60,736 research outputs found

    Developing a Robust Computable Phenotype Definition Workflow to Describe Health and Disease in Observational Health Research

    Full text link
    Health informatics can inform decisions that practitioners, patients, policymakers, and researchers need to make about health and disease. Health informatics is built upon patient health data leading to the need to codify patient health information. Such standardization is required to compute population statistics (such as prevalence, incidence, etc.) that are common metrics used in fields such as epidemiology. Reliable decision-making about health and disease rests on our ability to organize, analyze, and assess data repositories that contain patient health data. While standards exist to structure and analyze patient data across patient data sources such as health information exchanges, clinical data repositories, and health data marketplaces, analogous best practices for rigorously defining patient populations in health informatics contexts do not exist. Codifying best practices for developing disease definitions could support the effective development of clinical guidelines, inform algorithms used in clinical decision support systems, and additional patient guidelines. In this paper, we present a workflow for the development of phenotype definitions. This workflow presents a series of recommendations for defining health and disease. Various examples within this paper are presented to demonstrate this workflow in health informatics contexts.Comment: IEEE Computer Based Medical Systems Conferenc

    Translating clinical and patient-reported data to tailored shared decision reports with predictive analytics for knee and hip arthritis

    Get PDF
    INTRODUCTION: New informatics tools can transform evidence-based information to individualized predictive reports to serve shared decisions in clinic. We developed a web-based system to collect patient-reported outcomes (PROs) and medical risk factors and to compare responses to national registry data. The system generates predicted outcomes for individual patients and a report for use in clinic to support decisions. We present the report development, presentation, and early experience implementing this PRO-based, shared decision report for knee and hip arthritis patients seeking orthopedic evaluation. METHODS: Iterative patient and clinician interviews defined report content and visual display. The web-system supports: (a) collection of PROs and risk data at home or in office, (b) automated statistical processing of responses compared to national data, (c) individualized estimates of likely pain relief and functional gain if surgery is elected, and (d) graphical reports to support shared decisions. The system was implemented at 12 sites with 26 surgeons in an ongoing cluster randomized trial. RESULTS: Clinicians and patients recommended that pain and function as well as clinical risk factors (e.g., BMI, smoking) be presented to frame the discussion. Color and graphics support patient understanding. To date, 7891 patients completed the assessment before the visit and 56% consented to study participation. Reports were generated for 98% of patients and 68% of patients recalled reviewing the report with their surgeon. CONCLUSIONS: Informatics solutions can generate timely, tailored office reports including PROs and predictive analytics. Patients successfully complete the pre-visit PRO assessments and clinicians and patients value the report to support shared surgical decisions

    Using Information Systems to Improve a Mid-Sized Local Health Department’s Effectiveness in a Time of Rapid Change

    Get PDF
    Background: Informatics capacity building is resource and personnel intensive. Many local health departments (LHDs) face tradeoffs between using their resources to carry out existing mandates and using resources to build their capacity, for example, through informatics, to deliver essential services in a more effective and efficient manner. Objective: The purpose of this case study is to describe how a mid-sized LHD built and used information systems to support its strategic objectives, clinical services, and surveillance. Methods: The mid-sized LHD described here was chosen for its “best practices” in informatics capacity building and use by NACCHO\u27s study advisory committee. To conduct the case study, authors reviewed departmental documents and conducted semistructured interviews with key informants in the agency. Interviews were recorded, transcribed, thematically coded, and analyzed. Results and Conclusions: Findings from the case study suggest that including capacity building in informatics as a strategic priority is one of the most effective ways to ensure that informatics are assessed, updated, and included in resource decisions. Leadership at all levels is critical to the successful implementation of informatics as is proactive partnership with community partners who have overlapping goals. The efficiency and effectiveness of LHDs rely on informatics capacity, especially when resources are challenged

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner

    Get PDF
    Background: The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital. Methods: AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital. Results: Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution. Conclusions: AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department

    Applications and Uses of Dental Ontologies

    No full text
    The development of a number of large-scale semantically-rich ontologies for biomedicine attests to the interest of life science researchers and clinicians in Semantic Web technologies. To date, however, the dental profession has lagged behind other areas of biomedicine in developing a commonly accepted, standardized ontology to support the representation of dental knowledge and information. This paper attempts to identify some of the potential uses of dental ontologies as part of an effort to motivate the development of ontologies for the dental domain. The identified uses of dental ontologies include support for advanced data analysis and knowledge discovery capabilities, the implementation of novel education and training technologies, the development of information exchange and interoperability solutions, the better integration of scientific and clinical evidence into clinical decision-making, and the development of better clinical decision support systems. Some of the social issues raised by these uses include the ethics of using patient data without consent, the role played by ontologies in enforcing compliance with regulatory criteria and legislative constraints, and the extent to which the advent of the Semantic Web introduces new training requirements for dental students. Some of the technological issues relate to the need to extract information from a variety of resources (for example, natural language texts), the need to automatically annotate information resources with ontology elements, and the need to establish mappings between a variety of existing dental terminologies

    Informatics: the fuel for pharmacometric analysis

    Get PDF
    The current informal practice of pharmacometrics as a combination art and science makes it hard to appreciate the role that informatics can and should play in the future of the discipline and to comprehend the gaps that exist because of its absence. The development of pharmacometric informatics has important implications for expediting decision making and for improving the reliability of decisions made in model-based development. We argue that well-defined informatics for pharmacometrics can lead to much needed improvements in the efficiency, effectiveness, and reliability of the pharmacometrics process. The purpose of this paper is to provide a description of the pervasive yet often poorly appreciated role of informatics in improving the process of data assembly, a critical task in the delivery of pharmacometric analysis results. First, we provide a brief description of the pharmacometric analysis process. Second, we describe the business processes required to create analysis-ready data sets for the pharmacometrician. Third, we describe selected informatic elements required to support the pharmacometrics and data assembly processes. Finally, we offer specific suggestions for performing a systematic analysis of existing challenges as an approach to defi ning the next generation of pharmacometric informatics

    Evidence based healthcare planning in developing countries: An Informatics perspective

    Get PDF
    Most of the national Health Information Systems (HIS) in resource limited developing countries do not serve the purpose of management support and thus the service is adversely affected. While emphasising the importance of timely and accurate health information in decision making in healthcare planning, this paper explains that Health Management Information System Failure is commonly seen in developing countries as well as the developed countries. It is suggested that the possibility of applying principles of Health Informatics and the technology of Decision Support Systems should be seriously considered to improve the situation. A brief scientific explanation of the evolution of these two disciplines is included
    corecore