
Process Algebraic Frameworks for the

Specification and Analysis of Cryptographic
Protocols �

Roberto Gorrieri1 and Fabio Martinelli2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy.
2 Istituto di Informatica e Telematica C.N.R., Pisa, Italy.

Abstract. Two process algebraic approaches for the analysis of cryp-
tographic protocols, namely the spi calculus by Abadi and Gordon and
CryptoSPA by Focardi, Gorrieri and Martinelli, are surveyed and com-
pared. We show that the two process algebras have comparable expressive
power, by providing an encoding of the former into the latter. We also
discuss the relationships among some security properties, i.e., authentic-
ity and secrecy, that have different definitions in the two approaches.

1 Introduction

Security protocols are those protocols that accomplish security goals such as pre-
serving the secrecy of a piece of information during a protocol or establishing the
integrity of the transmitted information. Cryptographic protocols are those se-
curity protocols running over a public network that use cryptographic primitives
(e.g., encryption and digital signatures) to achieve their security goals.

In the analysis of cryptographic protocols, one has to cope with the insecurity
of the network. So, it is assumed that one attacker (sometimes called enemy or
intruder) of the protocol has complete control over the communication medium.
On the other hand, to make analysis less intricate, it is also usually assumed
perfect cryptography, i.e., such an enemy is not able to perform cryptanalytic
attacks: an encrypted message can be decrypted by the enemy only if he knows
(or is able to learn) the relevant decryption key. Such an analysis scenario is
often referred to as the Dolev-Yao approach [10].

Because of the above, cryptographic protocols are difficult to be analysed
and to be proved correct. Indeed, a lot of them have flaws or inaccuracies. As a
well-known example, we mention that Lowe [22] pointed out one inaccuracy in
an authentication protocol by Needham and Schroeder [31].

Hence, the need of a formal approach to the analysis of cryptographic proto-
cols. The spi calculus [3], proposed by Abadi and Gordon, and CryptoSPA [17,
� Work partially supported by MURST Progetto “Metodi Formali per la Sicurezza”

(MEFISTO); IST-FET project “Design Environments for Global ApplicationS (DE-
GAS)”; Microsoft Research Europe; by CNR project “Tecniche e Strumenti Software
per l’analisi della sicurezza delle comunicazioni in applicazioni telematiche di inter-
esse economico e sociale” and by a CSP grant for the project “SeTAPS II”.

16], proposed by the authors in joint work with R. Focardi, are two well-known
possible answers. The goal of this paper is to show similarities and differencies
of these two approaches from the point of view of both modeling and analysis.
A small running example is used throughout the paper in order to illustrate the
basic features of the two approaches.

The basic idea is that, in order to analyse a protocol, one has to begin by
modeling it as a program of the calculus. At first sight, there are some differencies
in the spi model and in the CryptoSPA one. In particular, the spi calculus, being
based on the π calculus, is apparently more expressive as it handles mobility (of
channels) as a first class primitive of the language. On the other hand we show
that it is possible to define an encoding from the spi calculus to CryptoSPA that
preserves a rather strong notion of equivalence. The core idea of the encoding is
that name generation of spi can be simulated by means of a suitable process in
CryptoSPA that uses the inference system hidden inside the language. Moreover,
the spi calculus offers the possibility to describe secret pieces of information
inside the syntax, by means of the restriction operator. On the contrary, in
CryptoSPA these secrets are to be specified separately as limitations on the
knowedge of the enemy that tries to attack the protocol.

A major difference between the two approaches can be summarised by the
motto: Contextual equivalence vs Equivalence of contexts. In the spi calculus the
properties of secrecy and message authenticity are expressed as the equivalence
of systems, where the used notion of equivalence is may testing: it is based on
the idea that two systems are equivalent if they cannot be distinguished by an
external observer. According to the spi calculus approach, the tester is playing at
the same time the role of observer and attacker of the protocol; hence, elegantly,
spi includes the notion of external enemy inside the definition of the semantics
of the calculus by using a contextual equivalence. Indeed, the two processes must
exhibit the same observable behavior w.r.t. any context (the observer).

On the contrary, in CryptoSPA the properties of secrecy and authenticity (or
integrity) are formulated as instances of the following general form:

∀X ∈ EφI

C (S |X) \ C ∼ α(S)

where X is any process in the set EφI

C of admissible enemies, C is the set of
communication channels, ∼ is a behavioural semantics (actually, trace semantics
for our purpose) and α(S) is the correct specification of S when run in isolation.
The equation above amounts to say that the behaviour of system S when exposed
to any enemy X is the same as the correct behaviour of S. Hence, such properties
are expressed as a form of equivalence of contexts: a closed system, i.e. α(S), is
compared with an open system (S | •) \ C and the comparison takes the form
of an infinity of checks between closed systems, for each possible enemy X .
(Actually, nothing prevents ∼ from being itself a contextual equivalence, though
trace equivalence is the usual relation used in the CryptoSPA approach.)

We will show that the latter approach is more flexible, by providing an exam-
ple of an attack scenario where there are several enemies with different capabili-
ties that can be naturally treated in the CryptoSPA approach. On the contrary,

the spi approach is appropriate for modeling a scenario where there is one single
enemy, as in the Dolev-Yao approach.

The final part of the paper is devoted to show similarities and differences
among secrecy and authenticity as defined in the two approaches. We show that,
in spite of the many technical differencies, the notion of spi authenticity is the
same as the notion of integrity in CryptoSPA. On the contrary, the two notions
of secrecy are quite different.

A short summary of other process algebraic approaches to the analysis of
cryptographic protocols concludes the paper.

2 The Spi Calculus

The spi calculus [3] is a version of the π calculus [30] equipped with abstract
cryptographic primitives, e.g. primitives for perfect encryption and decryption.
Names represent encryption keys as well as communication channels.

Here we give a short overview of the main features of the calculus, by pre-
senting a simple version with asynchronous communication and shared-key cryp-
tography. The interested reader can find more details in [3] and [20] (a tutorial
on the subject that has inspired the current short survey).

2.1 Syntax and Reduction Semantics

In this section we briefly recall some basic concepts about the asynchronous spi
calculus with shared-key cryptography. The choice of the asynchronous version
is inessential for the results of the paper and is only taken for simplicity. The
restriction to shared-key cryptography only is for the sake of simplicity too.

Given a countable set of names N (ranged over by a, b, . . . , n, m, . . .) and a
countable set of variables V (ranged over by x, y, . . . ,), the set of terms is defined
by the grammar:

M, N ::= m | x | (M, N) | {M}N

with the proviso that in (M, N) and {M}N the term M (and similarly N) can
be either a ground term (i.e., without variable occurrences) or simply a variable.

