
MODULE-BASED CLASSIFICATION

OF OWL ONTOLOGIES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2016

By

Nicolas Matentzoglu

School of Computer Science

Contents

Acknowledgements 5

Abstract 6

Declaration 8

Copyright 9

1 Introduction 10

1.1 OWL Reasoning . 10

1.2 The Problem of Modular Reasoning 13

1.3 Understanding Reasoning Performance 14

1.4 Contributions . 17

1.5 The Story . 18

1.6 Published Work . 19

2 Background 21

2.1 Terminology Used . 21

2.2 OWL . 22

2.3 Brief Overview of Reasoning in OWL 23

2.3.1 Reasoning Tasks for Description Logic Ontologies 25

2.3.2 OWL Ontology Classification 26

2.3.3 Optimisations . 33

2.4 Modularity . 35

2.4.1 Types of Modules and Module Extraction 37

2.5 Classification-preserving Decompositions 38

2.5.1 Decompositions Based on the Atomic Decomposition . . . 39

2.5.2 The MORe Decomposition 43

2.6 Summary . 44

3 Reasoning with Locality-based Modules 46

3.1 Terminology and Models . 46

3.1.1 Reasoner with Modularity-sensitive Calculus vs Modular

Meta-reasoning Framework 46

3.2 Model of Modular Classification 50

3.3 Applications . 51

3.3.1 MORe . 52

3.3.2 Chainsaw . 54

3.3.3 Hotspot Reasoning . 57

3.3.4 Module-based Incremental Reasoning 58

3.3.5 Optimising Consistency Checking Using Modules 60

3.3.6 Other Related Approaches 60

3.4 An Analytic Argument for Modular Reasoning 62

3.4.1 Reducing Test Hardness 63

3.4.2 Subsumption Test Avoidance 67

3.4.3 Integration of Efficient Delegate Reasoners 68

3.4.4 Modules for Parallelism 68

3.5 Limitations . 69

3.5.1 Overhead . 70

3.5.2 Module Hardness . 71

3.5.3 Redundancy . 72

3.6 Research Agenda . 74

3.7 Summary . 76

4 Experimental Framework 77

4.1 The Reasoner Stage Benchmark 77

4.1.1 Overview . 78

4.1.2 Implementation . 79

4.2 Katana . 80

4.2.1 Overview . 80

4.2.2 Implementation . 80

4.2.3 Katana Correctness . 82

4.3 OWL Experiment API . 83

4.3.1 Overview . 83

4.3.2 Implementation . 83

4.3.3 OWL API Classification 84

4.4 Experimental Setup . 84

4.4.1 Timeout Management . 85

4.4.2 Java Profiling . 86

4.4.3 Experiment Machines . 88

4.5 Thesis: Metrics . 89

4.6 Reasoner Benchmarking . 90

4.6.1 Brief Survey of Reasoner Benchmarks 90

4.6.2 The Quest for the “Ultimate” Dataset 92

4.6.3 Thesis Dataset: BioPortal 93

4.7 OWL Reasoners . 96

4.7.1 Overview of the DL Reasoner Landscape 96

4.7.2 Reasoners in this Thesis 97

4.8 Supporting Materials and Datasets 100

5 Module Hardness 101

5.1 Definitions and Models . 102

5.2 Empirical Characterisation . 105

5.2.1 Method: Finding Pathological Modules 106

5.3 Experimental Design . 109

5.3.1 Experimental Pipeline . 109

5.4 Results . 111

5.4.1 Finding Pathological Modules 112

5.5 Modified Benign Module Conjecture 117

5.5.1 Experimental Pipeline . 118

5.5.2 Results . 118

5.6 Discussion . 120

5.6.1 Methodological Reflection 123

5.7 Summary of Key Observations . 125

6 Subsumption Test Hardness and Modularity 126

6.1 Definitions and Models . 126

6.2 Empirical Characterisation . 129

6.3 Experimental Design . 131

6.3.1 Experimental Pipeline . 131

6.4 Results . 134

6.4.1 Role of Subsumption Testing in Classification 136

6.4.2 Sensitivity to Modularly Irrelevant Axioms 147

6.5 Summary of Key Observations . 158

7 Modular Classification in Action 160

7.1 Definitions and Models . 160

7.2 Implemented Modular Classification Strategies 162

7.2.1 Chainsaw Strategy (MM) 163

7.2.2 MORe Strategy (MOR and MORA) 163

7.2.3 Connected Components Strategy (CC) 164

7.2.4 Optimised Connected Component Strategy (CCO) 165

7.2.5 Atomic Decomposition Community Detection Strategy (CD)165

7.3 Empirical Characterisation . 167

7.3.1 Overall Performance . 168

7.3.2 Traversal Space . 170

7.4 Experimental Design . 173

7.4.1 Experimental Pipeline . 174

7.5 Results . 174

7.5.1 Overall Performance . 176

7.5.2 What Stages in the Reasoning Process Contribute to OCT? 179

7.5.3 Test Avoidance and Redundancy 185

7.5.4 Test Hardness . 190

7.6 Discussion . 191

7.6.1 Methodological Reflections 193

7.7 Summary of Key Observations . 194

8 Conclusions 195

8.1 Summary of Contributions . 196

8.2 Outstanding Issues and Future Work 198

8.2.1 Modular Reasoning . 199

8.2.2 Experimental Pipeline . 200

Bibliography 202

A Appendix 221

A.1 List of ontologies in BioPortal Snapshot 221

A.2 Method for RDFS detection . 229

A.3 OWL Reasoners . 230

A.4 Supplementary materials Chapter 7 232

Glossary 240

List of Tables

2.1 Important terms used throughout the thesis. 22

2.2 Important terminology related to modularity, used throughout the

thesis. 35

3.1 Important terms used throughout the thesis (continuation of Ta-

ble 2.1). 47

3.2 Core concepts around modular reasoning. 50

4.1 The methods in which the various stages and tests are recorded.

For an explanation of the labelling, see Section 4.1 99

5.1 Number of hard subsets by proportion of O, broken down by easy

(CT (S,R) ≤ 10 sec) and hard (CT (S,R) > 10 sec). 114

6.1 Dimensions of subsumption test hardness change under modularity. 133

6.2 Binning of all 330 ontologies by success category and test category. 134

6.3 Detailed account of successes and failures, as they were reported

in the form of Java Exceptions. Unknown items are most likely

those that had to be terminated by the test framework, thereby

not leaving an explanation of failure. 135

6.4 Left: Combinations of reasoners to successfully classify an ontology

out of all 330 ontologies. Right: Combinations of reasoners to fire

tests out of the 240 ontologies that all reasoners dealt with. 136

6.5 Contingency table showing ontology size to number of reasoners

(|R|) to fire one or more subsumption tests. The top three rows

reflect disagreement (see text), the bottom two agreement between

the reasoners. 138

6.6 Contingency table showing ontology OWL profile bin to number

of reasoners (|R|) to fire a test. 138

6.7 Subsumption test hardness: Descriptive Statistics (unit µs), num-

ber of positive (|ST |+) and negative (|ST |-) tests, by reasoner

R. 139

6.8 This table shows the sum of all tests in each category in min-

utes. The first row accounts for all subsumption tests measured

as part of this experiment, the second corresponds to the 39 pure

DL ontologies measured by all four reasoners. The abbreviations

T, VE,..,VH correspond to the hardness bins from Trivial to Very

Hard, and the 0 or 1 indicates whether the test turned out to be

positive (1) or negative (0). 143

6.9 Variance of test measurements across reasoners (COV). 149

6.10 Summary for the change of subsumption test hardness from sub-

to super-module. Measure: redefined normalised fold change. 0

means no change, 0.5 means a change of +50%. 153

7.1 Overview of modular and module-based decompositions analysed

in this chapter . 167

7.2 Summary of metrics used to quantify key aspects of dimensions,

by classification model. 172

7.3 Completion rates for all approaches. R is the reasoner (by first

letter); Tech the technique or approach. See text for coding of

techniques. 175

7.4 Variance analysis of the Katana experiment. Metric: Overall clas-

sification time. Variance across multiple runs of the exact same

experiment configuration, reported Coefficient of Variation (COV)

in %. For example, the K2 OCT measurements varied on average

by 3.64%. 175

7.5 Impact of sub-processes in % of overall classification time (OCT),

experiment run K2. The columns in gray represent the three main

modular classification stages: M1 pre-processing, M2 modular clas-

sification and M3 post-processing. DC is the decomposition time,

columns PP, CC, PR, ST and PO stand for the sum of the contri-

bution of the delegate reasoners: PP is the sum of pre-processing

stages of all delegates (in % of OCT), CC the sum of all consis-

tency checks, PR the pre-reasoning processing, ST the time spend

traversing the class graph and PO the sum of all post-processing

time measurements. The two columns labelled Res. represent the

remaining time not accounted for by the preceding columns with

respect to M1 and M2 respectively. 181

7.6 Contribution of subsumption testing (SST) to OCT (blackbox model)

in %. For example, for the CC approach, using HermiT as primary

delegate, subsumption testing took up, on average, 12.56% in K2. 184

7.7 Avoidance and redundancy analysis of K2. BBA is the mean avoid-

ance score using the blackbox model. A positive number indicates

that avoided tests outweigh extra tests. The closer the value to 0,

the less magnitude that effect has. GBA is the same, recalculated

under the glassbox model. AV, COM and EX are the proportion

of avoided, common and extra tests to the total number of tests (in

%) as measured by the modular reasoner (blackbox model). RED

and UN are the respective proportions of redundant and unique

tests. 189

7.8 Effect of decomposition on subsumption test hardness (K2). COM

is the fold change of the total time of tests triggered both by the

monolithic and the modular approach. STM is the (respective)

fold change of mean test hardness (taking into account all tests).

COMU is the fold change of common test under the glassbox model

(redundant tests ignored). A positive value (in all cases) indicates

a detrimental effect of the modular technique on the measure. The

fold change is, due to some extreme outliers, aggregated as median

for all three measures and here reported in %. 191

A.1 Full list of ontologies in the BioPortal snapshot we use as part of

this thesis. PROF is the main profile category, ABox is the number

of ABox axioms, TBox the number of TBox axioms, Expressivity

is the corresponding Description Logic language, an X in the K1

category indicates that the ontology was used as part of experiment

run K1 in Chapter 7; K2 analogously. 229

A.2 Overview of the OWL reasoners. SC stands for soundness/com-

pleteness, P for profile, O1 for OWL 1 and O2 for OWL 2. CALC

is the main underlying calculus, EXP the highest expressive lan-

guage supported. ACT indicates whether there is active develop-

ment (B=Bugfixes, D=Active development, N=No development) . 231

A.3 Impact of sub-processes in % of overall classification time (OCT),

experiment run K1. The columns in gray represent the three main

modular classification stages: M1 pre-processing, M2 modular clas-

sification and M3 post-processing. DC is the decomposition time,

columns PP, CC, PR, ST and PO stand for the sum of the contri-

bution of the delegate reasoners: PP is the sum of pre-processing

stages of all delegates (in % of OCT), CC the sum of all consis-

tency checks, PR the pre-reasoning processing, ST the time spend

traversing the class graph and PO the sum of all post-processing

time measurements. The two columns labelled Res. represent the

remaining time not accounted for my the preceding columns with

respect to M1 and M2 respectively. 232

List of Figures

1.1 An example of asserted and tacit (or implicit) knowledge in the

ontology. Because the reasoner understands the semantics of OWL,

it can infer from the fact that a human is a mammal and mammals

have a neocortex, that humans also have a neocortex. 11

2.1 A reasoner offers a range of logical services such as classification,

justification generation and conjunctive query answering (CQA).

Input to these services are an ontology O, and a query Q (is satis-

fiable? is consistent?, classification?). Services are sometimes built

on other services, such as classification on satisfiability. 24

2.2 If A is not a subclass of B, than it can also not be a subclass of

any of B’s subclasses. 28

2.3 Illustration of the top and bottom search phase for the example in

the text. 31

2.4 An example for the (⊥) Atomic Decomposition of the Koala on-

tology, from [DV13]. 41

3.1 Types of modular reasoners. The modular structure of O is in

both cases represented as its Atomic Decomposition, i.e. the circles

represent atoms and the edges top-down dependencies. 49

3.2 Black-box model of decomposition-based classification. Every del-

egate reasoner in the module classification stage goes through all

five stages of the monolithic reasoning model when classifying its

assigned module; we are assuming a traversal/tableau style del-

egate reasoner (consequence-based reasoners follow another stage

model). 52

3.3 Example illustrating the different sizes of possible pseudo models

when determining the satisfiability of A u ¬B. IAvBMi
is the model

created for a particular module Mi. Dots represent nodes in a

pseudo model (instances) and the connecting lines the respective

edges. Labels omitted for brevity. 65

3.4 Two modulesM1 andM2 of an ontology, dots representing names

in the signature. Names that occur only in M1 cannot be sub-

sumers of names in M2. 68

3.5 The shape of the Atomic Decomposition in the respective worst

cases. 73

4.1 Overview of the experiment framework. 77

4.2 Most important Katana classes. 82

4.3 Most important OWL Experiment API classes. 84

4.4 OWL 2 Profiles. Right: Detailed analysis of Profiled category on

left chart. Y: Number of ontologies; X: Profile 95

4.5 Histogram of axiom counts across the corpus. x-axis: number of

axioms, y-axis: number of ontologies. Profiled ontologies are those

that are either OWL 2 EL, QL or RL, and Pure DL ontologies are

those that fall under OWL 2 DL, but not under one of the profiles. 96

5.1 Illustration for the effect of a disjointness on subclasses. If A and

B are disjoint, than so are C and D. 103

5.2 Illustration for the expected behaviour of a hard subsets HS (hs),

their corresponding module M (mod) and the source ontology O
(o). Given that HS ⊂ M ⊂ O and CT (HS,R) > CT (O,R) we

expect that CT (O,R) ≥ CT (M,R). 104

5.3 Break-down of random subsets obtained through random path

sampling. For example, we can observe that out of the 17,445

subsets classified in total, 633 were harder than 10 seconds. Out

of these 633, 143 were actually hard. 113

5.4 Paths for OWL 2 DL ontologies with hard modules. Each line

represents a path. On each path, we have a measurement point

coming from a single classification of the random subset of the

respective proportion of O. For example, the peak in the first plot

(ADO ontology) came from a classification of a random subset of

size 7
8
∗ |O| by Pellet. 113

5.5 Breakdown of pathological cases for modules sampled from hard

subsets. 115

5.6 Histogram showing the distribution of module sizes compared to

their parent ontology, excluding OWL Full (x-axis, in %). Patho-

logical modules include insignificantly pathological. Because of the

small number of pathological modules, the y-axis of the histogram

is presented in log-scale. 116

5.7 Overview of pathological cases for the cross comparison of all mod-

ules, hard subsets and parent ontologies. 116

5.8 Histogram illustrating the protective effect of modularity. The x-

axis shows the protective effect, quantified by the relative difference

(fold change) in classification time between the hard subset and the

module. For example, the RETO and REXO modules were only

marginally easier for FaCT++ than their respective hard subsets,

while GO modules were up to 14 times easier. 117

5.9 Overview of pathological cases for MORe and Chainsaw modules. 119

5.10 Histogram showing the distribution of (Chainsaw/MORe-)module

sizes compared to their ontology, excluding OWL Full (x-axis, in

%). Pathological modules include insignificantly pathological. Be-

cause of the small number of pathological modules, the y-axis of

the histogram is presented in log-scale. 121

5.11 Histogram showing the distribution of the coefficient of variation

(in %) of classification time across runs (of the same ontology or

subset), broken down by type (hs: hard subset, mod: module, o:

ontology). 124

6.1 An example for multiple measurements taken for a single subsump-

tion test across three modules M1 ⊂M2 ⊂M3. 134

6.2 Counts of subsumption tests for each hardness bin (log scale), dis-

tinguished by positive (1) and negative (0) tests. 139

6.3 Kernel density plot of subsumption tests for each hardness bin

(x:log scale, milliseconds), distinguished by positive (1) and nega-

tive (0) tests. Subsumption tests across entire experiment. 140

6.4 Kernel density plot of subsumption tests for each hardness bin

(x:log scale, milliseconds), distinguished by positive (1) and nega-

tive (0) tests. Subsumption tests across 39 OWL 2 DL ontologies

with tests triggered by all four reasoners. 141

6.5 Ontologies in each hardness category. The x-axis represents the

number of ontology in each bin. Bin classification according to

hardest subsumption test. 142

6.6 Impact of SST on classification time by reasoner in %. Low line:

hardest individual test; high line: sum of all tests; x-axis: on-

tologies; y-axis: contribution in %. Note that x-axis values mean

something different for each reasoner: The set of ontologies for

which a given reasoner triggered subsumption test, ordered by ra-

tio of SST to OCT. 142

6.7 Subsumption tests carried out in relation to a naive N2 upper

bound and an N log(N) upper bound, ordered by N , the number

of names in Õ (y: log scale). 145

6.8 Histogram of COV, by reasoner. Top: OCT, bottom: SST 148

6.9 Histogram of COV of subsumption test measurements by reasoner

(x:COV, log-scale). 149

6.10 Hardness changes by reasoner: OCT. Bin labels x-axis: 1st letter:

tendency (easier, neutral, harder), 2nd: magnitude (low, medium,

high). Y-axis: number of comparisons. 151

6.11 Histogram of change in hardness between sub and super-module.

Counted are only such cases where the test was triggered in all

three runs, both for the sub- and super-module. 154

6.12 Breakdown of hardness changes for the subsumption tests in the

data set that were easier in the super-module (first branch). The

second branching reflects the magnitude of the change, the third

the stability of the measurement. The number of tests in the

“stochastic” category reflects the number of tests for which there

was some evidence that the entire classification process (the test

was part of) was subject to stochastic effects. Percentages are with

respect to overall number of cases. 155

6.13 Hardness changes by reasoner: SST. Bin labels x-axis: 1st letter:

tendency (easier, neutral, harder), 2nd: magnitude (low, medium,

high), 3rd: stability: (clearcut, high, low). Y-axis: number of

comparisons. The EHC and EHH categories correspond to our

pathological cases, the HHC and HHH cases to the expected cases

and the NLH and NLL to the category of optimal cases. The

remaining categories are, due to the low number of runs and high

variation, neither clearly pathological nor expected. 156

7.1 An example of the community detection-based method. Nodes

and arrows represent the atoms and dependencies of the Atomic

Decomposition. Left: communities (C1 and C2) as determined by

the community detection algorithm. Right: corresponding chunks

(CH1, CH2) as extracted from the set of communities. 166

7.2 Ranking of approaches for experiment run K1, broken down by

primary delegate reasoner and analytic model. The x-axis is the

total number of points a technique scored based on our ranking

method. 177

7.3 Number of times an approach has taking first, second or third

position in the ranking (blackbox model, experiment run K1). . . 177

7.4 Ranking of approaches for experiment run K2, broken down by

primary delegate reasoner and analytic model. The x-axis is the

total number of points a technique scored based on our ranking

method. 178

7.5 Ranking of approaches based on SST, for experiment run K1, bro-

ken down by primary delegate reasoner and analytic model. The

x-axis is the total number of points a technique scored based on

our ranking method. 179

7.6 Ranking of approaches based on SST, for experiment run K2, bro-

ken down by primary delegate reasoner and analytic model. The

x-axis is the total number of points a technique scored based on

our ranking method. 180

7.7 Performance profiles of three example ontologies from experiment

run K1. x-axis is time spent, the full extent of the bar represents

the OCT, ratios between times being preserved across ontologies.

As we are only interested in comparing ratios, we omitted the

axis labels. Dec is the decomposition time, PP (no DEC) is the

remaining time needed for preprocessing (assigning ontologies to

delegate reasoners, determining order), DEL-PP is the total time

spent by delegate reasoners doing pre-processing, DEL-SCC is the

total time spend consistency checking, DEL-PRP pre-reasoning

processing and DEL-SST subsumption testing. Overhead is the

time spend recording subsumption tests and other meta-data dur-

ing classification. Note that we have excluded the CD strategy on

all plots because it was dominated by PP (no DEC) and rendered

the other techniques unreadable. 183

7.8 Performance profiles of three example ontologies from experiment

run K2. See caption of Figure 7.7 183

7.9 Histogram of the contribution of the hardest chunk in the classifi-

cation OCT in %. 185

7.10 Break down of cases by whether they are predominantly avoid-

ing tests, producing extra tests, or both extra and avoided tests

cancelling each other out, further broken down by the magnitude

of the effect (blackbox model). For example, there are 33 cases

(classification runs) for which CD has helped avoiding subsump-

tion tests. Out of these, 9 have a medium magnitude of avoidance,

14 have a low magnitude, and the remaining 10 are neutral. . . . 186

7.11 Break down of cases by whether they are predominantly avoiding

tests, producing extra tests, or both extra and avoided tests can-

celling each other out, further broken down by the magnitude of

the effect (glassbox model). 187

7.12 Impact of avoidance on OCT (K2), quantified as the total time of

avoided tests (ATT), minus the total time of extra tests (ETT),

divided by overall classification time (OCT). The magnitude of

the effect is high, if it higher than 50% of the overall classification

time, medium if it is between 10% and 50%, low if it is between

1% and 10% and neutral if it is less than 1%. For example, there

is one case of CD for which the difference of avoided to extra tests

accounted for more than 50% of the OCT (high magnitude). . . . 188

A.1 Experiment K2, ontology name starting A to C. Breakdown of

factors contributing to overall reasoning time, by primary delegate

reasoner and ontology. X-axis is time spent, with the ratio between

times being preserved across ontology. As we are only interested

in comparing ratios, we omitted the axis labels. Dec is the decom-

position time, PP (no DEC) is the remaining time needed for pre-

processing (assigning ontologies to delegate reasoners, determining

order), DEL-PP is the total time spent by delegate reasoners do-

ing pre-processing, DEL-SCC is the total time spend consistency

checking, DEL-PRP pre-reasoning processing and DEL-SST sub-

sumption testing. Note that we have excluded the CD strategy on

all plots because it was dominated by PP (no DEC) and rendered

the other techniques unreadable (inefficient implementation). . . . 233

A.2 Experiment K2, ontology name starting D to H. See Table A.1 for

explanation of legend. 234

A.3 Experiment K2, ontology name starting I to N. See Table A.1 for

explanation of legend. 235

A.4 Experiment K2, ontology name starting O to Z. See Table A.1 for

explanation of legend. 236

A.5 Experiment K1, ontology name starting A to H. See Table A.1 for

explanation of legend. 237

A.6 Experiment K1, ontology name starting I to N. See Table A.1 for

explanation of legend. 238

A.7 Experiment K1, ontology name starting O to Z. See Table A.1 for

explanation of legend. 239

Acknowledgements

First and foremost, I want to thank my amazing supervisors Bijan Parsia and
Uli Sattler. Your doors were always open, your patience with my slow grasp of
logic seemingly endless and your lessons went far beyond what made it into these
pages. In the end, you both made these years the most intense, and rewarding,
learning experience of my life.

I want to thank my examiners, Bernardo Cuenca Grau and Graham Riley for
the interesting viva and the valuable suggestions to improve this thesis.

Next, I want to thank the folks in our group. Leo, you have saved me thou-
sands of times when I reached my limit with ∃ and ∀, but most importantly,
you were a good friend. Sam and Rafa, you have taught me a great deal about
experiments and OWL, and helped me do my first steps. I also thank Valentino,
Michael, Slava, Chiara, Eleni, Tahani and Colin for many discussions and advice.
Ignazio and Dima, you helped me a great deal sorting out my OWL API and
reasoner problems, Dima especially with proof-reading. Thanks a lot.

I also want to thank my CDT gang, Aitor, Tom, Dave, Colin, Kostas, Ed, Ilia,
Michele, Fardeen, Rob and Matt. We had great times together, and our cohort
was definitely the one and only real one.

A big thanks also to my family, Maria, Silvia and Simeon, and my friends,
Theo, Stephan and many more, for always supporting me.

Last, but not least, I want to say a big thank you to my beloved kween Maria.
To your beauty and all the amazing moments we shared, and will continue to
share.

I acknowledge and thank the UK Engineering and Physical Science Research

Council (EPSRC) for its support in the form of a doctoral training grant.

Abstract

Module-based classification of OWL ontologies
Nicolas Matentzoglu

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016

Classification is a core reasoning service provided by most OWL reasoners. Clas-

sification in general is hard—up to 2NExptime for SROIQ(D), the Description

Logic which is underpinning the Web Ontology Language (OWL). While it has

been shown that classification is practical for a wide range of inputs, there are

still ontologies for which classification takes an unreasonable amount of time for

purposes such as ontology engineering (frequent classifications after updates).

A natural optimisation strategy is divide and conquer, that is, to decom-

pose the ontology into subsets which are hopefully easier to classify and whose

classifications can be combined into a complete classification of the whole on-

tology. Unfortunately, an arbitrary subset may not be self-contained, i.e. it

might be missing information that is needed to determine entailments over its

signature. Moreover, such a subset can be potentially harder to classify than

the whole ontology. In order to mitigate those problems, classification preserving

decompositions (CPDs) must be designed with care that they support complete

classification which is, in practice, more efficient than monolithic classification.

Locality-based modules are subsets of an ontology that provide certain guaran-

tees with respect to the entities (concepts, roles) in its signature—in particular,

modules are self-contained.

In this thesis we explore the use of syntactic locality-based modules for un-

derpinning classification-preserving decompositions. In particular, we empirically

explore their potential to avoid subsumption tests and reduce subsumption test

hardness and weigh those benefits against detrimental effects such as overhead

(for example the time it takes to compute the decomposition) and redundancy (a

consequence of potentially overlapping chunks in the decomposition). The main

contributions of this thesis are an in-depth empirical characterisation of these

effects, an extensible framework for observing CPDs in action up until a granu-

larity of individual subsumption tests, a large, public corpus of observations and

its analysis and insights on experimental methodologies around OWL reasoning.

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses.

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Chapter 1

Introduction

1.1 OWL Reasoning

An ontology is a computationally accessible conceptualisation of a domain, for-

mally specifying the entities in that domain and their interrelations. Ontologies

and ontological systems are considered core areas of research in artificial intel-

ligence and knowledge representation [PCMB15], especially in domains with a

large amount of declarative knowledge such as medicine and biology [NSW+09,

Con13, RAK06]. Some ontologies now constitute key parts in the tool chain

of domain experts: The Gene Ontology (GO) has become a standard means to

unify the representation of knowledge on genes across species [Con13]; SNOMED

captures complex clinical knowledge for use in medical information systems and

clinical research [RAK06]; the upcoming version of the International Classifica-

tion of Diseases (ICD-11) comes with a formally defined core ontology [TNNM13].

BioPortal, a repository for bio-health ontologies, hosts more than 400 biomedi-

cal ontologies [NSW+09] and Ontohub, and open ontology repository, claims to

host more than 3000 ontologies ranging from toy examples to production quality

ontologies [MKC14].

Despite these indicators for success and being a research theme for almost

three decades [BCM+07], harnessing the full potential of ontologies is still a work

in progress. The deployment of ontologies for use in applications (and thus ex-

tensive API and tool development) grew significantly after the standardisation

of the Web Ontology Language (OWL) around 10 years ago. As an emerging

technology, the uptake of OWL ontologies to solve industrial scale problems pro-

gresses rather hesitantly, compared to the strong academic interest in the subject.

Especially the expectations of interested industrial groups are often frustrated.

Some of the frequently mentioned bottlenecks for uptake are inadequate tool sup-

port, limitations in expressive power, lack of methodologies (both for ontology

development and the evaluation of ontological systems) and a lack of educational

24 CHAPTER 1. INTRODUCTION

b

b

b

b

owl:Thing

Neocortex

Homo Sapiens

Mammal

hasBodyPart

(a) Asserted structure.

b

b

b

b

owl:Thing

Neocortex

Homo Sapiens

Mammal

hasBodyPart

(b) Tacit (implicit) knowledge.

Figure 1.1: An example of asserted and tacit (or implicit) knowledge in the
ontology. Because the reasoner understands the semantics of OWL, it can infer
from the fact that a human is a mammal and mammals have a neocortex, that
humans also have a neocortex.

resources to compensate the difficulty of ontological modelling.

In this thesis, we are concerned with a key tool for ontology development and

ontology-based applications: OWL reasoners. Deriving implicit knowledge from

the asserted knowledge in ontologies is referred to as OWL reasoning, or reasoning

in short. Reasoning enables users to query all knowledge in the ontology and ver-

ify the consistency and coherence of an ontology; for a simple example inference

see Figure 1.1. OWL reasoners are the software tools used for performing reason-

ing tasks. The potential for providing reasoning services that are sound, complete

and terminating1 served as the primary motivation to design ontology languages

that are underpinned by Description Logic Semantics [GHM+08]. The family of

Description Logic languages are well understood fragments of First Order Logic.

OWL in particular is underpinned by the Description Logic SROIQ [HKS06].

In this thesis we will focus in particular on the key reasoning service of classi-

fication, that is, computing the subsumption relation between all named concepts

in the ontology. This service is particularly important for two groups of people:

Knowledge engineers, who are building and maintaining an ontology, and domain

experts who want to query the ontology [KJM+12]. Knowledge engineers need to

classify the whole ontology regularly in order to check for inconsistencies, and to

make sure that the inferred subsumptions are as intended [MDOS14]. This can

pose a severe bottleneck during development, even if classification could be done

in less than five minutes, which it very often cannot [GMPS13]. The problem with

1Gives all the answers (complete) and only the right ones (sound) and is guaranteed to finish
at some point (terminating).

1.1. OWL REASONING 25

languages based on expressive Description Logic such as OWL is a high worst case

complexity (for reasoning problems) and a complex input space. This makes re-

search into OWL reasoning one of the primary concerns of the OWL/Description

Logic community.

Reasoning with Description Logic/OWL ontologies in general and classifica-

tion in particular is intractable [Kaz08, HKS06, Tob01]. Before classification was

shown to behave quite reasonably in practice [Hor97], the daunting worst case

complexity (2NExptime for SROIQ [Kaz08]) of the satisfiability problem (a

basic reasoning problem underlying others, such as classification), fostered the

wide-spread belief that sound and complete reasoning was impractical. Regard-

less of that, decision procedures were implemented for more than two decades

before OWL (and the first OWL reasoner) was developed. In order to deal with

the high complexity, the community came up with ever more sophisticated rea-

soner optimisations. The late 1990s saw the first highly optimised reasoners for

expressive Description Logics [Hor98, PS00, HM01].

