge probabilities, due to the
limitations outlined in Section 5.4.2. (For a correctly working algorithm, the
expected behaviour is a family of phase-transition-like curves showing longer
paths above the percolation threshold p = 0.5, as shown in Figure 5.9.) This
experiment was performed alongside GBFS using the same cluster state width
2000.

ring-buffer implementation model described in Appendix 5.1.3. This section

contains the results of this analysis.

Figure 5.11 shows the average number of predecessor writes that are made

during each block search using the GBFS algorithm, while searching a cluster

state of height 20, and varying block width B and edge probability p. This

number includes the initial reset of the block, which contributes HB predeces-

sor writes. As the edge probability approaches 1, the number of predecessors

approaches the maximum 2HB, where all nodes in the block are visited by

the BFS algorithm.

The y-axis of Figure 5.11 may be interpreted in the context of memory

latency for a target memory technology used to implement the ring buffer.

In the implementation discussed here, the memory accesses are performed

sequentially, and must all be completed within the photonic clock cycle. If

the photonic clock cycle is Tp, and the average number of predecessor writes
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Figure 5.11: Average number of predecessors written to memory during each
block search process when using GBFS. At lower edge probabilities, fewer
predecessors are written because less of the block may be accessible. As the
edge probability increases, the number of predecessors written approaches
2HB, where H is the cluster height and B is the block width. The factor
of two is due to the need to clear the ring buffer at the start of the search
process.

per block-search is Wpred, then the average maximum acceptable memory

write time twrite is given by

twrite =
Tp

Wpred
(5.1)

For example, if the photonic cycle time is 1 ns (the same as that considered in

Chapter 3), and the edge probability p is taken as the type-II fusion probability

(75 %), then a block width of B = 5 (required to achieve a path depth of

approximately 1000, from Figure 5.9) would lead to a maximum acceptable

write time of twrite = 5 ps. This is an extremely tight timescale in which to

achieve a memory write in a digital system.

Taking the FPGA used for the design in Chapter 3 as an example, memory

switching times for distributed RAM are on the order of 0.5 ns [67] – two

orders of magnitude too slow for the implementation of the GBFS algorithm

discussed here. This means that it would likely not be feasible to implement
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Figure 5.12: Average number of predecessors written to memory during each
block search process when using IBFS. Compared to GBFS, the predecessor-
write-overhead is substantially reduced. At higher edge probabilities, the av-
erage number of distance writes is equal to H (the cluster height, fixed at 20
in this experiment), and does not scale with the block width. This is because,
on average, only the final column of the block is searched in each IBFS block
search process. As the edge probability decreases, the memory overhead in-
creases, because there is a chance that the search process will have to visit
previously inaccessible columns in the inner part of the block, that has been
made available by the addition of new edges in the final column.

the ring-buffer-based control system using this FPGA; a higher performance

device would be required.

For the GBFS algorithm, in the limit of high edge probabilities (the asymp-

tote visible at each block width in Figure 5.11), it is possible to provide a spe-

cific formula for the maximum acceptable latency, in terms of implementation

parameters of the system:

twrite ≈
Tp

2BH
, (5.2)

where H is the cluster-state height and B is the block width.

Figure 5.12 shows the number of predecessor writes for the IBFS algorithm.

It is immediately clear that the number of memory writes is significantly

reduced, and does not scale with the block width. If the IBFS can be modified
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Figure 5.13: Average number of failed exit nodes per column using IBFS, as
a proportion of the cluster height H, which determines how many paths must
be pruned from the reverse path tree.

such that it also produces paths with an acceptable average depth, then this

algorithm would be a substantial improvement upon GBFS.

Performing the same calculation as before, the IBFS algorithm would lead

to a maximum acceptable memory write time of twrite = 50 ps. This is still an

extremely tight timing constraint, but a substantial improvement compared

to the 5 ps of GBFS.

Key points

For the GBFS algorithm, a reasonable choice of algorithmic parameters

combined with a photonic cycle time Tp = 1 ns leads to a target mem-

ory latency for writing ring-buffer entries of 5 ps. However, for IBFS,

the corresponding memory latency is 50 ps. This order of magnitude

improvement shows that algorithms like IBFS are much better candi-

dates for control systems for IMBQC. The speed at which these control

systems may have to operate underlines the importance of carefully

analysing these timing constraints in the presence of a concrete specifi-

cation for the algorithms involved in photonic quantum computing.

Figure 5.13 shows a further example of the type of analysis that can be
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performed using an emulation system such as MBQCSIM. The graph shows

the number of failed exit nodes, as a proportion of the cluster-state height H,

which directly translates to the number of paths that need to be pruned from

the set of potential path extensions. At high edge probabilities, very few of

the exit nodes fail, because there are a very high proportion of edges, meaning

that path extensions can be easily found. However, as the edge probability

decreases below approximately p = 0.6, the decrease in the proportion of

failed nodes is likely caused by a lack of paths through the block. These

two effects compete to produce the maximum in Figure 5.13. At very low

edge probability, near p = 0.5, the high variability is caused by the relatively

few number of search processes which results in any paths at all (near the

percolation threshold).

5.6 Conclusion

In the case of IMBQC, which involves significant algorithmic complexity, con-

trol system emulation is necessary before hardware design in order to investi-

gate trade-offs between the performance of different types of algorithms. For

example, algorithms such as IBFS are better candidates for implementation

that GBFS, relaxing timing constraints on the photonic quantum computer

by approximately an order of magnitude. However, thorough analysis is re-

quired to remove subtle issues from the behaviour of this algorithm in order

to achieve the same performance as GBFS.

In emulating the system, we specified an implementation model based on a

ring buffer. The main feature of this model is that it minimises copying of the

data in the buffer when new columns of photons are added. It also provides

a simple framework to begin the study of photonic control system emulation.

An implementation model is necessary in order to define the scope of validity

of the emulation, and provide a starting point for control system architecture

design in the more complicated setting involving incomplete cluster states.

The emulation conducted in this chapter was achieved through the use

of MBQCSIM, a modular, open source, reproducible, and tested C++ and

python library for the investigation of control system implementations for

photonic quantum computing. The implementations in MBQCSIM may be

taken as the starting point for hardware designs, written in VHDL or Verilog,

that implement the block-search based algorithms discussed in this chapter.
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Chapter 5. Algorithmic overheads due to incomplete cluster states

As we describe in the next chapter, MBQCSIM also performs the dynamic

pattern generation and quantum simulation of one-qubit gates. The dynamic

pattern generation is an important component of the control system, and must

also be emulated. We leave this emulation as future work.

The FPGA used for the design in Chapter 3 is approximately an order of

magnitude too slow for the implementation of the IBFS algorithm discussed

here. True timing constraints relating to these algorithms can only be obtained

using static timing analysis from an actual prototype hardware design, likely

using a higher performance device. This chapter is intended to lay some of

the groundwork for this kind of design.
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Chapter 6

Dynamic measurement

pattern generation and

analysis of analog voltage

noise

In the previous chapter, a number of algorithms for finding logical one-qubit

paths through incomplete cluster states were presented and emulated, for

the purpose of placing timing constraints on digital implementations of these

algorithms. This analysis was performed by the library MBQCSIM, which was

designed for the purpose of analysing implementations of IMBQC (MBQC on

incomplete cluster states).

In this chapter, we describe the other half of the system required for the

simulation of one-qubit gates in IMBQC: how the measurement pattern along

a path is dynamically generated, and how this pattern may be implemented

within the context of the ring-buffer model (see Appendix 5.1.3). We describe

local rules for storing the measurement pattern in the secondary data of the

ring buffer, and describe how to simulate and verify the functionality of the

measurement pattern. This lays the groundwork for an emulation of these

algorithms for the purpose of deriving timing constraints. However, we do

not perform this emulation here; instead, we show how the simulation and

verification can be used to investigate how modulator voltage noise affects the

fidelity of a one-qubit identity pattern, found using GBFS, as a function of

time (path depth).
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This kind of simulation may be seen as the emulation of a different real-

istic aspect of the system. Throughout the thesis, we have focused on how

the algorithms involved in MBQC impose timing constraints on the photonic

quantum computer. However, in this chapter, we show how non-idealities of

the analog electronics in the system may impose other kinds of constraints on

the performance of the quantum computer; in particular, limiting the fidelity

of one-qubit operations. The techniques presented here may be extended to

the analysis of other proposed architectures for photonic quantum computing,

particularly involving error correction [16], in order to investigate how realistic

errors in the control system electronics affects the performance of the system.

6.1 Effect of non-idealities in MBQC circuits

The advantage of having a working pattern verification system, which is the

basis of the results in Section 6.6, is the ability to investigate how various

non-idealities in the system affect the operation of the quantum computer.

These non-idealities may be introduced by modifying parts of the system to

behave slightly incorrectly, and then seeing how this affects the fidelity of the

output state from the system. Example non-idealities include:

• Analog voltage noise that causes slightly wrong basis settings in mod-

ulators. This type of noise may arise from electrical interference or cross-

talk in the analog electronics driving the modulators. If the modulators

cause slightly inaccurate measurement bases, then the measurement pat-

tern will not quite produce the right result.

• Photon loss that may lead to loss of entanglement in the cluster state,

or an inaccurate record of the entanglement present in the ring buffer.

• Detector errors that lead to inaccurate measurement outcome infor-

mation, and consequently errors in the processing of adaptive measure-

ment settings and byproduct operators.

We take the study of the first non-ideality, modulator noise, as the goal for

this chapter. The other two sources of errors are beyond the scope of this

introductory analysis, because they introduce the need for error correction in

either the measurement patterns, or fault tolerance in the cluster-state gen-

eration. These effects require a redesign of the search algorithms presented
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6.2. One-qubit measurement patterns in incomplete cluster states

in Chapter 5, and potentially require the consideration of a different type

of architecture for photonic quantum computing [16]. However, these non-

idealities can be addressed using the same methods we present in this chapter

– by designing an emulation system for the implementation in question, simu-

lating the quantum output resulting from the implementation, and comparing

this output with the known-true quantum state in the face of various different

non-idealities.

6.2 One-qubit measurement patterns in

incomplete cluster states

We begin by showing the measurement patterns which are implemented in

MBQCSIM. Compared to the simple measurement pattern for the one-qubit

gate in Figure 2.2, it is necessary to take account of two new features.

Firstly, the pattern is laid out on a path through a cluster state (found

using an algorithm such as those described in the previous chapter). However,

this path may still be connected to other cluster qubits around the path, via

entanglement edges. These qubits must be removed as part of the measure-

ment pattern, and we refer to them as cut-out qubits. The removal entails

measuring the qubits in the Z-basis, and using the measurement outcome to

appropriately update byproduct operators for the path.

Secondly, the pattern is considered to be arbitrarily long, rather than

having a fixed length of four. This means that it is no longer necessary to

consider commutation corrections, which account for the effect of placing the

fixed length patterns one after the other. Instead, the commutation correction

is incorporated into the running calculation of the byproduct operators. As

part of this process, the adaptive measurement setting calculation is refac-

tored so that it depends only on byproduct operators, and not directly on

measurement outcomes. This leads to a pattern, summarised diagrammati-

cally in Figure 6.3, that is in a form suitable for implementation by a control

system designed to realise one-qubit in IMBQC.

We discuss the effect of cut-out qubits in Section 6.2.1. In Section 6.2.2, we

describe the measurement pattern for the one-qubit gate in detail, including

how to calculate byproduct operators and adaptive measurement settings.
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6.2.1 Cutting out qubits around the path

Before deriving generalised measurement patterns in the presence of cut-out

qubits, it is important to understand how cutting out qubits affects a cluster

state. As described in Appendix A.1, a cluster state |φC〉 is described by a set

of eigenvalue equations, one for each cluster qubit a:(
Xa

∏
b∼a

Zb

)
|φC〉 = (−1)κa |φC〉, (6.1)

The crucial term of the equation for the purposes of this section is κa ∈ {0, 1},
which is a number assigned to each cluster qubit. For a cluster state on N

qubits, there are 2N choices for κa across all the cluster qubits. All these

states are equally usable as the basis of MBQC, but in order to simplify the

analysis, it is usual to take the state where κa = 0 everywhere, so as to avoid

κa appearing in all the equations [20].

However, if the analysis involves cutting out cluster qubits, it is not pos-

sible to ignore κa. This is because measuring a cluster qubit a in the Z-basis,

resulting in outcome m, has the effect of flipping the value of κb on neighbour-

ing qubits b ∼ a when m = 1 [20]. As a result, a cluster state where κ = 0

everywhere will become a cluster state with some non-zero κa, when the Z-

measurements corresponding to these cut-outs are performed. More precisely,

from the point of view of the remaining qubit a, its value of κa is given by the

following expression:

κa =

 ∑
b∼a, b∈Z

mb

 modulo 2 (6.2)

where Z is the set of cluster qubits that have been measured out. The formula

may be interpreted as stating that κa is obtained by XORing together the

measurement outcomes mb of all its neighbouring cut-out qubits b.

Key points

As we show in detail in Appendix A.2, the effect of cutting out qubits

around an on-path qubit a is accounted for by incorporating the param-

eter κa into the (byproduct operator calculations of the) measurement

pattern in all locations where the measurement outcome from a is used.

The following examples illustrate how this applies to simple situations
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Figure 6.1: Diagram showing different types of cluster qubit cut-outs that
occur along a path pattern. The path is shown in green, and cut-out qubits
are shown in red. a) A straight path is realised by cutting out at most two
cluster qubits (above and below) by measuring them in the Z-basis. Their
measurement outcomes are XORed with the κa value of the on-path qubit.
b) A corner is realised by cutting out at most two neighbouring cluster qubits
(above or below and to the left or right). c) A path is terminated by cutting
out qubits on three out of four sides. d) An example of a general path which
backtracks and involves the different kinds of cut-outs shown in a) and b). In
addition, some example right-nodes and left-nodes are depicted using arrows
pointing right and left respectively. (These are still X-measurements.)

• Straight path. If the intention is to cut out a straight path (for a single

logical qubit), then a computational basis measurement needs to be

made above and below each cluster qubit in the wire. The results of these

measurements are XORed together, and the result is used to compute

the κa on the remaining cluster qubit. This is shown in Figure 6.1a.
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• Corner. To make a wire turn a corner (for example, from horizontal

to downwards), there are still only two adjacent measurements (one

above and one to the right or left), as shown in Figure 6.1b. These

measurement outcomes should be XORed together to produce κa.