The set of spi calculus processes is defined by the BNF -like grammar:

P, Q ::= 0 | M〈N〉 | M(x).P | (νn)P | P |Q | [M = N]P else Q | A〈M1, . . . , Mn〉 |
let (x, y) = M in P else Q | case M of {x}N in P else Q

The name n is bound in the term (νn)P . In M(x).P the variable x is bound
in P . In let (x, y) = M in P else Q the variables x and y are bound in P . In
case M of {x}N in P else Q the variable x is bound in P . The set fn(P) of free
names of P is defined as usual.

We give an intuitive explanation of the operators of the calculus:
– 0 is the stuck process that does nothing.
– M〈N〉 is the output construct. It denotes a communication on the channel

M of the term N .

– M(x).P is the input construct. A name is received on the channel M and
its value is substituted for the free occurrences of x in P (written P [M/x]).

– (νn)P is the process that makes a new, private name n, for P , and then
behaves as P .

– P |Q is the parallel composition of two processes P and Q. Each may inter-
act with the other on channels known to both, or with the outside world,
independently of the other.

– [M = N]P else Q is the match construct. The process behaves as P when
M = N , otherwise it behaves as Q.

– A〈x1, . . . , xn〉 is a process constant. We assume that constants are equipped
by a constant definition like A〈x1, . . . , xn〉 .= P , where the free variables of
P are contained in {x1, . . . , xn}.

– let (x, y) = M in P else Q is the pair splitting process. If the term M is of
the form (N, L), then it behaves as P [N/x][L/y]; otherwise, it behaves as Q.

– case M of {x}N in P else Q is the decryption process. If M is of the form
{L}N , then the process behaves as P [L/x]; otherwise, it behaves as Q.

We also define the structural congruence as follows. Let ≡ be the least congruence
relation over processes closed under the following rules:

1. P ≡ Q, if P is obtained through α–conversion from Q
2. P |0 ≡ P
3. P |Q ≡ Q |P
4. P |(Q |R) ≡ (P |Q) |R
5. (νn)0 ≡ 0
6. (νn)(νm)P ≡ (νm)(νn)P
7. (νn)(νn)P ≡ (νn)P
8. (νn)M〈N〉 ≡ M〈N〉, if n /∈ fn(M) ∪ fn(N)
9. (νn)M(x).P ≡ M(x).(νn)P , if n /∈ sort(M)

10. (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)
11. [M = M ′]P else Q ≡ P , if M = M ′
12. [M = M ′]P else Q ≡ Q, if M 	= M ′ and M, M ′ are ground
13. let (x, y) = (M, N) in P else Q ≡ P [M/x][N/y]
14. let (x, y) = M in P else Q ≡ Q, if M 	= (N, N1), for some N, N1 and M /∈ V
15. case {M}N of {x}N in P else Q ≡ P [M/x]
16. case M of {x}N in P else Q ≡ Q, if M 	= {N ′}N , for some N ′ and M /∈ V
17. A〈M1, . . . , Mn〉 ≡ P [M1/x1, . . . , M1/x1], when A〈x1, . . . , xn〉 .= P .

We give the reduction semantics for the asynchronous spi calculus. Processes
communicate among them by exchanging messages. An internal communication
(or reduction) of the process P is denoted by P −→ P ′. We have the following
rules for calculating the reduction relation between processes:

m〈N〉 |m(x).P −→ P [N/x]
P ≡ Q, Q −→ Q′, Q′ ≡ P ′

P −→ P ′

P −→ P ′
P |Q −→ P ′ |Q

P −→ P ′
νn(P) −→ νn(P ′)

2.2 May Testing Semantics

May testing equivalence [9] is the equivalence notion that is used in the spi
calculus to define the security properties. In order to define this equivalence,
we first define a predicate that describes the channels on which a process can
communicate. We let a barb β be an output channel. For a closed process P , we
define the predicate P exhibits barb β, written P ↓ β, by the following rules:

m〈N〉 ↓ m
P ↓ β

P |Q ↓ β

P ↓ β β 	∈ {m, m}
(νm)P ↓ β

P ≡ Q Q ↓ β
P ↓ β

Intuitively, P ↓ β holds if P may output immediately along β. The convergence
predicate P ⇓ β holds if P exhibits β after some reactions.

P ↓ β
P ⇓ β

P −→ Q Q ⇓ β
P ⇓ β

A test consists of any closed process R and any barb β. A closed process P
passes the test if and only if (P |R) ⇓ β. May testing equivalence is then defined
on the set of closed processes as follows:

P ≈may Q ⇐⇒ for any test (R, β), (P |R) ⇓ β if and only if (Q |R) ⇓ β

May-testing has been chosen because it corresponds to partial correctness (or
safety), and security properties are often safety properties. Moreover, a test
neatly formalises the idea of a generic experiment or observation another process
(such as an attacker) might perform on a process. So testing equivalence captures
the concept of equivalence in an arbitrary environment; as a matter of fact, may-
testing equivalence is a contextual equivalence.

3 CryptoSPA

Cryptographic Security Process Algebra (CryptoSPA for short) is a slight modi-
fication of CCS process algebra [29], adopted for the description of cryptographic
protocols. It makes use of cryptographic-oriented modeling constructs and can
deal with confidential values [15, 17, 26].

The CryptoSPA model consists of a set of sequential agents able to commu-
nicate by exchanging messages.

The data handling part of the language consists of a set of inference rules used
to deduce messages from other messages. We consider a set of relations among
closed messages as: �r⊆ Pfin(M)×M, where r is the name of the rule. Given a
set R of inference rules, we consider the deduction relation DR ⊆ Pfin(M)×M.
Given a finite set of closed messages, say φ, then (φ, M) ∈ DR if M can be derived
by iteratively applying the rules in R. For the sake of simplicity, we assume that
�r (for each r ∈ R) and DR ⊆ Pfin(M) ×M are decidable.

3.1 The Language Syntax

CryptoSPA syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged
over by c) and a set O of output channels (ranged over by c, the output
corresponding to the input c);

– A set V ar of variables, ranged over by x;
– A set M of messages, defined as above for the spi calculus, ranged over by

M, N (and by m, n, with abuse of notation, to denote closed messages).

The set L of CryptoSPA terms (or processes) is defined as follows:

P, Q ::= 0| c(x).P | cM.P | τ.P | P |Q | P\L |

A(M1, . . . , Mn) | [〈M1, . . . , Mr〉 �rule x]P ; Q

where M, M ′, M1, . . . , Mr are messages or variables and L is a set of channels.
Both the operators c(x).P and [〈M1 . . . Mr〉 �rule x]P ; Q bind variable x in P .