Over the years many efficient reasoners were developed2 to handle expres-

sive OWL ontologies, offering services such as classification, instance checking or

query answering, in many cases with acceptable performance [GMPS13]. Even

larger ontologies such as SNOMED have recently been classified in less than 5 sec-

onds3 [KKS14], and a wide range of ontologies can now be classified in less than

three minutes by novel, highly optimised reasoning systems [PMG+15, SLG14].

As we will see in this thesis however, some complex, and often large, ontologies

still constitute a challenge. Apart from that, it is quite possible that current

ontologies are deliberately kept small or inexpressive in order to be processable

by reasoners and that ontologies in the future are much more complex, and larger

than the ones we currently have to deal with. Therefore, the quest for better

reasoner optimisations is ongoing, and remains to be a core area of Description

Logics research.

Our current understanding of reasoner performance for OWL ontologies is

limited. For more than two decades, the community has obtained important

complexity results, focusing however on the worst case runtime. Worst case

runtime is only of limited interest to understanding reasoning with real prob-

lems. For example, it is possible that no real problem triggers the exponential

2http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
3Intel Core i7-2630QM 2GHz quadcore CPU, 6 GB RAM, Windows 7.

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

26 CHAPTER 1. INTRODUCTION

behaviour of the, theoretically, intractable reasoning procedure. The matter is

made worse by the amount of, frequently intertwined, optimisations developed

for reasoners, and the different calculi used to determine satisfiability and there-

fore subsumption. For example, depending on the fragment of Description Logic

at hand,4 (mostly incomplete) structural approaches were used in the 1980ies,

tableau-based approaches started to be used in the 1990ies and hyper-tableau

and consequence based approaches after 2000 [BCM+07]. As of now, we can-

not confidently answer the question what makes reasoning hard, an important

pre-requisite for example for directing the quest of optimisation development.

1.2 The Problem of Modular Reasoning

We can distinguish optimisations for classification by those targeted at

� avoiding subsumption tests when traversing the space of possible subsump-

tions (traversal space),

� making necessary tests cheaper by optimising the calculus,

� replacing subsumption tests fully or partially by cheaper alternatives and

� those that rewrite the input into an easier logically equivalent one [BCM+07].

One branch of optimisation development is the exploitation of logical modules

for classification, creating optimisations primarily targeted at avoiding tests and

making them easier. Modules are subsets of an ontology that come with certain

guarantees for reasoning [GHKS08]. The central rationale is that reasoning with

a module of an ontology should be easier than reasoning with the whole. This

“easyfication” could be for example induced by avoiding a large number of neg-

ative subsumption tests or by making individual tests easier (because reasoning

in a small, self contained subset of the ontology is easier).

The first optimisation that exploited modularity, by now a standard aspect

of many state-of-the-art reasoners, is incremental reasoning, which uses modules

to isolate the part of the ontology that needs to be re-classified in the face of

change [GHWK07]. In recent years, module extraction has been used to decom-

pose the entire ontology into a set of possibly overlapping modules that could be

reasoned with separately [RGH12, TP12a]. The hope was that reasoning with

these parts was overall easier than reasoning with the whole. Modularity-based

4The reader may think of a fragment as a grammar for the ontology language, allowing for
a fixed set of constructors to create statements of knowledge.

1.2. THE PROBLEM OF MODULAR REASONING 27

classification is motivated by the following three assumptions:

1. One or more modules in the decomposition can be processed by a more

efficient delegate reasoner than the one that would be required to process

the whole.

2. The traversal space for subsumption tests shrinks significantly.

3. Subsumption testing gets easier because there are fewer irrelevant axioms.5

While these assumptions appear reasonable, virtually nothing is known about

the extent to which modular decompositions have the desired beneficial effects

on classification performance. Some preliminary experimentation with MORe6

and Chainsaw7 suggested that there were some, occasionally significant, benefits,

as well as a number of cases were modularity had a significant detrimental ef-

fect [RGH12, GBJR+13, PMG+15]. This makes a systematic investigation into

the modular reasoning techniques worthwhile.

Other than that, reasoning with modular decompositions has hardly received

any mainstream attention. The central arguments against employing modules

are the occasionally severe (and often decisive) overhead in computing them, the

overlap between the modules of decompositions in practice, and the uncertainty

that the consequences of pruning the traversal space and “easifying” subsumption

tests is any more than marginal. While “true” module extraction is as hard

as reasoning, we make use of syntactic approximations [GHKS08]. Syntactic

locality-based module extraction for example can be done in polynomial time

(lower worst case complexity than reasoning), which however does not mean that

it is “easy” in practice. Overall, there is a justifiable atmosphere of doubt whether

using modular decompositions for classification is, despite being well motivated

and often beneficial in practice, generally worth it.

5In this thesis, we are ignoring any benefits that might come due to the potential of classifying
modules in the decomposition in parallel.

6MORe is a reasoner that exploits the cheaper delegate assumption by decomposing an
ontology into two modules, one of which (hopefully large) can be processed by a very efficient
delegate reasoner.

7Chainsaw is a reasoner that decomposes the ontology into hopefully very small, but poten-
tially overlapping modules.

28 CHAPTER 1. INTRODUCTION

1.3 The Problem of Understanding Reasoning

Performance

Current attempts at black box modular reasoning have yielded mixed results with

little understanding of what works, and why, and whether deeper modifications

of reasoners are necessary to realise systematic gains. Worst case complexity

studies are limited in the sense that an algorithm may only be intractable in odd

corner cases that do not occur in practice. Therefore, it is desirable to study

how reasoning algorithms fare for realistic inputs. A first thought would be to

conduct average-case complexity studies. These studies are still formal, i.e. they

do not require observing the performance of particular implementations. One

of the problems with average-case complexity studies is that they require us to

define a problem distribution that we believe to be somehow close to the nat-

ural distribution. DL concept expressions can be very complicated, and there

is very little knowledge in the literature about how ontologies in the wild are

shaped. Efforts for generating random reasoning problems generally rely on fix-

ing a large number of parameters [Hla05], which may or may not resemble real

problems. To our knowledge, there are no average-case complexity studies con-

ducted for expressive Description Logics, and we believe the problem lies with

the difficulty of defining a suitable problem distribution. Recently, some advances

have been made on understanding the hardness of reasoning using parametrised

complexity studies. Simançik et al. [SMH14] explore the measure of a graph’s

similarity to a tree (tree-width) as a central metric to quantify the hardness of

subsumption reasoning in ALCI. The authors conduct the first study on fixed-

parameter tractability for Description Logic reasoning, showing that tree-width

can be taken as an indicator for the hardness of sets of propositional clauses.

While these are certainly important to understand the hardness of satisfiability

testing (albeit in a setting of less expressivity than OWL), they do not cover the

complexity for example of classification algorithms, which rely (among others)

on traversal algorithms in addition to satisfiability checking. We can view the

traversal algorithm as a super-process aiming at reducing the space of necessary

subsumption tests, and subumption tests as sub-processes that involve the rea-

soner to either call the satisfiability engine or conducting a cheaper alternative

test. Because of the limitations of formal approaches, the dawn of highly opti-

mised systems for expressive Description Logics towards the end of the 1990ies

1.3. UNDERSTANDING REASONING PERFORMANCE 29

such as FaCT [Hor98], Racer [HM01] and DLP [PS00] also came with a paradigm

shift from purely formal towards empirical investigations in the DL community.

In order to understand the hardness of reasoning, empirical studies of reasoning

performance on real8 ontologies became indispensable.

Empirical studies on reasoning performance come in a variety of shapes.

One branch of investigations explores the use of Machine Learning techniques

to expose ontology features that are somehow relevant to predict reasoner per-

formance [KLK12, SSB14]. These approaches claim to work quite well, but while

certainly providing food for thought, they do not provide us with models that are

explanatory9 and tend to be evaluated against corpora with a large proportion

of easy ontologies, failing in particular on the very hard - and thus interesting -

cases. For example, it has been shown that most ontologies sampled from BioPor-

tal or other corpora are comparatively easy for most modern reasoners [GMPS13].

A more recent work by Alaya et al. [AYL15] predicts reasoner robustness based

on a set of structural features, unveiling key features of an ontology that can

explain robustness, such as axiom depth and the values of number restrictions in

axioms, again using supervised learning techniques. Learning-based approaches

are strongly backward looking. New ontologies can bring new challenges, and

may not fit well into such predictive models.

One of the contributions of this thesis is concerned with reasoner benchmarks.

Reasoner benchmarking is the process of testing the implementation of reasoning

tasks in reasoning systems in order to determine a set of performance characteris-

tics. While this is usually understood to be the measurement of execution time, it

is not limited to that. Some benchmarks have been developed to measure power

or memory consumption [VNP15], some with the intention to capture the perfor-

mance of traversal algorithms by measuring how well they avoid tests [GHM+12].

Benchmarks for classification algorithms that are concerned with execution time

usually focus on overall classification time. Little to no interest is paid for exam-

ple on the timings of individual subsumption tests triggered during classification.

In practice, most benchmarks are implemented in an ad-hoc fashion and are not

easily re-usable.

The problem of modular reasoning lends itself very well to develop such bench-

marks for understanding reasoner performance because it abstracts away from the

8rather than artificially generated
9“These n features can be linearly combined to predict reasoning performance with x accu-

racy”

30 CHAPTER 1. INTRODUCTION

complexity of the delegate reasoner’s10 internals, and focuses on questions that

can be tested in controlled experiments without too much confounding by the

complex interplay of potentially conflicting optimisations within the (delegate)

reasoner. For example, we want to check the assumptions that reasoning with a

module is actually easier than reasoning with the whole ontology, or test whether

the hardness of individual subsumption tests drops on average when triggered

within a module compared to when triggered in the context of the whole ontol-

ogy.

In order to determine whether and why the use of modules for classification

is generally worth it, a better understanding of reasoning behaviour under mod-

ularity is needed. For that, more fine grained benchmarks and more systematic,

independent empirical investigations are being designed and conducted by our

community [PMG+15]. In this thesis, understanding OWL classification as such

is not the focus. In particular, we do not aim to understand why current reasoners

behave the way they do, and we do not try to understand why particular ontolo-

gies trigger a particular reasoner behaviour. Our focus lies on developing tools and

methodologies to understanding how modularity, and in particular module-based

decompositions, impact classification performance—clearly isolating positive and

negative effects on performance.

1.4 Contributions

The first contribution of this thesis is the systematic, empirical exploration of the

potential of modularity to improve classification time by reducing the average test

hardness and/or reducing the number of tests. In particular, we will attempt to

dispel or confirm some of the doubts that are currently based mostly on intuition

and folk-wisdom:

� We prove that modules are occasionally harder than the whole ontology.

� We prove that modularity often has a positive effect on the hardness of sub-

sumption tests, but, depending on the ontology and the delegate reasoner,

not always a significant one.

� We prove that the question of using module-based decompositions for OWL

classification for pruning the subsumption test space has an occasionally

10The “actual” reasoner that computes a partial answer to the reasoning request based on a
given module.

1.5. THE STORY 31

highly beneficial, occasionally highly detrimental effect—depending on the

ontology.

The second contribution of this thesis is to further the methodological foun-

dations of experimenting with reasoners and modules through novel experiment

designs, APIs and large well characterised datasets:

� We have designed a framework that supports experimenting with reasoners

capturing the various stages a reasoner goes through during classification,

including individual subsumption tests, and show how this enables new

insights into reasoning performance (Reasoner Stage Benchmark).

� We have developed an extensible framework for analysing modularity-based

classification techniques (Katana), and have implemented 5 approaches, 3

of which have not yet been considered.

� We have created, published and analysed a large corpus of fine grained

observations on classification, including timings of individual subsumption

tests triggered during classification.

� We present some of our efforts involving ontology corpora, most importantly

assembly and in-depth characterisation.

Note that we are not exploring the benefits of integrating efficient delegate

reasoners, the main rationale underlying the MORe reasoner. Our frameworks

to allow the integration of specialised delegates however, and characterising their

effect will be part of future work.

1.5 The Story

The primary goal of this thesis is to determine the viability of modular decompo-

sitions to improve classification performance. We will briefly describe the basics

of Description Logic reasoning and modularity in Chapter 2. Chapter 3 will

describe in detail the idea of modularity-based classification, in particular with

respect to associated threats and potential benefits. We will cover the existing

implementations, and explain our own model of modular reasoning. In Chapter 4

we will describe our experimental framework, introducing the Reasoner Stage

Benchmark, Katana and the OWL Experiment API and discussing the reasoners

and datasets used in our experiments.

In the following three chapters, we will address some of the main questions

32 CHAPTER 1. INTRODUCTION

with respect to modularity-based classification. In Chapter 5 we explore the fun-

damental conjecture that a module is never harder than its parent ontology. We

show empirically that pathological modules exist and the conjecture does not hold,

and proceed to explore the prevalence and harmfulness of pathological modules

as they are used by state-of-the-art modular reasoning approaches. In Chapter 6

we investigate how modularity effects subsumption test hardness, first isolating

ontologies that can potentially benefit from the effect and then determining the

potential magnitude of the effect. This chapter serves both as an in-depth char-

acterisation of the phenomenon of test hardness under modularity and builds

on the observations in Chapter 5 by revealing that, while individual tests are

on average easier under modularity, most test do not change in hardness at all.

Finally, Chapter 7 investigates modularity-based classification approaches in ac-

tion. We introduce three untested approaches, and compare them, along with

variants of the Chainsaw and MORe approaches, with respect to overall perfor-

mance, computational overhead, redundancy, traversal space and subsumption

test hardness.

1.6 Published Work

Some of the work we present as part of this thesis has been presented at interna-

tional conferences and workshops.

� Matentzoglu, N., Parsia, B., Sattler, U. An Empirical Investigation of Dif-

ficulty of Subsets of Description Logic Ontologies, International Workshop

on Description Logics 2014 [MPS14] (early version of Chapter 5)

� Matentzoglu, N., Sattler, U., Parsia, B. Empirical Investigation of Sub-

sumption Test Hardness in Description Logic Classification, International

Workshop on Description Logics 2015 [MSP15] (early version of Chapter 6)

� Matentzoglu, N., Bail, S., Parsia, B. A Snapshot of the OWL Web, ISWC

2013 [MBP13b] (foundational work on ontology corpora)

� Matentzoglu, N., Bail, S., Parsia, B. A Corpus of OWL DL Ontologies, In-

ternational Workshop on Description Logics 2013 [MBP13a] (foundational

work on ontology corpora)

� Matentzoglu, N., Leo, J., Hudhra, V., Sattler, U., Parsia, B. A Survey of

Current, Stand-alone OWL Reasoners, International Workshop on OWL

Reasoner Evaluation (ORE) 2015 [MLH+15] (reasoner survey presented as

1.6. PUBLISHED WORK 33

part of Chapter 4)

� Matentzoglu, N., Parsia, B. OWL/ZIP: Distributing Large and Modular

Ontologies, International Workshop on OWL: Experiences and Directions

(OWLED) 2014 [MP14c] (technique used for distributing decomposed on-

tologies, Chapter 4)

� Matentzoglu, N., Parsia, B. The OWL Full/DL Gap in the Field, Inter-

national Workshop on OWL: Experiences and Directions (OWLED) 2014

[MP14b] (technique used for OWL Full repair during corpus pre-processing,

Chapter 4)

� Matentzoglu, N., Tang, D., Parsia, B., Sattler, U. The Manchester OWL

Repository: System Description, ISWC 2014 Posters and Demonstrations [MP14a]

(repository we developed to share datasets for experimentation)

� Gonalves, R.S., Matentzoglu, N., Parsia, B., Sattler, U. The Empirical

Robustness of Description Logic Classification, ISWC 2013 Posters and

Demonstrations [GMPS13] (early benchmark, pre-courser of thesis bench-

mark)

� Gonalves, R.S., Bail, S., Jimnez-Ruiz, E., Matentzoglu, N., Parsia, B.,

Glimm, B., Kazakov, Y. OWL Reasoner Evaluation (ORE) Workshop 2013

Results: Short Report, International Workshop on OWL Reasoner Evalua-

tion (ORE) 2013 [GBJR+13] (ORE Reasoner competition, sampling method-

ology, data set curation)

� Lee, M., Matentzoglu, N., Sattler, U., Parsia, B. A Multi-reasoner, Justification-

Based Approach to Reasoner Correctness, ISWC 2015 [LMPS15] (Method-

ology used to establish reasoner correctness)

Chapter 2

Background

In this chapter we cover some of the basic notions of reasoning and modularity.

We will briefly discuss the architecture of OWL reasoners and some of the key

reasoning tasks and describe the reasoning task of classification in more detail

with respect to two important calculi. We will conclude the section on reasoning

with a discussion of reasoner optimisations relevant to OWL classification. In

the modularity section we introduce syntactic ⊥-modules and their properties

relevant to module-based classification. We will conclude the chapter with a

definition of classification-preserving decompositions and some examples. The

main goals of this chapter are:

� Introducing the notation we use throughout this thesis.

� Setting the scene for module-based classification of OWL ontologies by in-

troducing Description Logic classification.

� Introducing our notion of classification-preserving decomposition.

� Motivating our choice of syntactic locality-based ⊥-modules to underpin

decompositions for classification.

2.1 Terminology Used

In Table 2.1, we introduce some of the basic terminology we will use throughout

this thesis.

Ontologies (see definition in Table 2.1) can be dependent on other ontologies,

most notably through the owl:imports relation. It is important to note that we

treat the entire imports closure as the ontology, not merely the root importing

ontology, see also Bail et al. [BPS11].

The reader will notice a potentially confusing mixture of the OWL and DL ter-

minology, depending on the context of the paragraph. For example in the context

of OWL, we refer to class expressions and classes, while the DL community refers

to the same ideas as concepts and concept names. Another example is the notion

2.2. OWL 35

Table 2.1: Important terms used throughout the thesis.

Term Denoted by Definition
Axiom none A statement in OWL, for example A v B,

Functional(R).
Logical axiom α Subset of axioms that excludes annotation

assertions and entity declarations.
Imports closure none The set of ontologies directly or indirectly

imported by a given root ontology.
OWL ontology O The set of logical axioms in the imports clo-

sure of an ontology.

Signature Õ The set of all names occurring in the ontol-
ogy, including class names, property names
and individuals.

Classes in Signa-
ture

ÕC The set of all class names in the ontology.

ABox none The set of all class assertions and property
assertions in the ontology (A for assertional).

TBox none The set of all logical axioms in the ontology
excluding ABox axioms (T for terminologi-
cal).

of “role” in DL, which can either refer to an object property or a data property

in OWL. We try to use the terminology that we find appropriate to the given

context, but use both terminologies in a way that is completely interchangeable.

2.2 The Web Ontology Language and its DL

Underpinnings

The Web Ontology language (OWL) is a family of knowledge representation lan-

guages used for expressing ontologies. OWL allows us to talk about entities such

as concepts of a domain, instances of concepts and roles connecting instances (and

potentially concepts and data values) using a pre-defined vocabulary. OWL 2

[GHM+08], the successor of OWL, is comprised of two main species of differ-

ent expressivities: OWL 2 DL and OWL 2 Full. As we have mentioned before,

the underlying formalism of OWL 2 DL is the Description Logic SROIQ(D)

[HKS06]. While OWL 2 DL is defined by Description Logic semantics (Direct

36 CHAPTER 2. BACKGROUND

Semantics), OWL 2 Full has an RDF-based semantics1, which is a superset of

the OWL 2 Direct Semantics. OWL 2 Full does not impose any restriction on

the usage of the language constructs of OWL.

OWL reasoners, however, are usually restricted to ontologies in (a subset of)

OWL 2 DL. We generally regard OWL 2 DL as a syntactic variant of SROIQ(D),

that has a few additional features such as metamodelling2, annotations and keys.3

There are three specified profiles of OWL 2 DL, namely OWL 2 EL, OWL 2 QL

and OWL 2 RL, for which the community has developed decision procedures

of only polynomial complexity (reasoning with the entirety of OWL 2 DL is of

exponential complexity). All three are tailored to particular use cases. OWL 2

QL can serve as basis for efficient query answering, often in conjunction with

database technologies. OWL 2 RL is used if the goal is to capture rule-like (if-

then) knowledge and enable the interaction with rule engines and rule extended

database management systems, and then provide efficient reasoning (over poten-

tially large datasets) in a scalable way [MGH+12]. OWL 2 EL is supposed to be

used for modelling large ontologies (mainly the schema or TBox part of them),

allowing for very efficient classification. All three profiles intersect in terms of

expressivity, i.e. it is possible for any given ontology to fall under all three pro-

files at once. A notable exception to reasoners being restricted to OWL DL is

the work by Schneider et al. [SS11], who have translated a large fragment of the

OWL 2 Full semantics into First Order Logic, and explore the use of First Order

Logic theorem proving systems for reasoning.

OWL can be represented by a wide range of syntaxes, some of the most widely

used being RDF/XML, OWL/XML, Functional Syntax and Manchester Syntax,

the latter being usually associated with better readability by humans. For a full

definition of OWL 2, we refer the reader to the official specification.4

2.3 Brief Overview of Reasoning in OWL

An OWL reasoner R is a system that solves OWL reasoning problems, mak-

ing implicit knowledge in the ontology explicit. Figure 2.1 provides a high-level

schematic of the architecture of a reasoner. A reasoner offers a range of logical

1http://www.w3.org/TR/owl2-rdf-based-semantics/
2Also called punning, see http://www.w3.org/TR/owl2-syntax/#Metamodeling
3http://www.w3.org/TR/owl2-syntax/#Keys
4http://www.w3.org/TR/owl2-syntax/

http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-syntax/#Metamodeling
http://www.w3.org/TR/owl2-syntax/#Keys
http://www.w3.org/TR/owl2-syntax/

2.3. BRIEF OVERVIEW OF REASONING IN OWL 37

O

Q

Classification

Justification

CQA

...

Traversal

Satisfiability

Figure 2.1: A reasoner offers a range of logical services such as classification,
justification generation and conjunctive query answering (CQA). Input to these
services are an ontology O, and a query Q (is satisfiable? is consistent?, classifi-
cation?). Services are sometimes built on other services, such as classification on
satisfiability.

services, for example consistency checking, classification, justification generation

and conjunctive query answering (CQA). Input to these services are usually an

ontology O in a language (a fragment of) OWL, possibly extended5, and a query

Q, which ranges from decision problems (“Is the ontology consistent”) to listing

problems (“Give me all the instances of C”). Reasoning services are implemented

using one or more calculi, most notably those based on (hyper-)tableau and those

based on saturation (consequence-based reasoning techniques). Some reasoning

services can make use of other ones: For example, while performing classification,

a tableau-based reasoner typically employs a traversal strategy to iterate the pairs

of concept names that need to be checked for subsumption. Unless the test can

be somehow avoided (through one of many potential optimisations), the reasoner

then calls the service for subsumption testing, which in turn decides whether the

subsumption holds by querying the satisfiability engine. For example, in order

to determine whether a concept A is subsumed by a concept B, the reasoner

tests the satisfiability of the concept Au 6 B. Upon determining satisfiability (or

non-satisfiability), the traversal algorithm progresses to the next pair of concept

names. The answer to a query can be a Boolean answer (consistent), a fully

classified ontology, the set all members of a class – depending on the nature of

the query and the particular service invoked.

The general motivation for using formalisms based on Description Logic se-

mantics is the availability of sound, complete and terminating reasoning proce-

dures, i.e. decision procedures. Sound reasoning procedures do not give wrong

5Measurement units, probability and fuzzy logic are examples of existing extensions.

38 CHAPTER 2. BACKGROUND

answers, complete ones give all the right answers, and terminating ones are guar-

anteed to finish in finite time. The reasoning procedures used for Description

Logic reasoning are all sound, complete and terminating with respect to a frag-

ment of Description Logics. However, (1) the same does not necessarily hold

for the implemented systems and (2) a reasoning procedure complete for one

fragment is not necessarily complete for another.

All Description Logic reasoners (to our knowledge) aim to provide sound and

terminating reasoning services for some language, and with a few exceptions,

complete ones. However, it is quite unlikely that a given OWL reasoner is com-

pletely bug-free [LMPS15]. An unsound or non-terminating algorithm for OWL

reasoning is almost certainly the consequence of a bug. Incompleteness however

can be either intended (approximate reasoning) [TPR10], accidental (bugs in the

implementation) [LMPS15] or simply a consequence of incomplete coverage. For

example, while the features of OWL that are important for reasoning (possibly

with the exception of punning and keys) are covered by the Description Logic lan-

guage SROIQ(D) [HKS06], implementations do not always cover all of them.

Reasoners are more often than not a work-in-progress, and even if the underlying

procedures are sound and complete, the reasoner may not (yet) fully implement

all OWL features. This usually takes the form of incomplete datatype cover-

age, which has been for example a problem for the reasoner FaCT++ [TH06] in

reasoner competitions, which covers only a subset of the OWL 2 datatype map.

This is an important aspect that needs to be taken into account when comparing

the performance of two reasoners: they do not always make the effort needed to

be strictly complete. Another example of incomplete coverage is the treatment

of ELK [KKS14] as “mostly” complete with respect to OWL 2 EL ontologies.6

These sources of incompleteness should be kept in mind when interpreting bench-

marking results.

2.3.1 Reasoning Tasks for Description Logic Ontologies

OWL reasoners provide many standard and non-standard reasoning services. A

reasoning service implements a DL reasoning task. The standard Description

Logic reasoning tasks are classification, entailment checking, consistency checking,

conjunctive query answering and realisation [BCM+07]. Among the non-standard

6ELK does not yet fully support datatypes (like lexical-value mappings), or imposes restric-
tions on the position where certain constructors like ObjectComplementOf are allowed.

2.3. BRIEF OVERVIEW OF REASONING IN OWL 39

reasoning services are explanation generation [Hor11], axiom pinpointing [BP10]

and (semantic) module extraction [GHKS08]. Reasoning tasks can be roughly

grouped by their applicability to either the ABox or the TBox of an ontology.

The most notable categories are those reasoners whose primary task is the efficient

classification of the TBox and those that answer queries over the ABox, mainly

conjunctive query answering [MLH+15].

In this thesis, we are concerned with TBox reasoning tasks, most specifically

classification. Generally speaking, classification is the process that takes as an

input an ontology O and decides, for all names A,B ∈ ÕC whether A v B

(read: A is a sub-class of B). Unlike the reasoning task, the reasoning service of

classification (as implemented by a reasoner) is not uniformly defined in terms

of scope and output. What names are considered and what is returned varies

across implementations. Most typically, we consider the classification of classes.

However, some reasoners may do some additional, not strictly necessary work,

like classifying object properties, which can make the interpretation of timings

more challenging. We usually say that the output of classification is the inferred

class hierarchy. In practice, this can take one of two, and possibly more, forms:

(1) The reasoner keeps an internal representation of the classified hierarchy, and

returns a Boolean7 to indicate that it is now ready to answer queries over the

class hierarchy. (2) The reasoner returns the class hierarchy8 encoded as a set of

OWL axioms. Implementations also vary in the inclusion of OWL Thing and OWL

Nothing in the class hierarchy as well as the representation of equivalent classes

and unsatisfiable classes. In the practice of reasoner benchmarking, inspecting the

inferred class hierarchy (or comparing them between reasoners) usually involves

normalising the output of reasoners, for example by manually constructing the

hierarchy by querying the reasoner iteratively for all sub- and superclasses of all

class names A ∈ ÕC .

2.3.2 OWL Ontology Classification

There are two fundamentally different main approaches to classify OWL on-

tologies: consequence-based classification and classification based on traversal

7Or nothing at all in the case of the OWL API [HB11], the de-facto standard for manipulating
ontologies and using reasoners in Java-based systems.

8Hasse Diagram of the partial order induced by v.

40 CHAPTER 2. BACKGROUND

and subsumption testing, most importantly those based on tableau and hyper-

tableau. Tableau-based approaches attempt to construct a class graph by con-

ducting a series of subsumption tests. Each subsumption test involves build-

ing a counter-model ; if the construction fails, the subsumption holds, and vice

versa. Consequence-based techniques on the other hand determine subsumptions

through successive applications of derivation rules. Each rule defines a conclu-

sion, a set of premises and a side condition. Both approaches differ not only

methodologically, but also in terms of applicability. These differences will be

discussed in Section 2.3.2.

Tableau-based classification algorithms have two main ingredients: a traversal

algorithm that orders the tests necessary to classify an ontology, and a satisfia-

bility engine that is responsible for determining concept satisfiability (for exam-

ple by building the counter-models). A naive traversal algorithm would iterate

through all ordered pairs of concept names A,B ∈ ÕC and determine whether

O |= A v B, requiring a total of n2 tests, where n = |ÕC |. This is clearly inef-

ficient, given the tree like structure of a typical class hierarchy. For example, if

we find that O 6|= A v B then we do not need to check whether O |= A v D for

any D with O |= D v B, see Figure 2.2. Therefore, folklore suggests to assume a

tighter upper bound of n∗ log(n) tests, which reflects the complexity of traversing

a tree. While this is (as we will see in Chapter 6) much closer to the empirical

upper bound than n2, it is occasionally exceeded. One trivial example of an

ontology that is not tree-shaped is one with all axioms having mutually disjoint

signatures. A naive traversal algorithm would have to conduct all n2 tests in that

case. For that reason, we will consider both whenever we are referring to upper

bounds in our discussions. Examples of tableau based reasoners are Pellet and

FaCT++. Note that there are no up-to-date numbers on how the class graph of

an OWL ontology is typically shaped. A fairly old survey from 2006 classifies a

corpus of ontologies according to a taxonomy of class graph shapes [WPH06]. It

is suggested that there are quite a number of class graphs that are not merely

trees, but often multi-trees or even directed acyclic graphs. It is likely (but not

known strictly speaking) that this is similarly true for the ontology landscape

today.

In contrast, consequence-based reasoners classify an ontology by systematically

applying derivation rules to the axioms in O. ELK, a well known consequence-

based reasoner, implements classification (in a nutshell) as follows. All axioms

2.3. BRIEF OVERVIEW OF REASONING IN OWL 41

b

b

b
⊑

A

B

D

6⊑

Figure 2.2: If A is not a subclass of B, than it can also not be a subclass of any
of B’s subclasses.

are added first to a todo-list. Then they are, one by one, added to a closure, after

which a number of derivation rules are checked for applicability. The consequences

of applied rules are added to the todo list. Once the todo-list is empty, the

classification is complete.

In order to reduce the number of tests, numerous optimisations were developed

for tableau-based classification algorithms, most notably the family of Enhanced

Traversal algorithms. The overarching rationale is that the predominantly tree-

like structure of the class hierarchy allows for reducing the search space for sub-

sumptions when gradually constructing the class hierarchy. We will discuss an

example of an Enhanced Traversal algorithm in Section 2.3.2. While consequence-

based techniques do not consider non-subsumptions, and therefore do not need

traversal algorithms in the same sense as tableau-based techniques, they are not

completely immune to redundancy: each conclusion can be potentially derived

multiple times [KKS14].