• Path terminations. There is limited need for three- and four-input

XOR operations. Three inputs would correspond to a wire that ter-

minates (which might occur at the end of a circuit). Four-input XOR

corrections would only be needed to cut out a single isolated qubit (where

a qubit has been removed on all four sides). An example is shown in

Figure 6.1c.

Important subtleties arise in the simulation and verification of measure-

ment patterns involving cut-out qubits. For example, Figure 6.1d shows an

example of a path that backtracks on itself. Since each column is measured one

at a time, column zero is measured first, and contains both a path qubit (0, 0),

and two cut-out qubits (0, 3) and (0, 4). As we will describe in Section 6.2.2,

the cut-out qubits contribute to the byproduct operators – however, they only

contribute to a “future” part of the path, starting at path index 101. In order

to verify the measurement pattern up to cluster qubit (1, 0), it is necessary

to ignore these contributions. The method for doing this is described in Sec-

tion 6.3.2.

In addition, Figure 6.1d shows some example maximal left-nodes, which are

used as the verification points for the measurement pattern (these are shown

in the diagram as filled blue arrows pointing left). There is one maximal left-

node per column; however, only the left-nodes in columns one, four and five

are shown, to avoid cluttering the diagram. The function of left-nodes is to

ensure that a valid verification of the measurement pattern is possible. This

is described in detail in Section 6.5.

6.2.2 One-qubit gate along an arbitrary path

Figure 6.2 shows the generalisation of the arbitrary one-qubit gate to a mea-

surement pattern that can be arbitrarily long, does not include commutation

corrections, and derives the adaptive measurement settings directly from the

byproduct operators. This pattern is derived in Appendix A.2.4.

1Throughout this chapter, we use the term “path index” to refer to the zero-indexed
position of a cluster qubit along a path.
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Figure 6.2: Diagram showing the arbitrary-length one-qubit-gate measure-
ment pattern on a linear cluster state. The figure is a generalisation of Fig-
ure 2.2, showing how the adaptive measurement setting is derived from the
byproduct operators at each measurement round (column). There is no gate
boundary, and therefore no commutation correction. The byproduct operator
lines z2k and x2k are arranged so that byproduct operators valid for both the
odd and even terms may be read by drawing a vertical dashed line through
the desired final (unmeasured) qubit, and reading off the values that fall in
the blue regions, as shown in the example for n = 2. This is to facilitate the
simple implementation of the verification scheme discussed in Appendix C,
which must be valid at an arbitrary point along the path.

The most important feature of this pattern is that each term in the byprod-

uct operator pair (x, z) is only modified every other cluster qubit. As a result,

we refer to it as (x2k, z2k), following the notation used in Appendix A.2.4.

The pattern realises a string of alternating Rz and Rx rotations, that may be

used to realise any one-qubit gate. For example, to realise the identity gate,

all the φn are set to zero (in this case, the adaptive measurement settings are

not important, because they flip the sign of φn).

The pattern is only “valid” when it terminates on even values of n, for

example, if qubit −φ2 remained unmeasured. These are the locations where

the x2k, z2k lines on the left coincide with the X, Z horizontal shaded regions.

If the pattern terminates on an odd qubit, it is still possible to interpret

the pattern, by using the shaded X and Z regions to obtain the byproduct

operators. In this case, the pattern realises an additional H gate, as described

in Appendix A.2.4 (see Equations (A.27) and (A.28)). The ability to obtain

the known-true state of the pattern at any qubit position is important for the

verification discussed in Section 6.5.

As discussed in the previous section, the measurements from cut-out qubits
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Figure 6.3: Diagram showing the generalisation of Figure 6.2 to the case where
a straight path is embedded in a 2D cluster state. As in the previous case,
the byproduct operators swap every other column, showing how to interpret
the byproduct operators for measurement patterns whose final unmeasured
qubit lies in an odd column. This figure is also representative of an arbitrary
path through an arbitrarily connected cluster state. The byproduct operators
display the same behaviour, alternating with incrementally increasing path
index n. Measurement outcomes for any cut-out cluster qubits adjacent to a
path qubit qn are added to the measurement outcome from qn, before this is
added to the byproduct operator z2k.

are incorporated into the measurement pattern in locations where the outcome

from the corresponding on-path qubit is used. Figure 6.3 shows how this

generalisation is made for the straight pattern discussed in the previous section

(with cut-out qubits above and below). In general, all that is required is to

add κa to the corresponding byproduct operators which are modified by the

outcome from a. This diagram forms the basis for all one-qubit measurement

patterns that can be implemented using MBQCSIM.

Key points

Figure 6.2 shows the measurement pattern that forms the basis for

any one-qubit gate realised along a path through a cluster state, and

Figure 6.3 shows what modifications are necessary to account for cut-

out qubits. The alternating byproduct operators lines make it possible

to read out at each position what byproduct operator values should be

used for interpreting the state of the measurement pattern.
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Figure 6.4: Program output showing the generated measurement pattern for
the identity gate along the same path shown in Figure 5.5. All measurements
along the path are performed in the X basis (these would be replaced by
general xy-plane measurements for an arbitrary one-qubit gate). Any qubits
connected to the path by edges must be removed by cutting them out, and
incorporating those outcomes into the byproduct operators (shown in red).
Other cluster qubits (shown in black) do not contribute to the measurement
pattern, and may be measured in the Z basis (their outcomes are discarded).

In Section 6.3, we discuss how this measurement pattern is stored in the

ring-buffer model, discussed in Appendix 5.1.3. We present a scheme of local

measurement-pattern rules which enables the encoding of the pattern locally

with the logical qubits, in a form that could easily be implemented in a control

system design.

6.3 Dynamic measurement pattern generation in

MBQCSIM

This section describes the system used by MBQCSIM for dynamically gen-

erating a measurement pattern for a path extension defined in Section 5.3.

Before showing how the measurement pattern is generated and encoded, we

discuss some specific restrictions that implementations may impose on the set

of valid measurement patterns, including some which may affect the search

process described in the previous chapter.
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We will then discuss in detail how the measurement pattern is generated

along the path extension, and how the rules for bases, adaptive measurement

settings, and byproduct operators are stored in secondary node data. This

data is analogous to the program word introduced in Section 3.2.4 as part of

the FPGA design for one-qubit gates and CNOT gates.

6.3.1 Restrictions imposed by implementation considerations

Not all paths through an incomplete cluster state may be used as the basis for

one-qubit-gate measurement patterns, in the model that we are considering

(the block-search algorithm shown in Figure 5.1). In this model, a new column

of photons is generated every photonic clock cycle and added to the right

side of the block, and a column of photons is measured out according to the

dynamically-generated measurement pattern on the left side of the block. In

addition, we impose the restriction that all the measurements in the left-most

column happen at the same time, to minimise the timing overhead associated

with the measurement process in each photonic clock cycle.

It follows that there cannot be any (vertical) measurement setting depen-

dencies within a single column2, because this would entail multiple rounds of

measurement per column. (The dependent cluster qubits must be measured

after the outcomes from the independent qubits have been obtained and pro-

cessed.) This type of multi-round measurement would require an increase in

the clock rate of the digital system, due to the need to process measurement

settings within a particular fraction of the photonic clock period.

In a similar manner, it is not possible to allow patterns where the basis

setting of a cluster qubit a depends on the outcome from a cluster qubit b

that is strictly to the right of a, because a will be measured before b. This

can happen for paths which backtrack into previous columns, as shown in

Figure 6.1d. To cope with this, it would be necessary to dynamically re-order

column measurements based on the measurement pattern being implemented,

which would introduce new algorithmic overheads in the implementation of

the control system.

If strict column ordering is maintained, it is necessary to lay measurement

patterns with non-trivial adaptive measurement settings on straight horizon-

tal sections of path, and ensure that vertical sections and backtracks are used

2That is, a pair of qubits a and b in the same column, where the measurement outcome
from a is used in the calculation of the adaptive measurement setting for b.
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only for Clifford operations (which do not require adaptive measurement set-

tings [58]). However, depending on the characteristics of the path (in par-

ticular, in cluster states with a lower edge probability p), there may not be

long horizontal sections of path available, or they may occur in the wrong

places. In that case, it may be necessary to incorporate the requirements

of the measurement pattern generation into the search process itself, which

would complicate the algorithms described in Chapter 5.

We will avoid considering any of these issues by considering only the iden-

tity pattern, where all on-path measurements are in the X basis, and there

are no adaptive measurement settings. Currently, only the identity pattern

is implemented in MBQCSIM. However, we will still describe general local

measurement-pattern rules that cover any one-qubit gate pattern. That way,

all that remains is a choice for how to deal with the implementation constraints

described in this section.

Key points

Not all one-qubit measurement patterns are possible in the model shown

in Figure 5.1. In particular, adaptive measurement settings must only

depend on measurements from columns strictly to the left. This means

that non-trivial one-qubit gates must not be laid on vertical sections of

path, or path segments that backtrack. We focus on the identity gate

in this chapter, so as to avoid this additional complexity.

Next steps

MBQCSIM could be extended to support arbitrary one-qubit gate pat-

terns by laying out non-trivial pattern sections on horizontal sections

of path of a suitable length. This is one possible scheme for avoiding

the issues described in this section.

6.3.2 Local measurement-pattern rules

The measurement pattern is encoded in a set of local pattern rules, which

are designed to be stored in the ring buffer. The need for local pattern rules

follows from the desire to simplify the column measurement implementation

as much as possible. In making the measurements, it is necessary to step
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Data Meaning

Basis flag FB Indicates either Z-measurement or xy-plane measurement
θ Base angle (only for xy-plane measurement)
Rs Adaptive measurement setting rule, (r, s)
Rb Byproduct operator update rule, (r, s)

Table 6.1: Table showing the secondary data required for storing the mea-
surement pattern. The pattern is stored as a set of local rules (one per cluster
qubit), which completely specify how each cluster qubit should be measured,
and what should be done with the measurement outcome. The pattern rules
are generated after a path extension has been found (see Figure 6.5). This dy-
namic pattern generation should be emulated following the example of Chap-
ter 5, to find how many ring-buffer memory operations are necessary for a
hardware implementation of the system.

through each cluster qubit in the column, set its measurement basis (includ-

ing adaptive measurement setting), make the measurement, and then use the

outcome to update byproduct operators. This process is simplified if all these

measurements can be made in parallel, and each is fully controlled by infor-

mation that is local to the cluster qubit being measured (and does not involve,

for example, the collection and processing of information stored at multiple

nodes). By making each measurement use identical information, the speed of

the measurement process in a digital implementation may be maximised, by

ensuring that no measurement takes longer than any of the others.

Key points

The measurement pattern is defined by local pattern rules, whose pur-

pose is to provide a simple, parallelisable, means for digital hardware

to realise the measurement pattern. By keeping the rules simple, and

excluding complex algorithms (involving traversal of multiple nodes in

the ring buffer), the speed of the measurement step may be maximised,

and the measurement control system implementation may be separated

as much as possible from the dynamic pattern generation system.

The secondary data required for storing local pattern information is sum-

marised in Table 6.1, and described in the following sections.
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Byproduct operator update rules

The measurement pattern rules make reference to the pair (x, z), which is

the running value of the byproduct operators (x2k, z2k). It is updated as the

measurement pattern is evaluated by XORing measurement outcomes into

either the x or z term in the pair, using rules defined here.

As shown in Figure 6.3, the measurement outcome m from an on-path

qubit an is XORed into x or z depending on whether n is even or odd:

(x, z) 7→

(x, z ⊕m) if n is even,

(x⊕m, z) if n is odd.
(6.3)

This rule is stored as a pair Rb = (r, s) which is either (1, 0) or (0, 1), depending

on whether the outcome should be added to x or z respectively. The value of

this pair for a qubit an is denoted Rb(an).

For each on-path qubit an whose measurement outcome m is added to

a term in (x, z), the measurement outcome from any adjacent cut-out qubit

must also be added to that same term. This leads to the rule that the outcome

m from a cut-out qubit b may be added to either of the terms (x, z) multiple

times, because b may be adjacent to multiple on-path qubits (see, for example,

cut-out qubit (1, 2) in Figure 6.1d). To account for this, each cut-out qubit

stores a pair Rb = (r, s), which expresses the net effect of this cut-out qubit on

the byproduct operators, when the measurement outcome from this cut-out

is m:

(x, z) 7→ (x⊕mr, z ⊕ms). (6.4)

This pair is obtained for a particular cut-out qubit b by adding (pairwise

modulo-2) all the values Rb(a) for on-path qubits a (a ∈ P ) that are adjacent

to b (a ∼ b):
Rb(b) =

⊕
a∼b
a∈P

Rb(a). (6.5)

Key points

The byproduct operator rules Rb(a) define how the measurement out-

come m from a affects the running value of the byproduct operators

(x, y). Only qubits on the path, and cut-out qubits around the path,

have non-trivial byproduct operator rules – other qubits use Rb = (0, 0).
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Measurement basis angle and dependency rules

Each qubit in the cluster state is either measured in the Z-basis (if it is a cut-

out qubit, or if it is not directly connected to the measurement pattern), or

the xy-plane, for all other measurements. A flag FB is stored in each cluster

qubit node to specify in which basis it is measured.

The measurement basis angle for each xy-plane measurement is stored as

a base angle θ, and an adaptive measurement setting s. The base angle is

shown inside the filled boxes in Figure 6.3, and the measurement setting is

shown as the input in the bottom-left corner of each square. For example, the

second on-path qubit in Figure 6.3 has θ = −φ1, and s is the current value of

the byproduct operator z2k just before the measurement of that qubit. The

base angle is a static property of the pattern (it does not depend on any

measurement outcomes or byproduct operators), and relates to what Rx and

Rz rotations are realised by the pattern.

The adaptive measurement setting rule Rs(an) is stored as a pair (r, s),

which describes how to calculate the adaptive measurement setting s from the

current values of the byproduct operators (x, z):

s = Rs(an) · (x, z) = rx⊕ sz. (6.6)

Key points

The rule Rs(a) describes how to calculate what adaptive measurement

setting s to use for the measurement of the qubit a from the current

value of the byproduct operators, (x, z). Compared to the one-qubit

pattern in Figure 2.2 in Chapter 2, the calculation is simplified, because

it does not involve commutation corrections or measurement outcomes.