We assume the usual conditions about closed and guarded processes, as in
[29]. We call P the set of all the CryptoSPA closed and guarded terms. The set
of actions is Act = {c(M) | c ∈ I}∪{cM | c ∈ O}∪{τ} (τ is the internal, invisible
action), ranged over by a. We define sort(P) to be the set of all the channels
syntactically occurring in the term P . Moreover, for the sake of readability, we
always omit the termination 0 at the end of process specifications, e.g. we write
a in place of a.0. We give an informal overview of CryptoSPA operators:

– 0 is a process that does nothing.
– c(x).P represents the process that can get an input M on channel c behaving

like P [M/x]).
– cm.P is the process that can send m on channel c, and then behaves like P .
– τ.P is the process that executes the invisible τ and then behaves like P .
– P1 |P2 (parallel) is the parallel composition of processes that can proceed in

an asynchronous way but they must synchronize on complementary actions
to make a communication, represented by a τ .

– P\L is the process that cannot send and receive messages on channels in L;
for all the other channels, it behaves exactly like P ;

– A(M1, . . . , Mn) behaves like the respective defining term P where all the
variables x1, . . . , xn are replaced by the messages M1, . . . , Mn;

– [〈M1, . . . , Mr〉 �rule x]P ; Q is the process used to model message manipu-
lation as cryptographic operations. Indeed, the process [〈M1, . . . , Mr〉 �rule

x]P ; Q tries to deduce an information z from the tuple 〈M1, . . . , Mr〉 through
the application of rule �rule; if it succeeds then it behaves like P [z/x], other-
wise it behaves as Q. The set of rules that can be applied is defined through
an inference system (e.g., see Figure 1 for an instance).

m m′

(m, m′)
(�pair)

(m,m′)
m

(�fst)
(m, m′)

m′ (�snd)

m k

{m}k
(�enc)

{m}k k

m
(�dec)

Fig. 1. An example inference system for shared key cryptography

3.2 The Operational Semantics of CryptoSPA

In order to model message handling and cryptography we use a set of inference
rules. Note that CryptoSPA syntax, its semantics and the results obtained are
completely parametric with respect to the inference system used. We present
in Figure 1 an instance inference system, with rules: to combine two messages
obtaining a pair (rule �pair); to extract one message from a pair (rules �fst and
�snd); to encrypt a message m with a key k obtaining {m}k and, finally, to
decrypt a message of the form {m}k only if it has the same key k (rules �enc

and �dec, respectively).
In a similar way, inference systems can contain rules for handling the basic

arithmetic operations and boolean relations among numbers, so that the value-
passing CCS if-then-else construct can be obtained via the �rule operator.

Example 1. Natural numbers may be encoded by assuming a single value 0 and
a function S(y), with the following rule: x

S(x) inc. Similarly, we can define sum-

mations and other operations on natural numbers.

Example 2. We do not explicitly define equality check among messages in the
syntax. However, this can be implemented through the usage of the inference
construct. E.g., consider rule x x

Equal(x, x) equal. Then [m = m′]A (with the

expected semantics) may be equivalently expressed as [m m′ �equal y]A where
y does not occur in A. Similarly, we can define inequalities, e.g., ≤, among
natural numbers.

More interestingly, this form of inference constructs of CryptoSPA is also useful
to model common access control mechanisms in distributed systems.

Example 3. Indeed, consider a set of credentials, i.e. (signed) messages contain-
ing information about access rights. Assume that {A, ob1, +}pr(C) means that
the user C (via the signature with its private key pr(C)) asserts A has the right
to access the object ob1 and may grant this access to other users (this is denoted
through the symbol +). A rule like:

{A, ob1, +}pr(C) pr(C) {grant B, ob1}pr(A)

{B, ob1, +}pr(C)
(accC)

may be used by the controller C to issue other access right credentials, after
receiving an indication by A, i.e. the signed message {grant B, ob1}pr(A).

(input)
m ∈ M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P
(internal)

τ.P
τ−→ P

(\L)
P

c(m)−→ P ′ c �∈ L

P\L c(m)−→ P ′\L
(|
1

)
P1

a−→ P ′
1

P1 |P2
a−→ P ′

1 |P2

(|
2

)
P1

c(x)−→ P ′
1 P2

cm−→ P ′
2

P1 |P2
τ−→ P ′

1 |P ′
2

(Def)
P [m1/x1, . . . , mn/xn]

a−→ P ′ A(x1, . . . , xn)
.
= P

A(m1, . . . , mn)
a−→ P ′

(D)
〈m1, . . . , mr〉 �rule m P [m/x]

a−→ P ′

[〈m1, . . . , mr〉 �rule x]P ; Q
a−→ P ′

(D1)
� ∃m s.t. 〈m1, . . . , mr〉 �rule m Q

a−→ Q′

[〈m1, . . . , mr〉 �rule x]P ;Q
a−→ Q′

Fig. 2. Structured Operational Semantics for CryptoSPA (symmetric rules for |1, |2
and \L are omitted)

Thus, we may also consider the inference rules as an abstract mechanism to
express security policies usually defined using other mathematical models and
logics (e.g., see [21, 34]).

The operational semantics of a CryptoSPA term is described by means of the
labelled transition system (lts, for short) 〈P , Act, { a−→}a∈Act〉, where { a−→}a∈Act

is the least relation between CryptoSPA processes induced by the axioms and
inference rules of Figure 2. As a notation we also use P =⇒ P ′ for denoting
that P and P ′ belong to the reflexive and transitive closure of τ−→; P

γ
=⇒ P ′

if γ is a finite sequence of actions ai, 1 ≤ i ≤ n s.t. ai 	= τ and P
τ=⇒ a1−→=⇒

. . . =⇒ an−→ τ=⇒ P ′.
Let Tr(P) denote the set {γ ∈ (Act \ {τ})∗|P γ

=⇒ P ′} of executable ob-
servable traces. We define the trace preorder, ≤trace, as follows: P ≤trace Q if
Tr(P) ⊆ Tr(Q). We say that P and Q are trace equivalent, denoted P ∼tr Q,
iff Tr(P) = Tr(Q).

4 Comparison in Expressiveness

We compare the two languages by providing an encoding from the spi calculus
to CryptoSPA (actually a sublanguage). Basically, the encoding [], preserves
the equality of terms, i.e. assume that ≈1 (≈2) is an equivalence relation on spi
calculus (CryptoSPA), then

P ≈1 Q ⇐⇒ [P] ≈2 [Q]

The technical machinery in [35] about barbed equivalences will be of help, as ≈i,
with i = 1, 2, will be weak barbed equivalences. Barbed equivalences are based

on a minimal notion of observable, i.e. the barb. This makes them very suitable
to provide natural equivalence notions in different languages in a uniform way. It
is worthwhile noticing that these forms of equivalence are finer than may-testing
(in their respective languages).