Each individual subsumption is, depending on the underlying calculus, de-

termined by exhaustively applying a number of derivation rules, by trying to

construct a model of the concept and the complement of its potential subsumer

or by a cheap alternative test like a query to the transitive closure of the class

graph. This task can be very hard : Especially model construction for expressive

ontologies can have a complexity up to N2Exptime in the worst case. While the

quadratic worst case complexity of traversal (n2) appears tiny compared to the

worst case complexity of subsumption testing, it is not always certain which of

the two effects the hardness of a given classification more in practice. For exam-

ple, Glimm et al. [GHM+12] have shown that their Novel Approach, an optimised

traversal algorithm for ontology classification, can boost performance sometimes

42 CHAPTER 2. BACKGROUND

by more than an order of magnitude - merely due to test avoidance. It is clear that

any serious attempts at optimising classification need to address both avoidance

and hardness, regardless of their worst case complexity upper bounds.

Classifying a reasoner as either consequence-based or (hyper-)tableau-based

is rarely straight forward. At least the general purpose reasoners that cover the

entirety of OWL 2 DL often employ hybrid techniques, for example combining

saturation-based or consequence-based techniques with tableau-style techniques,

or are based on modular techniques. In terms of hybrid techniques, we can distin-

guish between quasi-hybrid reasoners and true hybrids. Quasi-hybrid reasoners

usually employ some cheap up-front case distinction to determine whether an

ontology should be processed by a cheaper, usually consequence-based engine, or

a model-construction-based technique for higher levels of expressivity. For exam-

ple, Pellet uses its internal EL-classifier for ontologies in (some variant of) EL.

This “optimisation” is becoming standard practice, due to the large potential

performance gains and the cheapness of the upfront expressivity check. True hy-

brid reasoners like Konclude [SLG14] come with a very tight integration of the

different calculi, for example combining saturation-based techniques with tableau

algorithms [SGL14]. Modularity-based reasoners such as Chainsaw and MORe,

sometimes referred to as “portfolio” reasoners, should also not be classified into

one of the three main categories. Their main purpose is to compose the ontology

into modules and then feed the individual bits to delegate reasoners.

In the following, we will exemplify the classification algorithms for both ap-

proaches with respect to a simple ontology OEx with two axioms:

� A v B

� B v C

Traversal / Tableau-based classification

A reasoner implementing a tableau-based procedure starts classification by ini-

tialising the target class graph with ⊥ v >9 (tautology, i.e. always true). Next,

the classification algorithm iterates through the class names in ÕExC . Classifi-

cation is non-deterministic, e.g. the order in which concepts are classified is not

defined. For now, we assume lexical order and classify the classes A,B and C in

that order. The classification algorithm has a top-down and a bottom-up stage.

9> is the top concept, and includes all elements in a domain, and ⊥ is the bottom concept,
which represents the empty set.

2.3. BRIEF OVERVIEW OF REASONING IN OWL 43

At first we check whether OEx |= A v >. That trivially holds, so we move on

to check whether OEx |= A v ⊥, or, in other words, whether A is unsatisfiable.

A is unsatisfiable if there is no model of OEx in which A can have an instance.

This test is implemented as a call to the satisfiability engine, which tests the

satisfiability of the concept A u ¬⊥. Since ¬⊥ is equal to >, we merely test

the satisfiability of A. Since A is satisfiable in our example, the subsumption

does not hold. Now the bottom up stage begins. We start by checking whether

OEx |= ⊥ v A. Since ⊥ is a subclass of everything, this subsumption holds by

default. Next we test whether OEx |= > v A. Since > u ¬A is satisfiable, the

subsumption does not hold. As a consequence, we insert A in the class graph

between > and ⊥. Next we move on to class B. For readability, we will present

the remaining steps in the form of a list.

1. B

(a) Top-down

i. OEx |= B v > holds trivially

ii. OEx |= B v A does not hold because B u ¬A is satisfiable

iii. OEx |= B v ⊥ does not hold because B is satisfiable

(b) Bottom-up

i. OEx |= ⊥ v B holds trivially

ii. OEx |= A v B holds because A u ¬B is not satisfiable

iii. OEx |= > v B does not hold because > u ¬B is satisfiable

(c) Inserting B between > and A.

2. C (compare also Figure 2.3).

(a) Top-down

i. OEx |= C v > holds trivially (Step 1 in figure)

ii. OEx |= C v B does not hold because C u ¬A is satisfiable (Step

2 in figure)

iii. OEx |= C v A can be avoided because OEx 6|= C v B

iv. OEx |= C v ⊥ does not hold because C is satisfiable (Step 3 in

figure)

(b) Bottom-up

i. OEx |= ⊥ v C hold trivially (Step 1 in figure)

ii. OEx |= A v C holds because A u ¬C is not satisfiable (Step 2 in

figure)

iii. OEx |= B v C holds because A u ¬C is not satisfiable (Step 3 in

44 CHAPTER 2. BACKGROUND

⊤

B

A

⊥

C

1

2

3

Top Search

⊤

B

A

⊥

C

Bottom Search

1

2

3
4

⊤

B

A

⊥

C

Insert C

Figure 2.3: Illustration of the top and bottom search phase for the example in
the text.

figure)

iv. OEx |= > v C does not hold because > u ¬C is satisfiable (Step

4 in figure)

3. Inserting C between > and B.

After that, the classification of OEx is completed. Note that tableau-based

classification algorithms have two major sources of non-determinism:

� The order of the subsumption tests (traversal space).

� The order of branch explorations during model construction.

Both sources of non-determinism can have severe implications for perfor-

mance, and need to be taken into account when trying to understand classifi-

cation performance. Note that for Horn-SHIQ, a Description Logic language

that contains all three OWL 2 profiles, we have deterministic reasoning proce-

dures. However, reasoners such as FaCT++, Pellet and JFact do not implement

these procedures, so they can still introduce non-deterministic choices.

Consequence-based classification

Now we will look at the consequence-based equivalent, as for example employed

by ELK. For brevity, we will omit the R> rule, which is used to derive that all

concepts are sub-concepts of >. In contrast to tableau-based classification, we

do not classify concepts one-by-one. Instead, we loop through the axioms in O
and apply a number of derivation rules until no further rule can be applied. This

process is called saturation, and the fully classified ontology is called saturated.

A basic implementation works as follows: we start with an empty closure (the

place were we will collect the expressions between which all derivation rules have

been fully applied), and a todo list consisting of the axioms in the ontology. The

2.3. BRIEF OVERVIEW OF REASONING IN OWL 45

first rule we apply is the R0 rule, which states that all classes are subclasses of

themselves. We start the saturation by applying the R0 rule to all class names

appearing on the left hand side of an axiom. A and B both appear on the left

hand side of axioms, so we add A v A and B v B to the closure. All subsequent

rule applications are executed as follows: For each axiom in the todo list, we:

1. Add axiom to closure.

2. If axiom was already in closure move on to next axiom.

3. Else apply inference rules one-by-one by treating axioms already in the

closure as premises and the axiom at hand as the side condition.

4. If rule applies, draw conclusion.

5. If conclusion is already in closure, do nothing.

6. Else add it to todo list (not immediately to the closure!).

With respect to our example, we take the first axiom in our todo list, A v B

and add it to the closure. Since the axiom was not already in the closure, we

check whether we can apply any rules. The only rule that applies is the Rv rule.

Given the premise A v A and the side condition A v B, we can trivially derive

that A v B, which is already in the closure, and move to the next axiom. As

before, we will report the rest of the classification in list form.

1. Next axiom in Todo: B v C

(a) Insert axiom into closure.

(b) Since it was new (i.e. not already present in the closure), apply all

inference rules.

(c) The first rule that applies is the Rv rule with the premise B v B.

Since the consequence is already in the closure, we move to the next

rule.

(d) The second rule that applies is again the Rv rule, this time with the

premise A v B. The consequence A v C is not in the closure yet, so

it is added to the todolist.

2. Next axiom in Todo: A v C

(a) Insert axiom into closure.

(b) Since it was new (i.e. not already present in the closure), apply all

inference rules.

(c) The first rule that applies is the Rv rule with the premise A v A.

Since the consequence is already in the closure, we move to the next

rule.

46 CHAPTER 2. BACKGROUND

(d) No further rules apply.

3. Since the todolist is empty, classification is complete.

Enhanced Traversal vs Consequence-based classification

Consequence-based approaches are often associated with better performance be-

cause they preclude any need to check possible non-subsumptions, while those

based on traversal and tableau often involve predominantly negative subsump-

tions tests. Consequence-based approaches are most commonly employed by rea-

soners that deal only with the fragments of SROIQ (and therefore OWL 2 DL)

such as EL and EL+ +, and are used by some popular reasoners such as ELK

and CEL. Tableau-based approaches on the other hand are utilised for expressive

fragments of OWL 2 DL, i.e. those extending ALC.
The worst case is uninformative with respect to real performance (tractable

does not imply practical). If we consider a naive classification algorithm (n2),

a reasonably large ontology such as SNOMED (n = 300, 000) and assume every

test is tractable and takes 0.5 milliseconds, it would still take around 500 days to

fully classify SNOMED.10 This is obviously impractical, despite using a tractable

algorithm. Another argument, the avoidance of non-subsumptions [Kaz09], is

also only of limited use. First of all, tableau reasoners also employ means that

avoid a large number of non-subsumptions (and subsumptions). Second, the

same inference can be drawn multiple times (duplication) during consequence-

based classification [KKS14]. And lastly, inferences are drawn that do not relate

to atomic subsumptions (redundancy) during consequence-based classification.

These factors need to be taken into account when determining which of the two

is generally better, and requires carefully crafted empirical investigations.

2.3.3 Optimisations

Most of what we call reasoner development is about crafting, combining and

verifying the viability of optimisations to improve reasoning performance. Some

optimisations are tailored to particular ontologies [MJL13], some apply only to a

very specialised setting,11 some apply only to particular DL fragments and most

only make sense in the context of a particular calculus. There are four types

10Example adapted from slides by Pavel Klinov and Bijan Parsia for ESSLLI 2013, http:
//esslli2013.de/accepted-courses/

11For example Targeted Communication [MHM13] for Distributed Description Logics

http://esslli2013.de/accepted-courses/
http://esslli2013.de/accepted-courses/

2.3. BRIEF OVERVIEW OF REASONING IN OWL 47

of optimisations that are of special interest to improving classification perfor-

mance [BCM+07]:

1. Pre-processing optimisations try to rewrite the ontology in such a way that

classification and subsumption testing becomes easier.

2. Satisfiability optimisations try to make tests easer by optimising the satisi-

fiability engine.

3. Subsumption test optimisations try to make tests faster by replacing them,

either fully or partially, by cheaper ones.

4. Traversal optimisations are targeted at avoiding subsumption tests, for ex-

ample by exploiting the typical tree-shape of the class hierarchy.

Three well known members of the family of pre-processing optimisations that

are usually employed by traversal and tableau-based approaches are normalisa-

tion, simplification and absorption. Normalisation for example rewrites axioms

in such a way that the satisfiability engine can detect clashes early on. This is

particularly important because we can describe the same thing in different ways,

for example A u B and B u A, as well as ¬(A u B) and ¬A t ¬B. Absorption

is an optimisation that attempts to reduce the high degree of non-determinism

induced by general concept inclusions, for example by rewriting axioms of the for

A uB v C to an axiom with an atomic left hand side: A v C t ¬B.

One of the most important optimisations that is aimed at making tests easier

by optimising the satisfiability engine is back-jumping. When exploring poten-

tially deeply nested non-deterministic branches in a tableau setting, the algorithm

generally retracts to the last non-deterministic choice and continues with the next

branch. It is easily possible that the clash was caused by an interaction that was

independent of the expression that caused the non-deterministic choice, which

may result in it happening again. Back-jumping aims at recognizing such situa-

tions and enables retracting to a non-deterministic choice that would avoid the

same clash happening again [BCM+07].

Among the optimisations for making tests easier by replacing them with cheaper

tests is caching of partial expansion trees. This optimisation addresses the issue

that many (potentially costly) satisfiability checks are repeated with minor vari-

ations (as part of other satisfiability tests). Cached partial expansion trees can

be used to prove non-subsumptions without actually performing them. Other

48 CHAPTER 2. BACKGROUND

optimisations exploit graph properties to replace certain tests by look-ups to the

transitive closure of the known subsumptions [BCM+07].

The main sub-category of optimisations that aim at reducing the traversal

space, see Definition 2.1, are traversal algorithms. The most important traversal

algorithms are those based on the Enhanced Traversal [BHN+94] (ET), and more

recently the Novel Approach [GHM+12] (NA). Another important technique to

avoid unnecessary subsumption tests by exploiting the asserted knowledge are

told subsumers [TH06].

Definition 2.1. Given an ontology O, a reasoner R, the set of all pairs of atomic

concepts T O = ÕC ∪ {>,⊥} × ÕC ∪ {>,⊥} in O, the sequence of subsumption

tests (ST (Aj, Bj,O,R, i))j with (Aj, Bj) ∈ T O conducted by R during the ith

classification run of O is called the traversal space of R on O and denoted T OR ⊆
T O.

2.4 Modularity

In the following, we will briefly introduce the core notions of modularity we need in

order to understand the intuitions behind most of the approaches and experiments

presented in this thesis. Some basic concepts and their notations can be found

in Table 2.2. The goal of this section is not to provide a full fledged introduction

into modularity, but to motivate our choice of focusing on (syntactic) locality-

based ⊥-modules. For a more comprehensive introduction, the interested reader

is referred to the PhD thesis of Del Vescovo [DV13] and Grau et al. [GHKS08].

We refer to the the ontology from whichM was extracted as the parent ontology,

defined as follows:

Definition 2.2. Given a module M of O with M ⊆ O, we call O the parent

ontology of M.

Conservative extensions are a core notion to understand modularity in logics.

We say that two interpretations I and J coincide on a signature Σ (notation:

I|Σ = J |Σ) if ∆I = ∆J and XI = XJ for every X ∈ Σ and call I|Σ the

restriction of the interpretation I to the terms in Σ.

Definition 2.3 (Grau et al., [GHKS08]). Let O be a SROIQ-ontology,M⊆ O,

and Σ a signature. We say that:

2.4. MODULARITY 49

Table 2.2: Important terminology related to modularity, used throughout the
thesis.

Term Denoted by Definition
Module M Subset of an ontology which provides a num-

ber of logical guarantees over its signature.
Seed signature Σ A set of OWL entities.
Module extrac-
tion

x-mod(Σ,O) Extraction of an x-module (such as > or ⊥,
as explained later on) with respect to a seed
signature Σ and an ontology O

1. O is a deductive Σ-conservative extension (Σ-dCE) ofM if, for all SROIQ-

axioms α with α̃ ⊆ Σ, it holds that M |= α if and only if O |= α;

2. O is a model Σ-conservative extension (Σ-mCE) of M if {I|Σ | I |=M} =

{J |Σ | J |= O};
3. M is a dCE-based (mCE-based) module for Σ of O if O is a Σ-dCE (Σ-mCE)

of M;

4. If M is a dCE-based module for Σ, we also say that M covers or provides

coverage to O for Σ.

(1) Model-conservativity means that all models of a module can be extended

to a model of their parent ontology. (2) Deductive conservativity means that

anything entailed by a module with respect to a signature is entailed by the

whole ontology. (3) Model conservativity implies deductive conservativity, but

not the other way around.

Deciding whether M ⊆ O is a conservativity-based module of O is un-

decidable even for simple logics [LWW07]. Locality-based modules were sug-

gested as computationally feasible alternatives to minimal deductive conservative

extension-based modules: they are over-approximations of the latter, i.e. they

may contain superfluous axioms not needed to preserve entailments over a signa-

ture.

There are numerous kinds of locality-based modules, all providing coverage,

but with different properties [SSZ09]. It has been shown that, despite being ap-

proximations, syntactic locality-based modules are rarely different from semantic

locality-based modules in practice [VKP+13]. Syntactic locality-based modules

come in three flavours: ⊥, > and ?. All come with some unique properties [DV13]:

� ⊥-modules guarantee that if O |= A v B and A ∈ M̃, that B ∈ M̃.

� >-modules guarantee that if O |= A v B and B ∈ M̃, that A ∈ M̃.

50 CHAPTER 2. BACKGROUND

� ?-modules are very small, as they are the consequence of repeatedly ex-

tracting a ⊥-module from a >-module and so on.

In this thesis we are concerned with syntactic ⊥-modules because (1) they are

usually smaller than >-modules and (2) the set of all ?-modules in O does not

have the property of classification completeness, see Definition 2.4. >-modules

are typically larger because for every A ∈ M̃C it is guaranteed that B ∈ M̃C if

O |= A v B. In other words, for every name in the signature, we are guaranteed

to find also all its subclasses in the signature. The converse is true for ⊥-modules.

Since a class has typically more subclasses than superclasses, >-modules tend to

be larger. As we will see later, the set of genuine ?-modules in O lack our com-

pleteness criterion with respect to classification (Definition 2.4), and are therefore

not suitable for use in classification.

Logical modules in general and locality-based ⊥-modules in particular come

with a range of properties. The following properties are relevant for this thesis:

� covering if ∀A,B with Ã ∪ B̃ ⊆ Σ: O |= A v B ↔M |= A v B

� self-contained if ∀A,B with Ã ∪ B̃ ⊆ Σ ∪ M̃: O |= A v B ↔M |= A v B

� depleting if ∀A,B with Ã∪B̃ ⊆ Σ∪M̃ with ∅ 6|= A v B → O\M 6|= A v B

� subsumer-complete if ∀A ∈ M̃ and ∀B ∈ Õ: O |= A v B →M |= A v B.

It follows that if M is a self-contained Σ-module, then it covers Σ. Coverage

can be phrased as capturing all the ontology’s knowledge about the seed signature.

Depletingness can be informally phrased as: O \ M knows nothing about the

signature of M.

⊥-modules in particular come with a very important property that we infor-

mally call subsumer-completeness. Subsumer-completess guarantees that, for ev-

ery concept name A ∈ M̃, B is also in the signature of the module if O |= A v B.

The most important limitation of locality-based modules is that they are not min-

imal, that is, they may contain superfluous axioms that to not contribute to pre-

serving entailments over its signature. This means that in practice, locality-based

modules may be larger than strictly necessary.

2.4.1 Types of Modules and Module Extraction

There are various kinds of computationally feasible approaches to modularity for

OWL or its underlying DLs. For a comprehensive survey of module types the

interested reader is referred to Chiara Del Vescovos PhD Thesis [DV13].

One motivation to employ ⊥-modules is their relatively small size. A recently

2.5. CLASSIFICATION-PRESERVING DECOMPOSITIONS 51

developed approach based on rules allows the extraction of modules that are on

average much smaller than locality-based ones [RKGH15]. The authors point out

that the use of ⊥-modules is stricter than necessary in order to ensure that given

a module M ⊆ O, for every name A ∈ M̃, if O |= A v B then M |= O. While

modules are smaller, which could help decreasing classification time, extracting

them is not significantly more efficient. It remains to be seen how this approach

will fare in practice.

Another novel approach for module extraction is AMEX [GKW14], a module

extraction algorithm for expressive acyclic DL ontologies. While the work done

around AMEX modules certainly contributes to the understanding of lower and

upper approximation (for example that the lower approximation often coincides

with the upper one), and is making some ground towards proving that an ap-

proximation algorithm for minimal depleting modules can be almost empirically

optimal, the extraction techniques are too new to be of much use for practical

applications. The approach does result in smaller modules, even compared to

>⊥-modules, but it neither appears to be very efficient (extraction time wise),

nor is it clear how suitable it is for anything beyond acyclic ALCQI.

2.5 Classification-preserving Decompositions

The concept of classification-preserving decomposition is central to this thesis,

and simply defined as follows:

Definition 2.4. A set D = O1∪O2∪ ... ∪On is called a classification-preserving

decomposition of O if each Di

⋃
i CH(Oi) = CH(O). Any such Di is called a

chunk in the decomposition D.

In other words, a decomposition is a set of subsets of O that, if classified

one by one, would result in a set of class hierarchies that could be merged to

equal the class hierarchy derived from O. We call this property classification

completeness. In the course of this thesis, any use of the term decomposition

refers to the concept of classification-preserving decomposition, unless otherwise

indicated. Modular decompositions are special cases of classification-preserving

decompositions, defined as follows:

Definition 2.5. A set D = O1∪O2∪ ... ∪On is called a modular decomposition

of O if each Di is a module of O and
⋃
i CH(Oi) = CH(O).

52 CHAPTER 2. BACKGROUND

In Chapter 7 we will conduct an experiment involving both modular and

non-modular classification preserving decompositions. In order to ensure that

non-modular decompositions are classification complete, they are based on mod-

ularity. Therefore, we call them module-based decompositions. Module-based de-

compositions can be seen as summaries of modular decompositions. In practice,

we might choose to combine sets of (for example heavily intersecting) modules

to chunks, which may or may not be modules. Such summaries preserve classi-

fication completeness because the original modular decomposition (lets say D)

preserved it. Adding axioms to any Di ∈ D (for example through a merge with

other chunks) preserves any atomic subsumption η |= Di because of monotonic-

ity. Since there was at least one module in the original modular decomposition

that preserved the entailment, we have to have at least one chunk that entails it.

It is very important to distinguish our terminology from other incomparable

uses. The most important distinction is between our notion of decomposition and

its use around the Atomic Decomposition. Many of our decompositions are based

on the Atomic Decomposition (AD). However, the AD itself is not a decomposi-

tion in our sense: It is a set of atoms rather than modules, and as such, as we will

see in the next section represents (a potentially large number of) classification

preserving decompositions. The Distributed Description Logic community also

uses somewhat similar terminology. For example, their use of syntactic modu-

larity refers to the need to organise large ontologies in manageable and compact

modules, and offers provisions to control the syntactic interactions between these

modules [BVSH09]. The notion of a signature decomposition [KLPW10] of O is

also a related, but the unions of the chunks resulting from this decomposition are

not necessarily a subset of the whole ontology; the union is merely required to be

logically equivalent to O.

In the following, we will describe two families of modular decompositions. We

will omit technical details, most specifically all proofs and formal definitions and

focus on key properties, rationale, implementations and use cases.

2.5.1 Decompositions Based on the Atomic Decomposi-

tion

The Atomic Decomposition (AD) of an ontology O can be viewed as a succinct

representation of all modules in an ontology [DVPSS11a]. The structure of the

2.5. CLASSIFICATION-PRESERVING DECOMPOSITIONS 53

AD is represented by a dependency graph whose nodes are atoms. An atom is

a maximal disjoint subset of an ontology such that their axioms either appear

always together in modules, or none of them does (for a more formal definition

see [DV13]). The set of atoms is a partitioning of O such that the union of

all atoms correspond to the whole ontology12 and each atom corresponds to a

module. Therefore, as mentioned earlier, the Atomic Decomposition is not itself a

decomposition according to Definition 2.4. Any module represented by an atom

can be simply materialised by computing the union of all axioms in all atoms

directly and indirectly dependent on the atom. Unions of atoms, including their

dependencies, do not necessarily correspond to modules. This is an important

fact to keep in mind during the discussion of their potential for modularity-based

reasoning in the next chapter.

We distinguish between four (overlapping) types of atoms in this thesis:

1. An atom without outgoing edges is called maximal or root atom.

2. An atom without incoming edges is called minimal or leaf atom.

3. An atom with incoming and outgoing edges is called intermediate or branch

atom.

4. An atom with no incoming and no outgoing edges can be referred to as

maximal, root, leaf, minimal, min-max or root-leaf.

We use the same adjectives for describing the corresponding modules. For

example, a maximal module (or root module) refers to the module corresponding

to a maximal atom (or root atom).

We can see an example of the Atomic Decomposition of a known toy-ontology

in Figure 2.4. According to our atom types, atoms 10, 14, 15, 16, 17 and 18 are

root atoms and atom 0 is the only leaf atom. Note that the Atomic Decomposition

partitions the ontology, i.e. no axiom is shared between any two atoms. The

Atomic Decomposition itself does not preserve the relationship between signatures

and the atoms. Because of that, it may be enriched with labels that represent the

Minimal Seed Signature Σ, i.e. the minimal set of of terms such that the module

corresponding to it is exactly represented by the atom and all its dependencies. In

other words, given an atom A and a label Σ for A, the x-mod(Σ,O) would result

exactly in the genuine module module corresponding to A. Labelled Atomic

Decompositions are extensively discussed elsewhere [DV13].

Two kinds of axioms are worthy of further consideration: syntactic tautologies

12With the exception of syntactic tautologies, which do not occur in any atom.

54 CHAPTER 2. BACKGROUND

0

1

2

3

4

5 7

6 89

10

11 12

13

14

15

16

17

18

Figure 2.4: An example for the (⊥) Atomic Decomposition of the Koala ontology,
from [DV13].

2.5. CLASSIFICATION-PRESERVING DECOMPOSITIONS 55

and global axioms. Syntactic tautologies (such as A v >) are not part of any

module because they are always local, regardless of the signature. Therefore, the

set of the axioms in an ontology is a superset of the module of Õ and consequently

all axioms that are mentioned in any given decomposition, which is a fact that is

particularly important when counting axioms as part of an experiment. Global

axioms are axioms that occur in each module, including the module for the empty

seed signature. In the literature, it is (without loss of generality) often assumed

that O contains neither global axioms nor syntactic tautologies [DVPSS11a].

This is not realistic for ontologies on the web: they often contain both. Global

axioms can have particularly important consequences for the shape of the Atomic

Decomposition, the most important being that they generally have only a single

leaf atom. Examples of global axioms are all ABox axioms, and some axioms

involving nominals, for example > v {a} t {b}.

The original idea behind the definition of the Atomic Decomposition is to make

explicit the modular structure of an ontology without having to somehow repre-

sent the set of all its potentially exponentially many modules. Every module that

is represented by an atom is a genuine module, formally defined elsewhere [DV13].

Genuine modules are in essence modules that cannot be decomposed further into

sets of modules. Note that the Atomic Decomposition is defined for all three

popular variants of locality-based modules (⊥,>, ?), and the choice of module

type has a strong effect on the shape of the decomposition. For example, as

>-modules tend to be bigger than ⊥-modules, we usually have fewer modules

in decompositions that are derived from >-decompositions. As described earlier,

decompositions based on ?-modules are not necessarily classification-complete.

Therefore, we focus in this thesis on decompositions based on ⊥-modules.

The Atomic Decomposition was originally proposed as a tool for ontology en-

gineers to “understand its topicality, connectedness, structure, superfluous parts,

or agreement between actual and intended modeling” [DVPSS11a]. Suggested

use cases, discussed extensively in the PhD thesis of Del Vescovo [VKP+13],

were module count, offline module extraction (as a form of pre-computing all

modules), evaluation of modelling pattern extraction methods and ontology com-

prehension. It also quickly became apparent that the modular structure exposed

by the Atomic Decomposition could be used to optimise reasoning, by providing

a tractable means to produce a set of classification-complete modules that in its

entirety entail all the logical consequences of O [TP12a, VKP+13] - the sort of

56 CHAPTER 2. BACKGROUND

rationale that is also underlying our own work.

Several algorithms to extract the Atomic Decomposition have been suggested [DV13,

MRW14, Tsa12]. Despite the tractability of the underlying decision procedure,

current implementations are in a prototypical state, and tend to be very slow

especially with respect to large ontologies - the ones that modular reasoning

promises to help out with in particular. However, work is being done to make

the extraction more efficient. The work by Martin-Recuerda et al. is currently

under Major Revision (Semantic Web Journal) and promises a significant speed-

ups (“staggering speedup of over 1,000 times”) at least for OWL 2 EL ontolo-

gies [MRW15]. The original proposal of the authors algorithms can be found in

their ISWC publication [MRW14], but there are some concerns with respect to

the completeness of the implementation.13 Details of the implementation and the

improved variant of the original decomposition algorithm were described in a work

by Tsarkov [Tsa12]. In this thesis, we use the OWL API tools implementation,

which is the slowest of the existing ones. However, the FaCT++ implementa-

tion [Tsa12] for example does not deal with ontologies involving datatypes, and

the Martin-Recuerda approach was not available at the time, and was also never

evaluated independently from the authors.

2.5.2 The MORe Decomposition

The MORe decomposition14 consists of exactly two modules: the L module and

the remainder module [RGH12]. The approach was designed for use in modu-

lar reasoning. The rationale behind the MORe decomposition is to compute a

large L-module, which can be processed using a hopefully efficient classification

algorithm, so that only the remainder module needs to be classified with a full

fledged OWL 2 DL reasoner.

The decomposition algorithm takes as an input an ontology O, and attempts

to compute a hopefully large signature Σ such that ⊥-mod(Σ,O) is in L. The

algorithm initialises Σ with Õ \ ÕL, i.e. the signature of all the axioms that are

in L, and then gradually reduces it until the module resulting from ⊥-mod(Σ,O)

is in L. Details of the algorithm can be found in the MORe system descrip-

tion [RGH12].

13The reviewers of the aforementioned JWS submission complain that the implementation
(not the algorithm) is incorrect w.r.t the dependency edges.

14Note that the authors of MORe would probably not refer to it as a decomposition.

2.6. SUMMARY 57

The algorithm is not restricted to a particular L. In practice, it was used to

extract an ELK-module, i.e. a module in a language for which the ELK classifica-

tion algorithm is sound, complete and terminating. The ELK reasoner [KKS14]

is known to be very efficient for OWL 2 EL ontologies. The remainder mod-

ule then contains the part of the ontology that involves axioms beyond the ones

processable by ELK. More details about the use of the MORe decomposition for

classification can be found in the following chapter. We are currently not aware

of any alternative implementations.

In contrast to the Atomic Decomposition, the algorithm is not universally

applicable to all OWL 2 DL ontologies. A successful decomposition would be

indicated by being comprised of exactly two non-empty modules. This may not

be true in at least two cases: (1) the input ontology is already in L and (2) the

current implementation does not (yet) cover the full extend of OWL 2 DL. For

example, the last available implementation of the decomposition algorithm in the

MORe reasoner does not deal with nominals and ABoxes, i.e. it will return an

empty Σ for ontologies with nominals/individuals.

2.6 Summary

In this chapter, we have introduced some of the core concepts we make use of in

our work. In particular:

� We have described in detail the reasoning task of classification and con-

trasted two important approaches. We have emphasised that while the

procedures that are underpinning Description Logic reasoning are sound,

complete and terminating, existing implementations may be buggy, often

due to the high complexity of reasoner architecture and intertwining op-

timisations. We also tried to convince the reader that worst case results

may not be indicative of the actual performance of OWL reasoners. In

Chapter 4, we will introduce a framework that will allow us to observe the

performance of OWL classification empirically.