Generating the pattern rules

The pattern rules described above are generated along a path extension (see

Section 5.3) by traversing the path extension once, from the starting right-

node to the ending right-node, visiting all the cut-out qubits adjacent to each

on-path qubit as it goes along. At each on-path qubit node an, the local

rules for this qubit are calculated, and written to the ring buffer . Then, the

algorithm iterates over all the adjacent cut-out qubits b surrounding an, and
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Start at node an

Set θ(an)

Set Rb(an)

Set Rs(an)

an has
unvisited
neighbour
/∈ P?

Get unvisited
neighbour b of an

Rb(b) = Rb(b)⊕Rb(an)

an right-
node?

Stop

n = n + 1

no

yes

no

yes

Figure 6.5: Algorithm for generating local pattern rules on a path exten-
sion (up to the next right-node). The path extension is traversed once, for-
wards. For the identity pattern, all on-path measurements are X: θ(an) = 0,
Rs(an) = (0, 0), and Rb(an) = (n+1 mod 2, n mod 2). (Note that the “unvis-
ited” status of the cut-out qubits only applies to the innermost loop; any given
cut-out qubit may be visited more than once from different on-path qubits.)

accumulates the same byproduct operator rules used for an to this (r, s) pair

for the current cut-out qubit b. The algorithm is shown in Figure 6.5.

The algorithm described here must be performed as part of the imple-

mentation of IMBQC, and should therefore be emulated to understand its

contribution to the overall cost of the block search process in Figure 5.1. It

is likely that this algorithm could be incorporated into the path extension

algorithm (Figure 5.4), and the number of operations involved could be eas-

ily counted in MBQCSIM. The scheme presented here is compatible with the
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ring-buffer model. As a result, MBQCSIM could easily be extended to count

how many ring-buffer memory operations would be involved in a hardware

implementation of this part of IMBQC.

Key points

The algorithm to generate the pattern rules involves traversing all the

nodes in a path extension, and visiting all the cut-out qubits connected

to each on-path qubit. The algorithm calculates the local pattern rules

and stores them in secondary data in the ring buffer, for use during

the measurement round. This algorithm constitutes the main process

in the dynamic measurement pattern generation.

Next steps

The generation of the pattern rules must be implemented as part of a

control system digital design, and should therefore be emulated, follow-

ing the example set out in Chapter 5, to estimate any timing constraints

that it imposes on the operation of the photonic quantum computer.

In the remainder of the chapter, we discuss the simulation of the rules

discussed above, how the simulation can be verified, and how this may be

used to analyse the effect of analog voltage noise in the implementation of

IMBQC.

6.4 Simulating generated measurement patterns

Cluster-state simulation replaces the quantum part of the system: the entan-

glement of a set of dual-rail encoded photonic qubits in a 2D arrangement,

and the measurement of these photons one column at a time. The advantage

of writing a simulator is that it provides a concrete test of the interpretation

of the local pattern rules described in the previous section, without needing

a physical quantum computer. Ultimately, the part of the simulator respon-

sible for interpreting the pattern could form the basis for the digital system

which controls the photon measurement settings via modulator voltages. This

system could also be emulated along the lines described in Chapter 5.
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Key points

Writing a simulator for dynamically generated measurement patterns

provides a concrete way to check the validity of the pattern rules, and

forms a basis for control system implementation of the measurement

process.

6.4.1 Adapting the cluster-state simulator to IMBQC

As discussed in Chapter 4, it is not possible to store the quantum state of

the entire cluster state all at once in a simulation, because that involves more

entangled qubits than can be reasonably simulated3. However, we showed

how to construct a recycling quantum simulator in Section 4.1.1 that only

ever holds two columns of the cluster state in memory, thereby enabling the

simulation of a cluster state that is limited in height but not limited in width.

On a computer that can simulate a state vector of 28 qubits, the maximum

cluster-state height that can be simulated using this method is 14.

In this case, some simple modifications must be made to the simulation

procedure outlined in Section 4.1.1. Firstly, in step three, where the entangle-

ment links are added, CZ gates are now only applied where there are edges in

the cluster state. Secondly, in step four of Section 4.1.1, measurement bases

were set and outcomes interpreted by the program word; now the column

measurement is performed by interpreting and executing the local pattern

rules.

The MBQCSIM simulator keeps a running total of the byproduct operators

(x, z) for the measurement pattern being simulated, and measures a column

by traversing the column from bottom to top, performing the following three

steps at each cluster qubit an:

1. Construct the measurement basis. First, check whether a com-

putational basis measurement or an xy-plane measurement is required

using the flag FB (Table 6.1). In the latter case, form the angle from

the x-axis φ = (−1)Rs(an)·(x,z)θ(an) using the pattern rules θ(an) and

Rs(an).

3A rule of thumb is that the maximum number of qubits simulable on a laptop is 28.
This would limit the cluster-state size to, e.g. 4x7.
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2. Measure out the cluster qubit, in the basis defined in the previous

step, recording the measurement outcome m.

3. Update the byproduct operators, as (x, z) 7→ (x ⊕ mr, z ⊕ ms),

using the outcome m and the byproduct update rule Rb(an) = (r, s).

The output from the simulation of a one-qubit gate described above is a

one-qubit state |ψo〉, from the final unmeasured qubit4, along with a pair of

byproduct operators (x, z) which determine how to obtain the corrected out-

put state |ψc〉 = (XxZz)|ψo〉. This can be compared with the true (known)

output state |ψt〉, obtained from a one-qubit simulation of the logical opera-

tion being realised by the measurement pattern, to establish that the overall

measurement pattern worked.

This scheme allows the output from the measurement pattern to be ver-

ified. However, it does not allow the measurement pattern to be verified

column-by-column. This finer-grained verification is important for under-

standing how errors (due to noise) accumulate throughout the measurement

pattern, and also for isolating and correcting bugs in the execution of the

measurement pattern simulation. For example, in a cluster state of width

100 whose output state is wrong, it is hard to find exactly where the error

occurred without being able to step through the simulation one column at a

time. In Section 6.5, we describe how column-verification is implemented in

MBQCSIM.

Key points

Simulating one-qubit gate patterns along paths in IMBQC requires min-

imal changes to the simulator described in Chapter 4; the program word

which specifies the measurement patterns is replaced by local pattern

rules. However, verification of the simulation column-by-column is not

trivial, and forms the subject of Section 6.5. However, this type of veri-

fication is necessary in order to aid the debugging of long measurement

patterns, and provide a means to analyse errors due to noise as the

simulation progresses.

4The final qubit is obtained by measuring all but one qubit in the final column of the
cluster state. The unmeasured qubit is the highest-index on-path qubit in that column.
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In the sections below, we describe how errors due to noise in the modulator

voltages are modelled in the simulation process.

6.4.2 Simulating analog voltage noise in modulators

There are many sources of potential errors inherent in prospective implemen-

tations of photonic MBQC. For example, there are (discrete) errors introduced

by photon loss, which are often discussed. In addition, there are continuous

sources of errors, such as spectral impurity in photon sources (where identi-

cal photons are in fact slightly distinguishable) [86]. The type of continuous

noise of interest here is due to the inability of an analog electronic control

system to set exactly the right measurement settings during execution of the

measurement pattern.

As discussed in Section 2.2.3 (see Figure 2.4), we assume that two voltage-

controlled modulators in the measurement block (M1 and M2) set the xy-

plane or Z-measurements necessary to realise the measurement pattern. If

noise is present in the analog input signal to the modulator, then they will

generate the wrong phase shift, which will cause a slight inaccuracy in the

basis measurement.

We assume that the input voltage is subject to additive Gaussian white

noise, with mean µ = 0, and a standard deviation σ (Volts). White noise is

characterised by constant power spectral density [87], meaning that the noise

is not correlated in time. Each sample of the noise (one for each modulator and

cluster qubit measurement) is an independent random variable e ∼ N(µ, σ).

The modulator voltage is given by v = vd + e, where vd is the desired (exact)

voltage.

This noise may model general electrical interference in the analog system,

with a magnitude that can be set using σ. MBQCSIM also supports settings

non-zero µ, which represents a systematic error in the voltages. This may

correspond to a true systematic offset, or may also arise from the combination

of ringing in the modulator voltage and the precise time at which the photon

passes through the modulator.

Like all other random behaviour in MBQCSIM, the voltage noise e gen-

erated by the program is based on a noise seed Sn, shown in Figure 5.3 and

described in Section B.2. Due to the non-guaranteed repeatability of the

std::normal distribution in C++, MBQCSIM uses a custom implemen-
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tation of the normal distribution, which is described in more detail in Ap-

pendix B.4.

Key points

Voltage noise in the modulators that set the measurement basis is mod-

elled by adding Gaussian white noise with a particular standard devi-

ation σ to the intended (exact) voltage. This causes slight errors in

the realisation measurement pattern, which can be quantified by the

verification procedure laid out in Section 6.5 below.

6.5 Verification of the simulation

Column verification is a desirable feature in a complex MBQC simulation,

because it enables finding the precise location of subtle bugs (which may

be due to a combination of pathfinding errors, pattern generation issues, or

simulation problems), and also provides the ability to view the evolution of

errors (due to noise) as a function of time in the simulation. This column

verification involves comparison of the state of the measurement pattern with

the known-true state once per column, instead of once in the final column of

the pattern.

However, this column verification is not trivial to achieve, because there

is not necessarily any “state of the measurement pattern” available at an

intermediate point in the realisation of the pattern, which is compatible with

the full measurement pattern M , that does not involve modifying the full the

measurement pattern. This incompatibility is due to the need to consider the

column in question, x, to be the end of the pattern, which involves removing

all its entanglement edges with the next column x+ 1. This removal of edges

constitutes a change in the measurement pattern M , resulting in a new pattern

M ′ (which terminates at column x). In this new “final column”, a terminating

qubit T is selected, which plays the role of the final (unmeasured) qubit in

the full measurement pattern M . The state after measuring out all but this

final qubit is taken as the output from column x.

It would be convenient if this change to the measurement pattern could be

ignored; but it cannot be, due to the incompatibility between measurement

outcomes from measurements in M and measurements in M ′. This incompat-
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ibility arises from differing correlations in the cluster state due to the different

entanglement edges.

In this section, we describe the trade-off made by MBQCSIM in order

to realise column verification, in the face of the issue described above. The

method results in a scheme that offers verification of the measurement pattern

M ′, which is a proxy for the measurement pattern M , based on the compro-

mise that the value of the byproduct operators obtained in the measurement

of column x in M ′ will be different from the byproduct operators obtained

when column x is measured in M . We call these differing byproduct opera-

tors “verification byproduct operators”. The verification is valid, because the

verification byproduct operators at column x are consistent with the byprod-

uct operators and measurement outcomes from the realisation of M at all

columns strictly to the left of x. The compromise is therefore that the veri-

fication scheme checks all columns to the left of x (not including x), so that

the verification is one step behind the simulation itself.

First, we describe how to choose the terminating qubit T , in terms of the

left-nodes of the path P along which the one-qubit measurement pattern is

defined. Then, we describe the necessity for verification byproduct operators

in detail, and show how they are calculated.

Key points

To verify the simulation at column x, it is necessary to treat x as

the final column, be removing entanglement links to column x + 1.

This change to the entanglement causes a discrepancy in the measured

outcomes between the main simulation and the verification, which is

addressed below by allowing the byproduct operators in the verification

to be different from the main simulation.

6.5.1 Calculating left-nodes

The section describes how the terminating qubit T is selected in each column

of the verification scheme: it is selected to be a maximal left-node. Left-nodes

are defined analogously to right-nodes (see Section 5.3) as follows:

Definition 2 (Left-node). Given a path P comprising a sequence of edge-

connected nodes ((x0, y0), (x1, y1), . . . , (xN , yN )) in a 2D cluster state, a left-
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(6, 6)

(7, 3)

(7, 7)

(8, 7)

(8, 2)

Figure 6.6: Program output showing the left-nodes in addition to the right-
nodes shown in Figure 5.5. Left nodes are depicted using arrows that point to
the left, and right nodes point to the right. Maximal right-nodes are coloured
red, and minimal left-nodes are coloured blue. A node which is both a left-
and a right-node is a diamond shape (an arrow pointing both ways), which
is coloured red, blue, purple or black depending on whether the left- and
right-nodes are minimal and maximal.

node in column x is a node (xn, yn) in P which satisfies two conditions:

1. xn = x;

2. xm ≤ x for all m < n.

The (unique) maximal left-node in column x is the left-node (xn, yn) that max-

imises n.

The main property of a left-node n is that all path predecessors of n lie in

the same column as n, or to the left of n. The maximal left-node m has the

property that the immediate path successor is to the right of m (rather than

above or below). On diagrams, left-nodes are depicted as triangles pointing

to the left, and maximal left nodes are filled blue.

The importance of using a left-node for T in column x is that it ensures

that there is a continuous path completely contained in the verification region

(columns ≤ x) which terminates at T . For example, consider column seven
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in Figure 6.6. Suppose that the right-node (7, 3) is selected for T . Since only

the region x ≤ 7 is under consideration, this choice will disconnect T from the

path (which ends at (7, 7)). Since no measurement bases and local pattern

rules are changed, then measuring out all but T in this case will result in

an incorrect state. The situation is corrected by using the maximal left-node

(7, 7), which is the highest node that is still connected to the region x ≤ 7.

As a further example, suppose that the (non-maximal) left-node (8, 7)

is selected for T in column x = 8. Even though this is connected to the

path, it has the undesirable property that the path successor (8, 6) is also

in the same column. Since no measurement bases change, qubit (8, 7) will be

measured in the X basis (for the identity pattern), which will lead to an invalid

state at T (because it will realise a measurement pattern with a dangling X

cluster qubit connected to the terminating qubit). This may be alternatively

viewed as choosing a T from the middle of the path, not the end. This is not

valid, because the terminating qubit must lie at the end of the one-qubit gate

measurement pattern. By choosing a maximal left-node, it is guaranteed that

the immediate path successor is always to the right, which guarantees that T

is at the end of the path (in the verification region).