Barbed equivalences Given the predicate P exhibits a barb β, P ↓ β, it is possible
to define in a standard way a set of useful process equivalences. We say that a
symmetric relation R among processes is a barbed bisimulation, if (P, Q) ∈ R
then:

– For all β, it holds P ↓ β iff Q ↓ β;
– if P −→ P ′ then ∃ Q′ s.t. Q −→ Q′ and (P ′, Q′) ∈ R.

The union of all barbed bisimulations, denoted by ∼, is a barbed bisimulation.
There exists also a form of weak barbed bisimulation where in the previous
statements, the observable predicate is replaced by the weak one, i.e. P ⇓ β and
Q −→ Q′ by Q =⇒ Q′. We say that a symmetric relation R among processes
is a barbed equivalence � whenever, if (P, Q) ∈ R then for each static (cf [35])
context C[·], it holds that C[P] ∼ C[Q].

Our encoding works in two steps:

– The spi calculus will be encoded, up to weak barbed equivalence, into a
sublanguage, called spires-calculus. In this sublanguage, the input operator
is replaced by a new one: a process can receive only pairs on a public channel,
i.e. net, that cannot be restricted. After receiving a pair, a process is obliged
to check the first element of the pair with a given message. Only if the match
is successful the process proceeds, otherwise it has to reproduce the message
in the net and to try with another pair.

– Then, the spires-calculus is encoded into CryptoSPAres, a similar variant
of spires but on CryptoSPA. Basically, we encode the decryption, splitting
and matching constructs through inference rules. Moreover, the new name
generation is simulated as the receiving action of a fresh message generated
by a special process, called Gen.

4.1 An Encoding of spi Calculus into spires-Calculus

The encoding [P]1 acts as an homomorphism on spi calculus process, except
for M〈N〉.P and M(x).P . In particular, we have the homomorphic [(νc)P]1 =
(νc)[P]1; moreover, [M〈N〉]1 = net〈(M, N)〉, where net is a special channel name
that cannot be restricted, and [M(x).P]1 = A where the defining equation for
A is

A
.= net(x).let (z1, z2) = x
in ([M = z1][P [z2/x]]1 else net〈(z1, z2)〉 |A)
else net〈x〉 |A

The encoding works as follows. Sent messages are encoded as pairs: the first
element denotes the channel, and the second one the message itself. When a
process wishes to receive a message on a certain channel, say M , it has to get

a pair from the network, and then it is obliged to check if the first element
of the pair is the channel; if so, the process proceeds as before (provided that
the derivative is encoded), otherwise the pair that has been captured from the
network is inserted again. Note that we cannot avoid that a communication
happens within the channel net, however, in the case that the channel is not the
expected one then the system returns to the original configuration. Consider the
following example of a communication on a restricted channel.

Example 4. Suppose P = νc(c〈n〉 | c(x).x〈x〉). Then, [P]1 is νc(net〈(c, n)〉 |A)
where A is defined as

A
.= net(x).let (z1, z2) = x in ([c = z1](net〈(z2, z2)〉) else net〈(z1, z2)〉 |A)
else net〈x〉 |A

Now, P −→ νc(n〈n〉) and similarly [P]1 −→ νc(net(n, n)). Consider now the
process Q = c1〈n〉. Then, [P |Q]1 = [P]1 |[Q]1 = νc(net(c, n) |A) |net〈c1, n〉.
Note that [P |Q]1 −→ T , by means of a synchronization of net and T ≡ [P |Q]1:

[P |Q]1
= νc(net〈(c, n)〉 |A) |net〈(c1, n)〉
≡ νc(net〈(c, n)〉 |A |net〈(c1, n)〉)
−→ νc(net〈(c, n)〉 |([c = c1](net〈(n, n)〉) else net〈(c1, n)〉 |A))
≡ νc(net〈(c, n)〉 |A |net〈(c1, n)〉)

Indeed, the encoded process may perform useless communications on the channel
net; the crucial point is that such communications do not significantly change
the status of the process.

Thus, we may define a form of weak barbed equivalence among processes in spi
and the ones obtained through []1, i.e. spires. The idea is that whenever P
exhibits an output on a barb c, say P ↓ c, then [P]1 exhibits an output on a barb
net of c, say [P]1 ↓ net〈c, ∗〉, and conversely. Moreover, if P performs a reduction
then also [P]1 must perform it, on the contrary if [P]1 performs a reduction P
may also choose to stay blocked. This encoding is clearly not satisfactory for
the point of view of implementation, as it introduces divergence. However, it is
useful when we are simply interested in verifying security properties that usually
depends on may testing equivalence. Indeed, weak barbed equivalence implies
may testing equivalence.

4.2 Encoding spires into CryptoSPAres

We may encode the spires calculus into CryptoSPAres. For most operators, the
[]2 function works as a homomorphism, e.g., [P |Q]2 = [P]2 |[Q]2. However,
we must face two relevant problems: (i) the different forms of cryptography
handling;(ii) the different treatment of new name generation.

We deal first with the simpler one that is the treatment of cryptography.
In CryptoSPA cryptographic primitives are modeled by means of the inference
system. Hence, we can map the decryption construct of spi as follows:

[case M of {x}N in P else Q]2 = [M N �dec x][P]2; [Q]2

and similarly for the splitting construct and the matching one.
For the second problem, we have to consider the restriction operator (new

name generation). The restriction operator of the spi calculus is used to denote
“secret” values known locally by the process. The treatment of such secret values
is very elegant in the pi/spi calculus. Ultimately, the operator (νn)P defines a
new fresh name n in P , that no one else should be ever able to create/guess. We
encode these features through the usage of a specific process that creates new
names. This process is the unique one allowed to generate such messages and it
creates them iteratively. A CryptoSPA specification for such a process could be
the following:

Gen(x) = [x �nonce y].geny.Gen(y)

where the (omitted) rule for nonce creation could be as inc in Example 1.
The encoding []2 may map each νn(P) construct to a receiving action, i.e.
[νn(P)]2 = gen(x).[P]2 This second encoding []∗ will be actually the following
[P]∗ = [P]2 |Gen(0), because we need one single instance of the name generator
process. Note that restricted names are mapped to new names that are unguess-
able by the enemy because we assume that only process Gen can send along gen,
hence ensuring that an enemy cannot eavesdrop new names sent from Gen.

The encoding []∗ is sound as we consider as observable the first component
in a pair which is an output over net, taking care not to consider in CryptoSPAres

the new (nonce) names (which correspond to restricted channels in spires). We
show a complete example of encoding from spi to CryptoSPAres.