� We have introduced our notion of classification-preserving decompositions

(CPD). CPD’s are sets of subsets of the ontology, which, if all were to be

classified independently, would include the entire set of atomic subsump-

tions entailed by the ontology. In the next chapter, we will describe how

CPD’s are used for modular reasoning.

58 CHAPTER 2. BACKGROUND

� We have motivated our choice of syntactic locality-based ⊥-modules for

classification-preserving decompositions. Modules based on syntactic local-

ity are cheap to extract. ⊥-modules in particular are subsumer-preserving

and can therefore be used to construct CPD’s.

Chapter 3

Reasoning with Locality-based Mod-

ules in Description Logics

In this chapter we will discuss the different ways in which modules are used

for reasoning, describe existing implementations in detail, and gather arguments

for and against using modules and classification-preserving decompositions for

optimising Description Logic reasoning. The main goals of this chapter are:

� Introducing the reader to the applications that make use of modules in the

context of reasoning.

� Conveying a clear understanding of the potential benefits as well as threats

and limitations of employing modules and module-based decompositions to

improve reasoning performance.

� Isolating the important research questions that need to be answered.

3.1 Terminology and Models

In Table 3.1, we introduce some of the terminology relevant to this chapter that

we will continue to use throughout this thesis.

3.1.1 Reasoner with Modularity-sensitive Calculus vs Mod-

ular Meta-reasoning Framework

Before we introduce our model of modular reasoning, we want to distinguish two

views on the architecture of modular reasoning frameworks: The reasoner with a

modularity-sensitive calculus and the modular meta-reasoning framework.

A modular meta-reasoning framework introduces a new layer on top of the

typical OWL reasoner architecture. This layer deals with the decomposition of

the ontology into a set of chunks (modules or sets of modules), and implements a

60 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

Table 3.1: Important terms used throughout the thesis (continuation of Ta-
ble 2.1).

Term Denoted by Definition
Module M Syntactic locality-based ⊥-module of on-

tology O with M⊆ O.
Subsumption
test for
A v B

ST (A,B,O) A subsumption test between A ad B as
triggered as part of a traversal based clas-
sification procedure (such as Enhanced
Traversal / Tableau) of O.

Subsumption
test mea-
surement for
A v B

ST (A,B,O,R, i) A subsumption test measurement between
A ad B by reasoner R in O, with i denot-
ing the run.

Classification
time

CT (O,R) The time it takes to classify an ontology
O by a reasoner R.

Ontology lan-
guage

L(O) The logical language in which an ontology
is expressed, for example EL or OWL 2
EL.

Justification J α
O The set of all justifications of an entail-

ment α with respect to ontology O, i.e. a
minimal subset of O that entails α.

Monolithic
reasoner

none A reasoner that performs classification on
the whole ontology rather than on its
classification-preserving decomposition.

Modular rea-
soner

none A reasoner that performs reasoning on a
set of modules in the ontology.

Decomposition-
based rea-
soner

none A reasoner that performs classification on
a classification-preserving decomposition
of the ontology.

3.1. TERMINOLOGY AND MODELS 61

strategy to traverse those chunks one by one. Each chunk is processed, i.e. clas-

sified, independently by dispatching it to a delegate reasoner (a standard OWL

reasoner) and merging the results. The key here is that the delegate reasoners

are treated like blackboxes, i.e. they do not communicate results with each other.

The reasoner with a modularity-sensitive calculus is a monolithic reasoner

that implements its own classification procedure, i.e. the modular structure of

the ontology will be exploited directly to prune the subsumption test (traver-

sal) space and the search space of the satisfiability checking. For example, a

modularity-sensitive satisfiability engine will only ever consider those GCI’s1 that

are really modularly relevant (currently GCI rules are often applied even when

unnecessary). In order to be fully modularity-sensitive, reasoner developers need

to integrate the modular structure of the ontology tightly with the rest of the

classification process, e.g. on the level of Enhanced Traversal (avoid tests based

on module properties, as discussed later in Section 3.4.2) or the satisfiability en-

gine (modularity-sensitive application of GCI rules, etc.). Chainsaw, for example,

currently implements a two level traversal: The outer loop iterates over the atoms

of the Atomic Decomposition, and for each module corresponding to an atom,

the Enhanced Traversal is triggered to classify all concepts in the label of that

atom (explained in more detail in Section 3.3.2). Subfigure 3.1a shows a possible

interaction between Enhanced Traversal and Atomic Decomposition with respect

to a potential subsumption test between C and D. This interaction can have

many forms: for example, it could be checked whether any module signature

contains both class names. If this is not the case, the test can be avoided. If a

subsumption test cannot be avoided, modularity could ensure that it is triggered

within the bounds of a (ideally as small as possible) module, thereby, as we will

see later in Section 3.4.1, reducing the amount of irrelevant axioms to consider

and potentially making the test faster.

In this thesis, we are primarily concerned with modular meta-reasoning frame-

works. Subfigure 3.1b shows a classification-preserving decomposition of an on-

tology (based on the Atomic Decomposition) into two modules. The modular

meta-reasoning framework would make a decision to which of a number of dele-

gate reasonersM1 would be dispatched, and fully classify it. Then it would move

on toM2. As a final step, it would query the classified modules to construct the

1A GCI or General Concept Inclusion is an axiom of the form C v D were C and D are
(potentially complex) concepts.

62 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

⊤

A

B

C

⊥

D

M̃ = C,D,B

Enhanced Traversal Modular Structure of O
(a) Reasoner with a modularity-sensitive calculus

M1

M2

(b) Modular meta-reasoning
framework

Figure 3.1: Types of modular reasoners. The modular structure of O is in both
cases represented as its Atomic Decomposition, i.e. the circles represent atoms
and the edges top-down dependencies.

full class hierarchy. This approach does not require any commmunication between

delegate reasoners. An important consequence of the absence of communication

is the possibility of redundancy caused by overlapping modules. For example,

consider again Subfigure 3.1b: Reasoning with respect to the atom shared be-

tween M1 and M2 would have to be done twice (both when classifying M1 and

M2). If this atom would correspond to 95% of the parent ontology of M1 and

M2, this redundancy could cause an (almost) two-fold increase in classification

time.

However, it does make sense to contemplate modular meta-reasoning frame-

works that are at least to some extent glassbox: If a delegate reasoner processing

a module would be aware of what work has been done before, much of the neg-

ative effect caused by the redundancy could be mitigated. In a setting involving

Enhaced Traversal (or similar) the vast majority of subsumption tests turn out

to be negative. This raises the open question of how non-subsumptions should be

represented in order to be effectively communicated. A HermiT-like shared possi-

ble subsumption relation might be a possibility [GHM+14], requiring however an

extension to the current monolithic reasoner implementations. In Chapter 7 of

this thesis, we take the pure blackbox model as a baseline and simulate alternative

views, such as a simple glassbox model.

3.2. MODEL OF MODULAR CLASSIFICATION 63

3.2 Model of Modular Classification

While some of our results in this thesis are applicable to modularity-sensitive

calculi, our attention lies on modular meta-reasoning frameworks. In the fol-

lowing, we will describe our model of modular classification as part of such a

meta-reasoning framework. A modular reasoner in this sense has three core com-

ponents: a classification-preserving decomposition, a set of delegate reasoners to

pick from to process chunks of that decomposition, and a strategy to determine

which chunks are assigned to which reasoner and in which order they should be

processed. The core components of our model of modular classification are listed

in Table 3.2.

Table 3.2: Core concepts around modular reasoning.

Term Denoted by Definition
Classification-
preserving
decomposition

DO See Section 2.5.

Delegate Rea-
soner

R The reasoner that is employed by the modu-
lar reasoning approach to perform reasoning
on a particular chunk of DO.

Delegation (Pro-
cess)

Del(O,R) The process of assigning a chunk to delegate
reasoner.

Decomposition
(Process)

Dec(O) The process of decomposition defines how
to compute a particular (classification-
preserving) decomposition from an ontology
O.

Classification
Strategy

none Procedure specifying:
� Division of decomposition into process-

able chunks.
� Rules for delegation decisions.
� Order of the classification of the

chunks.

The process of decomposition-based classification is described in the following,

presented as a simple enumeration rather than pseudocode because implementa-

tions can differ significantly:

Procedure 3.1. Decomposition-based classification of an ontology O
1. Preprocessing involving:

64 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

� Modular Decomposition: Decomposing O into a set of modules

� Initial Consistency Check: Making sure that O is consistent, either by

checking the consistency of O directly or the consistency of one of its

modules.

� Chunking (optional): Summarizing a given modular decomposition into

another classification-preserving decomposition.

2. Ordering: Deciding an order in which the chunks are processed.

3. Delegation: Dispatching chunks in the decomposition to delegate reasoners.

4. Classification: Classifying the chunks iteratively as specified by their order

(and delegation).

5. Result Merging: Producing a unified class hierarchy.

Figure 3.2 exemplifies the key aspects of the process. The reasoner first de-

composes the ontology O into a set of potentially overlapping and potentially in-

terrelated modules (DEC), before it conducts the initial consistency check (CC).

Then it (optionally) summarises the modular decomposition into chunks, either

resulting again in a modular decomposition, or in a modularity-based decomposi-

tion. From the set of chunks, the reasoner computes an ordered list of delegations,

i.e. a pair of a chunk and a particular delegate reasoner that the chunk should be

dispatched to. In the modular classification stage (MCL), the reasoner iterates

through the (ordered) chunks and dispatches them to their assigned delegates

(DP). After the delegate classified the chunk (in the fully monolithic fashion,

stage labelled MC), the results are added to the class graph (SYNC). During

post-processing (POP), the class graph is completed. The delegate reasoner goes

through all the usual stages of a monolithic reasoner, which will be described in

more detail in Section 4.1.

3.3 Applications of Modular Reasoning for OWL

Ontologies

While both modularity and reasoning by themselves have been studied exten-

sively, exploiting modules for optimising reasoning in general and classification

in particular is a relatively recent development. To date, only a few full fledged

OWL reasoners exploit modules for optimising any part of the classification pro-

cess [MLH+15]. Two current examples are MORe [RGH12] and the experimental

3.3. APPLICATIONS 65

Figure 3.2: Black-box model of decomposition-based classification. Every del-
egate reasoner in the module classification stage goes through all five stages of
the monolithic reasoning model when classifying its assigned module; we are as-
suming a traversal/tableau style delegate reasoner (consequence-based reasoners
follow another stage model).

Chainsaw [TP12a], a prototype for exploiting the Atomic Decomposition for var-

ious optimisations for classification. Although both reasoners are designed as

meta-reasoning frameworks, current implementations are tied to particular dele-

gate reasoners (FaCT++ in the case of Chainsaw and HermiT, Pellet, JFact and

ElK in the case of MORe). Another reasoning approach based on identifying hot

spots, sets of axioms that make classification particularly hard, uses modularity

to classify concepts in the signature of the hot spot separately from the rest of

the ontology [GPS12]. After we discuss the use of modules to manage the pro-

cess of incremental reasoning, we will briefly discuss a novel approach to optimise

consistency checking using locality-based modules.

3.3.1 MORe

Big/hard ontologies often have large subsets expressed in an “easy” language,

say L, for which we have an efficient L-reasoner (e.g. ELK for OWL 2 EL). The

idea of MORe is to compute a (hopefully large) signature ΣL ⊆ Õ that can be

used to extract a module M from the ontology O that can be fully classified by

an efficient L-reasoner, and only classify the, hopefully small, remainder module

with a full fledged OWL 2 reasoner, see Section 2.5.2 for a discussion of the

MORe decomposition and Section 2.3.2 for a discussion on efficient classification

algorithms for the OWL 2 profiles. We can refer back to Subfigure 3.1b for

illustration. In the MORe setting, M1 could be the L-module, to be processed

66 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

by ELK, and M2 the (possibly overlapping) remainder module, processed by

HermiT. The core problem addressed by MORe is to make sure that ΣL is as

large as possible, so that ideally the L-reasoner does most of the hard work. The

algorithm works as follows:

Algorithm 3.3.1: MORe classifyOntology(O)

Data: OWL 2 Ontology O
Result: ClassHierarchy H
ΣL := L-signature(O);
ML := ⊥-mod(ΣL,O);

ML := ⊥-mod(Õ \ ΣL,O);
HL := classification(ML);
H := L-classification(ML ∪HL);

First, the L-Signature is computed. In a nutshell, this is done by gradually

shrinking Õ to a signature Σ such that ML := ⊥-mod(Σ,O) is in L. After

extracting the remainder module ML from the complement of the L-signature

ΣL (Õ \ ΣL), it is classified by a regular OWL reasoner. In order to save the

L-reasoner some work, the hierarchy as determined by the classification of the re-

mainder moduleHL is merged with the L-moduleML. Therefore, inferred atomic

subsumptions over ΣL ∩ ΣL do not have to be derived again by the L-reasoner.

This set of axioms is classified, and the resulting class hierarchy returned.

In principle, MORe is a modular meta-reasoning framework that allows for

arbitrary delegates for the L- and remainder modules. The latest implemented

version of MORe2 (0.1.6 at the time of writing) however is tied to particular

implementations. L is fixed to be the fragment of OWL 2 EL that is process-

able by the ELK reasoner [KKS14]. The user can choose between JFact, Pellet

and HermiT as delegate reasoners for the remainder module. However, as long

as there exists a decision procedure for determining whether an axiom is in L,

MORe should be easily extendible to allow fully configurable delegate reasoners

and MORe-decompositions for any (supported) L. Another caveat of the MORe

algorithm is the effect of some kinds of TBox axioms with nominals that cause

empty ΣL. Axioms of the type ∀R.A v {a} and ∀R.A v ∃S.{a} (and similar)

are never ⊥-local (with respect to any seed signature Σ). As such axioms might

not be in L (but would be part ofML), the OWL reasoner (despite some axioms

2https://code.google.com/p/more-reasoner/downloads/list

https://code.google.com/p/more-reasoner/downloads/list

3.3. APPLICATIONS 67

with nominals being supported by ELK) has to perform the classification of the

whole O.

3.3.2 Chainsaw

The idea of Chainsaw is that, for every inference query (subsumption test, in-

stance query), a module M is created that is small but provides all “informa-

tion” that is required to answer the query correctly (no loss of relevant entail-

ments) [TP12a, TP12b]. Chainsaw exploits the (Labelled) Atomic Decomposition

which it views as a compact representation of all the (locality-based) modules of

O, with atoms labelled with the seed signature as determined by the labelling

procedure. The classification algorithms traverses the atoms in the Atomic De-

composition in a depth first search fashion, and classifies class names in their

labels one-by-one. In detail, the Chainsaw classification algorithm works as fol-

lows (Algorithm 3.3.2):

Algorithm 3.3.2: Chainsaw classifyOntology(O)

Data: OWL 2 Ontology O
Result: ClassHierarchy H
H := {};
AD := ⊥-atomic-decomposition(O);
AD := labelAD(AD);
RA := root-atoms(AD);
for Atom in RA do

Reasoner = createDelegateReasoner(ad-module(Atom));
Hi := traversal(Atom,Reasoner);
H := H ∪Hi;

end

The algorithm starts with an empty class hierarchy H. First, the ⊥-Atomic

Decomposition AD is computed. Labelling works as follows: we initialise each

atom label with the signature of its corresponding module. Then we traverse

the AD bottom up, breadth-first, removing from every atom label all entities

that are mentioned in any atom dependent on it. Next, the set of root atoms (see

Section 2.5.1, RA) is extracted and traversed one by one. Using depth-first search

on the AD dependency graph, the algorithms iterates through the class names in

the label of each atom, determining their direct superclasses by classifying them

in the module corresponding to the atom, and merges the results with H. When

68 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

Algorithm 3.3.3: Chainsaw: traversal(Atom,Reasoner)

Data: Atom,Reasoner
Result: ClassHierarchy H
H := {};
for DependentAtom in Atom.getDirectDependents() do
Hi := traversal(DependentAtom,Reasoner);
H := H ∪Hi;

end
Hi := classifyAtom(Atom,Reasoner);
H := H ∪Hi;

Algorithm 3.3.4: Chainsaw: classifyAtom(Reasoner,Atom)

Data: Atom,Reasoner
Result: ClassHierarchy H
H := {} ;
for ClassName in Atom.Label() do
Hi := Reasoner.getDirectSuperClasses(ClassName);
H := H ∪Hi;

end

all atoms are processed, the classification is complete.

While Chainsaw is designed to be a meta-reasoning framework, it seems that

a tighter integration with a traversal algorithm could have a significantly posi-

tive effect on performance. The current implementation is likely to suffer from

a large amount of redundancy, for example due to the fact that (1) many of

the standard optimisations such as pseudo-model merging or partial expansion

trees are currently not shared across delegate reasoners, (2) independent atoms

can have intersecting labels, i.e. a class name can occur in several independent

atoms, which can cause redundant subsumption testing and (3), perhaps most

importantly, current implementations of OWL reasoners suitable for being del-

egates for Chainsaw perform full classification when querying for a particular

subsumption. Therefore, the traversal through the labels is essentially ineffectual

in terms of avoidance. As an example, consider the decomposition depicted in

Subfigure 3.1b. Because bothM1 andM2 share an atom, they also share signa-

ture (M̃1∩M̃2 is non-empty) and because both are fully classified, subsumption

tests are duplicated between all class names A,B ∈ {M̃1 ∩ M̃2}.
Another shortcoming of the current implementation is that delegate reasoners

3.3. APPLICATIONS 69

are created only for root-atoms. This reduces the potential of the underlying mod-

ularity because the search space for any given subsumption is no longer minimal,

i.e. there are a potentially significantly larger number of subsumptions to check

(traversal space) and axioms to scan (search space during tableau construction).

The reason for that lies again in the fact that current delegate reasoners perform

full classification. Given two atoms a1 and a2 with a1 being dependent on a2,

we would simply redo all the a2 work when classifying a1. Classifying a1 and a2

separately therefore makes no sense (as long as the delegate reasoners perform

full classification).

The choice of traversing the Atomic Decomposition by depth-first search is

just one of a number of possible ways to exploit it (the AD) for modular reasoning.

For example, we may choose to classify the connected components one-by-one,

see Section 7.2.3 instead. Another straight forward extension to the Chainsaw

traversal suggested by the authors (email communication) is to further avoid tests

by exploiting the property of entity-label uniqueness : if a concept name A occurs

in more than one label of a root module, there can be no B ∈ Õ for which

O |= A v B, as follows from Proposition 1 in Tsarkov et. al [TP12a]. Specialised

traversal algorithms such as this one are not part of the investigation presented

in this thesis.

The current implementation is also not truly configurable with arbitrary del-

egate reasoners: There are integrations with FaCT++ and JFact available, but

both reasoners are hard-wired into the code. Extending the current version (1.0 at

time of writing) of Chainsaw to support configurable delegate reasoners, however,

is fairly straight forward. As long as the delegate reasoner implements a routine

to obtain direct superclasses of a concept, it can, at least in principle, be used as

part of Chainsaw. Note that (again), reasoners such as HermiT, FaCT++, JFact

and Pellet fully classify the ontology, i.e. all named concepts in the ontology,

instead of merely attempting to query for the direct superclasses of a concept at

hand when the getDirectSuperclasses(A) method is triggered. This is often

more efficient, especially if the reasoner has to answer more than one such query.

In order to mitigate the redundancy, the Atomic Decomposition-based traversal

needs to be integrated more tightly with the delegate reasoners internal traversal

and optimisations.

70 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

3.3.3 Hotspot Reasoning

Another branch of research exploits modules to extract so called Hot Spots from

ontologies [GPS12]. Hot Spots are fragments of ontologies (typically between

0.03% and 9% of the original size) whose removal have a significant effect on the

reasoning time (80% to 99% boost in classification time CT (O,R) once removed).

The intuition behind the Hot Spot extraction is straight forward: We measure the

execution time of the individual SAT-tests for all concepts A ∈ Õ, order them

in descending order and take the hardest 1000 concepts names as candidates.

We then, candidate by candidate, extract their usage, i.e. axioms in which the

candidate concept occurs, and extract a ?-moduleM from O for the set of entities

with which the candidate co-occurs, i.e. the signature of the usage. To verifyM
as a Hot Spot, it is made sure that CT (O \M,R) � CT (O,R) (significantly

less), see Algorithm 3.3.5 [GPS12].

Algorithm 3.3.5: Hot spots: extractHotSpots(Ontology)

Data: Ontology O
Result: Set S of hot spots in O
S := {};
Candidates := {};
Times := {};
MAX := 1000;

for C in ÕC do
Times := Times ∪ < C, SATtime(C) >;

end
Times := sortByTimeDescending(Times);
Candidates := sublist(0,MAX,Times).ClassNames;
for C in Candidates do

U := usage(C);

M := ?-mod(Ũ ,O);
if CT(O \M,R) � CT(O,R) then

S := S ∪ {M};
end

end

3.3. APPLICATIONS 71

While this novel approach is a useful tool for ontology engineers to enable per-

formance tuning, in its current state it is only suitable for approximate reasoning—

the ?-module M does not give any guarantees with respect to finding all sub-

sumers and subsumees,3 and there are no guarantees at all for O\M thus classifi-

cation will in many cases be incomplete. There are however interesting speed-ups

in reasoning time possible. Furthermore this type of investigation can be used

to increase our understanding of reasoning performance as it allows us to study

relatively small subsets that make reasoning harder.

3.3.4 Module-based Incremental Reasoning

A very typical situation in the process of ontology engineering is that the engi-

neer adds, removes or changes an axiom, and wants to re-classify the ontology

to inspect the effect of the changes, for example whether an inconsistency was

introduced or in what way the inferred class hierarchy changed as a consequence

of a modelling choice. For complex ontologies, in the sense that they are hard to

classify, re-classification can can be a bottleneck in the ontology engineering pro-

cess. The general intuition behind incremental reasoning is that applying small

changes to the ontology usually does not require a complete re-classification. In

fact, the subsumption relations affected by such a change are often quite small.

In order to exploit this intuition, an approach is needed to keep track of which

subsumptions could be affected by the change. Given an ontology O, a set of ad-

ditions AX+, a set of removals AX− andMA being the ⊥-locality-based module

for the seed signature Σ = {A} in O, the algorithm goes through the following

phases, as described in the work by Grau et al. [GHWK07]:

Procedure 3.2. Incremental Reasoning

1. Apply changes: Generate the modified ontology Om := (O \ AX−) ∪ AX+

2. Process new symbols: Assign to all class names in AX+ not in O a “dummy”

module for the empty signature (pretending we do not know anything about

the class yet).

3. Identify affected modules: We loop through all class names A ∈ Õm (in-

cluding >). For any α ∈ AX−, if α is non-local with respect to M̃A, A

is flagged as negatively affected. For any α ∈ AX+, if α is non-local with

respect to M̃A, A is flagged as positively affected.

3Given a ?-moduleM and its parent ontology O, classify(O\M)∪classify(M) 6=classify(O).

72 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

4. For each class name in A ∈ Om (including >):

(a) Computing new modules: If A has been flagged as affected in the pre-

vious step, its module MA is extracted again.

(b) Computing new subsumptions: For each class name in B ∈ Om (in-

cluding ⊥), if A was flagged as negatively affected and O |= A v B

(original ontology) or if A was flagged as positively affected and O 6|=
A v B, then fire the subsumption test for MA |= A v B (else, main-

tain the original result from O). The key here is that the subsumption

test is triggered with respect to the module, thereby potentially reducing

the number of irrelevant axioms to search through significantly.

The underlying proposition providing the core property for module-based in-

cremental reasoning is as follows:

Proposition 3.3.1 (Cuenca Grau et al., [GHWK07], Proposition 3). Let O1, O2

be ontologies, α an axiom, and MO1
α , MO2

α respectively modules for α in O1 and

O2. Then:

1. If O1 |= α and MO1
α ⊆ O2, then O2 |= α

2. If O1 6|= α and MO2
α ⊆ O1, then O2 6|= α

In other words, if an ontology entails α, and the module for α in that ontology

is a subset of another ontology, that other ontology has to entail α as well (similar

for non-entailment).

Despite the importance of incremental reasoning approaches for managing

complex ontologies, our survey of 33 current, stand-alone OWL reasoners (see

Section 4.7.1) has revealed only 3 systems whose developers claim to use modules

for incremental reasoning [MLH+15]. However, modules are not the only way

to achieve incremental reasoning, and 4 other developers have reported to be

actively working on integrating incremental reasoning support into their OWL

reasoners. For example, Pellet employs tableau-tracing to keep track of axioms

used for inferred ABox entailments [SPG+07] and ELK uses an approach that does

not require any bookkeeping (such as maintaining a modular structure) [KK13].

FaCT++ was recently equipped with facilities for incremental reasoning [Tsa14]

based on an updated version of the approach by Grau et al. [GHWK07].

3.3. APPLICATIONS 73

3.3.5 Optimising Consistency Checking Using Modules

Despite being comparatively slow when classifying OWL ontologies compared to

other OWL reasoners, Chainsaw regularly outperforms its competition in terms

of consistency checking. In the ORE reasoner competition [PMG+15] it took

second (2014) and third (2015) place in that discipline. The rationale behind

a module-based consistency check lies in the fact that the explanation for an

inconsistency has to be present in every module in O—even the module of an

empty seed signature. The procedure works as follows: First, we extract the

module for the empty signature M∅. If it is empty, we know the ontology is

consistent, and we are done. This works because of the following:

Lemma 3.3.2. O |= > v ⊥ ⇐⇒ ∀M ⊆ O :M |= > v ⊥
To prove that this holds, we first show the ⇐-direction.

Claim: O |= > v ⊥ ⇐ ∀M ⊆ O :M |= > v ⊥. In other words, if a module

is inconsistent, then its parent ontology has to be inconsistent. Since M ⊂ O,

by monotonicity it follows that O |= > v ⊥.

Now we show the ⇒-Direction.

Claim: O |= > v ⊥ ⇒ ∀M ⊆ O : M |= > v ⊥. In other words, if the

ontology is inconsistent, each of its modules also has to be inconsistent. Since

>,⊥ ∈ M̃ by definition it follows that ∀M ⊆ O :M |= > v ⊥.

If theM∅ turns out to be non-empty, we perform an actual consistency check

on the module. Since this module is hopefully small, the test should be faster

than the one executed over the whole ontology. Note that some axioms are al-

ways non-local, most importantly ABox axioms and some of the ones involving

nominals. As ABox assertions can pull in quite a large signature into the module

for the empty signature (because ABox axioms are always non-local, and there-

fore part of every module), the method is perhaps less suitable for ontologies

with ABoxes. We have conducted some preliminary evaluation for this approach,

showing significant average speed-ups over the standard consistency check. Since

any optimisation that is targeted purely at speeding up consistency checking may

be of only limited use in practice, we did not include these results in this thesis.

3.3.6 Other Related Approaches

One related approach in First Order Logic is partition-based logical reasoning for

first-order and propositional theories by Amir et al.[AM05]. This approach follows

74 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

a similar intuition as the decomposition-based reasoning we are concerned with.

Similar to the Atomic Decomposition, their notion of a decomposition is that of

a partition (i.e., no axiom appears more than once across the decomposition).

The nodes in the decomposition are also sets of axioms, connected however by

labelled edges that make explicit which elements in the signature are shared

between the two connected nodes. Most of the approach is concerned with how

messages are passed between the partitions. It is also motivated similarly to

decomposition-based reasoning in our sense—by the question of how to reason

effectively with multiple overlapping knowledge bases and generally of how to

make reasoning (either locally or in a distributed way) over a set of axioms more

efficient by using a partitioning. Similar to modular meta-reasoning frameworks,

the authors discuss the possibility of integrating different reasoning procedures for

each partition. An interesting side discussion is concerned with quality criteria for

decompositions, for example related to the size of partition labels, the number of

them and the size of their intersections—something that would be an interesting

future work also with respect to the Atomic Decomposition.

The idea of partitioning ontologies in the way Amir et al. [AM05] proposed for

First Order Logic has been (recently) applied successfully for ontologies with large

ABoxes and tested for its utility to enable parallel reasoning [PGSH14]. While

the approach claims to be sound and complete with respect to query answering,

it is restricted to DL-Lite ontologies, and focuses on ABoxes.

An early mention of decomposition-based reasoning in Description Logics can

be found in the work of Pham et al. [PLTS08] introducing the “overlap decompos-

ing” technique. The work is based on Distributed Description Logics, defining

mappings between names that co-occur between chunks in the decomposition.

The authors saw the decomposition as a way to “minimize the execution time

and storage space requirements”. In another work, the same authors explore

what they call good decompositions, as being efficient to reason over [PLTS07].

The algorithms used however were not based on modularity in our sense and the

approach, based on the citation count, does not seem to have created any lasting

interest.

In order to facilitate parallel reasoning for OWL ontologies, Wu et al. proposed

a merge-classification algorithm for parallelising TBox classification [WH14], based

on a divide and conquer strategy and a heuristic partitioning scheme to split the

class graph of the ontology apart. The algorithm was also experimentally shown

3.4. AN ANALYTIC ARGUMENT FOR MODULAR REASONING 75

to help avoid subsumption tests (at least over standard Enhanced Traversal) by

providing improved exploitations of known subsumptions. However, the approach

seems to be degrading performance quite often, and the principles by which it

improves performance are not yet well understood.

There are other related approaches, for example the work of the Distributed

Description Logic community, which is aimed at enabling reasoning between

multiple ontologies connected by directional semantic mappings [Hom07], and

Package-based Description Logics [BVSH09], a modular Description Logic lan-

guage, but they are not directly applicable to monolithic reasoning and are not

concerned with modules based on conservative extensions such as the ones we are

using (Section 2.4). Examples of reasoners implemented by these communities

are DRAGO [ST05], and DRAOn [DLZC13].

3.4 An Analytic Argument for Modular Rea-

soning

It is known that random subsets of an ontology O can be pathological, i.e. harder

to classify than the whole ontology O [GPS12]. One obvious example for this is

a missing disjointness axiom high up the hierarchy between two concepts A and

B (in the subset) that makes testing the mutual subsumption of all children of A

and B obsolete. Given the existence of such pathologically hard subsets, it is not

immediate that module-based reasoning is going to be a straightforward, much

less useful, optimisation. In this section we give an analytical argument for the

use of modules in classification. As stated in the introduction, the overarching

rationale for exploiting the modular structure of an ontology O for reasoning lies

in its potential to improve reasoning performance by the following intuitions:

1. One or more modules in the decomposition can be processed by a delegate

reasoner that is more efficient than the one that would be required to

process the whole (Section 3.4.3).