Key points

While right-nodes must be implemented in a control system for IMBQC,

because they are directly involved in the calculation of path extensions,

left-nodes are not required by the control system. Instead, the purpose

of left-nodes is only in the verification of the simulation state, by pro-

viding a definite means to select a terminating qubit in each column x,

that is connected to the verification region in (columns ≤ x), and that

does not require any changes to the local pattern rules.

6.5.2 Verification byproduct operators

The previous section contains a description of maximal left-nodes, and why

they are an appropriate choice for the terminating qubit T in each column.

In this section, we discuss the verification byproduct operators, which follow

from the potential discrepancy in measurement outcomes between the main

simulation and the verification. The verification byproduct operators:
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• Are based on the main byproduct operators. These are the true

byproduct operators that were computed during the main simulation

of column x − 1. This agreement justifies the verification scheme: if

the verification succeeds, it provides evidence that the main byproduct

operators from column x− 1 were correct.

• Differ from the main byproduct operators at column x. This is

the compromise involved in using this verification scheme, which means

the verification lags the main simulation by one column.

• Are discarded after the verification of column x. The verification

byproduct operators do not persist across columns. Their only purpose is

to correct the state obtained during the verification step, for comparison

with the known-true state.

The need for verification byproduct operators is explained fully in Ap-

pendix C.

A simple problem that occurs in the application of the byproduct operator

rules Rb in a column such as x = 7 in Figure 6.6. Since the measurement

pattern is generated up to the right-node (7, 3), there are several (on-path)

nodes whose contribution to byproduct operators must be ignored, because

they occur in the future of the path. To make this point clearer, consider

the measurement pattern obtained from Figure 6.3 by choosing the qubit two

(−φ2) as the terminating qubit, and removing the entanglement link to qubit

three. Despite terminating on qubit two, all qubits in the diagram are still

measured. It is obvious that byproduct operator contributions to the right of

qubit two must not be applied, because those qubits are no longer part of the

measurement pattern (they are simply measured and discarded).

This issue is solved by storing an index with each byproduct operator rule

Rb, which records what path index the rule should be applied to. Then, when

applying the measurement pattern to a column, byproduct rules should only

be applied if their corresponding index is less than or equal to the path index

of the terminating qubit. A consequence of this rule is that it is not possible

to combine the cut-out rules using Equation (6.5). Instead, each term must

be stored separately with its index, and then combined into the sum only if its

index is less than or equal to the terminating qubit index. This requirement

does not have to be implemented in an actual design; it is purely a feature of

the column verification method.
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In the next section we intentionally introduce errors into the simulation,

by adding noise to the modulator voltages that set the measurement bases

in the simulation. In this case, the fidelity of the verification state may be

interpreted as an indication of how well the MBQC system is able to realise

one-qubit gates.

6.6 Analysing fidelity as a function of time using

esim

Figure 6.7 shows the result of using MBQCSIM (esim) to simulate the effect

of modulator voltage errors in an implementation of the identity pattern in

IMBQC. In the simulation, Gaussian white noise defined by σ in the range

0 mV–5 mV was applied to each modulator voltage setting (two per measure-

ment of each cluster qubit), and the verification scheme described in Sec-

tion 6.5 was used to establish the fidelity of the output logical qubit state at

each column. A photonic cycle time of 1 ns has been used to interpret the

column index x as time, which is plotted on the x-axis of the graph. Each

modulator is assumed to have Vπ = 1 V. The results show that even quite

a low noise level in the modulator voltage leads to quite a large error in the

quantum state (fidelity = 0.95) after about 1 µs. Simulations like these may

be used to establish specifications for analog electronics suitable for driving

the modulators, maximum circuit depths before a particular error is reached,

or provide information relating to what type of quantum error correction is

necessary in implementations of IMBQC.

Key points

The results show that logical qubits in photonic quantum computing

may display a kind of “decoherence” that is similar to that observed

in matter-based qubits. This arises from the inability to perform ex-

actly the right measurements in MBQC. While quantum error correc-

tion schemes often consider qubit errors [50], these continuous errors

due to non-idealities in the analog electronics are also important, and

must be fully quantified as part of the design of a control system for

photonic quantum computing.
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Figure 6.7: The heatmap shows the average fidelity of the logical qubit realised
using the identity path pattern, as a function of elapsed time (derived from
a photonic cycle time of 1 ns), and the standard deviation of the Gaussian
white noise in the modulator voltage. The experiment was conducted by
simulating a pathfinding process using GBFS in cluster state of height H = 7,
for a range of noise levels. Each experiment was repeated 1000 times and the
results averaged.

Next steps

It is possible to simulate any other noise model in MBQCSIM. For

example, the Gaussian noise model also supports the setting of µ, which

represents a DC bias in all the modulator settings. This type of error

may represent effects due to ringing in the modulator voltage, if the

photon always arrives in a particular phase relationship with the timing

of the analog electronic control system. A full analysis of how noise

affects the fidelity of quantum operations is an important prerequisite

for the design of the analog parts of the system.
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6.7 Summary and conclusion

Chapters 5 and 6 presented a framework for analysing and simulating photonic

MBQC using incomplete cluster states (IMBQC), realised using the C++ and

python library MBQCSIM. The purpose of this analysis has been to lay the

ground work for an initial (idealised) implementation of a control system for

IMBQC.

In creating such a control system, it is necessary to know the implemen-

tation cost of the algorithms involved in the cluster-state search process, the

pathfinding process, and the pattern generation process. The ring-buffer im-

plementation model enabled a concrete discussion of what memory operations

are required for the particular search algorithms presented in Chapter 5 (GBFS

and IBFS), and formed the basis for the emulation of hardware implementa-

tions using the MBQCSIM program pathf.

Chapter 6 focused on the dynamic generation and storage of the measure-

ment pattern for arbitrary one-qubit gates, in a manner suitable for emulation

along the lines discussed in Chapter 5, although MBQCSIM does not perform

this emulation. Instead, the focus of esim is to simulate the measurement

patterns laid out along paths through an incomplete cluster state, both to

verify that the pattern (and pattern rules) are correct, and also to investi-

gate how voltage errors in the modulators affect the fidelity of the output

logical-qubit state from the IMBQC system. These simulations may form the

basis for analog control system specifications for the modulators, or restric-

tions on the depths of MBQC patterns that can be realised using IMBQC

implementations.

The purpose of this work is to recast some of the theoretical aspects of

photonic MBQC in a form that is free of complicated mathematics, by pro-

viding measurement patterns in the form of simple diagrams. It is hoped that

these diagrams somewhat separate the implementation of the schemes from

the need to understand why they work; a necessary feature if control system

design for photonic quantum computing is to be treated in a serious way.

At the same time, the implementation of the algorithms in MBQCSIM could

provide a practical starting point for the further development of this subject,

without requiring as a prerequisite a full understanding of all the mathematics

underpinning the subject.

On the other hand, many theoretical aspects of the implementation of IM-
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BQC remain unaddressed. Most importantly, only arbitrary one-qubit gates

are addressed here, and only the identity pattern is currently implemented

in MBQCSIM (although the additional local pattern rules and simulation

could be incorporated into MBQCSIM). The need to address multi-qubit gates

would entail algorithms that could find multiple paths (representing separate

logical qubits), and join them appropriately in order to realise, for example,

the CNOT gate.

The source code of MBQCSIM, which is freely available, may be taken

as a first draft of the algorithms required for a hardware implementation of

IMBQC, along the lines discussed in Chapter 3. MBQCSIM is tested and

verified, and may provide the basis of a functional simulation of a control

system design. Ultimately, a hardware design is necessary to establish what

constraints are present in this prospective realisation of quantum computers.
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Chapter 7

Conclusions

We close this thesis by drawing two key conclusions. Firstly, we stress the im-

portance of presenting photonic quantum computing architectures in a simple

non-mathematical form. Secondly, we emphasise that the analysis of a fully-

specified control system design is better than using emulation techniques.

Finally, we provide an outlook on the subject of control system design for

photonic quantum computing, and offer some suggestions for next steps.

7.1 The need for a non-mathematical approach to

photonic MBQC

We advocate a non-mathematical approach to photonic MBQC in this thesis.

This lowers the barrier to entry for engineers who may be able to contribute

significantly to the problem of control system design for photonic quantum

computing, but who do not wish to familiarise themselves with all the math-

ematical details of MBQC and related subjects.

As we showed, detailed mathematics is not necessary for the discussion

of control system implementations for photonic MBQC. We presented all key

measurement patterns in terms of simple diagrams, which specified what op-

erations must be performed by the control system, but not why.

The question “why” is not relevant for control system design. Instead, pro-

posals for photonic quantum computing should be fully specified, by writing

all classical operations required in a simple descriptive form that constitutes

a specification for the control system. This way, the problem is cast in a form

familiar to electronic designers, who expect to implement a specification defin-
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ing what the control system must do. Most research on photonic quantum

computing to date has not been presented in this form [13–16, 61].

Often, however, it is not possible to represent a given proposal for photonic

quantum computing in the form described above, because too many aspects

of the classical control system remain unspecified. This leads to the need for

control system emulation, to investigate what is the best way to realise the

classical algorithms required by the quantum computer. However, the analysis

of a fully-worked-out control system design is preferable to this emulation, as

we discuss in the next section.

7.2 Control system design is better than emulation

In Chapter 3, we designed a digital system targeting an FPGA, whereas in

Chapter 5, we emulated a class of control system implementations based on a

particular model.

Providing a full control system design is preferable to using emulation, be-

cause a detailed design provides a concrete basis for the analysis of constraints

on the photonic quantum computer. Although emulation may be used to es-

timate these constraints, there is always the possibility that implementation

details may render the estimates invalid.

However, immediately designing the control system is very difficult when

many parts of the design are unspecified. For example, in the renormalisation

approach to photonic MBQC [14], only the high-level goals of the relevant

classical algorithms are presented. We showed in Chapter 5 that substantial

work is required to hone these algorithms into a form that would not impose

very stringent timing constraints on the photonic quantum computer.

Photonic quantum computing proposals should lay out what classical pro-

cessing steps are required in detail, in a non-mathematical form; this would

greatly simplify the process of analysing control system implementations, en-

abling the in-depth optimisation that is likely required to achieve designs that

do not impose heavy limitations on the quantum computer.

In addition to the greater validity of constraints, a detailed hardware design

also provides a full draft of all the classical algorithms that are required for

the implementation of photonic quantum computing. Even though software

emulation is a good starting point, it is still possible to “hide details under the

rug” in the emulation system; it is very important to expose all the classical
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control elements in the system, so as to begin the task of optimising the design

of this aspect of photonic quantum computers.

To date, control system design for photonic quantum computing is an

under-researched discipline; partly because many architectural aspects of the

quantum computer are still being worked out, and some critical photonic

components for the realisation of quantum computers are being actively in-

vestigated. In the next section, we highlight some important next steps in the

analysis of classical control systems for photonic quantum computing.

7.3 What to investigate next?

This thesis focused almost exclusively on the design of the digital parts of the

control system for photonic quantum computing. The same type of analysis

could be conducted for the analog parts of the system, such as the single-

photon detector amplifiers, the ADC systems for producing measurement basis

voltages, and the driving circuitry for interfacing to modulators. All these

systems must meet similarly high timing constraints, and some or all of them

may need to be cryogenic, for compatibility with SNSPDs.

Another direction lies in converting the wealth of theoretical information

about photonic quantum computing architectures into a practical descriptive

form that lends itself to control system analysis. This type of work may not

be very hard for theorists and mathematicians to perform, but would pay

for itself immeasurably in easing the work of engineers wishing to investigate

design questions relating to control systems for photonic quantum computers.

Finally, there is the question of optimising the specific algorithms discussed

in this thesis to the point where they are feasible for use in photonic quan-

tum computing systems. Even though these algorithms may look efficient

on paper, the necessity for the implementation to compete with the speed of

light places very high standards on the level of optimisation that must be per-

formed. Unless very significant improvements are made in the speed of these

algorithms, which will be present in any architecture for photonic quantum

computing, the use of photonic qubits does not represent a realistic proposal

for the realisation of large-scale quantum computers. This problem pushes the

boundaries of what is possible in high-speed electronic design, and forms an

attractive subject of study for engineers and scientists in the fields of electronic

engineering, computer science and quantum physics.
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Appendix A

Mathematics of MBQC

This appendix contains an overview of the mathematics used to derive the

measurement patterns presented in this thesis. Appendix A.1 shows how the

reduced CNOT gate, introduced in Section 2.1.1, is derived. Appendix A.2

derives the effect of cut-out qubits discussed in Section 6.2.1 on the arbitrary

one-qubit-gate measurement pattern presented in Section 2.1.

In line with the goal of this thesis, to make MBQC as accessible as possible,

we try to present the mathematics in an introductory manner. This is designed

to complement more rigorous approaches to the subject [20, 21], which provide

more detailed background on the information presented here.

A.1 CNOT measurement pattern

In the control system design in Chapter 3, we implement a reduced measure-

ment pattern for the CNOT gate that only uses two rows of cluster qubits, so

that only nearest-neighbour connectivity is required between logical qubits.

This section is adapted from [57, Appendix B].

The reduced CNOT pattern is derived here using the same method used for

the calculation of the three-row CNOT gate [20, Section II.G.7]. In order to

explain the derivation, we begin by discussing some technical aspects of cluster

states, and describe what it means for a measurement pattern to realise a gate.

A cluster state |φC〉 on N qubits is created by placing all the qubits in the

|+〉 state, and then applying CZ gates between each pair of qubits that should

have an entanglement link (shown as red line segments in Figure A.1). It can
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Figure A.1: The labelling of the cluster qubits for the purpose of deriving the
CNOT measurement pattern. When a gate is realised in MBQC, the input
state starts on the IN column and is teleported to the OUT column R and S
by applying the measurement pattern. The black dots show the location of
the correlation operators Ka in Equation (A.8) below.

be shown [20] that cluster states satisfy the eigenvalue equations

Ka|φC〉 =

(
Xa

∏
b∼a

Zb

)
|φC〉 = |φC〉, (A.1)

where the first equality defines the correlation operator Ka on the cluster qubit

a. There is one such equation for each cluster qubit a, and in each equation,

the product is over all other neighbouring cluster qubits b joined by red line

segments to a (denoted b ∼ a).