Example 5. Consider P = νc(c〈n〉). Then, [P]∗ = gen(c).net(c, n) |Gen(0). Note
that although [P]∗ may perform a communication step, that cannot be matched
by P , the observable behaviour is the same since the output of nonce values
cannot be observed.

5 Comparison of the Two Approaches

5.1 Protocol Analysis in the spi Calculus

We show a very basic example. We have two principals A and B that use a public
(hence insecure) channel, cAB, for communication; in order to achieve privacy,
messages are encrypted with a shared key KAB. The protocol is simply that A
sends along cAB a single message M to B, encrypted with KAB.

A → B : {M}KAB on public cAB

The spi calculus specification is as follows:

A(M) = cAB〈{M}KAB〉
B = cAB(x).case x of {y}KAB in F (y)

P (M) = (νKAB)(A(M) |B)

where F (y) is the continuation of B. The fact that the channel cAB is public
is witnessed by the fact that it is not restricted. On the other hand, KAB is

restricted to model that it is a secret known only by A and B. When B receives
{M}KAB on cAB, B attempts to decrypt it using KAB; if this decryption suc-
ceeds, B applies F to the result. Two important properties hold for this protocol:

– Authenticity (or integrity): B always applies F to the message M that A
sends; an enemy cannot cause B to apply F to some other message M ′.

– Secrecy: No information on the message M can be inferred by an observer
while M is in transit from A to B: if F does not reveal M , then the whole
protocol does not reveal M .

Intuitively, the secrecy property should establish that if F (M) is indistinguish-
able from F (M ′), then the protocol with message M is indistinguishable from
the protocol with message M ′. This intuition can be formulated in terms of
equivalences as follows: if F (M) ≈may F (M ′), for any M , M ′, then P (M) ≈may

P (M ′).
Also integrity can be formalized in terms of an equivalence. This equivalence

compares the protocol with another version of the protocol which is secure by
construction. For this example, the required specification is:

A(M) = cAB〈{M}KAB〉
Bspec(M) = cAB(x).case x of {y}KAB in F (M)
Pspec(M) = (νKAB)(A(M) |Bspec(M))

The principal B is replaced with a variant Bspec(M) that receives an input from
A and then acts like B when B receives M . Bspec(M) is a sort of “magical”
version of B that knows the message M sent by A, hence ensuring integrity
by construction. Therefore, we take the following equivalence as our integrity
property: P (M) ≈may Pspec(M), for any M .

5.2 Protocol Analysis in CryptoSPA

In this section we want to show how to use CryptoSPA for the analysis of cryp-
tographic protocols. The following subsections are devoted (i) to illustrate how
security properties can be specified by decorating suitably protocol specification,
then (ii) to discuss the actual definition of admissible attackers and, finally, (iii)
to show how secrecy and integrity can be modeled in this framework.

Noninterference for Cryptographic Protocols Analysis Noninterference
essentially says that a system P is secure if its low behaviour in isolation is
the same as its low behaviour when exposed to the interaction with any high
level process Π . Analogously, we may think that a protocol P is secure if its
(low) behaviour is the same as its (low) behaviour when exposed to the possible
attacks of any intruder X .

To set up the correspondence, this analogy forces to consider the enemies as
the high processes. Since the enemy has complete control over the communica-
tion medium, the CryptoSPA public channels in set C (i.e., the names used for

message exchange) are the high level actions while the private channels in set
(I∪O)\C are the low level ones. As a protocol specification is usually completely
given by message exchanges, it may be not obvious what are the low level ac-
tions. In our approach, they are extra observable actions that are included into
the protocol specification to observe properties of the protocol. Of course, the
choice of these extra actions (and the place into the specification where they are
to be inserted) is property dependent.

Considering the example

A → B : {M}KAB on public cAB

the basic integrity property that we want to model can be obtained by enriching
the protocol specification with a (low) extra action received(M) that B performs
when receiving the message M . Hence, the protocol specification is:

A(M) = cAB{M}KAB

B = cAB(x).[〈{M}KAB , KAB〉 �dec y].receivedy

P (M) = A(M) |B
where cAB{M}KAB is a shorthand for [〈M, KAB〉 �enc x]cABx and where the
received message is sent along the private channel received.

Hence, we can state that integrity holds if the following equation holds for
the protocol enriched with the event received:

P (M) satisfies integrity of M if for all (admissible) enemies X we have

P (M) \ {cAB} ∼tr (P (M) |X) \ {cAB}
This noninterference-based definition seems intuitively quite strong; it is of the
form of equivalence of contexts: the closed term defining the security property,
i.e. P (M) \ {cAB} ∼tr {received(M)}, is checked for (trace) equivalence with
the open system (P (M) | •) \ {cAB}; such a comparison takes the form of an
infinity of equivalence checks for all possible enemies X closing the term.

Admissible Enemies Intuitively, an enemy X can be thought of as a process
which tries to attack a protocol by stealing and faking the information which
is transmitted on the CryptoSPA public channels in set C. However, we are
to be sure that X is not a too powerful attacker. Indeed, a peculiar feature of
the enemies is that they should not be allowed to know secret information in
advance: as we assume perfect cryptography, the initial knowledge of an enemy
must be limited to include only publicly available pieces of information, such
as names of entities and public keys, and its own private data (e.g., enemy’s
private key). If we do not impose such a limitation, the attacker would be able
to “guess” every secret piece of information.

Considering the example above, if the enemy knows the key kAB that should
be known only by A and B, the protocol would be easily attacked by the instance
of the enemy

X(m, k) def= cAB{m}k

where m = MX and k = KAB. The problem of guessing secret values can be
solved by imposing some constraints on the initial data known by the enemies.
Given a process P , we call ID(P) the set of messages that occur syntactically
in P . Now, let φI ⊆ M be the finite, initial knowledge that we would like
to give to the enemies, i.e., the public information such as the names of the
entities and the public keys, plus some possible private data of the intruders
(e.g., their private keys or nonces). For a certain intruder X , we want that
all the messages in ID(X) are deducible from φI . Formally, given a finite set
φI ⊆ M, called the initial knowledge, we define the set EφI

C of admissible enemies
as EφI

C = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φI)}. To see how EφI

C prevents
the problem presented in the running example, to indicate that KAB is secret,
we can now require that KAB 	∈ D(φI). Since ID(X(MX , KAB)) = {MX , KAB},
we finally have that X(MX , KAB) 	∈ EφI

C .

