124 research outputs found

    From fuzzy to annotated semantic web languages

    Get PDF
    The aim of this chapter is to present a detailed, selfcontained and comprehensive account of the state of the art in representing and reasoning with fuzzy knowledge in Semantic Web Languages such as triple languages RDF/RDFS, conceptual languages of the OWL 2 family and rule languages. We further show how one may generalise them to so-called annotation domains, that cover also e.g. temporal and provenance extensions

    Completing and Debugging Ontologies: state of the art and challenges

    Full text link
    As semantically-enabled applications require high-quality ontologies, developing and maintaining ontologies that are as correct and complete as possible is an important although difficult task in ontology engineering. A key step is ontology debugging and completion. In general, there are two steps: detecting defects and repairing defects. In this paper we discuss the state of the art regarding the repairing step. We do this by formalizing the repairing step as an abduction problem and situating the state of the art with respect to this framework. We show that there are still many open research problems and show opportunities for further work and advancing the field.Comment: 56 page

    The Impact of Disjunction on Query Answering Under Guarded-Based Existential Rules

    Get PDF
    Abstract. We give the complete picture of the complexity of conjunctive query answering under (weakly-)(frontier-)guarded disjunctive existential rules, i.e., existential rules extended with disjunction, and their main subclasses, linear rules and inclusion dependencies.

    Revising Description Logic Terminologies to Handle Exceptions: a First Step

    Get PDF
    Abstract. We propose a methodology to revise a Description Logic knowledge base when detecting exceptions. Our approach relies on the methodology for debugging a Description Logic terminology, addressing the problem of diagnosing incoherent ontologies by identifying a mini-mal subset of axioms responsible for an inconsistency. In the approach we propose, once the source of the inconsistency has been localized, the identified axioms are revised in order to obtain a consistent knowledge base including the detected exception. To this aim, we make use of a non-monotonic extension of the Description Logic ALC based on the com-bination of a typicality operator and the well established nonmonotonic mechanism of rational closure, which allows to deal with prototypical properties and defeasible inheritance.

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure
    corecore