To state what it means for a measurement pattern to realise a gate G,

we use the arrangement of qubits shown in Figure A.1, on which the CNOT

measurement pattern is defined. Instead of placing all the qubits in the |+〉
state, assume qubits 0 and 6 (the IN qubits) are in an arbitrary state |φ〉. As

before, place all the other qubits (including the OUT qubits) in the |+〉 state,

and apply CZ gates wherever there are red line segments in the Figure A.1.

Now, after the measurement pattern for the CNOT gate has been applied,

meaning that all the IN and INTERNAL qubits have been measured out,

there remains a two-qubit state |ψ〉 on the OUT qubits R and S. The sense

in which the measurement pattern has realised the gate G is that the input

and output states are related by

|φ〉 = BG|ψ〉, (A.2)

where B is the byproduct operator for the measurement pattern. In other

words, the measurement pattern has the effect of moving the state of the IN

column to the OUT column, and transforming it according to the gate which

is being realised by the measurement pattern.
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The measurement pattern for the CNOT gate is obtained by using a the-

orem [20, Theorem 1] that relates eigenvalue equations derived from Equa-

tion (A.1) and a given measurement pattern, to the gate G which that mea-

surement pattern realises. The content of the theorem is that it is only neces-

sary to check how a cluster state |φC〉 is affected by the measurement pattern

(where the state of qubits 0 and 6 are |+〉) in order to establish that the mea-

surement pattern works for any other IN state |φ〉. In the interest of simplicity,

We state the theorem for the case of a two-qubit gate G like the CNOT gate:

Theorem 1. Suppose that a cluster state |φC〉 is prepared on the pattern of

14 qubits shown in Figure A.1, for the purpose of realising a two-qubit gate G

acting on logical qubits labelled C and T . Suppose that a set of measurements

M is performed on the INTERNAL cluster qubits 1 to 5 and 7 to 11, resulting

in a state |ψC〉 on the remaining qubits (0, 6, R and S), which satisfies the

following sets of eigenvalue equations:

X0

[
GXCG

†
]
R,S
|ψC〉 = (−1)λx |ψC〉

Z0

[
GZCG

†
]
R,S
|ψC〉 = (−1)λz |ψC〉

(A.3)

and

X6

[
GXTG

†
]
R,S
|ψC〉 = (−1)µx |ψC〉

Z6

[
GZTG

†
]
R,S
|ψC〉 = (−1)µz |ψC〉

(A.4)

Then the measurement pattern in which the inner qubits are measured accord-

ing to M , and the IN cluster qubits 0 and 6 are measured in the X-basis,

realises the gate GB, where the byproduct operators B for the logical qubits C

and T are given by

(xC , zC) = (λz,m0 + λx)

(xT , zT ) = (µz,m6 + µx),
(A.5)

where ma is the outcome of the measurement of the ath cluster qubit.

The square bracketed terms in Equations (A.3) and (A.4) are computed

in terms of the logical qubits C and T , without reference to cluster qubits.

Any terms involving C and T are then interpreted as applying to the cluster

qubits R and S. For example, when G = CNOT,[
GXTG

†
]
R,S

= [XCXT ]R,S = XRXS .
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To apply the theorem to the CNOT gate, it is therefore necessary to obtain

the following eigenvalue equations

X0 (XRXS) |ψC〉 = (−1)λx |ψC〉
Z0 (ZR) |ψC〉 = (−1)λz |ψC〉

(A.6)

and
X6 (XS) |ψC〉 = (−1)µx |ψC〉

Z6 (ZRZS) |ψC〉 = (−1)µz |ψC〉
(A.7)

To obtain these equations, begin with the cluster state |φC〉 on the two-

row CNOT shape shown in Figure A.1, and multiply together the correlation

operators in Equation (A.1) so as to obtain the following four equations:

|φC〉 = K0K2K3K4KRK10KS |φC〉 (A.8)

= −X0Y2X3Y4XRX10XS |φC〉
|φC〉 = K1K2K4K5|φC〉

= Z0Y1Y2Y4Y5ZR|φC〉
|φC〉 = K6K8K10KS |φC〉

= X6X8X10XS |φC〉
|φC〉 = K4K5K7K9K11|φC〉

= Y4Y5ZRZ6X7X9X11ZS |φC〉.

The right hand sides are obtained by repeated application of the equation

XaZa = iYa = −ZaXa. Note that Pauli operators on different qubits com-

mute.

As with any pattern derived using this method, the choice of operators Ka

in the above equations is motivated by two goals:

• The equations must contain the correct IN and OUT terms in Equa-

tions (A.6) and (A.7). These terms are coloured red in the equations.

• The Pauli operators on the INTERNAL cluster qubits agree between all

the equations. That is, for each cluster qubit a, only Xa or Ya appears

across all the equations. For example, when a = 4, only Y4 appears

(three times, shown in blue), and there are no instances of X4. It is

these operators that define the measurement bases M for each qubit a

in the INTERNAL group of cluster qubits.
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When the INTERNAL qubits are measured according to M , the Pauli

terms disappear [50, Section 10.5.3], and each one contributes a sign according

to its measurement outcome ma, to give the following equations on the reduced

state |ψC〉:

X0XRXS |ψC〉 = (−1)1+m2+m3+m4+m10 |ψC〉
Z0ZR|ψC〉 = (−1)m1+m2+m4+m5 |ψC〉
X6XS |ψC〉 = (−1)m8+m10 |ψC〉

Z6ZRZS |ψC〉 = (−1)m4+m5+m7+m9+m11 |ψC〉

These equations are in the form of Equations (A.6) and (A.7), and define the

values of λx, λx, µx, µz in terms of the measurement outcomes ma. As a result,

it follows from the theorem above that the measurement pattern consisting

of M , plus X measurements on the IN qubits, realises the gate (CNOT)B,

where the byproduct operator B found using Equation (A.5) to be

(xC , zC) = (m1 +m2 +m4 +m5,

1 +m0 +m2 +m3 +m4 +m10)

(xT , zT ) = (m4 +m5 +m7 +m9 +m11,

m6 +m8 +m10).

(A.9)

Finally, the byproduct operator can be commuted past the CNOT gate to

obtain

(Z1+m0+m2+m3+m4+m6+m8
C Xm1+m2+m4+m5

C

Zm6+m8+m10
T Xm1+m2+m7+m9+m11

T )CNOT. (A.10)

The contributions to the byproduct operators given in this formula are de-

picted in Figure 2.3, and stated in Equations (2.1) and (2.2).

A.2 One-qubit gates in incomplete cluster states

The derivation of the measurement pattern for the one-qubit gate, incorporat-

ing cut-out qubits, follows a plan analogous to the derivation of the ordinary

one-qubit gate pattern [20, Section II.G.3-5]. The derivation is performed us-

ing a generalisation of the theorem used in Appendix A.1 [20, Theorem 1],

extended to the situation where some κa 6= 0 (see Section 6.2.1):
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Theorem 2. Suppose that a cluster state |φC〉 (which may have κa 6= 0 for

some cluster qubits) is prepared on a linear pattern of N qubits (labelled 0

through N−1), for the purpose of realising a one-qubit gate G acting on logical

qubits labelled on one logical qubit T . Suppose that a set of measurements M

is performed on the INTERNAL cluster qubits 1 to N − 2, resulting in a state

|ψC〉 on the remaining qubits (0 and N − 1), which satisfies the following sets

of eigenvalue equations:

X0

[
GXTG

†
]
N−1
|ψC〉 = (−1)λx |ψC〉

Z0

[
GZTG

†
]
N−1
|ψC〉 = (−1)λz |ψC〉

Then the measurement pattern in which the inner qubits are measured accord-

ing to M , and the IN cluster qubit 0 is measured in the X-basis, realises the

gate GB, where the byproduct operators B for the logical qubit T are given by

(x, z) = (λz,m0 + λx)

where m0 is the outcome of the measurement of cluster qubit 0.

The theorem states that the general cluster state |φC〉, where some κa 6= 0,

may also be used for the realisation of measurement patterns. The theorem

may be proven by making bookkeeping-style modifications to the proof of the

original theorem [20, Theorem 1]. By accounting for the effects of cut-out

qubits in setting particular values for κa, as described in Section 6.2.1, this

theorem may then be used to establish the functioning of the measurement

pattern on the resulting state.

The arbitrary Rx gate and arbitrary Rz gates are derived first, and then

concatenated in the combination Rx(ζ)Rz(η)Rx(ξ). In each case, the eigen-

value equations of the cluster state (Equation (6.1)) on a line of appropriate

length N are manipulated into a form that satisfies the conditions of Theo-

rem 2, by making particular measurements according to a measurement pat-

tern. The conclusion of the theorem is that this measurement pattern realises

the correct one-qubit operation G, along with a byproduct operator. The

types of calculations required for the Rx and Rz rotations are summarised in

the sections below, so as to provide direct comparison with the same methods

used to derive the ordinary one-qubit gates1 [20]. In addition, we show in

1In performing this comparison, note that measurement patterns here are indexed from
zero, rather than one [20].
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detail how the stabiliser calculations are performed, which may be of interest

to those unfamiliar to the subject.

A.2.1 Arbitrary X-rotation

The Rx rotation is achieved on a measurement pattern of three cluster qubits

(N = 3, labelled zero through two, from left to right). However, we consider

here a pattern of nine cluster qubits, where the top and bottom rows consist of

computational basis measurements, whose outcomes define the values of κa in

the middle row according to Equation (6.2). As a result, the eigenvalue equa-

tions satisfied by the middle row once the cut-out qubits have been measured2

is given by

(−1)κ0X0Z1|φC〉 = |φC〉 (A.11)

(−1)κ1Z0X1Z2|φC〉 = |φC〉 (A.12)

(−1)κ2Z1X2|φC〉 = |φC〉 (A.13)

Following the method used for the derivation of the ordinary one-qubit gate [20,

21], take the third equation and rearrange it to Z1|φC〉 = (−1)κ2X2|φC〉, which

implies (Z1 − (−1)κ2X2)|φC〉 = 0. Multiply by −iη/2 and exponentiate both

sides to get

exp

(
− iη

2
[Z1 − (−1)κ2X2]

)
|φC〉 = |φC〉.

Given that the terms in the exponent commute, this equation may be split up

and rewritten in terms of Rz and Rx rotations as follows:

R(1)
z [η]R(2)

x [(−1)κ2(−η)] |φC〉 = |φC〉. (A.14)

In this equation, the superscript indices in the rotations indicate which qubit

is rotated. Call the operator on the left hand side A, so that A|φC〉 = |φC〉.
Combine this with the Equation (A.12) above, to get A(Z0X1Z2)A

−1|φC〉 =

(−1)κ1 |φC〉, or

Z0

(
R(1)
z [η]X1R

(1)
z [−η]

)(
R(2)
x [(−1)κ2(−η)]Z2R

(2)
x [(−1)κ2(−η)]

)
|φC〉

= (−1)κ1 |φC〉 (A.15)

2Recall that, in analysis of MBQC circuits, the order that the cluster qubits are measured
does not matter, provided that any adaptive measurement setting dependencies are satisfied.
In the analysis, it is assumed that all the cut-out qubits are measured first, before the middle
row, even though the measurements would actually occur one column at a time in a real
photonic implementation.
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The purpose of this equation is that a measurement of the observable M =

R
(1)
z [η]X1R

(1)
z [−η] on the middle qubit (qubit one) will replace the leftmost

term in parentheses with a constant (−1)m1 , where m1 is the result of the mea-

surement. This may be verified algebraically by multiplying Equation (A.15)

by the projector

PM =
1 + (−1)m1M

2
,

resulting in the equation

Z0

(
R(2)
x [(−1)κ2(−η)]Z2R

(2)
x [(−1)κ2η]

)
|φ′C〉 = (−1)m1+κ1PM |φ′C〉, (A.16)

where |φ′C〉 = PM |φC〉. This is one of the equations that goes into the as-

sumptions of Theorem 2: it is an eigenvalue equation that applies to the IN

and OUT qubits of the measurement pattern (qubit zero and two), which is

of the general form

Z0

[
GZG†

]
2
|φ′C〉 = (−1)m1+κ1PM |φ′C〉. (A.17)

In this equation, the G term represents the logical one-qubit unitary oper-

ation that is achieved using the measurement pattern; in this case, G =

Rx[(−1)κ2(−η)].

The second equation that is necessary for the application of the theorem

may be derived by combining Equations (A.11) and (A.13) to obtain

(−1)κ0+κ2X0X2|φC〉 = |φC〉.

Applying the projector PM on the left (which commutes with this operator,

and therefore has no effect apart from to replace φC by φ′C), and inserting a

redundant term corresponding to G above, results in

X0

[
GXG†

]
2
|φ′C〉 = (−1)κ0+κ2 |φ′C〉. (A.18)

Equations (A.16) and (A.18) satisfy the assumptions of Theorem 2 with

G = Rx[(−1)κ2(−η)], λz = m1 + κ1 and λx = κ0 + κ2. It follows that the

byproduct operator is B = Zm0+κ0+κ2Xm1+κ1 , and the measurement pattern

realises the gate GB.

Swapping the order of the gates, using the fact that X commutes with Rx

and Rx(θ)Z = ZRx(−θ), results in the following gate being realised by the

measurement pattern:

Xm1+κ1Zm0+κ0+κ2Rx[(−1)m0+κ0(−η)]. (A.19)
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Note that in equations like this, it is always possible to swap the order of the

X and Z contributions to the byproduct operators on the left, because this

introduces a minus sign, which amounts to an (unimportant) global phase.

To deterministically realise an X rotation angle of η, measure qubit one at an

angle φ to the x-axis that satisfies α = (−1)m0+κ0(−η), that is,

φ = (−1)mo+κ0(−η).