Integrity In order to specify integrity (or authenticity), one has simply to dec-
orate the protocol specification P with an action of type received in correspon-
dence of the relevant point of the protocol specification, obtaining a decorated
protocol P ′. Once this has been done, the integrity equation reads as follows:

P (M) satisfies integrity of M if ∀X ∈ EφI

C (P ′(M) |X) \ C ∼tr P ′(M) \ C

where C is the set of public channels. The intuition is that P ′(M) \ C repre-
sents the protocol P running in isolation (because of the restriction on public
channels), while (P ′(M) |X) \ C represents the protocol under the attack of an
admissible (i.e., that does not know too much) enemy X . The equality imposes
that the enemy X is not able to violate the integrity property specification that
is represented by the correct (low) trace received(M).

The property above is very similar to a property known in the literature as
Non Deducibility on Compositions [13, 14] (NDC for short) and, as we will show
in the next subsection is valid also for analysing secrecy. NDC for CryptoSPA is
defined as follows (see [17]): A process S is NDC iff ∀X ∈ EφI

C (S |X) \C ∼tr

S \ C. In other words S is NDC if every possible enemy X which has an initial
knowledge limited by φI is not able to significantly change the behaviour of
the system. This definition can be generalized to the scheme GNDC [15, 17] as
follows:

S is GNDCα
≈ iff ∀X ∈ EφI

C : (S |X) \ C ≈ α(S)

where α(S) denotes the secure specification of the system, which is then com-
pared with the open term (S | •)\C. GNDC is a very general scheme under which
many security properties for cryptographic protocols can be defined as suitable
instances. See, e.g., [16] for some examples about authentication properties.

Secrecy Also secrecy can be defined via a variation of the NDC equation above,
or better as an instance of the GNDC scheme. Consider a protocol P (M) and
assume that we want to verify if P (M) preserves the secrecy of message M .

This can be done by proving that every enemy which does not know message
M , cannot learn it by interacting with P (M). Thus, we need a mechanism that
notifies whenever an enemy is learning M . We implement it through a simple
process called knowledge notifier which reads from a public channel ck ∈ C \
sort(P (M)) not used in P (M) and executes a learntM action if the read value
is exactly equal to M . For a generic message m, it can be defined as follows:

KN(m) def= ck(y).[m = y]learntm

We assume that learnt is a special channel that is never used by protocols
and is not public, i.e., learnt 	∈ sort(P) ∪ C. We now consider P ′(M) def=
P (M) |KN(M), i.e., a modified protocol where the learning of M is now notified.
A very intuitive definition of secrecy can be thus given as follows:

P (M) preserves the secrecy of M iff
for all secrets N ∈ M \D(φI) ∀X ∈ EφI

C P ′(N) \ C ∼tr (P ′(N) |X) \ C

In other words, we require that for every secret M and for every admissible enemy
X , process (P ′(M) |X) \ C never executes a learntM action, as P ′(N) \ C is
not able to do so.

Most powerful enemy A serious obstacle to the widespread use of these
GNDC -like properties is the universal quantification over all admissible enemies.
While the proof that a protocol is not NDC can be naturally given by exhibiting
an enemy that breaks the semantic equality, much harder is the proof that a
protocol is indeed NDC, as it requires an infinity of equivalence checks, one for
each admissible enemy. One reasonable way out could be to study if there is
an attacker that is more powerful than all the others, so that one can reduce
the infinity of checks to just one, albeit huge, check with respect to such most
powerful enemy.

Indeed, it is easy to prove that if � is a pre-congruence 3 and if there exists a
process Top ∈ EφI

C such that for every process X ∈ EφI

C we have X � Top, then:

P ∈ NDC� iff (P |Top) \ C � P \ C

If the hypotheses of the proposition above hold, then it is sufficient to check that
P \ C is equivalent to (P |Top) \ C.

Given the pre-congruence �, let ≈= � ∩ �−1. If there exist two processes
Bot, T op ∈ EφI

C such that for every process X ∈ EφI

C we have Bot � X � Top
then

P ∈ NDC≈ iff (P |Bot) \ C ≈ (P |Top) \ C ≈ P \ C

Given these very general results, one may wonder if they are instanciable to
some of the semantics we have described so far. Indeed, this is the case, at least
for the trace preorder ≤trace, which is a pre-congruence.
3 A preorder � is a pre-congruence (w.r.t. the operators | and \C) if for every P, Q, R ∈
P if Q � R then P |Q � P |R and Q \ C � R \ C.

The easy part is to identify the minimal element Bot in EφI

C w.r.t. ≤trace:
the minimum set of traces is the emptyset, that is generated, e.g., by process 0.

Let us now try to identify the top element Top in EφI

C w.r.t. ≤trace. The
“most powerful enemy” can be defined by using a family of processes TopC,φ

trace

each representing the instance of the enemy with knowledge φ:

TopC,φ
trace =

∑

c ∈ C
m ∈ Msg(c)

c(m).T op
C,φ∪{m}
trace +

∑

c ∈ C
m ∈ D(φ) ∩ Msg(c)

cm.TopC,φ
trace

The “initial element” of the family is TopC,φI

trace as φI is the initial knowledge. Note
that it may accept any input message, to be bound to the variable x which is
then added to the knowledge set φ∪{x}, and may output only messages that can
transit on the channel c and that are deducible from the current knowledge set
φ via the deduction function D. It is easy to see that TopC,φI

trace is the top element
of the trace preorder. As a consequence of the fact that the trace preorder is a
pre-congruence and that TopC,φI

trace is the top element for that preorder, we have
that the single check against the top element is enough to ensure NDC. Formally:
P ∈ NDCφI

C iff (P |TopC,φI

trace) \ C ∼tr P \ C.

The Example The example studied for the spi calculus can be easily modeled
in CryptoSPA:

A(M) = cAB{M}KAB

B = cAB(x).[〈{M}KAB , KAB〉 �dec y]0
P ′(M) = A(M) |B

In order to study if integrity and secrecy hold, we have to define a suitably
decorated version P ′ of the protocol P :

A(M) = cAB{M}KAB

B = cAB(x).[〈{M}KAB , KAB〉 �dec y]receivedy

P ′(M) = A(M) |B |KN(M)

where we have inserted the extra event received for integrity analysis purpose
and the knowledge notifier for secrecy analysis purpose. In the single session
described above, both secrecy and integrity holds, that is (P ′(M) |X) \ C can
never show up a low trace that is not possible for P ′(M) \ C.

5.3 Comparing the Analysis Scenarios

In the spi calculus, the analysis scenario is rather delicate: a tester is at the
same time the enemy that tries to influence the behaviour of the system and the
observer that should keep track of the behaviour of the system. On the contrary,
in CryptoSPA the two roles are separate: on the one hand we explicitly introduce

the enemy X inside the scope of restriction, on the other hand we use trace
equivalence to compare the two behaviours. In essence, we can say that in spi
we use a contextual equivalence, while in CryptoSPA we use and equivalence of
contexts. We argue that the elegance of the spi approach is paid in terms of lack
of flexibility in modeling enemies; for instance, it is not straightforward to model
passive attackers (less powerful enemies) or situations in which different parties
of the protocol are subject to different enemies (more holes in the context). Both
cases can be easily represented in the CryptoSPA approach by choosing either
suitable EφI

C or by including more enemies inside the GNDC-like equations.

