3,115 research outputs found

    Name-passing calculi and crypto-primitives: A survey

    No full text
    The paper surveys the literature on high-level name-passing process calculi, and their extensions with cryptographic primitives. The survey is by no means exhaustive, for essentially two reasons. First, in trying to provide a coherent presentation of different ideas and techniques, one inevitably ends up leaving out the approaches that do not fit the intended roadmap. Secondly, the literature on the subject has been growing at very high rate over the years. As a consequence, we decided to concentrate on few papers that introduce the main ideas, in the hope that discussing them in some detail will provide sufficient insight for further reading

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ā€¢ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ā€¢ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ā€¢ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ā€¢ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Process algebraic frameworks for the specification and analysis of cryptographic protocols

    Get PDF
    Two process algebraic approaches for the analysis of cryptographic protocols, namely the spi calculus by Abadi and Gordon and CryptoSPA by Focardi, Gorrieri and Martinelli, are surveyed and compared. We show that the two process algebras have comparable expressive power, by providing an encoding of the former into the latter. We also discuss the relationships among some security properties, i.e., authenticity and secrecy, that have different definitions in the two approaches

    Static Trace-Based Deadlock Analysis for Synchronous Mini-Go

    Full text link
    We consider the problem of static deadlock detection for programs in the Go programming language which make use of synchronous channel communications. In our analysis, regular expressions extended with a fork operator capture the communication behavior of a program. Starting from a simple criterion that characterizes traces of deadlock-free programs, we develop automata-based methods to check for deadlock-freedom. The approach is implemented and evaluated with a series of examples

    A Calculus of Bounded Capacities

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Process algebraic frameworks for the specification and ana lysis of cryptographic protocols

    Get PDF
    Two process algebraic approaches for the analysis of cryptographic protocols, namely the spi calculus by Abadi and Gordon and CryptoSPA by Focardi, Gorrieri and Martinelli, are surveyed and compared. We show that the two process algebras have comparable expressive power, by providing an encoding of the former into the latter. We also discuss the relationships among some security properties, i.e., authenticity and secrecy, that have different definitions in the two approaches

    Logical Relations for Session-Typed Concurrency

    Full text link
    Program equivalence is the fulcrum for reasoning about and proving properties of programs. For noninterference, for example, program equivalence up to the secrecy level of an observer is shown. A powerful enabler for such proofs are logical relations. Logical relations only recently were adopted for session types -- but exclusively for terminating languages. This paper scales logical relations to general recursive session types. It develops a logical relation for progress-sensitive noninterference (PSNI) for intuitionistic linear logic session types (ILLST), tackling the challenges non-termination and concurrency pose, and shows that logical equivalence is sound and complete with regard to closure of weak bisimilarity under parallel composition, using a biorthogonality argument. A distinguishing feature of the logical relation is its stratification with an observation index (as opposed to a step or unfolding index), a crucial shift to make the logical relation closed under parallel composition in a concurrent setting. To demonstrate practicality of the logical relation, the paper develops an information flow control (IFC) refinement type system for ILLST, with support of secrecy-polymorphic processes, and shows that well-typed programs are self-related by the logical relation and thus enjoy PSNI. The refinement type system has been implemented in a type checker, featuring local security theories to support secrecy-polymorphic processes.Comment: arXiv admin note: text overlap with arXiv:2208.1374
    • ā€¦
    corecore