A.2.2 Arbitrary Z-rotation

The calculation of the Rz rotation is also a simple generalisation of the method

presented in [20]. The Rz is achieved using the identity Rz = HRxH. The

conjugation by the Hadamard gate is achieved in the measurement pattern

by placing an X measurement on either side of the measurement pattern for

Rx; hence, the pattern involves a row of five cluster qubits (N = 5, numbered

starting from zero on the left). As before, the pattern begins on a cluster

state of 15 qubits arranged in three rows, where the top and bottom row are

cut-out, leaving the following cluster-state equations on the middle row:

(−1)κ0X0Z1|φC〉 = |φC〉
(−1)κ1Z0X1Z2|φC〉 = |φC〉
(−1)κ2Z1X2Z3|φC〉 = |φC〉
(−1)κ3Z2X3Z4|φC〉 = |φC〉

(−1)κ4Z3X4|φC〉 = |φC〉

As before, the κa are defined through Equation (6.2). To bring these equations

into a form compatible with the use of Theorem 2, it is necessary to obtain the

result of performing X measurements on qubits one and three. The process

for measuring qubit one based on stabiliser manipulations is described in [21],

and consists of the following steps:

1. Obtain the stabiliser group S. The stabiliser of the state |φC〉 is

given by

S =
〈
(−1)κ0X0Z1, (−1)κ1Z0X1Z2, (−1)κ2Z1X2Z3,

(−1)κ3Z2X3Z4, (−1)κ4Z3X4

〉
= 〈k0, k1, k2, k3, k4〉
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The measurement is given by Σ = X1, which anti-commutes with k0 and

k2. Replace k2 by k0k2 to get

S = 〈(−1)κ0X0Z1, (−1)κ1Z0X1Z2, (−1)κ0+κ2X0X2Z3,

(−1)κ3Z2X3Z4, (−1)κ4Z3X4〉.

Now, Σ commutes with all the generators except k0.

2. Measure qubit one in the X basis. The stabiliser S′ of the state

after the measurement of Σ is obtained by replacing k0 by (−1)m1Σ,

depending on the measurement outcome m1:

S′ =
〈
(−1)m1X1, (−1)κ1Z0X1Z2, (−1)κ0+κ2X0X2Z3,

(−1)κ3Z2X3Z4, (−1)κ4Z3X4

〉
= 〈(−1)m1Σ, k1, k0k2, k3, k4〉.

3. Remove references to qubit one. Finally, rewrite the stabiliser gen-

erators so that all but (−1)m1Σ act trivially on the measurement qubit

(i.e. do not contain a Pauli operator acting on that qubit):

S′ = 〈(−1)m1X1, (−1)m1+κ1Z0Z2, (−1)κ0+κ2X0X2Z3,

(−1)κ3Z2X3Z4, (−1)κ4Z3X4〉.

This was obtained by multiplying the second generator by (−1)m1Σ.

Now, the term (−1)m1Σ may be removed from the group generators,

leaving the stabiliser of the state on the unmeasured qubits.

The above process can now be repeated to obtain the result of measuring

qubit three in the X basis. After this is done, the stabiliser group contains

three generators, corresponding to the following eigenvalue equations for the

state |φ′C〉 on the remaining three qubits:

(−1)m1+κ1Z0Z2|φ′C〉 = |φ′C〉
(−1)κ0+κ2+κ4X0X2X4|φ′C〉 = |φ′C〉

(−1)m3+κ3Z2Z4|φ′C〉 = |φ′C〉

These equations are analogous to Equations (A.11), (A.12) and (A.13) used in

the derivation of the Rx rotation. The same method can be applied, measuring
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qubit two using the observable M = R
(2)
z [η]X2R

(2)
z [−η] to obtain a new state

|ψC〉 = PM |φ′C〉 which satisfies the following two eigenvalue equations:

X1

[
GXG†

]
4
|ψC〉 = (−1)κ0+m2+κ2+κ4 |ψC〉 (A.20)

Z1

[
GZG†

]
4
|ψC〉 = (−1)m1+κ1+m3+κ3 |ψC〉, (A.21)

where G = Rz[(−1)m3+κ3(−η)], which are suitable for use with Theorem 2. As

a result, the measurement pattern implements the following unitary operation

U = Rz[(−1)m3+κ3(−η)]Zm0+κ0+m2+κ2+κ4Xm1+κ1+m3+κ3

= Xm1+κ1+m3+κ3Zm0+κ0+m2+κ2+κ4Rz[(−1)m1+κ1(−η)],

using the identity Rz[θ]X = XRz[−θ]. In order to deterministically re-

alise a Z-rotation angle of η, measure qubit 2 in a basis φ that satisfies

η = (−1)m1+κ1(−φ).

A.2.3 Arbitrary one-qubit gate

The arbitrary one-qubit gate is constructed by placing arbitrary Rx rotations

around an arbitrary Rz rotation:

U =Zm6+κ6+κ8Xm7+κ7Rx[(−1)m6+κ6(−ζ)]

Zm2+κ2+m4+κ4+κ6Xm3+κ3+m5+κ5Rz[(−1)m3+κ3(−η)]

Zm0+κ0+κ2Xm1+κ1Rx[(−1)m0+κ0(−ξ)]

In doing this (by overlapping the input and output qubits from each pattern),

there exist two blocks of repeated X measurements. These measurements

may be removed for the same reason they are removed in the simple non-cut

out case. In that case, if the X measurements are made first (before any

other measurements), the resulting equations define a cluster state on the

remaining qubits, as if the X qubits were never there in the first place. If the

measurement results are chosen so that there is no effect on the remaining

measurement pattern, then those qubits can be treated as if they were never

there [20].

In the above equations, the X measurements are on qubits 2, 3, 5 and 6.

If the mn and κn are chosen to be zero, then the equations reduce to:

U = Zκ8Xm7+κ7Rx[−ζ]Zm4+κ4Rz[−η]Zm0+κ0Xm1+κ1Rx[−(−1)m0+κ0ξ]
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After relabelling the qubits 0 through 4, the equation becomes:

U = Zκ4Xm3+κ3Rx[−ζ]Zm2+κ2Rz[−η]Zm0+κ0Xm1+κ1Rx[(−1)m0+κ0(−ξ)]
= Xm1+κ1+m3+κ3Zm0+κ0+m2+κ2+κ4Rx[(−1)m0+κ0+m2+κ2(−ζ)]

Rz[(−1)m1+κ1(−η)]Rx[(−1)m0+κ0(−ξ)] (A.22)

Key points

Equation (A.22) shows the logical operation U achieved by the gener-

alised one-qubit measurement pattern, including the effect of cut-out

qubits above and below the measurement pattern line. Each time the

measurement outcome ma is present in the formula, it is accompanied

by κa (apart from κ4, because qubit four remains unmeasured). We

generalise this pattern in the next section to measurement patterns of

arbitrary length.

A.2.4 One-qubit gate along a linear cluster

The simplest way to obtain the one-qubit pattern along an arbitrarily-long

line is to follow an inductive strategy by adding one cluster qubit to the line

at a time [21]. This is equivalent to generating a full cluster state and then

performing all the measurements at once [20], and also corresponds to the

simulation method outlined in Chapter 4. First, suppose that the state of the

first qubit a0 in the line is |ψ0〉. After a new qubit a1 in the |+〉 state has been

added and entangled with a0 using a CZ gate, the first qubit a0 is measured

in the equator of the Bloch sphere, at an angle −φ0 from the x-axis, with

outcome m0. This results in the following state on a1 [21]3:

|ψ1〉 = Xm0Mx(φ0, 0)H|ψ0〉. (A.23)

In writing this equation, we are using the notation Md(θ, s) = Rd((−1)sθ),

where d ∈ {x, z}, in order to simplify the subsequent formulas.

By repeating the process, each time adding a new |+〉 qubit an, entangling

with CZ, and then measuring at an angle −φn to the x-axis, the following

3There is a sign error in that tutorial [21]: Equation (6) should read XmHUz(−φ)|ψ〉.
This sign is required to implement rotations with the correct sign. Here, we have moved the
minus sign to the xy-plane angle, −φ0
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states are obtained:

|ψ2〉 = (Xm1Zm0)Mx(φ1,m0)Mz(φ0, 0)|ψ0〉 (A.24)

|ψ3〉 =
(
Xm0+m2Zm1

)
Mx(φ2,m1)HMx(φ1,m0)Mz(φ0, 0)|ψ0〉 (A.25)

|ψ4〉 =
(
Xm1+m3Zm0+m2

)
Mx(φ3,m2 +m0)Mz(φ2,m1)

Mx(φ1,m0)Mz(φ0, 0)|ψ0〉 (A.26)

. . .

The following general expression is obtained by induction on n, where the

inductive step is multiplying on the left by XnRx(φn)H:

|ψ2k−1〉 = (Xz2kZx2k−2)Mx(φ2k−2, x2k−2)H

1∏
r=k−1

Mx(φ2r−1, z2r)Mz(φ2r−2, x2r−2)|ψ0〉

for n = 2k − 1 (A.27)

|ψ2k〉 = (Xx2kZz2k)
1∏
r=k

Mx(φ2r−1, z2r)Mz(φ2r−2, x2r−2)|ψ0〉

for n = 2k, (A.28)

where the byproduct operator bits are defined by the following equations:

z2k =

(
k−1∑
r=0

m2r

)
modulo 2 (A.29)

x2k =

(
k−1∑
r=0

m2r−1

)
modulo 2. (A.30)

One-qubit measurement patterns are typically based on Equation (A.28)

(for |ψ2k〉), because then the H term is absorbed into the product and the

unitary operation that is realised is a simple product of Rx and Rz rotations.

As a result of this convention, the byproduct operators are only defined on

even integers. The byproduct operators can easily be extended to the odd

integers too using x2k−1 = z2k and z2k−1 = x2k−2 (see the byproduct operator

term in Equation (A.27)).

The Mx and Mz terms in the products of Equations (A.27) and (A.28)

show why it is necessary to choose adaptive measurement bases, depending

on past byproduct operators, if a particular string of Rx and Rz rotations in

desired: the adaptive measurement settings are required to correct the signs
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of the rotations. For example, the term Mx(φ2r−1, z2r) means that an Rx(θ)

rotation can be deterministically realised by choosing φ2r−1 = θ, setting the

adaptive measurement setting to s = z2r, and measuring the cluster qubit

a2r−1 in the xy-plane at an angle of (−1)s(−φ2r−1) from the x-axis.

Figure 6.2 (in Chapter 6) shows a diagrammatic representation of Equa-

tions (A.27) and (A.28). The diagram is designed to express the alternating

nature of the byproduct operators, by swapping the x2k and z2k lines every

other qubit. However, the regions shaded in blue show how to use these lines

to obtain the byproduct operators compatible with either Equation (A.27) or

Equation (A.28). The one-qubit logical operation that is realised can be read

off by combining all the rotations listed above each qubit. However, for mea-

surement patterns terminating on an odd qubit, it is important to remember

the H term present in Equation (A.27).

In contrast to the arbitrary one-qubit gate presented in Chapter 2 (in

Figure 2.2), where a commutation correction is made at the boundary of each

measurement pattern, Figure 6.2 shows how to perform a running calculation

of byproduct operators; since the pattern can be any length, there is no need

to consider gate boundaries and commutation corrections.

The measurement pattern to achieve the identity gate may be obtained

from Equations (A.27) and (A.28) by setting θn = 0 everywhere (so that

no Rx or Rz rotation is performed). In that case, the formulas reduce to

|ψ2k−1〉 = Xz2kZx2k−2H|ψ0〉 and |ψ2k〉 = Xx2kZz2k |ψ0〉. This example shows

why the identity pattern must be considered only on even cluster qubits: in

the odd case, the state |ψ2k−1〉 realised by the measurement pattern is H (up

to byproduct operators), not I.

A.2.5 One-qubit gate through a 2D cluster state

To embed the linear measurement pattern shown in Figure 6.2 into an arbi-

trary 2D cluster state, it is necessary to account for the effect of cut-out qubits

above and below the line, as calculated in Appendix A.2.3. The outcome from

any cut-out Z-measurement that is connected to a path qubit an is XORed

into zn if n is even, and into xn if n is odd, leading to the following updated
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equations for the byproduct operators

z2k =

(
k−1∑
r=0

m2r + κ2r

)
modulo 2, (A.31)

x2k =

(
k−1∑
r=0

m2r−1 + κ2r−1

)
modulo 2, (A.32)

where κn is the sum of Z-measurement outcomes from the cut-out qubits

surrounding an.

The effect of the measurement pattern is then given by Equations (A.27)

and (A.28), with the updated values for z2k and x2k. The calculation of

the byproduct operators and adaptive measurement settings for a straight

horizontal path is shown in Figure 6.3.

This figure may be generalised to the measurement pattern for a general

path through an incomplete cluster state. The only difference is which cut-

out measurement outcomes are added to the byproduct operators at each path

index n. Path index in the general case corresponds to column index in the

special case shown in Figure 6.3.
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Appendix B

Implementation details of

MBQCSIM

The primary reference for the algorithms implemented in Chapters 5 and 6

is the source code for MBQCSIM [88]. This appendix describes some details

regarding how the library was implemented.

B.1 Modelling incomplete cluster states

The most important data structure in the C++ library is the full node window,

which models a two-dimensional cluster state of width W and height H. This

node window is stored as a column-major vector of primary data (edge infor-

mation), along with secondary data relating to algorithms (see Appendix 5.1.3

for an overview of the ring buffer model implemented in MBQCSIM). Column-

major format is used so that new columns can easily be appended to the right

of the node window without disturbing data to the left.

Source-code reference: MBQCSIM

The NodeWindow class, which models the cluster state, and in-

cludes primary and secondary data in the ring buffer, is defined in

node-window.hpp. The class is configurable by specifying a Node tem-

plate parameter, which controls the format of the primary and sec-

ondary data – this models the entry in the ring buffer.

An important feature of this node window is that the secondary data struc-

173



Appendix B. Implementation details of MBQCSIM

ture is defined by the algorithms that are used as part of IMBQC. In order to

satisfy the modular requirement of the program, which allows different algo-

rithms to be developed and tested, the node type is represented as a class that

is generated from its constituent substructures using a policy-based approach

to node characteristics [89]. This allows the compile-time customisation of

the secondary data characteristics that are required for the implementation of

any algorithm in the ring-buffer model, without needing to hard code those

characteristics in the node window.

Source-code reference: MBQCSIM

The node data is built up from the classes defined in

distance-node.hpp, pattern-node.hpp, qubit-node.hpp, etc.,

using the utility MakeNode contained in make-node.hpp. This aggre-

gates all the data from each node type into a single Node class, that

represents the primary and secondary data in the node window.