Example 6. Consider a system with three components, say A, B and C. The
components A and B can communicate on a private channel c and share a secret
b, while the components B and C through the private channel c1 and shares a
secret d. Assume that both A and C are malicious; this means to regard them as
enemies. Considering a generic specification for A (resp. C), as XA (resp. XC),
then a possible context to be analyzed is νcνb(XA | νc1νd(B |XC)), with b, c /∈
fn(XC)4. As an extension of the spi-calculus approach, we may define a suitable
class of contexts w.r.t. one performs certain observations. Thus the previous
analysis problem could be instantiated as a contextual equivalence problem.
However, techniques for dealing with such generic contexts are currently not well
developed. On the contrary, within the GNDC approach, a simple generalization
to having more “holes” (unknown components as remarked in [25, 26]), makes
it possible to model and analyze it in the case of trace equivalence by resorting
to the use of the most general enemies5. As a matter of fact, assume that EφA

c

(resp. EφC
c1

) denotes the possible behaviours of enemies with the knowledge of
φA (resp. φC). Then, the GNDC specification could be

((XA) |B |(XC)) \ {c, c1} ∼tr α(B)

Note that α(B) could also take into account the description of A and C. Using
the most general intruder approach the verification is equal to just one check.
As a matter of fact we may simply check that:

((TopφA
c) |B |(TopφC

c1
)) \ {c, c1} ∼tr α(B)

A main difference, w.r.t. the two approaches may be noted in the treatment of
integrity. In the spi-calculus approach we must find the magical correct imple-
mentation to be used as reference w.r.t. the system under investigation. (We use
the term implementation because it is very close to the description of the sys-
tem). On the contrary, in the GNDC approach, we simply specify the intended
observable behavior, indeed, that the messages are correctly delivered through
a control action. Thus, the correct specification is indeed rather more abstract
4 Due to the limitations of using a spi term for expressing the system, it seems difficult

to specify such a case study without imposing some side conditions on the processes
XA and XC .

5 In several cases, to have more enemies that have the possibility to directly commu-
nicate with each other is equivalent to consider just one enemy (see [26]).

than the system. Recently Gordon and Jeffrey (e.g., see [19]) developed type sys-
tems for a spi-calculus variant that embodies a form of control (correspondence)
actions. Using that type systems they were able to check authentication proper-
ties as agreement ([33]). In that framework, authenticity is exactly specified as
control actions, following the Woo-Lam approach (see [36]).

Another difference is that in spi it is necessary to perform two different
analyses in order to prove the two security properties of secrecy and authenticity.
On the contrary, in CryptoSPA one single NDC check is enough for both, as both
properties are in the NDC form. As a matter of fact, it is enough to consider
the decorated specification which includes the control action for integrity and
the knowledge notifier. Then, we can use this single, combined specification for
a single check against the most powerful enemy. This idea of combined analysis
can be generalized to many different properties and has shown its usefulness
(higher probability to find unexplored attacks) in some concrete cases [12].

Finally, the way secrets are handled is quite different. In spi this is achieved
elegantly by means of the restriction operator, while in CryptoSPA we have
explicitly to manage the set of pieces of information that are given to the enemies.

5.4 Comparing the Security Properties

One may wonder if the properties of secrecy and integrity defined in the two
different process algebraic frameworks are somehow related. In spite of the tech-
nical differences, integrity is indeed the same property. The actual definition of
integrity asks to check that the system meets its magical specification for each
continuation F (y), provided F (y) does not reveal information on the message y.
In [16], it has been shown that it is enough to consider the simple continuation
F (x) = receivedx to establish whether a protocol enjoys integrity.

On the contrary, the two notions of secrecy are clearly different: the spi one
is based on the idea of indistinguishablility, while the CryptoSPA one is based
on the idea of possession, i.e. the so-called Dolev-Yao (see also [1]). To see the
main point we must note that secret parameter x, in the process S(x), must be
a public value, i.e. a non-restricted one. Thus, among the possible tests we may
found at least one that “knows” it, i.e. it has it as a free name. While, on the
usual CryptoSPA approach the secret values are never “known” by the enemies;
in fact, when an enemy is able to discover it we say that there is a secrecy attack.

Consider the process P (x) = (νn)M〈n〉. Note that x does not occur in the
term of P . Thus, P necessarily preserves the secrecy of the public messages
M, M ′, . . ., indeed, P (M) = P (M ′) = P . However, from another point of view,
P reveals one of its (declared) “secrets”, i.e. the private name n, since it com-
municates n on the public channel M . In the usual CryptoSPA approach for
secrecy, we would be interested in studying the secrecy of the restricted names,
rather than the public ones.

The notion of secrecy developed in the spi approach is rather a form of
information flow, i.e. non-interference. As a matter of fact, it can be formulated
in the GNDC schema as follows:

– S(x) preserves the secrecy of x iff c(x).S(x) enjoys NDC
S(M)
≈may

(with M pub-
lic) w.r.t. all the enemies whose sort is {c} that output at least one message
on the channel c and c /∈ Sort(S).

Thus, simply by considering other assumptions on the set of possible intruders it
is possible to code secrecy in the spi as a GNDC property. Moreover, it is possible
to show that if S(x) preserves the secrecy of x and S(M) enjoys GNDCP

may then
also S(M ′) enjoys GNDCP

may. This holds because may testing may be defined
in CryptoSPA and it is a congruence w.r.t. restriction and parallel composition
(under certain assumptions, e.g. see [16]).

6 Other Frameworks

Very shortly we mention also other well-known process algebraic approaches that
have been proposed in recent years.

The oldest and most widely deployed approach is the one based on CSP,
which is well-illustrated in the book [33]. It shares similarities with CryptoSPA,
as also in this approach security properties are modeled as observable events
decorating the protocol, even if the idea of explicitly applying non-interference
is not used. This approach has been mechanized, by using a compiler (called
Casper [23] that translates protocol specifications into CSP code) and the FDR
model checker; it has been enhanced to deal with symbolic reasoning (data inde-
pendence) in [32]. Similarly, we have a compiler, called CVS [11] that translates
specifications in a pre-dialect of CryptoSPA into SPA (i.e., CCS) code, and the
Concurrency Workbench model checker. These analyses are approximated by
considering an enemy that has limited memory and capability of generating new
messages. More advanced symbolic semantics have been studied for CryptoSPA
in [24]. In [25, 26], the usage of contexts (open systems) to describe the security
analysis scenarios has been advocated. The language used is similar to Cryp-
toSPA. However, differently from the GNDC approach, the correct specification
is given through logical formulas and the treatment of the admissible enemies
is done by reducing the verification problem to a validity one in the logic. Re-
cently, the approach has been extended with symbolic techniques (see [27]). For
a symbolic semantics of a spi-like language see, for instance, [6].