2. The traversal space for subsumption tests shrinks significantly (Section 3.4.2).

3. Subsumption testing gets easier because there are fewer (irrelevant) axioms

to sort through (Section 3.4.1).

We will discuss all three aspects in more depth in the following. However,

these are not the only potential gains from modularity. Another example is a not

yet well studied potential for parallelism. We will sketch the idea later in this

76 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

section.

3.4.1 Reducing Test Hardness

The time of a task to finish is the difference of a timestamp recorded just after the

task terminates with the timestamp taken just before the task started, formally

defined as follows:

Definition 3.1. Given a task X, ϕ a function to obtain a timestamp, ϕ(S)

the timestamp taken when the task started and ϕ(F) the timestamp taken when

the task finished, we call the time T (X) the difference between ϕ(F) and ϕ(S)

(ϕ(F)− ϕ(S)).

If it is clear from the context, we often omit the T () function symbol when

talking about the time it takes to execute a particular task (such as classification

or subsumption test time). Note that this notion of time does not say anything

about how the time was spent, in particular does it not reflect anything like

memory consumption or concurrency. It is a purely empirical notion that just

says: given some way of obtaining a timestamp (that must be specified, as we

will see in the following chapter), how much time elapsed between the start and

the end of the process.

Before we define subsumption test hardness in particular, we informally define

the notion of experiment run as a single execution of a program (for example a

reasoning task of R over O) on a defined experiment machine (typically a server

node or desktop computer). We can now define subsumption test hardness in

terms of an aggregation function4 as follows:

Definition 3.2. Given an ontology O, a reasoner R, two concept names A and

B, an experiment machine ε, an experiment run i, we call individual subsumption

test hardness the time ST (A,B,O,R, ε, i) it takes R to decide whether O |= A v
B on ε in i. Given a set of experiment runs I and an aggregation function ϕ,

we call subsumption test hardness the time ϕ({{ST (A,B,O,R, ε, i) | i ∈ I}})
aggregated across I by aggregation function ϕ.

In other words, the hardness of a subsumption test between the concept names

A and B is the time it takes to compute the subsumption in the context of

an ontology O, as computed by a reasoner R, on an experiment machine ε,

4An aggregation function is typically one of mean, median, maximum or minimum.

3.4. AN ANALYTIC ARGUMENT FOR MODULAR REASONING 77

aggregated across different runs by the aggregation function ϕ. For brevity, we

always omit ε and ϕ, because they should be either inferable from the context

(experimental design description) or are irrelevant for the argument at hand; we

also sometimes omit R, if it is clearly inferable from the context (or irrelevant).

Irrelevant in this context means that the argument should hold for any fixed ε or

ϕ (or R).

Given a subsumption test ST (A,B,O), it should be the case that, for every

two modules M1 ⊂ M2 ⊆ O with A,B ∈ M̃1, the hardness of ST (A,B,O)

should be (approximately) the same as ST (A,B,Mi), if we ignore the overhead

involved in determining (ir)relevant axioms.5

The reason for this are the properties of locality-based modules: not only is

every justification for an entailment part of every module for the signature of that

entailment, but any module M with Msub ⊂ M ⊆ O is a model-conservative

extension of Msub. As a consequence, the space of possible models for M is

more complex than that for Msub in two ways: (1) since every model for M
must contain a model for Msub, those models are larger than their embedded

counterparts and (2) since models from Msub could potentially be extended in

multiple ways to models for M, i.e., there is a 1-to-many relationship between

models ofMsub and those ofM, the number of models forM is larger.6 Figure 3.3

illustrates how, for a subsumption test ST (A,B,O) between concepts A and B,

model sizes might differ across modules. Thus, the task of finding a model or

verifying that there are no models is, in principle, at least as difficult forM than

for Msub due to the larger space. An immediate consequence of the relationship

between the models is that it cannot be the case that Msub is consistent, while

M is not (i.e. M has no models).

Let us consider the case of a subsumption where Msub |= A v B (A,B ∈
M̃sub, A u ¬B is not satisfiable w.r.t. Msub). We call J AvB

M the set of all

justifications for A v B in M. Module properties ensure that J AvB
Msub

= J AvB
M ,

hence for all Ji ⊆M, if Ji is a justification for A v B over M then Ji ⊆Msub,

see above. Since all justifications are available in both modules, reasoning should

not be harder in Msub: there can be no easier reason for A v B in M than in

Msub.

Let us now consider the case for a non-subsumption where Msub 6|= A v B

5Note that O (minus tautologies) is a module of itself.
6While normally adding non-redundant axioms shrinks the number of models of a theory, in

this case we are also expanding the signature.

78 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

ST A⊑B

b
b b

b
b

b
b

b

b
IA⊑B
M2

IA⊑B
M1

IA⊑B
M3

Figure 3.3: Example illustrating the different sizes of possible pseudo models
when determining the satisfiability of A u ¬B. IAvBMi

is the model created for a
particular module Mi. Dots represent nodes in a pseudo model (instances) and
the connecting lines the respective edges. Labels omitted for brevity.

(A,B ∈ M̃sub, A u ¬B is satisfiable w.r.t. Msub). We call a model I of M with

(A u ¬B)I 6= ∅ a counter-model of M and A v B. Let I |= Msub with e ∈
(Au¬B)I a counter-model for the subsumption inMsub. From the considerations

above we have that counter-models for A v B overM may not be less numerous

or smaller than those over Msub. In other words, every counter-model in M has

a smaller or equal-sized counter-model in Msub. If we consider the variants of

locality-based modules, this consequence may be slightly more restricted. For

example, consider the following example ontology Oexp:

Example 3.1. Oexp:
α1 : A tX1 v X2

α2 : X3 v A tX4

α3 : A v ∃R.>

The >-module of Σsub = {X3, X4, A} is just Msub = {α2}. A counter-model

for A v ⊥ would merely consist of a single individual which is an instance of A. If

we tested the same entailment with respect toOexp, we would at the very least add

a non-empty interpretation of R, so the counter-model for A v ⊥ in Oexp is bigger

than in Msub. The same does not hold for ⊥-modules. Given a module M and

its parent ontology O and the terms outside the module Σx = Õ \M̃, then every

α ∈ O \M “is” a tautology when terms in Σx are replaced with ⊥ (⊥-locality).

From that follows, if I is a model ofM, the “empty” extension of I to terms in Σx

(I ′) is a model of O. However, building a tableau differs from the abstract notion

of models. Highly optimised reasoners such as FaCT++ that are not aware of

modularity sometimes grow models beyond the size strictly necessary. This can

happen for example when dealing with general concept inclusions, which in turn

depends on the many possible ways absorption is applied.

3.4. AN ANALYTIC ARGUMENT FOR MODULAR REASONING 79

Note that the analytical argument presented in this section applies to tab-

leau and hyper-tableau based classification algorithms and ignores the fact that

many modern reasoners are hybrids that integrate multiple reasoning procedures

based on different calculi7 That means that axioms irrelevant for a particular

subsumption to hold can make a difference in practice. For example, the removal

of an inverse role that is irrelevant for determining the subsumption relation of

two concepts enables the reasoner to resort to a cheaper reasoning procedure,

therefore making the subsumption test potentially easier. Furthermore the no-

easier-justification argument is rather theoretical: In practice, stochastic effects

(both caused by algorithmic non-determinism and implementational aspects) can

lead the algorithm into a harder space even when classifiying the sub-module.

Side Note: Hardness of Negative Subsumption Tests during Enhanced

Traversal

Non-subsumptions outweigh subsumptions by far because the inferred class hi-

erarchy is usually roughly tree-shaped. This is also reflected by the empirical

observation that negative tests outweigh positive ones by a ratio of 40:1, occa-

sionally more (see Section 6.4.1). A 100% (positive) subsumption ratio would

mean that the class graph is a complete graph, i.e. all nodes V in the graph

are mutually connected (or, in other words, all A ∈ ÕC are equivalent). Since

nodes in the class graph tend to have a much lower degree (in and out) then |V|,
non-subsumptions outnumber subsumptions. This also has a consequence for

the impact on performance. For (hyper-) tableau algorithms, negative tests differ

from positive ones in one significant way: We only have to find one counter-model

K for a subsumption A v B, where a counter-model is a clash-free instantiation

of the concept Au¬B, while a subsumption needs to explore all non-deterministic

branches of the tableau to show that there is no (clash-free) model at all. This

means that a negative subsumptions should be easier than a positive one. As we

will see in Chapter 6, this is not always the case. One reason for that may be the

sheer amount of tests—there is simply a higher probability to hit a hard negative

tests. Another explanation might be the efficiency of early clash detection opti-

misation such as lexical normalisation, simplification and synonym replacement

in the case of a subsumption [TH06].

7For example Pellet and its internal EL-classifier.

80 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

3.4.2 Subsumption Test Avoidance

Modules have a great potential to be used to prune the traversal space. This

motivates the use of modules in particular for incremental reasoning. Figure 3.4

illustrates the consequence of the module property subsumer-completeness on

the subsumption space, see Section 2.4 for a definition. A appears only in the

signature of M1 and B only in M̃2. Any locality-based ⊥-module will contain,

for each concept in its signature, all its superclasses. The consequence of this is

that A and B cannot be in a subsumption relationship. We will illustrate how

this principle can help us pruning the search space for subsumers considerably

using two examples. Let us consider an ontology O and A,B,C,D,E, F ∈ Õ
with the following axioms:

α1 : A v B

α2 : C v D

α3 : E v F .

A naive traversal algorithm (Section 2.3.2) would have to do 27 (5 ∗ 6 − 3)

additional tests (between named classes) in order to fully classify O. One possible

decomposition of this ontology (based on the Atomic Decomposition) would result

in three disconnected genuine modules, all of which are already fully classified:

Subsumer-completeness guarantees that. In a slightly more realistic example,

let us assume an ontology O with |Õ| = n = 1000, and a decomposition of O
into two intersecting modules M1,M2 ⊆ O with |M̃1| = 600 and |M̃2| = 600.

The number of tests theoretically (again naively) necessary to fully classify O is

n2, 1,000,000 tests. The number of necessary tests in order to fully classify the

decomposed ontology is |M̃1|2 + |M̃2|2, 720,000: A reduction by 28%. In order

for this calculation to work out for the much tighter n*log(n) upper bound, we

have to assume a smaller overlap between the module signatures. If we assume

|M̃1| = 530 and |M̃2| = 530, we have that the number of tests to classify O
as a whole is 3000, and the two modules separately 2888—3.7% less. This is

less impressive, but in practice modules will often be much smaller than half the

ontology [VKP+13]. For example, if we assume 10 modules of signature size 110

each, we will get a total of 2245 test—a reduction by more than 25%. Note that

this assumes a very naive modular reasoner which treats modules as blackboxes.

The smaller the modules and their signature become, the greater they mitigate

the quadratic effect n2 (10 modules with signature sizes at 150 prune the search

base by around 77% using the n2 upper bound).

3.4. AN ANALYTIC ARGUMENT FOR MODULAR REASONING 81

b

b b b b
M̃1

M̃2

6⊑

Figure 3.4: Two modules M1 and M2 of an ontology, dots representing names
in the signature. Names that occur only in M1 cannot be subsumers of names
in M2.

3.4.3 Integration of Efficient Delegate Reasoners

The other great potential of modularity, and also one of the core motivations of

MORe, is the potential to mix and match optimal reasoners to modules in the

decomposition. MORe for example extracts an as-large-as-possible L-module of

an ontology suitable for an efficient (in this case consequence-based) procedure,

dispatches that to an efficient L-reasoner available, and the remainder-module to

an efficient OWL 2 reasoner. MORe does not, other than EL+ to ELK, employ

any further heuristics to make an optimal choice (“most efficient delegate”), and

the delegate reasoners are (more or less) hard wired into the code. A truly optimal

dispatching meta-reasoning framework would involve smart dispatching heuristics

that, based on the particular properties of a module at hand (expressivity level,

size, etc.), selects an optimal reasoner from a set of available ones. The smart

heuristics could be obtained for example through a machine learning approach.

Note that modules and modular decompositions are a way of stitching different

reasoning paradigms together: Whatever calculus is in some sense optimal for

a particular module can be used to process it. We are not exploring optimal

delegates as part of this thesis.

3.4.4 Modules for Parallelism

One obvious way to exploit the decomposition of an ontology is for parallelism.

Parallelisation is one of the trend topics in recent reasoner development activi-

ties [MLH+15]. For example, Konclude [SLG14], a reasoning system for expres-

sive DLs [PMG+15], and the most successful reasoner at recent ORE reasoner

competitions (2014 and 2015) [PMG+15], employs parallelism on three levels of

82 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

its architecture. A modular decomposition could enable parallel reasoning by

dispatching each module with a (suitable) delegate reasoner to a computational

node in parallel, thus reducing the reasoning time of an ontology essentially to

the time it takes to process the hardest module, plus some overhead for stitching

the results together. However, these considerations remain in the realms of the

hypothetical as there is, to our knowledge, no ongoing effort to realise modular

decomposition-based parallel dispatch for OWL ontologies.

3.5 Limitations

There are some fundamental limitations on when and how modular reasoning is

beneficial for OWL classification. There are two default cases where reasoning

with a modular decomposition can have no benefits:

� The decomposition is of size 1 (module/chunk). Given an Atomic Decom-

position, this can happen for example if (a) there is only a single root

module or (b) there is only a single connected component. Given a MORe-

decomposition, this is the case when O is already in L or L(O) contains

nominals (or ABox axioms), which are not supported by the current imple-

mentation of the algorithm.

� The ontology is inconsistent. If the ontology is inconsistent, computing the

entire decomposition is purely redundant, as everything is entailed by the

inconsistent ontology (no expensive tests / traversal required). As outlined

in Section 3.3.5, the module of the empty signature would be sufficient to

determine consistency.

Apart from these two cases, there are a number of other cases that limit the

applicability of modular reasoning in practice. Decomposition-based classifica-

tion is interesting only if the overhead from dealing with the decomposition is

outweighed by the performance gains induced by modularity, captured by the

following definition:

Definition 3.3. Given an ontology O, decomposition-based classification can be

said to be beneficial only if the following holds:

T (Dec(O)) +

|C|∑

i=1

(T (Del(Oi,R)) + T (CL(Oi))) + T (CR) < T (CL(O)),

3.5. LIMITATIONS 83

where C is the set of all chunks in the decomposition we are interested in, R is

the set of all reasoners we are interested in, Del (Delegation) is the process that

decides which reasoner a subset should be dispatched to, CL(O) is the process of

classifying O, and CR the combination of the results into a common structure.

In other words, decomposing the ontology, selecting a suitable delegate rea-

soner for each chunk, classifying each chunk and combining the results has to be

faster than just classifying the ontology by a suitable (monolithic) reasoner. Note

that these sub-processes of decomposition-based classification are in practice po-

tentially intertwined. For example, result combination usually happens on the

fly (for each module once it is fully classified), rather than in an isolated process

afterwards.

This performance definition can be violated by current implementations in a

number of ways, for example:

� The cost of computing the decomposition outweighs the benefits induced

by subsumption test avoidance or easyfication of reasoning.

� The redundancy introduced by dealing with potentially overlapping chunks

can outweigh the benign effects induced by search space pruning or easyfi-

cation of reasoning.

� Computing the classification of a single chunk in the decomposition can be

harder (or almost as hard) as classifying the whole ontology at once.

� Allocating memory for a potentially large number of delegate reasoners can

introduce a performance overhead, for example due to increased memory

consumption.

Mapping the space of potential threats to the performance definition is one

of the main goals of Chapter 7. In the following, we will present of some of the

reasons why decomposition-based reasoning can be beneficial in practice.

3.5.1 Overhead

Decomposing an ontology (in the cases of Atomic Decomposition) can be done in

polynomial (quadratic) time [DV13]. We have a linear number of module extrac-

tions (number of axioms * size of largest axiom signature), and the complexity

of the locality check is linear in the size of the axiom. Insofar, modularity does

not add to the computational complexity of classification, which is double expo-

nential in the worst case for OWL 2 DL ontologies [HKS06] and polynomial for

84 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

ontologies in one of the three profiles [Kaz09].

It has been shown that, empirically, the Atomic Decomposition is extractable

in a reasonable amount of time and that ontologies that timeout after 12 hours

are typically large and contain a large number of individuals [HMP+14]. The

overhead of computing the MORe-decomposition has not been, to our knowledge,

studied systematically yet.

There is a range of strategies that can be employed to mitigate the overhead

introduced by the decomposition of the ontology O. We have to consider that,

as discussed in Section 2.5.1, the Atomic Decomposition has only recently been

implemented, and there is still a lot of room for optimisations of the algorithms.

Moreover, as the authors of MORe point out, ⊥-modules provide too strong guar-

antees for our purpose, as they not only preserve atomic subsumptions over the

signature, but also models [RGH12, RKGH15]. The performance of decompo-

sition and therefore decomposition-based reasoning will improve significantly if

we find more efficient algorithms to extract more suitable modules, as long as

they provide the necessary logical guarantees. One way to mitigate the overhead

of decomposition entirely is to perform it off-line. The modular structure can

be encoded directly in the distribution of the ontology or in the form of a sim-

ple module file that encodes axiom–module memberships. We have proposed a

way to distribute decomposed ontologies as a set of modules connected by the

owl:imports elsewhere [MP14c].

3.5.2 Module Hardness

One particular threat for reasoning with modules emanates from the observation

that subsets of an ontology can occasionally be harder than the whole ontol-

ogy [GPS12]. We have outlined in Section 3.4 the prima facie reasons for why the

same should not hold true for modules (which are also subsets of an ontology).

We have dedicated Chapter 5 to the question of whether this is—empirically—a

real threat for module-based reasoning.

Note that stochastic effects caused by non-deterministic algorithms can, in

principle, lead the algorithm to a harder space (i.e., a harder justification or a

harder branch within the context of a justification), thus making a particular

test appear harder not only across modules, but also across different runs (of the

same module). We will show that state-of-the-art traversal algorithms are often

impacted by stochastic effects in Chapter 6 and try to isolate other observations

3.5. LIMITATIONS 85

as much as possible from randomly benign or detrimental effects caused by that

stochasticity.

3.5.3 Redundancy

Redundancy is a special kind of overhead, insofar as it is in principle avoidable.

Every sub-process executed by a monolithic reasoner classifying O can be po-

tentially redundant in the classification of O by a decomposition-based reasoner.

Examples of sub-processes that can be potentially redundant are:

� consistency checking,

� pre-processing (normalisation, simplification, absorption) and

� subsumption testing.

This redundancy can be avoided if we introduce communication between del-

egates, i.e., by allowing the delegate reasoners to share some of their work. In

contrast to this, overhead that is not caused by redundancy cannot be avoided :

The decomposition, the dispatch decisions, the overhead in creating delegate rea-

soners (memory allocation) and the result combination can only be sped up, not

avoided altogether. We have dedicated Chapter 7 to isolating the major sources

of redundancy.

In the following, we will discuss the effect of the structure of the decompo-

sition on redundancy. In Figure 3.5 we can see the modular structure of an

ontology represented as its Atomic Decomposition. In case of maximal module

classification, the worst case (for potential redundancy) occurs when the set of

maximal modules RM depends on a common atom (of arbitrary size), and the

label of each of the maximal atoms contains the entire set of remaining names

minus one (Figure 3.5a). That way, to obtain the entire set of possible atomic

subsumptions, each of the maximal module has to be classified, which introduces

a large amount of redundant tests:

|RM | ∗ (|Õ| − 1), where |RM | > 1.

The worst case in terms of redundancy for classifying genuine modules is illus-

trated by the shape of the Atomic Decomposition graph depicted in Figure 3.5b.

In order to obtain the complete set of entailed atomic subsumptions we have to

classify each genuine module separately. It can easily be seen that classifying the

genuine module of atom 3 is already equal to classifying O, so that the rest just

86 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

1

2 3 4

{C,D}{C,E}{D,E}

{A,B}
(a) Worst case for maximal module classification.

1

2 {C}

{A,B}

3 {D}

(b) Worst case for gen-
uine module classifica-
tion.

Figure 3.5: The shape of the Atomic Decomposition in the respective worst cases.

adds work. In the worst case, the complexity would be (Ni being the size of the

signature of the ith module)

|RM | ∗
|RM |∑

i=1

Ni(Ni − 1).

There are a number of cases where the shape of the decomposition does not

introduce any redundancy. Apart from the trivial case of decompositions of size

1, this can be the case if the decomposition corresponds to a partition of O, i.e. no

axiom appears more than one chunk of the decomposition. It is trivially the case

that, in such a situation, pre-processing algorithms that rewrite the input into an

easier form would not do worse because every pre-processing optimisation would

touch an axiom only once. The same does not apply for subsumption testing, as

it is possible that two modules in O do not share any axioms, but share signature.

For example, consider the following ontology Oexp:
α1 : A v B

α2 : C v ∃R.B
There are four names in the ontologies signature Õexp = {A,B,C,R}). The

⊥-modules for R and B are both empty. The ⊥-module MA for A is {α1},
and the module MC for C is {α2}. Since an ordinary classification algorithm

would always check class satisfiability, it would, in both cases, check whether

B is satisfiable. Therefore, a decomposition being a partition does not imme-

diately preclude subsumption test redundancy. However, if the reasoner was

decomposition-aware, i.e., if was allowed to at least peek into the other modules,

it could conclude from the mere fact that, given a decomposition DO of O, for

3.6. RESEARCH AGENDA 87

any Mi,Mj ∈ DO with Mi ∩Mj = ∅ and M̃i ∩ M̃j 6= ∅ it follows that, for

each entity X ∈ M̃A ∩ M̃C , X is satisfiable. The reason for that is that by def-

inition, modules preserve entailments over their signature and all justifications

of an entailment are present in the module. Therefore, the sets of axioms that

prove that X ∈ M̃A ∩M̃C is unsatisfiable are present in all modules mentioning

X, thereby violating the condition that DO has to be a partitioning of O. Apart

from the unlikely case where no two modules in a decomposition share either

axioms or signature (i.e., no intersecting models) we cannot currently prove, for

a given case of a classification-preserving decomposition, whether decomposition-

awareness precludes all kinds of redundancy.

There are various ways to mitigate redundancy for decomposition-based rea-

soning, but none of them are currently supported by those OWL reasoners that

can be used as as delegate reasoners. The first obvious way would be to cre-

ate a reasoner with a modularity-sensitive calculus as described in Section 3.1.1

that incorporates modular decompositions to enhance the current traversal al-

gorithms (to avoid more tests) and serves satisfiability engines smaller sets of

axioms to reduce the search space for building models. If we, however, hope to

make use of modular meta-reasoning frameworks, we need other ways to enhance

the communication between different delegate reasoners. Before we can hope to

do that, we need to understand which sources of overhead and redundancy have

the biggest impact, and therefore need mitigation. In Chapter 7, we will survey

the sub-processes of reasoners that have impact on the overall classification time

in depth.

3.6 Research Agenda

Many OWL ontologies still offer a challenge to state-of-the-art OWL reasoners.

The quest for optimisations is ongoing. Modularity is employed by OWL reason-

ers in a variety of ways, for example for incremental reasoning (Section 3.3.4),

identifying hot spots (Section 3.3.3) or full OWL ontology classification (Sec-

tion 3.3). As the use of modularity necessarily imposes a computational overhead

on any modularity-based reasoner optimisation, we need to improve our under-

standing of the interplay between the potential detrimental effects and the benign

effects of modularity itself.

The assumption underlying all reasoning techniques involving modules is that

88 CHAPTER 3. REASONING WITH LOCALITY-BASED MODULES

reasoning with modules is always easier then with the whole. We will introduce

this assumption in Chapter 5 as the benign module conjecture. Only if we can

show that this conjecture holds, or mostly holds, can we hope to benefit from

modularity at all.

There are various ways in which modularity can help with reasoning (see

Section 3.4). Two important effects are claiming to increase reasoner performance

by reducing the input problem and pruning the traversal space for subsumption

testing. We have presented a theory on how we expect modularity to affect

subsumption test hardness 3.4.1 and traversal space pruning 3.4.2, but we have

had no knowledge (1) whether these effects are significant in practice and (2)

whether they make a difference on overall reasoning time. We have dedicated

Chapter 6 to the question on how modularity affects subsumption test hardness

during classification.

Ontology classification is probably the most important reasoning service in the

area of ontology engineering. Even if we could be sure that reasoning with mod-

ules is always easier than reasoning with the whole, and subsumption tests become

on average significantly faster (and fewer), we still cannot be sure that using them

is always beneficial in practice, as dealing with modules necessarily comes with a

computational overhead (for example module extraction). The overhead can be

even more severe in the case of decomposition-based classification, as computing

a decomposition may involve potentially numerous module extractions. In Chap-

ter 7, we will study the performance profile of 5 decomposition-based reasoning

approaches, investigating factors that contribute to the overall performance and

subsumption test avoidance and redundancy.

Our systematic investigation into the viability of modules for use in OWL

reasoners is only a starting point. MORe for example is primarily motivated

by its use of optimal delegates, see Section 3.4.3. There is a large amount of

interesting and well motivated investigation to be made in this direction. We

cover delegate reasoners only to a very rudimentary extent. For example, we

only really look inside OWL 2 DL reasoners, and largely ignore the internals of

consequence-based ones. We will discuss some of these directions in Future Work,

Section 8.2.

3.7. SUMMARY 89

3.7 Summary

In this chapter, we have outlined the general motivation behind employing mod-

ules to improve classification performance and exposed important threats. In the

remainder of this thesis, we will investigate some of the core issues that impact

the use of modules for classification:

� The largest threat for modular reasoning emanates from the possibility that

reasoning with modules might be harder than reasoning with their parent

ontology. In Chapter 5 we investigate that threat in depth.

� One of our two core motivations to employ modularity is its beneficial effect

on subsumption test hardness. In Chapter 6 we investigate the potential

gain of hardness reduction and measure the effect of modules on subsump-

tion test hardness during classification.

� In the last part of this thesis (Chapter 7), we analyse the classification per-

formance of different decomposition-based reasoning approaches, in partic-

ular determining their effect on overhead and redundancy as well as test

hardness and avoidance.

Chapter 4

Experimental Framework

One of the main contributions of this thesis concerns improvements to the method-

ological foundations of systematic experimentation with OWL ontologies. The

core artefacts as a result of that effort are the OWL Experiment API, a lightweight

framework that manages result reporting, time-outs, reasoner instantiation and

more; the Reasoner Stage Benchmark, a methodology/library to measure the

times a reasoner spends in its various stages and the duration of any subsumption

test fired during classification and Katana, a framework to explore modularity-

based classification (Figure 4.1). In this chapter, we will introduce these three

components, and discuss some general aspects of our experimental setup, includ-

ing randomisation, timing and the ontology corpus we used.

Figure 4.1: Overview of the experiment framework.

All pieces of software presented in the following were implemented drawing

heavily on the OWL API [HB11]. We furthermore re-used some components from

MORe [RGH12] (L-module extraction) and borrowed from the implementation

of Chainsaw [TP12a]. Analyses were performed in R [R C15], making heavy use

of ggplot2 for plotting; other used packages include: data.table, xtable, plyr and

reshape2.

4.1 The Reasoner Stage Benchmark

In the following we will describe the OWL Reasoner Stage Benchmark.

4.1. THE REASONER STAGE BENCHMARK 91

4.1.1 Overview

Most OWL reasoner benchmarks, especially those focused on classification, de-

termine how long it takes the reasoner to execute the service for a given input.

Few benchmarks distinguish between the different stages a typical OWL reasoner

goes through, nor do they go as deep as measuring individual subsumption tests

fired, or derivations rules triggered during classification. We propose the following

model for traversal-subsumption test-based monolithic classification, distinguish-

ing five stages for the process of classification. Note that this model is intended

to capture tableau and hyper-tableau style reasoners such HermiT and FaCT++.

Consequence-based reasoners in particular behave differently.

1. PP: Pre-processing (e.g. parsing, normalisation, absorption)

2. CC: Initial consistency check

3. PRP: Pre-traversal optimisations (e.g. leaf-node satisfiability)

4. ST: Traversal (e.g. Enhanced Traversal, Novel Approach, subsumption test-

ing)

5. POP: Post-processing (e.g. generating the final inferred hierarchy)

The OWL reasoners we use in our work all follow that model, and we be-

lieve that most traversal/subsumption test-based OWL reasoners do—see also

the more extensive discussion of reasoner architectures in Section 2.3. However,

it is not specified what work a reasoner does exactly within each of the stages. A

reasoner might defer the application of a particular optimisation another reasoner

applies during pre-processing to a later stage (or the other way around). HermiT

for example tests the satisfiability of the leaf-nodes of the known class graph dur-

ing the PRP stage; no other reasoner triggers satisfiability tests (other than the

initial consistency check) outside of the ST stage (traversal). This also has a con-

sequence for the relative dominance of each stage for a reasoner: While HermiT

has a very dominant PRP stage, for the other reasoners in our experiments this

stage is often negligible (in terms of relative impact on overall classification time).

The motivation for this fine grained view on the entire process of classification

is as follows. First of all we get a sense of where the majority of the work is

happening. If we consider the potential of modular reasoning, it is unlikely that

there is much to be gained if the first stage is dominant (which it is in quite a

number of cases). As we have outlined in Section 3.4, the main potential in util-

ising modularity lies in the reduction of subsumption test search space and the

reduction of subsumption test hardness. That means that only the three Stages

92 CHAPTER 4. EXPERIMENTAL FRAMEWORK

(2-4) involving reasoning will be likely to benefit from modularisation. Without

this fine grained view, we would miss a lot of explanatory potential for cases

where modularity-based classification wins, or loses.

The second core aspect of the framework is the recording of subsumption

tests. For a given reasoner R and a subsumption test ST (A,B,O), we record

the duration of the respective call to the satisfiability engine of the reasoner (or

the respective equivalent). Timing subsumption tests is relevant in two ways

for evaluating modular reasoning techniques: Firstly, from the number of sub-

sumption tests, we can observe effects of search space pruning and redundancy.

Secondly, from the duration of subsumption tests, we can observe test hardness.

Another interesting phenomenon that can be analysed from the data of the Stage

Benchmark is the test order, which can be a strong indicator for traversal non-

determinism.