An important function provided by the full node window is access to a

particular block subwindow of width B, extending from column x to column

x + W , to any subroutine in the program that needs it. This block models

the ring buffer described in Appendix 5.1.3. The block contains BH entries

in total, each of which is a data structure containing the primary data (edge

information) and secondary data (which is algorithm specific) relating to a

cluster qubit at coordinates (x, y) within the block.

Next steps

Currently, MBQCSIM only supports 2D cluster states. In principle, it

could be extended to support any cluster-state geometry, for example,

a regular 3D lattice. This would require the replacement of the column-

major format used in the node window with another storage pattern

supporting the new geometry. It would also complicate the printed

output from the program (e.g. Figure 5.5), which currently uses Uni-

code characters printed to the console. However, the ability to emulate

different cluster geometries would enable the investigation of a wider

variety of proposals for photonic quantum computing.
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B.2 Reproducibility and seeding in MBQCSIM

Reproducibility is very important in a program where randomness can directly

affect the results, for two reasons. Firstly, if a run of the program exposes a

bug, it is important to be able to be able to reproduce that bug so that it can

be analysed and fixed. Secondly, if the program is to be thoroughly tested, it

must be able to produce known-correct results.

There are four uses of randomness in the program, which are shown ex-

plicitly in Figure 5.3:

• Random graph generation, for generating the random edges in the

node window, which models the cluster state. Each edge in the graph

is a independent binomial random variable, with probability p (the edge

probability). This source of this randomness is controlled by the graph

seed, Sg.

• Path branch selection, when a random choice is made between two

path successors for a given node. The choice is made randomly, and

each such choice is independent. This randomness is controlled by the

path seed, Sp.

• Simulated measurement outcomes, which are required when cluster

qubit measurements are made of the qubits in the embedded quantum

simulator. The probability of getting one outcome or the other, and their

correlations, is a property of the evolving quantum state of the system.

However, the underlying source of randomness used is controlled by the

simulation seed, Ss.

• Modulator voltage noise, which is used to introduce realism into the

quantum simulation process. The source of this randomness is controlled

by the noise seed, Sn.

B.3 Generation of seeds

Providing the same values for all four seeds will guarantee that the program

produces the same output (provided all other configuration parameters are

equal). However, any one of the seeds in isolation may not produce the same

results for that part of the program, unless the other seeds on which it depends
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are also equal. For example, specifying Sp will not guarantee that the same

path is produced unless Sg is also specified. Similarly, simulated measurement

outcomes (which depend on the measurement pattern) are not entirely deter-

mined by Ss, because the graph Sg and the path Sp are also important. In

general, each seed listed above only guarantees the same program output if

all the other seeds listed before it are specified. All seeds also depend on the

configuration parameters of the program to guarantee repeatability.

In C++, randomness is created by using a “generator”, which acts as

a source of randomness, and a “distribution”, which converts that random

source into samples from the desired distribution. In MBQCSIM, the genera-

tor is std::mt19937 64, which produces numbers from the (64-bit) Mersenne

Twister pseudo-random number generator. However, C++ standard distribu-

tions such as std::uniform int distribution are not guaranteed to provide

the same samples even if the generator is the same [81]. As a result, MBQC-

SIM implements a simple distribution for generating uniform random real

numbers and integers. The seeds described above are used to set the starting

point for the Mersenne Twister engine.

Key points

Reproducibility of program results is very important in MBQCSIM,

because much of the behaviour of the program is governed by random

processes. Rare edge cases are very hard to reproduce unless the same

string of random numbers can be generated each time the program runs.

All experiments performed using MBQCSIM are defined using a root

seed, which completely specifies the output data from the program.

Source-code reference: MBQCSIM

The custom implementation of random number generation, used to en-

force reproducibility in MBQCSIM, is contained in the files random.hpp

and seed.hpp. The test suite (in the folder tests/) contains checks

that particular seeds give rise to the same random numbers, and that

the program output is uniquely defined by the seeds.

The locations of the randomness and the seeds are shown in Figure 5.3.

The emulation program pathf uses two seeds (Sg and Sp), and the noise sim-

176



B.3. Generation of seeds

ulation program uses all four seeds. When the programs are called with the

parameter n (number of repeats), a different seed is needed for each run of

the program. It is very important that these seeds are not generated ran-

domly, because of the possibility of accidentally using the same seed twice,

and thereby introducing correlations into the program [90]. Instead, the only

property required is that the seeds are unique. This is obtained simply by

using the following formulas to generate the seeds in pathf:

S(n)
g = S + 2n,

S(n)
p = S + 2n+ 1,

and for esim:

S(n)
g = S + 4n,

S(n)
p = S + 4n+ 1,

S(n)
s = S + 4n+ 2,

S(n)
n = S + 4n+ 3.

The superscript (n) indicates that the seed is used for the nth run of the

experiment, and S is the root seed supplied to the program. Thus, the value of

S, along with the configuration parameters of the program, uniquely specifies

its output.

An error can occur if the root seed is improperly chosen in a subsequent call

to pathf or esim. For example, if S = 0 is initially used for an experiment

where n = 10, then pathf will use all the seeds in the range [0, 19], and

esim will use the seeds [0, 40]. If either program is run again with a seed

in this range, then the results will be identical – incorrectly reducing the

variability in an experiment designed to assess the variance of some quantity

of interest. To mitigate this problem, the python wrappers for pathf and

esim automatically manage the seed generation so that subsequent calls to

the program use different seed ranges.

A similar error can occur in choosing the root seeds for a particular

experiment using the multiparameter sweep. These experiments may con-

sume very large seed ranges in the calls to the pathf and esim. A simple

technique to avoid use of repeated seeds is to begin with a completely ran-

dom seed, for example 6903564118784409788, and then choose subsequent

seeds by incrementing the digit fourth from the left: 6904564118784409788,
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6905564118784409788, etc. This will ensure that the seeds are far enough

apart, but simultaneously provide enough headroom for many adjacent ex-

periments.

B.4 Custom implementation of the normal

distribution

Samples from a normal distribution are required to generate the noise values

used in the analysis of modulator voltage noise described in Section 6.4.2.

However, for the same reason discussed in Section B.3, it is not possible to

use the C++ std::normal distribution.

The custom normal distribution used in MBQCSIM is based on the polar

form of the Box-Muller transform [91]. This method converts samples from

the seed-based uniform random number generators in MBQCSIM into samples

from a normal distribution. The method is implemented efficiently as follows:

1. Generate two random real numbers x, y ∈ [−1, 1]. This represents

a coordinate (x, y) in the square of side length two, centred on the origin.

2. Compute c = x2 + y2. If it is greater than 1, discard (x, y), and go

back to step one. The object is to obtain coordinates (x, y) in the unit

circle.

3. Compute the value d =
√
−(2/c) log c. Use it to obtain two samples

s0 = dσx + µ and s1 = dσy + µ, where µ and σ are the mean and

standard deviation of the desired normal distribution.

The samples s0 and s1 are then normally distributed. Since the generation of

x and y was based on a seed, so are the samples from the normal distribution.

Since each instance of the algorithm generates two samples, one is stored for

the next time a sample is required.

B.5 Verification of MBQCSIM programs

Verification is very important in a program such as MBQCSIM, which is de-

signed to provide information on realistic behaviour of an emulated digital sys-

tem that is affected by several different sources of randomness. The primary
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benefit of using reproducible randomness is that the output of the program

can be compared with known-true results. Two different testing strategies

have been applied to MBQCSIM in order to provide some assurance that the

results are correct.

Fundamental utilities in the code, such as the node window, have been

tested using a bottom-up method designed to cover many or all possible uses

of those components. This bottom-up testing is used for all basic components

of the code until its use becomes impractical (there are too many uses of a

component, or it is not possible to easily isolate the component in the code).

Higher level constructions, such as the search algorithms, have been tested

by hand-calculating the output from the algorithms and comparing the results

with the output from the program. This is a form of top-down testing that

can be used to establish the functioning of a large block of code at once. On

the other hand, if these tests fail, they do not pinpoint the exact location of

the problem.

Many rare edge cases in the algorithms have been established through the

method of testing the code, establishing the seeds of failing cases, and then

analysing the programs behaviour in those cases. Sometimes the bugs arise

due to defects in the algorithm. In those cases, the bug has been added to

the test suite in order to highlight it for correction in the next version of the

program.

Source-code reference: MBQCSIM

The test suite contained in the tests/ folder of MBQCSIM executes

> 95 % of the lines in the C++ source code. This does not guarantee

that this proportion of the code is free of errors, but the high coverage

reduces the chance of bugs in the library.
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The need for verification

byproduct operators

In this appendix, we describe why verification byproduct operators are neces-

sary in the simulation of measurement patterns discussed in Chapter 6. Fig-

ure C.1 shows a summary of the steps involved in performing the cluster-state

simulation discussed in Section 6.4. In Figure C.1a, the main simulation steps

are outlined: the simulation progresses by successively adding columns to the

right, and measuring out columns to the left, so that at most two columns are

ever present. In the verification step (Figure C.1b), the left-most column is

measured directly, without first adding a new column, as if it were the final

column in the pattern. In the ideal verification scheme, the same measurement

outcomes produced by the simulation would be used in the verification step,

so that the byproduct operators agree between the verification and the main

simulation.

However, it is not necessarily possible to postselect the verification col-

umn using the measurement outcomes from the main simulation, as shown

in Figure C.1d. In that case, the verification column a1a0 is the state |ψ〉 =

|0+〉+ |1−〉 (normalisation is omitted). If qubit a1 is measured in the Z-basis,

and a0 is measured in the X-basis, then the only possible outcomes are 00

or 11. However, when a2 and a3 are entangled as shown (all the lines in the

figure are CZ gates), the state on all four qubits a3a2a1a0 becomes

|ψ〉 = |+00+〉+ |−01−〉+ |−10−〉+ |+11+〉. (C.1)

When a0 and a1 are measured in the same bases as before, all four outcomes 00,
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Figure C.1: a) Review of the main simulation procedure, where a column is
added to the right, and then the leftmost column is measured-out according
to local pattern rules. b) The “ideal” method of verification, where outcomes
are made to agree between the simulation and verification by postselecting the
verification column. c) A minimal example showing how the incompatibility
arises in a simple case. In both circuits shown, a1 and a0 are measured in the
Z- and X-bases, and the possible outcomes are shown below the circuits.

01, 10, and 11 are possible. This latter set of possibilities reflects the potential

outcomes from the main simulation. However, if (for example) the outcome

01 is measured, the verification column cannot be postselected, because 01 is

not a valid outcome for that state. As a result, it is necessary to measure the

verification column, rather than postselect it. This can introduce discrepancies
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between the main simulation and the verification, which is the origin of the

verification byproduct operators.

Key points

As shown in Figure C.1c, the presence of entanglement with the next

column can affect measurement outcomes in the column that is being

verified. This means that it is not possible to enforce the same byprod-

uct operators between the simulation and verification using postselec-

tion, which is why verification byproduct operators are necessary.

It is very important to recognise the adverse numerical effect of postselect-

ing an invalid set of measurement outcomes. Postselection of the state vec-

tor involves retaining all those amplitudes corresponding to the postselected

outcome, and zeroing out all the amplitudes corresponding to the opposite

outcome, as described in Section 4.1.2. Since the postselected outcome has

probability zero, these amplitudes will have very small numerical values in

the simulation (e.g. 1.532× 10−15−1.023× 10−15i). However, when the state

vector is normalised, these small values will be amplified, resulting in a ran-

dom output state. Therefore, the effect of incorrectly attempting to postselect

during the simulation is that no error will appear to have occurred, but the

state will be randomised as a result.

On the other hand, errors due to the implementation of the local pattern

rules (particularly the byproduct operator calculations) lead to discrete errors

in the output state (in the case of the identity pattern), which are very easy

to recognise. This property makes the identity pattern a useful place to start

when implementing an MBQC pattern simulator, because the presence of

truly random states normally indicates a problem in either the logic or the

implementation of the underlying simulation infrastructure (rather than a

measurement pattern error).

Once the verification byproduct operators have been obtained, and the

output state is determined, this state (corrected using the verification byprod-

uct operators) may be compared with the known state of the measurement

pattern at this index (which may be determined from Figure 6.3 and Equa-

tions (A.27) and (A.28)). The expected outcome is a fidelity of one, if the

simulation is correct. A fidelity less than one indicates that the simulation

disagrees with the expected state of the pattern.

183



Appendix C. The need for verification byproduct operators

Key points

Invalid postselection introduces a random state into the simulation pro-

cess. However, errors due to incorrect byproduct operators introduce

discrete errors into the simulation. Therefore, the nature of error in fi-

delity (continuous or discrete) can be used to identify the kind of error

that has occurred in the simulation.
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lithium niobate electro-optic modulators: when performance meets scal-

ability”. Optica 8.5 (2021), pp. 652–667.

187

https://link.aps.org/doi/10.1103/PhysRevLett.113.140403
https://link.aps.org/doi/10.1103/PhysRevLett.113.140403
https://doi.org/10.1088/2058-9565/aa913b
https://doi.org/10.1088/2058-9565/aa913b
https://doi.org/10.1038/s41534-018-0076-0
https://doi.org/10.1038/s41534-018-0076-0
https://doi.org/10.1038/s41467-020-16187-8
https://doi.org/10.1021/acs.nanolett.0c00607
https://doi.org/10.1021/acs.nanolett.0c00607
https://doi.org/10.1063/5.0003320
https://doi.org/10.1063/5.0003320
https://doi.org/10.1063/5.0045990
https://doi.org/10.1063/5.0045990
https://doi.org/10.1063/5.0045990
http://opg.optica.org/optica/abstract.cfm?URI=optica-8-5-652
http://opg.optica.org/optica/abstract.cfm?URI=optica-8-5-652
http://opg.optica.org/optica/abstract.cfm?URI=optica-8-5-652


References

[32] C. H. Bennett and R. Landauer. “The fundamental physical limits of

computation”. Scientific American 253.1 (1985), pp. 48–57.

[33] R. Landauer. “Irreversibility and Heat Generation in the Computing

Process”. IBM Journal of Research and Development 5.3 (1961), pp. 183–

191.

[34] A. Hagar. “Ed Fredkin and the Physics of Information: An Inside Story

of an Outsider Scientist”. Information & Culture 51.3 (2016), pp. 419–

443.

