3,310,303 research outputs found
Discovering information flow using a high dimensional conceptual space
This paper presents an informational inference mechanism realized via the use of a high dimensional conceptual space. More specifically, we claim to have operationalized important aspects of G?rdenforss recent three-level cognitive model. The connectionist level is primed with the Hyperspace Analogue to Language (HAL) algorithm which produces vector representations for use at the conceptual level. We show how inference at the symbolic level can be implemented by employing Barwise and Seligmans theory of information flow. This article also features heuristics for enhancing HAL-based representations via the use of quality properties, determining concept inclusion and computing concept composition. The worth of these heuristics in underpinning informational inference are demonstrated via a series of experiments. These experiments, though small in scale, show that informational inference proposed in this article has a very different character to the semantic associations produced by the Minkowski distance metric and concept similarity computed via the cosine coefficient. In short, informational inference generally uncovers concepts that are carried, or, in some cases, implied by another concept, (or combination of concepts)
Modes of Information Flow
Information flow between components of a system takes many forms and is key
to understanding the organization and functioning of large-scale, complex
systems. We demonstrate three modalities of information flow from time series X
to time series Y. Intrinsic information flow exists when the past of X is
individually predictive of the present of Y, independent of Y's past; this is
most commonly considered information flow. Shared information flow exists when
X's past is predictive of Y's present in the same manner as Y's past; this
occurs due to synchronization or common driving, for example. Finally,
synergistic information flow occurs when neither X's nor Y's pasts are
predictive of Y's present on their own, but taken together they are. The two
most broadly-employed information-theoretic methods of quantifying information
flow---time-delayed mutual information and transfer entropy---are both
sensitive to a pair of these modalities: time-delayed mutual information to
both intrinsic and shared flow, and transfer entropy to both intrinsic and
synergistic flow. To quantify each mode individually we introduce our
cryptographic flow ansatz, positing that intrinsic flow is synonymous with
secret key agreement between X and Y. Based on this, we employ an
easily-computed secret-key-agreement bound---intrinsic mutual
information&mdashto quantify the three flow modalities in a variety of systems
including asymmetric flows and financial markets.Comment: 11 pages; 10 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/ite.ht
Symbolic Quantitative Information Flow
acmid: 2382791 issue_date: November 2012 keywords: algorithms, security, verification numpages: 5acmid: 2382791 issue_date: November 2012 keywords: algorithms, security, verification numpages: 5acmid: 2382791 issue_date: November 2012 keywords: algorithms, security, verification numpages: 5acmid: 2382791 issue_date: November 2012 keywords: algorithms, security, verification numpages: 5acmid: 2382791 issue_date: November 2012 keywords: algorithms, security, verification numpages:
Information Flow in Social Groups
We present a study of information flow that takes into account the
observation that an item relevant to one person is more likely to be of
interest to individuals in the same social circle than those outside of it.
This is due to the fact that the similarity of node attributes in social
networks decreases as a function of the graph distance. An epidemic model on a
scale-free network with this property has a finite threshold, implying that the
spread of information is limited. We tested our predictions by measuring the
spread of messages in an organization and also by numerical experiments that
take into consideration the organizational distance among individuals
Information Flow in Computational Systems
We develop a theoretical framework for defining and identifying flows of
information in computational systems. Here, a computational system is assumed
to be a directed graph, with "clocked" nodes that send transmissions to each
other along the edges of the graph at discrete points in time. We are
interested in a definition that captures the dynamic flow of information about
a specific message, and which guarantees an unbroken "information path" between
appropriately defined inputs and outputs in the directed graph. Prior measures,
including those based on Granger Causality and Directed Information, fail to
provide clear assumptions and guarantees about when they correctly reflect
information flow about a message. We take a systematic approach---iterating
through candidate definitions and counterexamples---to arrive at a definition
for information flow that is based on conditional mutual information, and which
satisfies desirable properties, including the existence of information paths.
Finally, we describe how information flow might be detected in a noiseless
setting, and provide an algorithm to identify information paths on the
time-unrolled graph of a computational system.Comment: Significantly revised version which was accepted for publication at
the IEEE Transactions on Information Theor
A Verified Information-Flow Architecture
SAFE is a clean-slate design for a highly secure computer system, with
pervasive mechanisms for tracking and limiting information flows. At the lowest
level, the SAFE hardware supports fine-grained programmable tags, with
efficient and flexible propagation and combination of tags as instructions are
executed. The operating system virtualizes these generic facilities to present
an information-flow abstract machine that allows user programs to label
sensitive data with rich confidentiality policies. We present a formal,
machine-checked model of the key hardware and software mechanisms used to
dynamically control information flow in SAFE and an end-to-end proof of
noninterference for this model.
We use a refinement proof methodology to propagate the noninterference
property of the abstract machine down to the concrete machine level. We use an
intermediate layer in the refinement chain that factors out the details of the
information-flow control policy and devise a code generator for compiling such
information-flow policies into low-level monitor code. Finally, we verify the
correctness of this generator using a dedicated Hoare logic that abstracts from
low-level machine instructions into a reusable set of verified structured code
generators
- …