As spi is an extension of the π calculus with cryptographic primitive, similarly
sjoin [2] extends the join calculus with constructs for encryption and decryption
and with names that can be used as keys, nonces or other tags.

The applied pi calculus (see [18]) deals with the variety of different cryptosys-
tems by adopting a general term algebra with an equality relation. This process
calculus permits to describe cryptographic protocols using different cryptosys-
tems. Thus, both applied pi and CryptoSPA recognize the necessity to manage
uniformly different kind of cryptography that may be present in a complex pro-
tocol. The former exploits term algebras plus equality while the latter exploits
a generic inference system.

A more recent approach is LySa [8], which is a very close relative of spi
and pi-calculus. LySa mainly differs in two respects: (i) absence of channels

(one global communication medium) and (ii) tests on values being received in
communications as well as values being decrypted are directly embedded inside
inputs and decryptions. A static analysis technology, based on Control Flow
Analysis, has been applied to security protocols, expressed in LySa, providing
a fully automatic and efficient tool. The same technology has been successfully
used to analyse secrecy for pi [4] and spi [5].

Other process algebraic approaches not strictly related to the analysis of
cryptographic protocols include the ambient calculus and the security pi calcu-
lus. The ambient calculus [7] is concerned with mobility of ambients (abstract
collection of processes and objects that functions both as a unit of mobility and
a unit of security). Communication takes place only inside an ambient, hence
the hierarchy of nested ambients regulates who can communicate with who. Dif-
ferently from spi, the security pi calculus [28] extends the π calculus with a new
construct [P]σ denoting that process P is running at security level σ. This cal-
culus is not very suited to talk about cryptographic protocols but is tailored for
access control policies.

Acknowledgements. We would like to thank Nadia Busi and Marinella Petroc-
chi for helpful comments.

References

1. M. Abadi. Security protocols and specifications. In Proc. Foundations of Software
Science and Computation Structures, volume 1578 of LNCS, pages 1–13, 1999.

2. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. Information and Computation, 174(1):37–83, 2002.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

4. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis for the pi-
calculus with applications to security. Information and Computation, 168:68–92,
2001.

5. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Flow logic for dolev-yao secrecy
in cryptographic processes. Future Generation Computer Systems, 18(6):747–756,
2002.

6. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Automata,
Languages and Programming, LNCS, pages 667–681, 2001.

7. L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

8. C.Bodei, M. Buchholtz, P.Degano, F. Nielson, and H. R. Nielson. Automatic vali-
dation of protocol narration. In Proceedings of The 16th Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 2003.

9. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1-2):83–133, 1984.

10. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(12):198–208, 1983.

11. A. Durante, R. Focardi, and R. Gorrieri. A compiler for analysing cryptographic
protocols using non-interference. ACM Transactions on Software Engineering and
Methodology, 9(4):489–530, 2000.

12. A. Durante, R. Focardi, and R. Gorrieri. Cvs at work: A report on new failures upon
some cryptographic protocols. In Workshop on Mathematical Methods, Models and
Architectures for Computer Networks Security, LNCS 2052, 2001.

13. R. Focardi and R. Gorrieri. A classification of security properties. Journal of
Computer Security, 3(1):5–33, 1995.

14. R. Focardi and R. Gorrieri. Classification of security properties (part i: Information
flow). In Foundations of Security Analysis and Design, volume 2171 of LNCS, pages
331–396, 2001.

15. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of cryp-
tographic protocols. In Proceedings of 27th International Colloquium in Automata,
Languages and Programming, volume 1853 of LNCS, pages 354–372, 2000.

16. R. Focardi, R. Gorrieri, and F. Martinelli. A comparison of three authentication
properties. Theoretical Computer Science, 291(3):285–327, 2003.

17. R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proceedings of World Congress on Formal Methods (FM’99), volume
1708 of LNCS, pages 794–813, 1999.

18. C. Fournet and M. Abadi. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, 2001.

19. A. Gordon and A. Jeffrey. Authenticity by typing in security protocols. In Pro-
ceedings of The 14th Computer Security Foundations Workshop. IEEE Computer
Society Press, 2001.

20. A. D. Gordon. Notes on nominal calculi for security and mobility. In Foundations
of Security Analysis and Design, volume 2171 of LNCS, pages 262–330, 2001.

21. J. Halpern and R. van der Meyden. A logic for SDSI’s linked local name spaces.
In PCSFW: Proceedings of The 12th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1999.

22. G. Lowe. Breaking and fixing the Needham Schroeder public-key protocol using
FDR. In Proceedings of Tools and Algorithms for the Construction and the Analisys
of Systems, volume 1055 of LNCS, pages 147–166. Springer Verlag, 1996.

23. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

24. F. Martinelli. Symbolic semantics and analysis for crypto-ccs with (almost) generic
inference systems. In Proceedings of the 27th international Symposium in Math-
ematical Foundations of Computer Sciences(MFCS’02), volume 2420 of LNCS,
pages 519–531.

25. F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications
to Security Properties. PhD thesis, University of Siena, Dec. 1998.

26. F. Martinelli. Analysis of security protocols as open systems. Theoretical Computer
Science, 290(1):1057–1106, 2003.

27. F. Martinelli. Symbolic partial model checking for security analysis. In Work-
shop on Mathematical Methods, Models and Architectures for Computer Networks
Security, LNCS, 2003. To appear.

28. J. Rieley and Matthew Hennessy. Information flow vs. resource access in the
asynchronous pi-calculus. ACM Trans. on Progr. Lang. and Systems (TOPLAS),
24(5):566–591, 2002.

29. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

30. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992.

31. R. M. Needham and M. D. Schroder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

32. A. Roscoe and P. Broadfoot. Proving security protocols with model checkers
by data independence techniques. Journal of Computer Security, 7(2-3):147–190,
1999.

33. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and
Analysis of Security Protocols: the CSP Approach. Addison-Wesley, 2001.

34. P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mech-
anisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis
and Design, LNCS 2171. Springer-Verlag, 2001.

35. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. CST–99–93, Department of Computer Science, University of
Edinburgh, 1992. Also published as ECS–LFCS–93–266.

36. T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE
Computer Society Symposium on Research in Security and Privacy, pages 178–
194, 1993.