[35] C. H. Bennett. “Logical Reversibility of Computation”. IBM Journal of

Research and Development 17.6 (1973), pp. 525–532.

[36] R. P. Feynman. “Quantum Mechanical Computers”. Optics News 11.2

(1985), pp. 11–20.

[37] A. M. Turing. “On Computable Numbers, with an Application to the

Entscheidungsproblem”. Proceedings of the London Mathematical Soci-

ety s2-42.1 (1937), pp. 230–265.

[38] R. Penrose. “The emperor’s new mind : concerning computers, minds,

and the laws of physics”. Oxford: Oxford University Press, 1989.

[39] J. von Neumann. “First Draft of a Report on the EDVAC” (1945).

[40] M. Davis. “Engines of Logic: Mathematicians and the Origin of the

Computer”. WW Norton & Co., Inc., 2001.

[41] D. Deutsch. “Quantum theory, the Church–Turing principle and the uni-

versal quantum computer”. Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences 400.1818 (1985), pp. 97–117.

[42] D. Deutsch and R. Jozsa. “Rapid solution of problems by quantum com-

putation”. Proceedings of the Royal Society of London. Series A: Math-

ematical and Physical Sciences 439.1907 (1992), pp. 553–558.

[43] P. Shor. “Algorithms for quantum computation: discrete logarithms

and factoring”. Proceedings 35th Annual Symposium on Foundations of

Computer Science. IEEE Comput. Soc. Press, 1994, pp. 124–134.

[44] L. K. Grover. “A fast quantum mechanical algorithm for database search”.

Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing. ACM Press, 1996, pp. 212–219.

188

https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
http://www.jstor.org/stable/44667621
http://www.jstor.org/stable/44667621
https://doi.org/10.1147/rd.176.0525
http://www.optica-opn.org/abstract.cfm?URI=on-11-2-11
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1109/sfcs.1994.365700
https://doi.org/10.1109/sfcs.1994.365700
https://doi.org/10.1145/237814.237866


References

[45] S. Jordan. “Quantum Algorithm Zoo”. url: https://quantumalgorithmzoo.

org/ (visited on 07/03/2022).

[46] M. A. Nielsen and I. L. Chuang. “Programmable quantum gate arrays”.

Physical Review Letters 79.2 (1997), p. 321.

[47] Microsoft. “Azure quantum documentation (preview)”. url: https://

docs.microsoft.com/en-gb/azure/quantum/ (visited on 07/03/2022).

[48] IBM. “QISKIT: open-source quantum development”. url: https://

qiskit.org (visited on 07/03/2022).

[49] O. Ezratty. “Mitigating the quantum hype”. arXiv:2202.01925. 2022.

[50] M. Nielsen and I. Chuang. “Quantum computation and quantum in-

formation”. 10th. Cambridge New York: Cambridge University Press,

2010.

[51] H. Zwickel, S. Singer, C. Kieninger, Y. Kutuvantavida, N. Muradyan, T.

Wahlbrink, S. Yokoyama, S. Randel, W. Freude, and C. Koos. “Verified

equivalent-circuit model for slot-waveguide modulators”. Optics Express

28.9 (2020), pp. 12951–12976.

[52] C. Cahall, D. J. Gauthier, and J. Kim. “Scalable cryogenic readout

circuit for a superconducting nanowire single-photon detector system”.

Review of Scientific Instruments 89.6 (2018), p. 063117.

[53] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and

W. D. Oliver. “A quantum engineer's guide to superconducting qubits”.

Applied Physics Reviews 6.2 (2019), p. 021318.

[54] P. Kok and B. W. Lovett. “Introduction to optical quantum information

processing”. Cambridge University Press, 2010.

[55] E. Knill, R. Laflamme, and G. J. Milburn. “A scheme for efficient quan-

tum computation with linear optics”. Nature 409.6816 (2001), pp. 46–

52.

[56] T. Rudolph. “Why I am optimistic about the silicon-photonic route to

quantum computing”. APL Photonics 2.3 (2017), p. 030901.

[57] J. R. Scott and K. C. Balram. “Timing constraints imposed by classical

digital control systems on photonic implementations of measurement-

based quantum computing”. arXiv:2109.04792. 2021.

189

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://doi.org/10.1103/PhysRevLett.79.321
https://docs.microsoft.com/en-gb/azure/quantum/
https://docs.microsoft.com/en-gb/azure/quantum/
https://docs.microsoft.com/en-gb/azure/quantum/
https://qiskit.org
https://qiskit.org
https://qiskit.org
https://arxiv.org/abs/2202.01925
http://opg.optica.org/oe/abstract.cfm?URI=oe-28-9-12951
http://opg.optica.org/oe/abstract.cfm?URI=oe-28-9-12951
https://doi.org/10.1063/1.5018179
https://doi.org/10.1063/1.5018179
https://doi.org/10.1063/1.5089550
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1063/1.4976737
https://doi.org/10.1063/1.4976737
https://arxiv.org/abs/2109.04792
https://arxiv.org/abs/2109.04792
https://arxiv.org/abs/2109.04792


References

[58] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den

Nest. “Measurement-based quantum computation”. Nature Physics 5.1

(2009), pp. 19–26.

[59] B. J. Brown and S. Roberts. “Universal fault-tolerant measurement-

based quantum computation”. Physical Review Research 2.3 (2020),

p. 033305.

[60] F. Flamini, N. Spagnolo, and F. Sciarrino. “Photonic quantum informa-

tion processing: a review”. Reports on Progress in Physics 82.1 (2018),

p. 016001.

[61] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant, F. Pastawski,

S. Roberts, and T. Rudolph. “Interleaving: Modular architectures for

fault-tolerant photonic quantum computing”. arXiv:2103.08612. 2021.

[62] J. E. Bourassa et al. “Blueprint for a Scalable Photonic Fault-Tolerant

Quantum Computer”. Quantum 5 (2021), p. 392.

[63] C. M. Natarajan, M. G. Tanner, and R. H. Hadfield. “Superconducting

nanowire single-photon detectors: physics and applications”. Supercon-

ductor Science and Technology 25.6 (2012), p. 063001.

[64] J. R. Scott. “A digital control system for photonic MBQC”. https:

//gitlab.com/johnrscott/mbqc-fpga. 2021.

[65] I. Kuon and J. Rose. “Measuring the Gap Between FPGAs and ASICs”.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 26.2 (2007), pp. 203–215.

[66] Xilinx. “7 Series FPGAs Data Sheet: Overview”. v2.6.1. DS180. 2020.

[67] Xilinx. “Kintex-7 FPGAs Data Sheet: DC and AC Switching Charac-

teristics”. v2.19. DS182. 2021.

[68] Xilinx. “7 Series FPGAs SelectIO Resources”. v1.10. UG471. 2018.

[69] Xilinx. “Vivado Design Suite User Guide: Getting Started”. UG910

(v2021.1). 2021.

[70] E. B. Eichelberger. “Hazard Detection in Combinational and Sequen-

tial Switching Circuits”. IBM Journal of Research and Development 9.2

(1965), pp. 90–99.

[71] Xilinx. “7 Series FPGAs Clocking Resources”. v1.14. UG472. 2018.

190

https://doi.org/10.1038/nphys1157
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033305
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033305
https://doi.org/10.1088/1361-6633/aad5b2
https://doi.org/10.1088/1361-6633/aad5b2
https://arxiv.org/abs/2103.08612
https://arxiv.org/abs/2103.08612
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.1088/0953-2048/25/6/063001
https://doi.org/10.1088/0953-2048/25/6/063001
https://gitlab.com/johnrscott/mbqc-fpga
https://gitlab.com/johnrscott/mbqc-fpga
https://doi.org/10.1109/tcad.2006.884574
https://doi.org/10.1147/rd.92.0090
https://doi.org/10.1147/rd.92.0090


References

[72] Xilinx. “Vivado Design Suite Tutorial: Design Analysis and Closure

Techniques”. UG938 (v2021.2). 2021.

[73] Xilinx. “Distributed Memory Generator v8.0”. PG063. 2015.

[74] L. Chrostowski. “Silicon photonics design”. Cambridge, United King-

dom: Cambridge University Press, 2015.

[75] P. Heydari and R. Mohavavelu. “Design of ultra high-speed CMOS CML

buffers and latches”. Proceedings of the 2003 International Symposium

on Circuits and Systems, 2003. ISCAS '03. IEEE, 2003.

[76] A. Athavale. “High-Speed Serial I/O Made Simple A Designers’ Guide,

with FPGA Applications”. 1.0. Xilinx, 2005.

[77] P. J. Ashenden. “The designer’s guide to VHDL”. Morgan Kaufmann,

2010.

[78] Xilinx. “Vivado Design Suite Tutorial: Design Flows Overview”. UG888

(v2021.1). 2021.

[79] L. Mineh and J. Scott. “Quantum Simulation Library (QSL)”. https:

//github.com/lanamineh/qsl. 2021.

[80] L. Mineh. “Solving the Hubbard model using the variational quantum

eigensolver”. PhD thesis. University of Bristol, 2021.

[81] “Programming Languages – C++”. Standard. International Organiza-

tion for Standardization, 2020.

[82] C. Eisner and D. Fisman. “A practical introduction to PSL”. Springer

Science & Business Media, 2007.

[83] M. Gimeno-Segovia. “Towards practical linear optical quantum comput-

ing”. PhD thesis. Imperial College London, 2015.

[84] R. L. Kruse and A. J. Ryba. “Data structures and program design in

C++”. Prentice-Hall, Inc., 2000.

[85] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. “Introduction

to algorithms”. MIT press, 2009.

[86] O. F. Thomas, W. McCutcheon, and D. P. S. McCutcheon. “A gen-

eral framework for multimode Gaussian quantum optics and photo-

detection: Application to Hong–Ou–Mandel interference with filtered

heralded single photon sources”. APL Photonics 6.4 (2021), p. 040801.

191

https://doi.org/10.1109/iscas.2003.1205938
https://doi.org/10.1109/iscas.2003.1205938
https://github.com/lanamineh/qsl
https://github.com/lanamineh/qsl
https://doi.org/10.1063/5.0044036
https://doi.org/10.1063/5.0044036
https://doi.org/10.1063/5.0044036
https://doi.org/10.1063/5.0044036


References

[87] M. H. Hayes. “Statistical digital signal processing and modeling”. John

Wiley & Sons, 2009.

[88] J. R. Scott. “MBQCSIM: C++ library for MBQC simulation”. https:

//gitlab.com/johnrscott/mbqcsim. 2021.

[89] A. Alexandrescu. “Modern C++ design: generic programming and de-

sign patterns applied”. Addison-Wesley, 2001.

[90] J. Cook. “Random number generator seed mistakes”. url: https://

www.johndcook.com/blog/2016/01/29/random-number-generator-

seed-mistakes/ (visited on 14/02/2022).

[91] P. Occil. “More Random Sampling Methods: Normal (Gaussian) Dis-

tribution”. url: https://peteroupc.github.io/randomnotes.html

(visited on 14/02/2022).

192

https://gitlab.com/johnrscott/mbqcsim
https://gitlab.com/johnrscott/mbqcsim
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://peteroupc.github.io/randomnotes.html
https://peteroupc.github.io/randomnotes.html
https://peteroupc.github.io/randomnotes.html

	Abstract
	Acknowledgements
	Declaration
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Why investigate control system design?
	Comparison of classical and quantum computers
	Gate-based quantum computing
	Quantum gates
	Measurement

	Photonic qubits
	Reading this thesis

	Overview of photonic MBQC
	Measurement-based quantum computing
	Logical qubits and measurement patterns in MBQC
	Performing the cluster qubit measurements 
	Measurement basis angles and adaptive measurements
	Byproduct operator calculations
	Commutation corrections

	Simplified model of photonic quantum computing
	Photonic MBQC
	Timing constraints on the cluster state
	The full MBQC system

	Summary

	Control system design for photonic MBQC
	Overall system design
	Logical qubit unit cells
	Clock planning

	Computational system design
	Adaptive measurement setting generation
	Byproduct operator calculation
	Commutation corrections
	Program word

	FPGA implementation of the design
	Timing analysis
	Discussion of extensions to the design
	Summary

	Design simulation and verification
	Measurement pattern verification
	Cluster-state simulation by recycling the state vector
	A resizeable quantum computer simulator
	Performing measurement patterns
	Verification of the simulator
	Simulator input and output

	Verification of the FPGA design
	One logical qubit
	Multiple logical qubits

	Summary

	Algorithmic overheads due to incomplete cluster states
	Photonic MBQC using incomplete cluster states
	Steps involved in implementing IMBQC
	The need for hardware emulation of IMBQC
	The ring-buffer model of control system implementation

	Overall design of MBQCSIM
	Path extension using right-nodes
	Search algorithm implementation
	Global breadth-first search
	Incremental breadth-first search

	Analysing algorithm performance using pathf
	Average maximum path depth
	Algorithmic overhead of pathfinding

	Conclusion

	Dynamic measurement pattern generation and analysis of analog voltage noise
	Effect of non-idealities in MBQC circuits
	One-qubit measurement patterns in incomplete cluster states
	Cutting out qubits around the path
	One-qubit gate along an arbitrary path

	Dynamic measurement pattern generation in MBQCSIM
	Restrictions imposed by implementation considerations
	Local measurement-pattern rules

	Simulating generated measurement patterns
	Adapting the cluster-state simulator to IMBQC
	Simulating analog voltage noise in modulators

	Verification of the simulation
	Calculating left-nodes
	Verification byproduct operators

	Analysing fidelity as a function of time using esim
	Summary and conclusion

	Conclusions
	The need for a non-mathematical approach to photonic MBQC
	Control system design is better than emulation
	What to investigate next?

	Appendices
	Mathematics of MBQC
	CNOT measurement pattern
	One-qubit gates in incomplete cluster states
	Arbitrary X-rotation
	Arbitrary Z-rotation
	Arbitrary one-qubit gate
	One-qubit gate along a linear cluster
	One-qubit gate through a 2D cluster state


	Implementation details of MBQCSIM
	Modelling incomplete cluster states
	Reproducibility and seeding in MBQCSIM
	Generation of seeds
	Custom implementation of the normal distribution
	Verification of MBQCSIM programs

	The need for verification byproduct operators
	References