4.1.2 Implementation

From an implementation perspective, the framework currently has to be hard

wired into the reasoner’s source code. A single static Java class collects times-

tamps whenever a stage is entered or left, and whenever a subsumption test is

conducted. While we did this by ourselves for the Java-based systems in our

study, we collaborated with the developer of FaCT++ in order to extend the rea-

soner to merely flushing out textual information to a file that we then later parse

back into our analysis framework. In order to minimise the effect on memory (es-

pecially when many subsumption tests are recorded), we use a buffered file writer

to flush the data collected to a textfile. For the subsumption tests, we record

start timestamp, end timestamp, result (true or false), the super-class and the

sub-class. Each reasoner is referenced by an id based on the hashcode of its Java

object, so that the framework can be used to collect data from modular reasoners

involving multiple delegates. Time spent recording data is recorded as well, and

can be factored out in the analysis. While the necessity to hard wire the Stage

Benchmark into the reasoners source code creates some burden on the side of the

developer, our experience is that the modifications required are reasonable. For

example, the FaCT++ developer was able to make the necessary modifications

in a reasonable time (less than 30 minutes). The modifications typically involve

only small adjustments to the already existing metrics gathering facilities inside

the reasoner.

4.2. KATANA 93

4.2 Katana

A Framework For Evaluating Modularity-based Clas-

sification

Katana is a Java framework that allows exploring modular classification ap-

proaches. It allows mixing of different types of decompositions, module types

and delegate reasoners with classification strategies.

4.2.1 Overview

The core aspects of our model of black-box, decomposition-based classification

have been described in Section 3.2. Katana is an attempt to reflect that model

and its aspects in a modular fashion.1 The core motivation behind Katana is

to make it possible to quickly implement and test new modular classification

strategies and compare them to other approaches, including monolithic, MORe-

like or Chainsaw-like approaches. Most aspects of modular classification, the

decomposition, the module type, delegate reasoners (at least to some extent) and

the classification strategy (responsible for determining the chunking, the order of

the classification and delegate reasoner assignment) can be manipulated by the

user. For example, a user might choose to explore a reasoning strategy based on

the Atomic Decomposition that summarizes maximal modules that are in some

way connected into chunks.

4.2.2 Implementation

The implementation of Katana is based on the classifier of Chainsaw [TP12a].

Earlier versions of Katana resembled Chainsaw, but only very few lines of code

remained unchanged throughout development. We do acknowledge however that

we built on the efforts around Chainsaw, and maintained helpful contact with

the Chainsaw developers2. The main classes and their interdependencies can be

seen in Figure 4.2. The KatanaReasoner class is the main class the user interacts

with. It currently implements a minimal subset of the OWL API OWLReasoner

interface, which makes it usable in the same way a normal reasoner would be

1Modular in the Java sense: extensible, re-usable.
2Dmitry Tsarkov and Ignazio Palmisano

94 CHAPTER 4. EXPERIMENTAL FRAMEWORK

used. The KatanaReasoner class contains a classifier, which manages the classi-

fication of the chunks provided by the KatanaClassificationStrategy. The

KatanaClassificationStrategy summarises the modular decomposition (in-

stantiating the KatanaDecomposition) into a set of chunks (KatanaModule) and

then creates a list of KatanaDelegation(s), which are essentially assignments

of a particular chunk to a delegate reasoner of choice. As a procedure, Katana

works as follows (Procedure 4.1). Given an ontology:

Procedure 4.1. Katana Workflow

1. User instantiates a decomposition of the ontology

2. User instantiates a classification strategy based on the decomposition

3. User instantiates the Katana reasoner with the classification strategy. The

classification strategy summarises the decomposition into chunks, orders

them and assigns them to delegate reasoners

4. User calls to compute the inferred class hierarchy

5. Katana determines consistency of the ontology

6. Katana classifies one chunk after the next according to order and delegate

reasoner as determined by the classification strategy and merges the results

by adding the inferences to a shared datastructure

Sub-processes 1, 2 and 3 instantiate the reasoner. When the user asks for

the class hierarchy to be computed, the reasoner first checks the consistency, and

then starts classifying. The default classification strategy would simply feed one

module after the next to the classifier, which would delegate the classification to a

reasoner of choice. We allow Katana to be configured with a complete OWL 2 DL

reasoner and an OWL 2 EL reasoner, and a strategy may choose which module

to dispatch to the one or the other. As another example, the MORe classification

would simply take the EL-module computed as part of the MORe decomposition

and dispatch it to the EL specific reasoner (usually ELK, but up to the user) and

the remainder module would be dispatched to the full OWL 2 reasoner. After

a chunk is classified, Katana incorporates the results into the inferred hierarchy

and moves on to the next chunk.

In this thesis, we are looking at (and have implemented as part of Katana)

five different classification strategies, which will be discussed in detail in Chap-

ter 7. Two of the five strategies are used by available OWL reasoners, MORe

and Chainsaw. The remaining three are variants of the approach employed by

4.2. KATANA 95

Figure 4.2: Most important Katana classes.

Chainsaw, addressing some of its obvious shortcomings. The MORe decomposi-

tion is implemented re-using components of the MORe implementation [RGH12].

Approaches based on the Atomic Decomposition are based in the OWL API tools

implementation of the Atomic Decomposition.3

Katana as such is independent of reasoner implementations and versions:

the only requirement is that it implements the OWL API OWLReasoner and

OWLReasonerFactory interfaces in the typical fashion. It is available for down-

load on the supporting materials website (see Section 4.8).

4.2.3 Katana Correctness

The algorithms underpinning Katana are proven to be sound, complete and ter-

minating, and therefore correct. As implementations can be buggy, correctness

needs to be verified experimentally. Up until today, we do not have any (feasi-

ble) means to verify the general correctness of a reasoner conclusively.4 In order

to ensure correctness, at least to a reasonable degree, we have implemented a

set of tests which checks whether Katana produces the same classification as its

primary delegate reasoner. The tests encompass all five modularity-based clas-

sification approaches implemented (see Chapter 7), Pellet, JFact and HermiT

as delegate reasoners and 9 test ontologies, three of which are also part of our

investigation in Chapter 7. At least three ontologies in the test set also con-

tain unsatisfiable classes. As long as dispatch is restricted to Pellet, JFact and

HermiT, all our tests pass.

3https://github.com/owlcs/owlapitools
4We have, however, started developing a justification-based method that attempts to isolate

bugs by analysing disagreements between different reasoners over the class hierarchy [LMPS15].

https://github.com/owlcs/owlapitools

96 CHAPTER 4. EXPERIMENTAL FRAMEWORK

4.3 OWL Experiment API

The OWL Experiment API is the layer in the experimental framework that man-

ages general experiment configuration (metrics gathering, timeouts, reading and

writing data).

4.3.1 Overview

Extensive OWL ontology and reasoner experimentation requires a lot of stan-

dard operations, such as loading and saving ontologies, creating reasoners and

managing the measurements taken. Any serious empirical OWL researcher will

eventually implement utility classes that factor out some of the recurring tasks.

We went a step further and wrote a lightweight API that allows to rapidly im-

plement new experiments.

4.3.2 Implementation

Figure 4.3 shows the three core (abstract) classes the user will mainly interact

with. The ExperimentRunner manages the parameters taken from the command

line, instantiates the experiment and manages the thread an experiment is run

in using Java’s single thread executors.5 It also ensures the existence of the

file the data is exported to and produces meaningful records if the experiment

fails for some reason (such as timeout or bug). The ExperimentRunner executes

the actual ExperimentImpl. We have provided an abstract Experiment class

that manages aspects of the experiment such as writing the experiment results

as comma separated values (CSV), gathering some default experimental metrics

such as timestamps, experiment name, run id, and some high level file metrics,

and managing file handles (to the ontology, the data directory and CSV files).

The abstract ReasonerExperiment class extends that class by adding extra func-

tionality to create reasoners, and gathers metrics about the reasoning. Along with

these basic classes comes a wide range of utility classes for reading and writing

files, extracting subsets of ontologies, generating normalised inferred hierarchies

and many more.

5http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.

html

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html

4.4. EXPERIMENTAL SETUP 97

Figure 4.3: Most important OWL Experiment API classes.

The OWL Experiment API can be obtained from the supporting materi-

als website (see Section 4.8). In order to set up a concrete experiment, the

user creates a class that extends the ExperimentRunner and one of the abstract

Experiment classes. The best way to start is to take an already implemented ex-

periment such as ClassificationTimeExperiment and ClassificationTimeExperimentRunner

and adapt it to the specific needs of the experiment at hand. The main advantage

of using the API is that it takes care of experiment result formatting and meta-

data management (as described before), and provides some facilities to manage

timeouts.

4.3.3 OWL API Classification

The following approach is used throughout Katana and the Stage Benchmark

described earlier to classify an ontology.

public void process() {

//...

OWLReasoner r = createReasoner(o)\;

r.precomputeInferences(InferenceType.CLASS_HIERARCHY);

//...

}

4.4 Experimental Setup

Most experiments (typically the run of a classification of an ontology or a module)

conducted as part of this thesis were run in the following fashion. A command

is a program called on the commandline with a set of textual parameters, for

98 CHAPTER 4. EXPERIMENTAL FRAMEWORK

example:

java -Xms2G -Xmx12G -Djava.library.path=/Users/owl/libs/factpp/

-DentityExpansionLimit=100000000 -jar ~/phd_cltime.jar ~/go.owl

hermit ~/cltime/data/out.csv 1800000

1. A shell script iterates through the corpus directory, and writes all Java pro-

gram executions (commands of the style described in the previous listing)

that need to be executed as part of an experiment into a text file.

2. The order of the commands in that text file is randomized, and distributed

across as many different text files as experiment machines are available.

3. The files are uploaded to the experiment machines.

4. The scripts are executed and every execution is logged in a text file.

We fully randomise the run order and evenly distribute the experiment run

jobs across all available machines (of the same type) in order to reduce poten-

tial bias induced by run order. Despite efforts of reducing background processes

kicking in during experiment runs (like deactivating automatic updates) we do

not guarantee to account for all of them. An additional system process can harm

execution times severely. Ideally, we would run experiments so often that such

effects can be accounted for. Unfortunately, classification is a resource intensive

task, and repeating experiment runs more than three times is usually unrealis-

tic. Therefore, we sometimes apply a random-order, median-sampling approach,

executing all experiments three times, scattered at random across all available

machines, and then extract the run corresponding (or closest to) the median

runtime of all equivalent runs.

Every single classification was done in a separate isolated virtual machine with

fixed memory allocation size: 2GB minimum, 12GB maximum.

4.4.1 Timeout Management

Timeout management is one of the most painful aspects of ontology benchmark-

ing. A proper timeout strategy is necessary mainly for two reasons. The need for

dealing with timeouts in the first place is that we need to be able to interrupt

reasoning (or module extraction) processes that potentially take days or even

weeks to complete otherwise. The reason why we need to define a strategy is

that the the implemented reasoners do not reliably throw exception on timeouts,

and occasionally crash the virtual machine. Our time-out strategy involves four

4.4. EXPERIMENTAL SETUP 99

different layers:

1. OWL API reasoner timeout (depends on the developers implementing the

reasoner)

2. Java ExecutorService timeout (on Java’s Future class)

3. Seperate timeout thread

4. System-level cron job to kill process

In most cases, the first layer works just fine. When the Timeout exception is

thrown, we catch it from outside the process and collect some information about

the failure. Sometimes, the reasoner gets stuck, but does not throw an exception.

Then we rely on Java’s ExecutorService to throw an exception and interrupt the

process. Should this fail, the third layer guarantees to terminate the process, in

all cases short of a JVM crash. If the JVM for some reason crashes (which may

happen for example in conjunction with JNI-related libraries), we make sure that

the process is killed from outside the system eventually, using cron-jobs and some

custom shell scripts that terminate any experiment beyond the defined timeout.

4.4.2 Java Profiling

Profiling the execution of a process in Java 7 (version at time of this writing:

Java 1.7.0 71-b14) is done in the same way across the experiments. For Chap-

ter 7, resource limitations forced us to outsource one experiment to Amazons EC2

running Java 1.8.0 45. The following considerations apply to both Java versions.

There are two important decisions to be made when measuring execution time:

(1) Are we interested in user time or CPU time? (2) What resolution do we need

(minutes, milliseconds, nano seconds)? Neither question has a clear answer. For

question one, we have to choose between taking CPU time, for example using

Java’s ThreadMXBean.getCpuTime(), or taking a System timestamp before and

after a given process. The latter is also referred to as wall-clock time, representing

the time a user is waiting for the task to complete, while CPU time reflects the

time the CPU is running application code or operating system code on behalf

of the application. The strongest argument against wall-clock time (WCT) is

its considerable sensitivity to system level background processes. Especially on

Windows machines it is not advisable to use WCT if one is interested in very

precise measurements of short processes due to inconsistent resource distributions

when the operating system changes its priorities.6

6http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_

http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking

100 CHAPTER 4. EXPERIMENTAL FRAMEWORK

The second decision to be made concerns the resolution of the time taken.

In Java, we can for example choose between System.currentTimeMillis() and

System.nanoTime(), the former having a resolution of a thousandth of a sec-

ond, and the latter, at least in theory, a billionth of a second. While Sys-

tem.nanoTime() provides nanosecond precision, it does not provide nanosecond

accuracy. Depending on the operating system, it usually is accurate to the mi-

crosecond, without providing any particular guarantees. There is a lot of ongoing

debate about whether System.nanoTime() should be used at all. The main rea-

son against it is that its implementation is system dependent. Depending on

the hardware and OS used, it can either return elapsed CPU time based on the

programmable-interval-timer (PIT), the ACPI power management timer (PMT),

the CPU-level timestamp-counter (TSC) or (on very old systems) a value based

on System.currentTimeMillis(). In general, System.nanoTime() does not relate to

any real clock. It measures the elapsed time in nanoseconds from a fixed but arbi-

trary start time, and can therefore be used exclusively for measuring the elapsed

time of a process. The second problem with it is that, depending on the system ar-

chitecture, the behaviour of System.nanoTime() varies in programs that make use

of multiple cores. This is because it usually depends on CPU time, and not all op-

erating system synchronise CPU time between different cores. On the other hand,

it has two advantages over System.currentTimeMillis() beyond the increased res-

olution: It is robust against irregular lapses in wall clock time (for example, if the

clock is adjusted for some reason, like winter and summer time) and it is more

robust against other system level activity because other processes would, on a

multi-core architecture, be dealt with by another core. Despite its shortcomings,

we decided to use it to accommodate for the fact that many individual subsump-

tion tests are, in terms of execution time, in the realms of microseconds. Using

System.nanoTime() is clearly debatable, and future work should involve compar-

ing results obtained with System.nanoTime(), System.currentTimeMillis() and

CPU time. The use of System.nanoTime() over System.currentMillis() has been

strongly encouraged by IBM7 [Boy08] and Oracle8, despite the many passionate

voices against it that point out, for example, its dependence on hardware.

Side note on timings : We considered the importance of taking a timestamp

very late in the course of this PhD, relying on previous work that made use of

time_benchmarking
7http://www.ibm.com/developerworks/library/j-benchmark1/
8https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://www.ibm.com/developerworks/library/j-benchmark1/
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

4.4. EXPERIMENTAL SETUP 101

System.nanoTime(). Given the multi-threaded nature of many state-of-the-art

reasoners, we do believe that experiments should be conducted to determine the

best way to measure reasoning performance, also with respect to the operating

system. This would include questions such as accuracy of the measurement, wall-

clock vs CPU time, variation between operating systems and Java versions, and

the exact overhead of the timing. The four OWL reasoners that we included in our

experiments do not make use of multiple cores. While we have not systematically

investigated this, we gain some confidence from the fact that (1) no duration

calculated is ever negative and (2) no ratio we calculated between nested sub-

processes is ever beyond the range of 0-100%, for example the ratio of sum of

subsumption test to the overall classification time.

The following listing shows an example measurement using System.nanoTime().

public void process() {

//...

long start = System.nanoTime();

reasoner.precomputeInferences(InferenceType.CLASS_HIERARCHY);

long end = System.nanoTime();

//...

}

4.4.3 Experiment Machines

In the following we list the experiment machines used in our experiments. The

Mac Mini cluster was picked for convenience: we needed access to a cluster for

many months in total and we needed to be able to control system level processes

(mainly to prevent them from kicking in an skewing the results). The second

cluster (Amazon EC2) was also fully configurable, but could become quite costly

for long running experiments. We do not believe that the particular operating

system biases the results in any systematic way (for example by having longer

subsumption test times, while having shorter pre-processing times), but this fun-

damental assumption should be substantiated in future experiments.

Experiment Machine 4.1. Mac-mini: A set of four (equivalent) Mac Minis

with Mac OS X Lion 10 (64 bit), 16 GB RAM and 2.7 GHz Intel Core i764-bit.

Experiment Machine 4.2. Amazon EC2, r3.large: Ubuntu 14.04.2 LTS,

Memory: 15.25 GB, Intel Xeon E5-2670 v2 (Ivy Bridge) Processors @ 2.5 GHz

102 CHAPTER 4. EXPERIMENTAL FRAMEWORK

X 10

4.5 Thesis: Metrics

There are two measures we make frequent use of in our analysis:

� Fold change (FC): describes how much a quantity changes from an initial

to a final value.

� Coefficient of variation (COV): measure of dispersion, defined as the ratio

of the standard deviation to the mean.

The fold change is used to emphasise how much a quantity changed from one

situation to another. Given two time measurements m1 and m2, it is calculated

by division, m1

m2
, describing the change from m1 to m2. In order to make negative

and positive changes comparable in terms of magnitude, we can calculate the

normalised fold change (FC) by replacing changes lower than 1 by the negative of

its inverse as follows: if m2 ≥ m1, FC(m1,m2) = m1

m2
, else FC(m1,m2) = −(m2

m1
).

The problem with this normalisation is that the range between -1 and 1 is not

within the range of the metric. As we use this metric only for describing the

change, and no further computation, we occasionally redefine the normalised

fold change (RFC) by “collapsing” the region between -1 and 1: if m2 ≥ m1,

RFC(m1,m2) = m1

m2
− 1, else RFC(m1,m2) = −(m2

m1
) + 1 (redefined normalised

fold change). The fold change can be converted into a percentage change by using

the formula (n−1)∗100%, where n is the fold change (or normalised fold change).

For the redefined normalised fold change, the formula is simply n ∗ 100%.

The coefficient of variation, sometimes referred to as relative standard devi-

ation, is a measure of dispersion that we use to analyse variation across mea-

surements that are not on the same scale (for example seconds and milliseconds).

Given a list of measurements M (of the same kind) it is computed as follows:
sd(M)

mean(M)
, where sd(M) is the standard deviation of M and mean(M) is the mean

of M . For example, given three independent measurements of a subsumption

test ST (A,B,O) (in milliseconds) {100, 120, 90}, and three independent mea-

surements of a subsumption test ST (C,D,O) {1000, 1500, 950}, we can compute

the COV for both: COV (ST (A,B,O)) = 15.28
103.33

= 0.148 and COV (ST (C,D,O))

= 304.13
1150

= 0.265. COV (ST (A,B,O)) and COV (ST (C,D,O)) are now compa-

rable, and we can see that COV (ST (C,D,O)) has a larger degree of variation

than COV (ST (A,B,O)). The coefficient of variation is usually reported as a

4.6. REASONER BENCHMARKING 103

percentage, simply by multiplying it with 100. For example, given the above

coefficient of variation COV (ST (A,B,O)) = 0.148, we read “measurements for

ST (A,B,O) varied by 14.8%” (0.148*100).

4.6 Reasoner Benchmarking

As described in Chapter 2, reasoners are complex pieces of software, for example,

due to their complex and possibly intertwining optimisations and implementa-

tional particularities. Some reasoners, such as FaCT++, use up to 8 different

absorption techniques during pre-processing at once [TH06]. This precludes their

availability to formal investigations of reasoning hardness (see Section 1.3). In

order to assess the viability of reasoning procedures or particular optimisations,

we are left with the empirical toolbox. The process of measuring aspects of OWL

reasoning performance is called reasoner benchmarking.

The pressure on showing the viability of reasoning techniques has increased,

and is to increase more due to reasoning being considered for industrial solutions,

like Pellet for the enterprise graph database Stardog9 or in the context of Op-

tique [GCH+13]. To date, the empirical methodological toolkit of the community

is still preliminary, compared to other disciplines such as Software Engineer-

ing [SCVJ08]. In the following, we will summarise some benchmarking activities

of the community, illustrate some of the shortcomings of our methodologies and

summarize some of our suggestions to improve the sate.

4.6.1 Brief Survey of Reasoner Benchmarks

Attempts to understand DL reasoning performance are, up until today, rarely

systematic and independent. The recently established ORE reasoner compe-

tition tries to establish the methodological foundations for more reliable com-

parisons between different reasoners and across a range of different reasoning

services [GBJR+13, PMG+15]. Most benchmarking activities are second class

citizens in system description papers or evaluations of particular optimisations.10

However, there have been a few attempts to conduct systematic, independent

9http://stardog.com/
10A claim based on the authors experience that should really be substantiated in the form of

a systematic review.

http://stardog.com/

104 CHAPTER 4. EXPERIMENTAL FRAMEWORK

evaluations of reasoners. We will discuss some of them in the following, and leave

a comprehensive review for future work.

OWL reasoner benchmarks have been designed for various purposes, for exam-

ple (and most prominently) for guiding end-users to select appropriate reasoners

for their problem [DCtTdK11, GBJR+13], understanding reasoning or the state

of reasoning in general [GMPS13] and to explore the viability of particular op-

timisations for reasoning. Early proposals for DL reasoner benchmarking, long

before the dawn of OWL, remained coarse grained [HPS98], but covered synthetic

as well as real problems. Tempich et al. [TV03] perform statistical analysis on

real ontology corpora to inform the generation of synthetic reasoning problems

(written in DAML, a precursor of OWL). They also describe different reasoning

services to be tested and basic metrics any benchmark should cover. Gardiner

et al. [GTH06] proposed an automated framework for testing OWL reasoners

that covered more aspects of the classification process than overall classification

time, such as consistency checking and satisfiability. They do not however ob-

serve these tasks as part of the classification process. Like most other frameworks

that cover correctness, the authors suggest majority voting over the class hier-

archy as a suitable approximation. Weithöner et al. [WLL+07] provide an early

example of trying to understand the requirements for systematic OWL reasoner

benchmarking to make them more useful for application developers. Babik et

al. [BH08] also emphasise the lack of frameworks for automated testing of OWL

ontologies and propose a methodology that covers both ABox and TBox reason-

ing involving real-world ontologies and another early mention of majority-voting

to determine reasoner correctness. LUBM is a benchmark for OWL knowledge

base systems involving synthetic ontologies [GPH05]. LUBM’s major limitation

is that the artificial problems it generates stand in an unknown relationship to

real-world problems. Despite that, based on citation count, LUBM is the most

widely used benchmark for OWL reasoners. However, it is used almost exclusively

for evaluations of query answering approaches, and the ontology itself is, at least

in its basic version, very simple, i.e. expressed in DL-Lite. Ma et al. [MYQ+06]

extend LUBM to more expressive TBoxes, but is again aimed at query answering

rather than TBox reasoning. Dentler et al. [DCtTdK11] conduct a principled

investigation to identify suitable criteria for choosing an appropriate reasoner for

an OWL 2 EL ontology. The authors conduct one of the very few independent

and systematic surveys of classification performance, which served as inspiration

4.6. REASONER BENCHMARKING 105

for parts of our work.

No benchmarking solution is perfect. For example, key properties leading to

the dataset selection are unknown, which makes dataset selection (and therefore

the experiment) not reproducible. Even carefully executed benchmarks such as

those by Dentler et al. [DCtTdK11] usually cherry pick a set of somehow relevant

ontologies, where somehow is subject to the author’s intuition. A more princi-

pled selection would be, for example: “all OWL 2 EL ontologies on BioPortal”, or

“the most frequently cited bio-health ontologies”. It is hard to make substantive

conclusions, if we cannot even determine whether a particular set of ontologies is

somewhat comparable to the one used in an experiment (due to the lack of ex-

plicit selection criteria). Few works sample from existing corpora or directly from

the web, and only Gonçalves et al. [GMPS13], to the best of our knowledge, deal

with corpora larger than 500 ontologies. In practice, the current de facto gold-

standard corpus for ontology experimentation is BioPortal [NSW+09], which also

provides a well designed infrastructure to obtain an interesting range of biomedi-

cal ontologies programatically. We are using a snapshot of BioPortal in this work.

As far as we know, no benchmark to date has investigated subsumption testing

during classification across reasoners in a principled manner. However, various

benchmarks have been designed to investigate the effect of certain optimisations

on subsumption test avoidance [GHM+12].

4.6.2 The Quest for the “Ultimate” Dataset

As mentioned before, one of the core shortcomings of current reasoner evaluation

methodologies is the absence of an agreed upon set of problems (i.e. ontologies,

queries, services). In an ideal scenario, an evaluation would yield an outcome

such as “Approach A is more efficient than approach B for function X for all

cases P (with criterion C)”, where X is a reasoning service such as classifica-

tion, A and B are reasoning algorithms or particular optimisations, P is a set

of representative problems (ontologies, queries) and C an optional set of criteria

that restrict the problem-space in a meaningful way. An author of an optimisa-

tion or a novel reasoning procedure typically picks a set of problems P by hand,

which has various and often severe consequences to the generalisability of the

results (so called cherry-picking).11 For the case of classification benchmarking,

11A notable exception for the lack of rigour in empirical evaluations is the work by Steigmiller
et al. [SLG14]

106 CHAPTER 4. EXPERIMENTAL FRAMEWORK

the problem-space we are interested in are typically a subset of all OWL 2 DL

ontologies: OWL 2 DL (EL, QL, etc.) ontologies that are likely to resemble the

ones used in practice.12 In the absence of a dataset that reflects the set of all

ontologies in some agreed upon fashion, let alone some indication whether ontolo-

gies are actually used in practice or not, this creates a considerable burden on

the developer: Gathering and pre-processing ontologies in a principled manner is

a very hard and time-consuming activity. Throughout the years, some corpora

such as Tones13, BioPortal [NSW+09], the Oxford Ontology Library14 and the

Manchester-based crawl-based corpus MOWLCorp [MBP13b] emerged, but all of

them fail to be convincing samples of the entire problem-space.

MOWLCorp was created as part of the work of this thesis, but in the end

failed to exhibit some of the desired properties of a benchmarking corpus, namely

to have a roughly normally distributed spread of problem hardness. It however

had a property that none of the other corpora could claim: the (almost) ab-

sence of selection bias. Both Oxford and Tones were put together for a very

particular purpose: Tool testing. Both corpora contain a mix of toy ontologies

and real biomedical ones. Neither were ever updated in the face of new on-

tologies or ontology versions (and therefore potentially new modelling patterns

that might cause problems for reasoners). MOWLCorp was based on an ongoing

crawl, which made the creation of snapshots possible, each of which potentially

contained new ontologies and updated ones. Details of the methodology can be

found elsewhere [MBP13b, MTPS14], later refined and extended for the ORE

reasoner competition [PMG+15].15 In the end, we decided that for our purposes,

BioPortal [NSW+09] would be the repository of choice. This selection will be

motivated further in the following section.

4.6.3 Thesis Dataset: BioPortal

BioPortal [NSW+09, SAMN13] is a repository for biomedical ontologies. La-

belling it a corpus of ontologies is actually a misnomer, as BioPortal is a complex

software for visualising, versioning and accessing ontologies, along with services

to automatically annotate resources and search for terms. We are primarily in-

terested in BioPortal because of the bio-health ontologies hosted as part of its

12Some reasoners such as Snorocket tune towards specific ontologies.
13https://www.w3.org/2001/sw/wiki/TONES
14http://www.cs.ox.ac.uk/isg/ontologies/
15http://bit.ly/1J2X3Vi

https://www.w3.org/2001/sw/wiki/TONES
http://www.cs.ox.ac.uk/isg/ontologies/
http://bit.ly/1J2X3Vi

4.6. REASONER BENCHMARKING 107

repository. Many of the ontologies as part of BioPortal are built to be used by

domain experts and information systems, and the both the end-users and en-

gineers are important stakeholders for OWL reasoners. We keep a copy of all

versions of all ontologies publicly available on BioPortal (7897 files in January

2015) through its REST Services.16 We call a snapshot of BioPortal the set of

latest versions of all ontologies accessible through these web services. Due to the

fluctuating availability of imports and the quirks of different OWL API versions

with respect to different OWL and OWL-compatible syntaxes we create a work-

ing BioPortal corpus by serialising every ontology in a snapshot into OWL/XML

with merged imports closure. A minimum amount of repair is applied to ensure

that trivial (syntactic) violations do not impair DL-ness, such as injecting missing

declarations and removing empty language constructs. We have presented a more

detailed discussion about our repair strategy and an extensive survey of OWL use

beyond the expressivity bounds of OWL 2 DL elsewhere [MP14b]. Our snapshot

contains 330 non-empty ontologies. In Figure 4.4 the division of ontologies into

their respective profile categories can be seen. As discussed in Section 2.2 the

three OWL 2 DL Profiles EL, QL and RL intersect. In order to keep the bins

exclusive (every ontology only belongs to a single bin) we distinguish between

7 sub-bins for the profiles. Each bin label should be read as “including label”,

“excluding other profiles”. For example EL+RL means “including EL+RL, but

excluding QL”. We also distinguish between merely hierarchical RDFS (RDFS(-

)) and supra-hierarchical RDFS (RDFS17). There are 57 RDFS ontologies in

total, 53 of which are RDFS(-) and 4 out of which are full RDFS. RDFS(-) are

those RDFS ontologies that contain only subclass axioms (57 ontologies contain

subclass axioms), sub-property axioms (5 contain sub-property axioms), class

assertions (4), data property assertions (2) and object property assertions (2).

Supra-hierarchical RDFS occurs rather rarely and furthermore includes object

property domain (4 ontologies) and range (2) and data property domain (3) and

range (2) restrictions. 48 RDFS ontologies can be found in the intersection of

the three polynomial OWL profiles (EL+QL+RL bin) (Figure 4.4), with most

of them (46) being represented in RDFS(-). 6 ontologies in the intersection of

EL and QL fall under RDFS(-), and 1 ontology in the RL bin.18 Only 2 RDFS

16http://data.bioontology.org/documentation
17The method for RDFS detection can be reviewed in the Appendix, section A.2
18The difference between RL and EL+QL is that RL allows for anonymous individu-

als [MGH+12].

http://data.bioontology.org/documentation

108 CHAPTER 4. EXPERIMENTAL FRAMEWORK

0

50

100

150

OWL Full Profiled Pure DL

0

20

40

EL EL+QL EL+QL+RL EL+RL QL RL RL+QL

cat_rdfs2

NOT RDFS

RDFS

RDFS(−)

Figure 4.4: OWL 2 Profiles. Right: Detailed analysis of Profiled category on left
chart. Y: Number of ontologies; X: Profile

ontologies do not fall under any of the OWL 2 profiles, both OWL Full. Another

observation is that around 43% of the BioPortal ontologies in our corpus are in

OWL 2 EL, i.e. they could be dealt with by an efficient OWL 2 EL reasoner such

as ELK. This is particularly important to understand when evaluating a modular

reasoner that follows a MORe-like strategy that depends on first dividing the

ontology into an EL and non-EL part. By default, it is very unlikely that there

is much to be gained from classifying one of the 141 ontologies under the EL

profile with MORe. If we also consider the 53 ontologies in OWL Full, we have

to admit that a MORe-type approach might not be applicable to almost 60% of

the ontologies in BioPortal.19

123 ontologies in the corpus (around 37%) fall under OWL 2 DL, excluding

the 153 that fall under one of the profiles. Only 7 of these ontologies involve

modelling across the entire range of SROIQ(D), a further 5 correspond to the

expressivity of SROIQ without datatypes. The main thing to learn from this

is that more than a third of the ontologies in the corpus are fairly expressive. If

one accepts BioPortal as a proxy of the population of OWL 2 DL ontologies, this

creates a serious necessity to support the development of reasoning techniques

for very expressive ontologies.

In Figures 4.5 we can see that most ontologies in the corpus are predominantly

TBoxes. More than 36% of the ontologies have between 100 and 1,000 axioms

and another 36% between 1,000 and 10,000, compared to only around 18% larger

than that, and around 9% smaller. This more or less even distribution across

the relevant size bins suggests that reasoning procedures intended for general

19Probably more, if we take into account implementation limitations such as individuals and
nominals and the fact that 37 ontologies under DL contain nominals.

4.6. REASONER BENCHMARKING 109

OWL Full Profiled Pure DL

0

10

20

10 100 1000 10000 1e+05 1e+06 1e+07 10 100 1000 10000 1e+05 1e+06 1e+07 10 100 1000 10000 1e+05 1e+06 1e+07

Ontology

OWL Full Profiled Pure DL

0

10

20

10 100 1000 10000 1e+05 1e+06 1e+07 10 100 1000 10000 1e+05 1e+06 1e+07 10 100 1000 10000 1e+05 1e+06 1e+07

TBox

OWL Full Profiled Pure DL

0

5

10

10 100 1000 10000 1e+05 1e+06 10 100 1000 10000 1e+05 1e+06 10 100 1000 10000 1e+05 1e+06

ABox

Figure 4.5: Histogram of axiom counts across the corpus. x-axis: number of
axioms, y-axis: number of ontologies. Profiled ontologies are those that are either
OWL 2 EL, QL or RL, and Pure DL ontologies are those that fall under OWL 2
DL, but not under one of the profiles.

purpose reasoners should not focus on ontologies of particular sizes. Claims that

a specifically tailored reasoner might be able to deal with very large ontologies

should always be weighed against the knowledge that many ontologies are not

necessarily large, but perhaps smaller and very hard. More information about

the corpus can be found online.20

In the remainder of this thesis, we group ontologies by size bins. Ontologies

with less than one axiom are considered empty, with 1-9 axioms very small, with

10-99 axioms small, 100-999 medium, 1000-9999 large, 10,000-100,000 very large

and with more than 100,000 logical axioms huge. These bins do not aim to reflect

the actual distribution of ontology sizes. The main purpose of introducing them

is to make some parts of the analysis easier to understand; therefore we chose the

bin ranges in a way that is easily memorable by the reader.

20http://mowlrepo.cs.manchester.ac.uk/datasets/bioportal/

http://mowlrepo.cs.manchester.ac.uk/datasets/bioportal/

110 CHAPTER 4. EXPERIMENTAL FRAMEWORK

4.7 OWL Reasoners

4.7.1 Overview of the DL Reasoner Landscape

Apart from contributing some insights into the viability of modular reasoning

techniques, we have developed an extensive toolkit for reasoner evaluations, pri-

marily focusing on dataset creation and improved benchmarking. Some of these

tools have become a regular part of the ORE framework, primarily used for the

annual ORE Reasoner Competition [PMG+15]. As a by-product of our ORE

recruitment strategy which aimed at involving as many up-to date reasoning sys-

tems to the competition as possible, we conducted a survey on stand-alone, cur-

rent reasoners supporting reasoning with OWL or a fragment of it [MLH+15].

This survey is relevant for research into modular reasoning in two ways. Firstly,

the survey forms the starting point of a reasoner index (listing). One of the main

motivations behind employing modularity is to utilise it for optimal dispatch, i.e.

processing subsets of the ontology by the best suited delegate reasoner.21 An

accessible index of reasoning system is needed in order to be able to select the

best suited reasoner for any given problem. Secondly, we were particularly in-

terested in the question of how many reasoners were utilising modularity, and

in what ways. We mention some relevant outcomes of the survey in the course

of this thesis where appropriate; details can be found elsewhere [MLH+15]. The

complete listing of the reasoners can be accessed online [SM15]. The systems that

participated in the survey can be found in the appendix, Table A.2.

4.7.2 Reasoners in this Thesis

For all our experiments, we use four OWL reasoners that implement the OWL

API interface: HermiT 1.3.8, Pellet 2.3.1, JFact 1.2.3 and FaCT++ 1.6.3. All

four are among the most heavily used reasoners22 for OWL 2 DL. HermiT uses

a hyper-tableau approach, while the other three reasoners employ standard En-

hanced Traversal / tableau-based techniques. Despite the differences of hyper-

tableau and normal tableau, both fit under the model outlined in Section 4.1. For

21For example in MORe: ELK for EL and HermiT for remainder.
22This has never been formally verified. Indications of usage are: default shipping with

Protégé, citation counts of system description papers and download counts.

4.7. OWL REASONERS 111

the remainder of the thesis, a subsumption test is a test either triggered by a En-

hanced Traversal / tableau reasoner or a hyper-tableau reasoner. The reasoners

have been modified for the benchmark: When a subsumption test is conducted,

the start and end timestamps, the sub and super class under consideration and

the result of the test are recorded, see Section 4.1.

As of 2014, the new flagship reasoner of the DL community is Konclude [SLG14],

and every thesis around OWL reasoners must have a good reason for excluding

it from its experiments. In our case, Konclude had to be excluded for three main

reasons. Firstly, at the time of running the experiments, there was no really con-

venient way to interacting with Konclude through the OWL API. The only way

was through OWLlink23, which required the user to first start a Konclude server

instance outside of the virtual machine the experiment was run in. This way of

interacting with the reasoner created some (often parsing related) bottlenecks,

and inconveniences in terms of experimental setup (killing the server after each

classification, waiting for the operating system to free the port it was run on,

and more). Secondly, implementing the Reasoner Stage Benchmark would have

required effort from the Konclude developers. As we were only just developing

the Stage Benchmark, it was more convenient to interact with developers more

local to us (FaCT++). Lastly, and most importantly, our time management was

at the time of writing not robust for parallel implementations such as the ones

found in Konclude. It is likely for example that the use of System.nanoTime() is

problematic when benchmarking Konclude.

While we can use this approach to compare results for each reasoner, inter-

pretation of comparisons between reasoners might be misleading due to imple-

mentation particularities. For example, some reasoners might apply graph-based

methods to determine subsumptions up-front, and other might have them more

tightly intertwined with their (hyper-) tableau engine. In order to choose where

exactly to measure, we either asked the developers directly (JFact, FaCT++)

or were guided by benchmarking code already present (progress monitors for de-

bugging in HermiT and Pellet). The exact points of measure can be taken from

Table 4.1. Because we are interested in real life behaviour, we allowed the rea-

soner to fall into any internal state it normally would, like the deterministic part

of HermiT for Horn-SHIQ or Pellets internal EL-Reasoner. That said, we do not

23http://www.owllink.org/

http://www.owllink.org/

112 CHAPTER 4. EXPERIMENTAL FRAMEWORK

claim to time all subsumptions a reasoner determines, because they are also de-

termined by nested consequence-based approaches or during pre-processing using

structural approaches. We are confident that we capture all tests determined by

actual calls to the tableau engine during traversal.

JFact is a Java-port of FaCT++, and was chosen mainly to analyse the sim-

ilarities and differences with its C++ counterpart. While the algorithms are

strictly the same, JFact usually is a couple of months behind FaCT++ in terms

of up-to-dateness, and therefore not always equal in results. Because it is eas-

ier to integrate data types in Java, JFact does support more of them, and may

therefore process certain ontologies that FaCT++ outright rejects.

4.8 Supporting Materials and Datasets

All scripts, datasets and some additional materials can be downloaded from the

following location:

Material 4.1. http: // owl. cs. manchester. ac. uk/ publications/ supporting-

material/ phd-matentzoglu/

http://owl.cs.manchester.ac.uk/publications/supporting-material/phd-matentzoglu/
http://owl.cs.manchester.ac.uk/publications/supporting-material/phd-matentzoglu/

4.8. SUPPORTING MATERIALS AND DATASETS 113

Table 4.1: The methods in which the various stages and tests are recorded. For
an explanation of the labelling, see Section 4.1

JFact
PP OUTSIDE
CC TBox.isConsistent();

PRP TBox.isConsistent()
ST TBox.createTaxonomy()

POP TBox.createTaxonomy()
POPFIN OUTSIDE

SAT TBox.isSubsHold(Concept,Concept)

HermiT
PP OUTSIDE
CC Reasoner.isConsistent()

PRP Reasoner.isConsistent()
ST DeterministicClassification.classify(); QuasiOrderClas-

sification.buildHierarchy();
POP DeterministicClassification.classify(); QuasiOrderClas-

sification.buildHierarchy();
POPFIN OUTSIDE

SAT Tableau.isSatisfiable(boolean, boolean, Set, Set, Set,
Set, Map, Map, ReasoningTaskDescription)

Pellet
PP OUTSIDE
CC KnowledgeBase.consistency()

PRP KnowledgeBase.consistency()
ST KnowledgeBase.classify()

POP KnowlegeBase.classify()
POPFIN OUTSIDE

SAT ABox.isSatisfiable(ATermAppl, ATermAppl);

Chapter 5

Module Hardness

The core underlying assumption of utilising modules for classification is the benign

module conjecture1, which states that no module should be harder to reason with

than its parent ontology (see Section 2.4). More formally the conjecture is as

follows:

Hypothesis 5.1. Given an ontology O and a reasoner R, there is no module M
of O with M⊆ O such that CT (O,R) < CT (M,R).

Note that we explore this hypothesis with respect to ⊥-locality based mod-

ules, but the arguments provided for the conjecture in this chapter should hold

for all depleting, justification-preserving modules (for example other kinds of

locality-based modules). The conjecture is entirely independent of the (sound

and complete for O) reasoner and independent of the hardware the classification

is performed on—as long as it is fixed (the same reasoner/hardware was used

to to obtain the classification time measurement for the module and the whole

ontology).

It is trivially the case that there is a module M such that CT (O,R) ≈
CT (M,R) since O is a module for itself. There are two observations that make

this conjecture worth stating.

� It is known that a subset of an ontology can be harder than the ontology

itself [GPS12]. This result will also be reconfirmed in this chapter. A

module is a subset of an ontology.

� The risk emanating from this possibility is critical. Should the conjecture

be violated regularly, a lot of the argument for modular classification would

fall apart, or at least become more tricky.

The main goal of this chapter is to show the counter-intuitive result that the

conjecture does not hold. As a consequence of that, we will state and test a

modified conjecture to establish the actual risk of pathological modules for mod-

ular classification. We find that (1) 5.3% of the ontology-reasoner pairs actually

1Also internally referred to as the Bijan conjecture, after Bijan Parsia.

5.1. DEFINITIONS AND MODELS 115

exhibit pathological modules in a realistic setting, (2) 0.46% of the modules as

extracted by state-of-the-are modular reasoning techniques (MORe-modules and

Chainsaw maximal modules) exhibit pathological behaviour and (3) the major-

ity of pathological modules correspond to more than 75% of the whole ontology.

Our main conclusion is that pathological modules exist and constitute a relatively

small threat to modular reasoning techniques that involve large modules.

5.1 Definitions and Models

The phenomenon under investigation is the hardness of the classification of

a module. As extensively discussed in Section 2.4, we focus our attention on

syntactic locality-based ⊥-modules. The hardness of classification is the time

it takes for a reasoner to classify the ontology, denoted CT (O,R), or the module,

denoted CT (M,R), operationalised as wall-clock time (Section 4.4.2). Note that

the classification time cannot be directly obtained. Instead, we rely on sequences

of measurements (runs) on a particular (type of) machine and then choose an

appropriate way to obtain a representative value (usually mean, maximum value

or median, sometimes first in sequence) based on the sequence that we believe

represents the classification time in our context the best. In what follows, we

refer to a reasoner as R and to an ontology as O.

The existence, for example, of Hot Spots [GPS12] suggests that chunking

the ontology into smaller bits might have considerable beneficial effects (Sec-

tion 3.3.3). It was also empirically observed in [GPS12] and has been known

anecdotally for years that subsets of an ontology can be harder than the whole.

A subset that is harder than the whole is defined as follows:

Definition 5.1. We say S ⊂ O is a hard subset of O for R if CT (O,R) <

CT (S,R).

If O and R are clear from the context, we simply refer to the subset as S.

Obviously, given an ontology O, a reasoner R, a decomposition DO (see Sec-

tion 2.5 and a module M ∈ DO, if CT (M,R) is larger than CT (O,R), then

modular reasoning is counter-productive, and efforts to tune aspects of modular

classification are pointless. The goal of this chapter is to investigate the general

case: Are modules of an ontology ever harder than O itself? If so, how preva-

lent is the phenomenon? In contrast with random subsets, there are some strong

arguments for thinking the answer is negative.

116 CHAPTER 5. MODULE HARDNESS

disjoint

A B

C
D

Figure 5.1: Illustration for the effect of a disjointness on subclasses. If A and B
are disjoint, than so are C and D.

Firstly, if the reasoner is using standard Enhanced Traversal to classify the

ontology, a random subset S might omit an explicitly asserted subsumption

or, perhaps more importantly, a disjointness axiom which considerably prunes

the traversal space for atomic subsumptions. Example 5.1 illustrates this phe-

nomenon.

Example 5.1. Traversal space pruning through disjointness

� Given concept names A,B,C,D ∈ Õ with A being disjoint from B, O |=
C v A and O |= D v B

� then no C can be a subclass of any D and vice versa, see Figure 5.1.

� The number of tests that can potentially be omitted because of the disjoint-

ness is 2 ∗ n ∗ m, where n is the number of subclasses of A and m is the

number of subclasses B.

If a disjointness follows from O but not from S, a reasoner might do a large

number of additional tests when classifying the subset, especially if the the dis-

jointness is implied high up in the class hierarchy. Modules must contain all such

axioms over their signature in order to capture those entailments.

Secondly, a random subset might break some justification of an atomic sub-

sumption over its signature. For example, some axioms of an “easy” justification

for A v B in O might be missing in the random subset, leaving only harder jus-

tifications unbroken.2 Examples for such axioms would be the self-justification

A v B (if A v B was asserted in O), or ¬A v ¬B. A module must contain all

justifications for each entailed subsumption.

2Harder in the sense that they might for example force the reasoner to construct larger
models.

5.1. DEFINITIONS AND MODELS 117

1.00

1.25

1.50

1.75

2.00

HS MOD OC
la

ss
ifi

ca
tio

n
tim

e

Figure 5.2: Illustration for the expected behaviour of a hard subsets HS (hs),
their corresponding module M (mod) and the source ontology O (o). Given
that HS ⊂ M ⊂ O and CT (HS,R) > CT (O,R) we expect that CT (O,R) ≥
CT (M,R).

In general, since a module contains everything from the ontology relevant to

entailments over its signature (depletingness, see Section 2.4), it seems reasonable

to think that reasoning should be no harder. No shortcuts can be missing and we

have removed a lot of potential distractions. However, these considerations are

merely speculative.

If, against our expectation, a module turns out to be harder than the whole

ontology, we call it pathological, defined as follows:

Definition 5.2. Given O, R and a module M of O with M⊂ O, we call M a

pathological module of O for R if CT (O,R) < CT (M,R).

Figure 5.2 illustrates our expectations for classification performance (based

on the argument presented in Section 3.4) with respect to a module M of the

signature of a hard subset HS and an ontology O with HS ⊂ M ⊂ O. If the

classification time of the subset S is larger than the classification time of the

whole ontology (hard subset), we expect the classification time of MS̃ to be less

than the classification time ofO. In other words, modularity can easify a formerly

hard subset of the ontology by adding axioms. This protective effect is defined in

the following:

Definition 5.3. Given O, R, a moduleM of O and a hard subset HS with HS ⊂
M ⊂ O, we say modularity has a protective effect over HS if CT (HS,R) >

CT (M,R).

In the analysis, we distinguish between significantly and insignificantly patho-

logical modules, as defined in the following:

118 CHAPTER 5. MODULE HARDNESS

Definition 5.4. Given O, R and a pathological module M of O with M ⊂ O,

we say M is significantly pathological if CT (M,R)
CT (O,R)

− 1 ≥ 0.05. A module is

insignificantly pathological if it is pathological, but not significantly pathological.

There are two less obvious, but credible, arguments against the conjecture.

Firstly, modularity might not play well with other optimisations employed by

standard reasoning systems. For example the lower expressivity ofM might trig-

ger a classification procedure implemented on the basis of a different calculus (for

example a nested consequence-based procedure), that for some reason is less ef-

ficient on the module than the primary model-construction procedure. However,

this should happen only in extreme cases that are unlikely to occur in practice

(for example involving very large modules), we (as reasoner developers) might

be able to isolate the dysfunctional interaction with the other optimisations and

fix it (or choose to ignore it). Secondly, we know (and reconfirm in Chapter 6)

that non-determinism can have a strong effect on classification hardness. It is

in principle possible that a module might encourage a reasoner to make worse

choices along the way, overall making CT (M,R) harder than CT (O,R).

It should be noted that we do not aim to establish the risk of the overall hard-

ness of all modules in a decomposition.3 For example, there are cases of modules

that are not pathological, but are not easy enough to justify the employment

of modularity, even if we disregard the overhead induced by computing the de-

composition. If the classification time of the module is just a bit short of the

classification time of the ontology, any gains from modularity are marginal, and

most likely outweighed by the effort of classifying the module(s) representing the

remaining ontology (even if they do not overlap).

As a reminder, an OWL 2 DL ontology is one that is not OWL Full, a profiled

ontology is one that falls under one of the three OWL 2 profiles (QL, EL, RL)

and a pure DL ontology is one that is neither OWL Full, nor profiled.

5.2 Empirical Characterisation

The primary goal of this chapter is testing Conjecture 5.1 for modules that are at

least potentially non-trivial in terms of total classification time.4 This systematic

bias was introduced because of the high degree of measurement variance in the

3For details on what a decomposition is, see Section 2.5.
4Operationalised in Section 5.3.1.

5.2. EMPIRICAL CHARACTERISATION 119

sub-second area and tight resource constraints. This bias poses a threat to the

external validity of the results: It is possible that pathological cases only occur

in modules that can be classified in less than 10 seconds. Since we do not claim

to measure the density of pathological modules in general, but merely to verify

their existence, this bias is acceptable.

A full formal understanding of OWL ontology hardness for a reasoner is not in

sight (see Section 1.3), but we can gain some sound understanding by resorting

to empirical methods. The full empirical characterisation of module hardness

consists of two main parts:

1. Targeted search for pathological modules

2. Testing the benign module conjecture

We will illustrate the problem of taking a random sample of modules and

propose a solution to finding potentially hard ones.

5.2.1 Method: Finding Pathological Modules

We can only be sure that Conjecture 5.1 holds if we classify all modulesM⊂ O
with all possible reasonersR and do not find a single pathological module, see Def-

inition 5.2 (assuming no experimental error). To clearly reject the conjecture we

restrict ourselves to significantly pathological modules, as measurement variance

might make differences of less than 5% questionable, especially if the module

is almost as big as the ontology. As we will see in Section 5.6.1, the variance

across runs exceeds 5% only in a few (1.54%) cases. Therefore we consider the

5% threshold as safe enough to determine a “truly” pathological module.

The main problem here is that the set of allM⊆ O for any given O is poten-

tially exponential in the number of axioms in O [DVPSS11b]. This theoretical

threat has been shown to hold in practice [DVPSS11b, PS10]. The authors of

[DVPSS11b] describe in detail pessimal and optimal patterns of ontologies lead-

ing to from between 1 up to exponentially many total modules in O and suggest

that out of their corpus, most ontologies exhibit exponential behaviour. In fact,

only two of their ontologies (both with fewer than 50 axioms and 25 names) could

be fully modularised, i.e. all modules extracted, within a reasonable timeout of

“several hours”. Even if we were able to extract all modules for some O, we might

not be able to classify them all due to time constraints. Consider an ontology O
with a signature Õ containing more than 1,000 names and at least 1,000 axioms.

The number of modules for this ontology exceed, in the worst case, 21000 − 1

120 CHAPTER 5. MODULE HARDNESS

(number of k -combinations for all k) or, in other words, a number with 302 digits

(the worst case is the case where no two axioms have overlapping signature).5

Even if we assumed that there are as many as 210 pathological modules in O (an

arbitrary guess to illustrate the problem), the probability for a random module

to be pathological is tiny (9.557 ∗ 10−299), and thus finding even one of them

through random sampling will be unlikely. While the worst case is perhaps not

a realistic measure, we know from previous work around logical decompositions

(see Section 2.5) that some ontologies are comprised of a large number of logically

disconnected components [DVPSS11b], a strong indicator for a large number of

potential modules. Moreover, the example understates the size of many ontologies

by one to four orders of magnitude, both in terms of signature and axioms.

A solution to this problem might be to take a representative sample of all

the modules in O. The only realistic way to obtain a random sample of modules

is to compute random sub-signatures S ⊂ Õ to be used as seeds to extract the

module. The normal way to obtain a random S would be to iterate through

the signature, and for each name, flip a coin. For heads, the name is included

in S, for tails, not. It can easily be seen that a non-stratified random sample

would almost exclusively contain sub-signatures of size |Õ|
2

. This is problematic

because we know from experiments with random subsets [GPS12] that hard ones

are generally quite large, more often than not around 7
8

of |O|. A purely random

sample would not guarantee us to find any modules in that size range, a systematic

bias that might damage the internal validity of the study.

Another potential sampling approach might be stratified random sampling.

However, a random sample stratified by the size of the signature (a random

sample of signature size 1, 2,..k..,n) would still be huge. Even if we deem 1 single

random signature of size k as sufficiently representative of all signatures of size

k (which it is probably not), we would still have |Õ| modules to process. In our

optimistic example, we would have to process 1000 modules (for one ontology),

each of which is potentially as hard as the whole ontology. Classifying so many

modules is neither practical, nor likely to be profitable, let alone executing each

multiple times to mitigate experimental error. An alternative to simple stratified

sampling might be an approach involving a weighted coin. This way, the size of

the seed signature could be biased towards larger numbers, therefore increasing

5Even if every module would take only a millisecond to classify, it would take longer to
classify all modules than the universe has existed so far.

5.2. EMPIRICAL CHARACTERISATION 121

the likelihood of larger and potentially harder modules. However, we do not know

whether larger modules are generally harder than smaller ones (we only assume

that), which would make any attempts to bias the coin more or less arbitrary.

Even if we would obtain a statistically significant (stratified) sample, the (very

likely) low probability of encountering pathological modules would not provide

us with any certainty with respect to their existence.

In order to increase the chance of finding pathological modules, we employ the

following heuristic. We know that reasoners are performance heterogeneous over

a wide range of ontologies [GPS12], we know that hard subsets exist [GPS12],

and we do know how to find them. From every ontology, a number of random

paths, Definition 5.5, are sampled to identify proportions of ontologies which

might exhibit hard subsets.

Definition 5.5. Given O and a sequence of n subsets Si ⊆ O we call (Si)ni=1 an

n-path of O if

� S1 ⊂ S2 ⊂...⊂ Sn−1 ⊂ O = Sn and

� |Si| = i
n
∗ |O|.

A path is sampled by slicing the ontology O into subsets of size 1
n
, in our case

with n = 8. I.e, the first slice corresponds to 1
8

of the ontology, the first two slices

together to 2
8

and so on, the full ontology to 8
8
. Each m

8
subset is called a slice of

the ontology, the index m representing a proportion for the ontology, defined in

the following:

Definition 5.6. Given O and two counting numbers m and n with 0 < m ≤ n,

the m
n

-proportion of O, written Omn , is defined as follows:

Omn := {S ⊆ O | |S| = m

n
∗ |O|}

In other words, Omn represents the set of all subsets of O of size m
n

. For an

example of a classified path, see Figure 5.4 later in the chapter. A path (Si)ni=1

is called monotonic if CT (Si,R) < CT (Si+1,R) for each i < n. In other words,

a monotonic path raises only upwards towards CT (O,R). Other metrics related

to performance heterogeneity, can be found elsewhere [GPS12].

For every hard subset HS i we extractMi, defined asMi := ⊥-mod(H̃S i,O).

It follows that HS ⊆ M ⊆ O, assuming that HS i has no tautologies. If the

module hardness conjecture holds, for any HS,M,O such that HS ⊆ M ⊆ O

122 CHAPTER 5. MODULE HARDNESS

and any reasoner R it should follow that CT (HS,R) ≥ CT (O,R) ≥ CT (M,R).

A case for which CT (M,R) > CT (O,R) is called a pathological case, or a case

refuting the conjecture. In other words, we are trying to find evidence against

the conjecture by taking subsets of the ontology that are harder than the whole,

add 0 or more axioms to them to turn the subset into a module and then check

whether this process dropped the hardness of the module to below (or equal to)

the hardness of the ontology.

We want to emphasise at this point that this targeted search strategy is not the

only possible approach to bias towards (potential) pathological modules. Another

option would be to bias random module sampling towards ontologies involving

hard reasoning problems (hard subsumption tests, Hot Spots) or a high degree

of observable non-determinism, assuming that only those have the potential to

actually lure the reasoner into a harder space. There is no conclusive reason to

pick one strategy over the other, but we decided that the potential of observ-

ing a protective effect of modularity using the hard subset method was by itself

appealing enough to pick the hard subset based method.

5.3 Experimental Design

In the following we will discuss Experiment 5.1.

Experiment 5.1. Testing the benign module conjecture by extracting modules

using hard subsets.

For this experiment, we use Pellet, FaCT++ and HermiT, see Section 4.7.2.

JFact had to be excluded because of resource limitations. Its role as a Java-port

of FaCT++ made it the obvious first choice for exclusion. We conducted our

study on the BioPortal snapshot described in Section 4.6.3 and performed the

classifications on our Mac Mini cluster (Machine 4.1). Note that we perform the

experiments on all of BioPortal, including OWL Full ontologies. Standard DL-

reasoners are incomplete over OWL Full ontologies in a not externally specified

way, which makes their behaviour mostly incomparable. We clearly isolate both

DL from non-DL cases in the analysis.

5.3.1 Experimental Pipeline

The method introduced in Section 5.2.1 has six steps:

5.3. EXPERIMENTAL DESIGN 123

Procedure 5.1. Finding pathological modules

1. Extract paths from O
2. Identify hard proportions of O
3. Sample randomly from hard proportions in O
4. Identify hard subsets

5. Extract modules from hard subsets signature

6. Identify pathological modules

In the following, we will provide some details of our pathological module

finding method (Procedure 5.1). For every ontology in the corpus we extracted

three different paths (Step 1).6 We conducted the investigation on all BioPortal

ontologies with more than 10 axioms (328). We started by drawing a random

eighth of the set of (logical) axioms in O and exported it as a new ontology.

Then a second eighth of the remaining axioms was drawn (randomly) and added

to the first eighth to get the 2
8

slice of the ontology, which is again exported as a

new ontology. This procedure is repeated for 3
8
, 4

8
and so on until the last random

subset of O, 7
8
. A path thus consisted of eight cumulatively grown subsets, the 8

8

corresponding to the full ontology. We then classified all 6888 subsets (7 subsets

per path, 3 paths per ontology, 328 ontologies) and the 328 full ontologies with all

three reasoners. We call the first classification time obtained for a full ontology

the base case as defined in Definition 5.7.

Definition 5.7. Given R, O and a sequence CT (O,R, i) of classification time

measurements for O by R we call CT (O,R, 1) the base case.

Next, we determine the set of hard proportions inO (Definition 5.8) by looking

for respective witnesses.

Definition 5.8. Given R and O we call Omn a hard proportion of O with respect

to R if there is at least one witness for the hard proportion with respect to O and

R.

We call S ⊆ O a witness for the |S|
|O|- proportion of O if

1. CT (Si,R) > CT (O,R)

2. CT (Si,R) > 10 seconds

Condition 2 for being a witness (Definition 5.8) was employed to mitigate

resource limitations and to ensure that classification time differences between
6The number three is often, as in this case, the sweet spot between feasibility and experi-

mental error mitigation.

124 CHAPTER 5. MODULE HARDNESS

modules and subsets could be high enough to be attributed to actual phenomena

(rather than measurement error). We then sampled 20 random subsets of size i
8

of |O| for every hard proportion of O (Step 3). For example, if we found during

the path screening that a subset S5 ⊂ O was harder than O, we would have

sampled 20 random subsets of size 5
8

of |O|. We then classified these subsets with

the reasoner that witnessed the hardness. For example, if HermiT had a hard

subset S5 ⊂ O, we had HermiT (and only HermiT) classifying the 20 random

subsets of size 5
8

of |O|. Restricting the classification of a subset to the reasoner

that witnessed the hardness was necessary because of resource limitations, and

the large differences in terms of performance heterogeneity between the reason-

ers [GPS12]. To mitigate the effect of experimental error, we considered as hard

subsets only those that proved harder than their source ontology in three inde-

pendent experiment runs. To save further computational resources, we classified

all sampled subsets once; if they appeared hard, a second time, and if hard again,

a third time. Of all hard subsets found this way, we extracted their signature

and used them as a seed to extract the corresponding ⊥-module using the OWL

API (Step 5). We then classified the resulting modules three times each. If, for

a module M of O, we found that CT (M,R) > CT (O,R) in three independent

runs, we classified M as a pathological module (Step 6).

5.4 Results

Out of the 330 ontologies in the corpus (see Section 4.6.3), paths were extracted

for the 328 with more than 10 logical axioms. In total, 6,888 subsets were ex-

tracted (328 ontologies * 7 subsets per path * 3 paths per ontology, full ontologies

are treated separately in the following), which led to 20,664 attempted classifica-

tions (6,888 subsets * 3 reasoners). Out of these, 18,978 were successfully com-

pleted (92%) within a timeout of 30 minutes. HermiT completed 6,374 (93%),

Pellet 6,399 (93%) and FaCT++ 6,205 (90%). Out of the 1,686 failed classifi-

cation attempts, more than 46% were due to timeout, 12% due to unsupported

datatypes, 5% due to inconsistency and the rest (mostly) reasoner internal fail-

ures. Out of the 328 full ontologies and 984 classification attempts (3 reasoners *

328 ontologies), 834 (84%) successfully concluded (HermiT and Pellet 283 (86%)

and FaCT++ 268 (82%)).

5.4. RESULTS 125

5.4.1 Finding Pathological Modules

Out of the 984 paths per reasoner (328 ontologies, 3 paths each), 804 paths were

fully completed for FaCT++, 845 for HermiT and 829 for Pellet. We excluded

from our analysis all paths for which we could not obtain the base case, see

Section 5.3.1. 145 paths for FaCT++, 124 for Pellet and 110 paths for HermiT

were excluded because we did not obtain a base case (CT (O)), reducing the

18,978 successful classifications of hard subsets by 1533 to a total 17,455.

42% of all paths completed by FaCT++ are non-monotonic, 24% of paths for

HermiT and 60% of paths for Pellet. This suggests that HermiT is somehow more

stable in terms of reasoning performance than the other two reasoners, potentially

because it is less affected by non-determinism [GHM+14]. Understanding the

differences between reasoners will be part of future work.

Identifying Potentially Hard Proportions of Ontologies

Of the 17,455 potential witnesses for hard proportions of O (see Section 5.3.1),

633 involved a subset that had a classification time of more than 10 seconds

(see Definition 5.8, condition 2). Figure 5.3 shows a complete break-down by

language family and reasoners. Of these 633 potential witnesses, 143 (22.6%)

were harder compared to their base case (Definition 5.8, condition 1). In total,

these 143 cases were witnesses to 52 unique potentially hard proportions of O,

including 34 for FaCT++, 16 for Pellet and 2 for HermiT. The remaining 490

cases involving subsets harder than ten seconds were witnesses to 185 unique

non-hard proportions, including 36 for FaCT++, 52 for Pellet and 97 for HermiT.

Figure 5.4 (see later in this chapter) shows the paths for the 5 DL ontologies that

turned out to contain hard modules, broken down by reasoner.

Hard subsets could be found at almost all proportions of O. Restricting

ourselves to DL parent ontologies, we can see in Table 5.1 that unsurprisingly, the

probability of a subset being hard grows the larger the proportion. It is interesting

that the relative number of hard subsets across all proportions of O differs only

a bit between subsets with CT (S,R) > 10 sec and those CT (S,R) ≤ 10. This

suggests that the bias introduced by considering only subsets harder than 10

seconds does not hurt generalisability too much.7

7Which is nice to know, but not strictly necessary as we do not claim generalisability.

126 CHAPTER 5. MODULE HARDNESS

Figure 5.3: Break-down of random subsets obtained through random path sam-
pling. For example, we can observe that out of the 17,445 subsets classified in
total, 633 were harder than 10 seconds. Out of these 633, 143 were actually hard.

ado go pr

reto rexo

0

10

20

30

40

0

10

20

30

0

500

1000

1500

0

1000

2000

3000

0

500

1000

1500

p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8
Region

C
la

ss
ifi

ca
tio

n
tim

e
(s

ec
)

r

fact

hermit

pellet

Figure 5.4: Paths for OWL 2 DL ontologies with hard modules. Each line repre-
sents a path. On each path, we have a measurement point coming from a single
classification of the random subset of the respective proportion of O. For ex-
ample, the peak in the first plot (ADO ontology) came from a classification of a
random subset of size 7

8
∗ |O| by Pellet.

5.4. RESULTS 127

Prop. #All #Hard #Easy %All %Hard %Easy
1 72 0 72 4% 0% 4%
2 115 9 106 6% 11% 6%
3 149 9 140 8% 11% 8%
4 213 14 199 11% 18% 11%
5 278 15 263 15% 19% 15%
6 397 15 382 21% 19% 21%
7 639 18 621 34% 22% 35%
All 1863 80 1,783 100% 100% 100%

Table 5.1: Number of hard subsets by proportion of O, broken down by easy
(CT (S,R) ≤ 10 sec) and hard (CT (S,R) > 10 sec).

Determining Hard Subsets

Next, we describe the results of the classification of the 20 randomly sampled

subsets for each hard proportion of O. Out of the 1040 subset classification at-

tempts (52 hard proportions, 20 random subsets each), 921 (88.6%) turned out

to be hard after the first run, 903 (86.8%) after the second and 900 (86.5%) after

the third. HermiT only ever witnessed a hard subset for OWL Full ontologies,

Pellet and FaCT++ witnessed hard subsets both for Full and DL ontologies. Out

of the 52 potentially hard proportions of O we started with, 49 turned out to be

actually hard (i.e., containing hard subsets). Out of these, for 37 proportions all

measured subsets turned out to be hard, and only 3 subsets had less than 5 wit-

nesses. Out of the 900 cases of hard subsets, 401 came from OWL Full ontologies

(44.6%), 360 from OWL 2 DL ontologies falling under one of the three profiles

(40%) and only 139 (15.4%) from pure OWL 2 ontologies. All 900 cases are more

or less evenly distributed across all proportions (1-7) across 10 different ontolo-

gies.8 Expressivity levels of these 10 ontologies range from ALE to SHOIQ(D).

One observation to note is that most of the source ontologies are large: the small-

est (ADO) has 2,401 axioms, 2 ontologies are around 33,000 and 80,000, and the

remaining 7 above 100,000 axioms. 2 ontologies (EP and GLYCO) have large

proportions of ABox axioms. The size of the ontologies might be a consequence

of the 10-second filter introduced for the hard subset finding, i.e. subsets that

take longer than 10 seconds to classify should usually be of a considerable size

themselves.

8ADO, CHEBI, EP, GLYCO, GO, HINO, PR, RETO, REXO, RH-MESH

128 CHAPTER 5. MODULE HARDNESS

Figure 5.5: Breakdown of pathological cases for modules sampled from hard
subsets.

Testing for Hard Modules

After extracting ⊥-modules for the 900 subset-reasoner pairs and running them

3 times each (2700 classifications), we ended up with 274 classifications (10.2%)

resulting in pathological modules when compared to the base case of their re-

spective parent ontology. If we exclude OWL Full ontologies (1494 remaining),

the share of hard module cases drops to 5.8% (among OWL 2 DL ontologies, 86

cases). Out of these, only 5 (0.34%) are significantly pathological. The protective

effect of modularity can be said to be 99.66%, or in other words, 99.66% of the

hard subsets from OWL DL parent ontologies were protected by turning them

into modules. The majority of these 86 cases are produced by GO and RETO

using FaCT++ with 43 and 29 cases, respectively. Hermit did not produce any

pathological cases within OWL 2 DL (in fact, not even a hard subset). Pellet

contributed 6 pathological cases to the 86 with modules from the ADO ontology,

all 6 differing by merely fractions of a second (making up about 95% of the size

of O). Only 5 of the 86 cases involve significantly pathological modules, all of

which involving modules that constitute around 95% of the size of their parent

(all Pellet on ADO), see Figure 5.5. The distribution of pathological modules can

be seen in Figure 5.6.

Cross-checking Results

We compared the classification time of a module (every run) to only a single

run of the full ontology classification, which may have led to measurement error.

5.4. RESULTS 129

1

10

100

60 80 100
Number of axioms in % of |O|

co
un

t Type
All
Pathological

Figure 5.6: Histogram showing the distribution of module sizes compared to
their parent ontology, excluding OWL Full (x-axis, in %). Pathological modules
include insignificantly pathological. Because of the small number of pathological
modules, the y-axis of the histogram is presented in log-scale.

Figure 5.7: Overview of pathological cases for the cross comparison of all modules,
hard subsets and parent ontologies.

To corroborate the previous results, we will cross-compare our measurements for

hard subsets and modules with three repeated classifications of O (discarding the

base case entirely). With 2700 runs of hard subsets (900 pairs, 3 runs), 3 runs

of module classifications, 3 runs of CT (O), that makes 24,300 total comparisons

(900 * 3 * 3 * 3). Out of these, we obtained 24,246 full comparisons for the

following analysis.

Figure 5.7 shows the breakdown into pathological cases by reasoner and pro-

file. The main thing to take away here is that, again, only Pellet exhibited a

number of significant pathological cases for OWL 2 DL source ontologies. In

fact, the break-down of the cross compared data set appears quite similar to the

comparison against a single base case, Figure 5.5. This suggests that at least in

our case, a single base case is representative.

130 CHAPTER 5. MODULE HARDNESS

fact pellet

0

250

500

750

1000

1250

−15 −10 −5 0 −15 −10 −5 0
Normalised fold change

co
un

t

o
ado
chebi
go
pr
reto
rexo
rh−mesh

Figure 5.8: Histogram illustrating the protective effect of modularity. The x-axis
shows the protective effect, quantified by the relative difference (fold change) in
classification time between the hard subset and the module. For example, the
RETO and REXO modules were only marginally easier for FaCT++ than their
respective hard subsets, while GO modules were up to 14 times easier.

Protective Effect

Figure 5.8 illustrates the protective effect (see Section 5.1) of modules over hard

subsets, broken down by ontology (excluding OWL Full). The protective effect

can only be, at least with our data, illustrated by looking at FaCT++ because

it exhibited by far the majority of hard subsets among DL parent ontologies.

While the effect is very small for the majority of the cases (RETO, REXO and

PR ontologies), we can see quite a number of significant easyfications for GO,

RH-MESH and CHEBI, sometimes more than 14 fold.

5.5 Modified Benign Module Conjecture

Given that we did find 86 pathological and 5 significantly pathological cases

(compared to the base case, Figure 5.5) for OWL 2 DL ontologies using our

search strategy, we have to reject the benign module conjecture. This poses the

question of how dangerous this observation is for modular reasoning techniques.

In order to address this threat, we investigate the following modified conjecture:

Hypothesis 5.2. Given an ontology O and a reasoner R, there is no module

M⊆ O extracted by a modular reasoning technique based on the MORe or the

Chainsaw approach such that the classification time of the ontology CT (O,R) is

smaller than the classification time of the module CT (M,R).

5.5. MODIFIED BENIGN MODULE CONJECTURE 131

The main reason why this conjecture is more likely to hold is that all patho-

logical modules found by our targeted search are larger than 90% of their parent

ontology, sometimes being just a few axioms short of O (Figure 5.6). Our expe-

rience with modular reasoning suggests that the modules we are dealing with are

typically smaller than that. In the following we describe Experiment 5.2.

Experiment 5.2. Testing the modified benign module conjecture by extracting

modules used by state-of-the-art modular reasoners.

5.5.1 Experimental Pipeline

In order to address our risk for realistic cases, we

� extracted both MORe-modules and sampled randomly from the set of Chainsaw-

modules (see Section 3.3.2) across all BioPortal-ontologies

� classified all modules once9 with HermiT, Pellet and FaCT++.

� compared classification times to the base case.

We attempted to extract both EL and remainder modules of the MORe-

decomposition, see Section 3.3.1, across our corpus within in a timeout of 12

hours. Because we were only interested in cases where the modules were neither

empty nor equal to O, we only considered those pairs of modules for which both

modules were non-empty.

In order to extract all maximal modules we first decomposed and serialised

the Atomic Decomposition of all BioPortal-ontologies within a timeout of 12

hours.10 We then randomly sampled 30 top atoms per ontology and extracted

and serialised the corresponding maximal modules. See Section 3.3.2 for how

Chainsaw uses maximal modules.

All modules extracted were classified (once) by all three reasoners described in

Section 5.3.1, allowing a 30 minute timeout per classification (timeout, as always,

due to resource constraints). The order of executions was again fully randomised

and distributed across all four machines in the cluster.

5.5.2 Results

From the 24,423 attempted module classifications, 23,418 successfully terminated

(96%). For testing Conjecture 5.2, we exclude a further 2,122 classifications, for

9Note the potential for experimental error.
10See elsewhere [MP14c] for details about the technique

132 CHAPTER 5. MODULE HARDNESS

Figure 5.9: Overview of pathological cases for MORe and Chainsaw modules.

which we did not obtain a base case (see Section 5.3.1) and 26 for which the

size of the module was equal to the size of the ontology. Out of the remaining

21,270 (2,319 from OWL Full, 11,373 from OWL 2 EL/QL/RL, 7,578 from pure

OWL 2 DL parent ontologies), 137 (0.6%) violate the conjecture (11 from OWL

Full, 22 from OWL 2 EL/QL/RL, 104 from pure OWL 2 DL ontologies, see

Figure 5.9). Out of these, 84 had significant measurement differences (between

O andM) of more than 5%: 2 from OWL Full, 10 from OWL 2 EL/QL/RL, and

72 from pure OWL 2 DL ontologies. 22 out of the 72 pure OWL 2 DL ontologies

had differences harder than a second (0 out of the ones falling under one of

the profiles). Figure 5.9 shows a detailed breakdown by reasoner and module

type. If we ignore OWL Full, 0.43% of the realistic cases are significantly

pathological (82 cases). 36 out of the 681 ontology-reasoner pairs (5.3%) in the

sample exhibit pathological behaviour.

Significantly pathological modules are between 1.05 and 34.37 times (median

1.13, 3rd quartile 1.26) harder than their parent ontology. In only 5 cases from

DL ontologies was the classification time of the module more than twice as high

as that of the parent ontologies (one case of FaCT++ with MHC, 4 of HermiT

with PORO).

In terms of parent ontology, only three OWL 2 DL ontologies, namely CAO

5.6. DISCUSSION 133

(31 cases), NEMO (2 cases) and NPO (2 cases) had more than one reasoner

experiencing a significantly pathological module. Interestingly, 2 reasoners ex-

perienced a pathological MORe OWL remainder module for NEMO and NPO.

This is a warning sign for this modular reasoning technique, as MORe-remainder

modules are classified by a full fledged OWL 2 reasoner such as the ones in our ex-

periment. Overall 14 out of 191 cases (7.3%) involving MORe-remainder modules

from OWL 2 DL parent ontologies in the sample are significantly pathological, 5

out of which have more than a second difference in classification time (2 Pellet,

3 HermiT). 57 out of 18,569 (0.3%) Chainsaw-modules from OWL 2 DL parent

ontologies exhibited significantly pathological behaviour, 13 out of which have

more than a second difference in classification time (all HermiT, 10 in CAO and

3 in PORO).

Note that differences in classification time can often be attributed to the

effects of non-determinism. We will present a more detailed analysis of the non-

deterministic behaviour of traversal in Chapter 6.

In terms of size, 28 out of the 82 (34.2%) significantly pathological cases

involve modules that constitute more than 90% of (the size of) O. 7 cases (8.54%)

involve modules between 75% and 90% of O, 39 (47.56%) between 50% and 75%,

4 (4.88%) between 25% and 50%, 3 (3.66%) between 10% and 25% and only 1

case (1.22%) involves a modules smaller than 10% of O.

One interesting side-observation is that there seems to be a slightly higher

likelihood of finding a significantly pathological module in ontologies that by

themselves take longer than 10 seconds to classify (1.75%) compared to ontologies

which take less than 10 seconds to classify (0.37%). The likelihood of encountering

an insignificantly pathological module is with around 0.23% the same for both

groups.

Figure 5.10 show the difference of pathological modules to real modules as

histograms. While the majority of real modules are clearly small, many of the

harder modules are more than 60% of the size of their source ontologies.

5.6 Discussion

The viability of modular techniques to optimise OWL classification is based on the

assumption that reasoning with a moduleM⊆ O is never harder than reasoning

with the whole ontology. This fundamental assumption was tested thoroughly

134 CHAPTER 5. MODULE HARDNESS

10

1000

0 25 50 75 100
Number of axioms in % of |O|

co
un

t Type
All
Pathological

Figure 5.10: Histogram showing the distribution of (Chainsaw/MORe-)module
sizes compared to their ontology, excluding OWL Full (x-axis, in %). Pathological
modules include insignificantly pathological. Because of the small number of
pathological modules, the y-axis of the histogram is presented in log-scale.

in the course of this chapter and was, at least in all generality, rejected. We

found however that the significantly pathological modules resulting from our first

targeted search strategy (Experiment 5.1) were large, more than 90% of the size

of the whole ontology. From prior experience we held the belief that modules en-

countered by actual modular classification techniques were significantly smaller,

which led us to modify our conjecture to generalise only to modules as they are

encountered by MORe and Chainsaw. We confirmed that such modules were sig-

nificantly smaller than the ones we found through our targeted search. Despite

that, perhaps surprisingly, we found that such modules are occasionally patho-

logical; this time scattered more widely across the size spectrum. This poses a

threat for modern modular reasoning techniques.

As of yet, we do not have a good understanding of why a module is patho-

logical. Our best guess is that modules that are quite large fractions of their

parent ontology may be pathological merely due to harmful stochastic effects.

In Chapter 6 we confirm that classification behaves non-deterministically for a

large number of ontologies. Determining whether algorithmic non-determinism

causes pathological stochastic behaviour can only be tested by actually looking

at the models created along the way, and will be part of future work. However,

there are some preliminary indications that detrimental stochastic effects and

module pathology are related. Significantly pathological modules typically occur

outside of the three OWL 2 profiles, with only a handful of exceptions, while hard

subsets are also found among profiled ontologies. Algorithmic non-determinism

(in our case mostly OR-branching) can be a major cause of harmful stochastic

5.6. DISCUSSION 135

effects.11 As higher levels of expressivity are typically associated with higher de-

grees of non-determinism, it is possible that the the higher frequency in which

we find pathological modules outside the polynomial profiles might be explained

by the higher potential for stochastic effects in those kinds of modules. The

fact that HermiT does not find any pathological modules in the first experiment

for example could be explained by the fact that many axioms that would cause

non-determinism for the other three reasoners might not do so for HermiT (es-

sentially anything that can be rewritten into Horn), thereby reducing the overall

probability for detrimental stochastic effects.

For smaller modules, the explanations get trickier. As we will see in Chapter 6

non-determinism can have occasionally significant consequences, but tests are

generally very easy, and variation of classification times between different runs

(of the same thing) rarely exceed 5% (see also next section). Therefore, we are less

confident to suggest that small pathological modules, such as some of the ones

we found, are pathological due to non-determinism alone. Another possibility

that needs to be evaluated as part of future work is the question of whether the

drop in expressivity from O toM has forced the reasoner into a “bad” state. For

example, given an ontology O in SROIQ and a moduleM in EL withM⊂ O,

the primary model-construction-based procedure might deal with O and therefore

its subset M more efficiently than the internal consequence-based EL-classifier

that deals with M alone.

Apart from exposing some limitation to the unconditional reliance on the be-

nign effect of modularity for reasoning, we believe that our work around patho-

logical modules might be helpful in other ways. Firstly, we have developed a

toolkit that allows reasoner developers to identify ontologies for which the rea-

soner behaves in a sub-optimal way. Understanding the reasons for the patho-

logical behaviour might lead developers to isolate broken optimisations, causing

them to introduce improved case distinctions (in the previous example, improve

the test that determines whether an ontology or a module should be processed by

the internal EL-reasoner) or to repair the optimisation. Secondly, we might learn

something that can help us to develop better heuristics to lead reasoners into

more benign branches in a non-deterministic setting. Thirdly, we might learn

11As algorithmic non-determinism can be effectively removed by fixing the order in which for
example OR branches are explored it does not necessarily cause stochastic behaviour.

136 CHAPTER 5. MODULE HARDNESS

something about what makes reasoning hard. While the design of the experi-

ments in this chapter is not targeted at understanding pathological cases, they

do provide a first step by isolating interesting cases that are worthy of further

investigation and hints on where to look. For example, it might be interesting

to understand why the protective effect of modularity was so extreme (between

2 and 14 fold decrease in hardness between subset and module) in the four cases

shown in Figure 5.8.

5.6.1 Methodological Reflection

In retrospect, Experiment 5.2 was sufficient to reject the original benign mod-

ule conjecture. In essence, our sampling strategy was rooted in the assumption

that pathological modules are more likely to occur in performance-heterogenous

ontologies. Given the low success rate of the strategy (0.34%) and considering

the slightly higher success rate of sampling from “real” modules (0.43%), we have

to retract this belief. There are, however, a number of reasons why the method

has some benefits. Firstly, we could observe the protective effect of modularity

on hard subsets. The protective effect reduced the classification time of hard

subsets significantly below the classification time of its parent ontology in 89%

of the cases; slightly worse than expected. Secondly, it was more effective to

search for hard modules given a set of hard subsets than merely classifying as

many realistic modules as practical: While the “success rate” for encountering

pathological modules among the Chainsaw and MORe modules was only around

0.64% (including the ones that were insignificantly pathological), it was almost

10.15% using the targeted search. The positive effect of that however is severely

diminished by the the fact that we first had to determine the hard subsets, which

cost about as many classifications as the classification of all MORe and Chain-

saw modules in our sample. If one is interested to find pathological modules, the

only other good argument for the first technique is the huge overhead induced

by computing the Atomic Decomposition; sometimes more than 12 hours for a

single ontology. Paths can obviously be computed in small fractions of that time.

The choice of sampling paths over merely sampling randomly of a hard pro-

portion does not seem convincing in retrospect. We initially hoped to gain some

insights also into the question of what makes a subset hard, but fell short of this

goal. However, path sampling did reveal enough hard proportions for our investi-

gation, and we did not see the need to repeat the experiment with purely random

5.6. DISCUSSION 137

hs module o

0

100

200

300

0

100

200

0

1

2

3

0 5 10 15 0 5 10 15 0 5 10 15
Coefficient of variation (COV)

co
un

t

Figure 5.11: Histogram showing the distribution of the coefficient of variation
(in %) of classification time across runs (of the same ontology or subset), broken
down by type (hs: hard subset, mod: module, o: ontology).

subsets of a particular size region. Moreover, just being aware of the performance

patterns a path exhibits, for example the very odd, bell-shaped case of FaCT++

on GO that can be seen in Figure 5.4, will provide food for thought and future

experiments.

Another point of criticism might be the choice of 5% as a threshold for deter-

mining a significant pathological module. In retrospective, we can see that this

threshold was a good choice. In Figure 5.11 we can see that only a few (1.54%)

classifications vary by more than 5%, most of which are modules.

Reporting on OWL Full ontologies may appear pointless. We did feel however

that, as long as we did not attempt to generalise conclusions about results ob-

tained from OWL Full ontologies to OWL DL ontologies, merely studying them

a bit better is of general interest. For example, we learned that OWL Full paths

are often significantly non-monotonic, and the majority of pathological cases (as

a result of our targeted search strategy) are caused by OWL Full ontologies.

Reasoner developers tune towards easily accessible ontologies and ontology

corpora. This could mean that pathological behaviour is less prevalent in ontolo-

gies from BioPortal. It remains to be seen in the future whether the observation

holds true for other ontologies found on the web.

Lastly, the fact that the classification of the real modules was reduced to

a single run should be seen as a small threat to internal validity. While the

overall ratios should not be effected too much, individual observations may differ

sometimes due to measurement variance; compare also the variation results from

Experiment 5.1.

138 CHAPTER 5. MODULE HARDNESS

5.7 Summary of Key Observations

We briefly summarize the key observations from our experiments:

� Significantly pathological modules exist but are rare: 0.34% as a result of

our targeted search strategy and 0.43% as a result of classifying MORe and

Chainsaw modules.

� 99.66.% of all hard subsets HS found by our targeted search strategy could

be easified by taking their corresponding moduleMH̃S (protective effect of

modularity).

� 5.3% of all ontology reasoner pairs in the sample exhibit pathological be-

haviour for MORe and Chainsaw modules.

Chapter 6

Subsumption Test Hardness and

Modularity

One of the core intuitions we explore as part of this thesis is that modularity

reduces subsumption test hardness, see Section 3.4.1. The three main goals of

this chapter are as follows:

1. Systematically investigate the role of subsumption testing in Description

Logic classification in order to:

2. isolate ontologies for which subsumption test hardness reduction is poten-

tially relevant and finally,

3. empirically establish potential threats and benefits of modularity on sub-

sumption test hardness.

We conduct a survey across BioPortal measuring all tableau subsumption tests

fired during classification, present a novel approach to robustly determine the

effect of modularity on subsumption tests and apply it to a subset of BioPortal.

6.1 Definitions and Models

The phenomenon under investigation is subsumption test hardness in the

context of classification. In the following, unless stated otherwise, a reasoner

is a traversal/(hyper-) tableau style reasoner. A subsumption test occurs when

the reasoner attempts to determine whether O |= A v B by means of the un-

derlying calculus. For OWL 2 DL, this calculus is usually based on some form

of model construction, refutation based technique (such as tableaux). Most rea-

soners have elaborate optimisations designed to avoid engaging the core engine

(most importantly traversal algorithms, see Section 2.3.2) in addition to intra-

engine optimisations. The subsumption test hardness is the time it takes

140CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

to compute the answer, see Section 4.4.2. In this thesis the answer to a test is

either yes or no. Note however that, for any given implementation, (1) more

than just a binary answer may be computed and provided (e.g., pseudo-models

[HMT01] may be constructed and cached) and (2) no guarantee is given that

the answer is correct (i.e. the reasoner might be buggy). In the context of

classification this means that we are not exploring individual “cold” tests, i.e.

letting the reasoner decide whether O |= A v B for any A,B from outside the

classification process, because we want to understand the contribution of sub-

sumption testing to classification as a whole, with all the optimisations involved.

Note that we only measure actual subsumption tests, omitting most importantly

the initial consistency check, which usually involves a call to the tableau engine.

This is very important when interpreting subsequent results, especially the num-

bers of ontologies for which no subsumption test was recorded. It is also possible

that the model generated during the consistency test is used to derive known

(non-)subsumptions. For a detailed description of the process of classification see

Section 2.3.2. We call easyfication the process of making subsumption tests eas-

ier, and avoidance the process of skipping a particular test, particularly through

optimised traversal algorithms, see Sections 3.4.1 and 3.4.2.

Our model of subsumption test hardness with respect to sub-modules

is based on the following intuition: given a subsumption test ST (A,B,O) with

O |= A v B, it should be the case that for every two modules M1 ⊂ M2 ⊆ O
with A,B ⊆ M̃1, the time it takes to compute ST (A,B,O) is equal to the time

it takes to compute ST (A,B,M1) and ST (A,B,M2) (if we ignore the overhead

involved in determining (ir)relevant axioms); see Section 3.4.1.

Let time(X) be the time it takes for a process X to finish, R a reasoner,

M1,M2 modules with M1 ⊂ M2 ⊆ O and A,B ⊆ M̃1. Consider the possibili-

ties:

1. time(ST (A,B,M1,R)) < time(ST (A,B,M2,R)): This is what the model

predicts since the search space gets more complex as we add information.

We call this case expected.

2. time(ST (A,B,M1,R)) ≈ time(ST (A,B,M2,R)): This case is reasonable

if the implementation can (cheaply) recognise that the problemM2 |= A v
B can be restricted to M1 |= A v B. A naive modular reasoner can

potentially achieve this simply by extracting M1 from M2 and reasoning

6.1. DEFINITIONS AND MODELS 141

overM1. Note that this might hurt overall classification time as we add in

extraction overhead. We call this case optimal.

3. time(ST (A,B,M1,R)) > time(ST (A,B,M2,R)): By our model, this case

is pathological as the, in principle, harder (or equally hard) problem turned

out to be easier. Somehow, the extra information makes the reasoner do

better in spite of being strictly irrelevant to the problem at hand.

A possible explanation of the pathological case is that the implemented cal-

culi are inherently non-deterministic, different choices can produce wildly dif-

ferent behaviour, and implementations make choices based on fallible heuristics.

If the heuristics are sensitive to irrelevant information, then the effect of that

irrelevant information might be to induce a significantly better choice by luck.

Consider testing the satisfiability of a disjunction C t D, and that it is satisfi-

able because D is satisfiable and C is not. Obviously, we will typically do worse

if we choose to explore D before C as determining the unsatisfiability of D is

not necessary. Suppose our disjunction selection heuristic is length of the sub-

expression and |C| < |D|. This is ok, and time(SAT (C tD)) ≈ time(SAT (C)).

Now, suppose we add a bit of information to C to get a C ′ such that |C| <
|C ′| < |D|. Now time(SAT (C ′ t D)) ≈ time(SAT (C ′)). We’re a bit worse

off, but as expected. Now, suppose that |D| < |C|. time(SAT (C t D)) ≈
time(SAT (D)) + time(SAT (C)). If time(SAT (D)) >> time(SAT (C)) our

heuristic made a very detrimental choice. But suppose we extend D such that

|C| < |D′| and the information added was completely irrelevant to C. Now, even

though time(SAT (D)) < time(SAT (D′)), time(SAT (CtD′)) ≈ time(SAT (C)).

That way, we can see how irrelevant information can interact beneficially with a

heuristic.1

Moreover, depending on the form of the stochasticity, we might have highly

variable time between runs of the very same module/reasoner pair. Consider for

example the above optimisation, but instead of using sub-expression length as

the heuristic, we replace it by random selection, or selection based on hash set

traversal (no lexical order). In this case, we would, in some runs, get low values

for time(SAT (C t D)), and, in other runs, high ones. Thus, any witness to a

pathological case might merely be because in that run R was unlucky with respect

toM1 and/or lucky with respect toM2. This potential lack of stability induced

1Note that this heuristic is not necessarily a bad one: it is very cheap, easy to implement,
intuitive and likely to get the right option in lots of cases.

142CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

by stochasticity (rather than “mere” measurement error) makes it difficult to

explain module-varying behaviour.

6.2 Empirical Characterisation

In this study, we investigate two research questions as described in the follow-

ing. The first one aims at determining the relevance of subsumption testing for

classification in general.

Research Question 6.1. What is the relationship between subsumption test

hardness and ontology classification time in practice?

How much time does a reasoner spend on “real” reasoning, compared to pre-

processing and traversal? If subsumption testing is significant to an ontology’s

classification for some reasoner, how is the time distributed across tests? Are

there a few “killer” tests or do numerous easy tests dominate? Is difficulty ran-

domly distributed across positive and negative tests? How many tests are done,

and how effective are reasoners at avoiding tests? How much does the answers to

these questions depend on the particular implementations?

Research Question 6.1 is important to understanding reasoning in general and

in the design of modularity oriented procedures. For example, if it is typically

the case that the total time spent doing subsumption tests constitutes only a

small fraction of the overall classification time, the importance of modularity for

making tests easier or avoiding them is diminished (but there might still be other

beneficial effects from modularity).

In order to judge the impact of subsumption tests on classification perfor-

mance, we draw on three different metrics.

� Overall classification time (OCT): This is the overall time it takes the rea-

soner to perform all stages, from pre- to post-processing (see Section 4.1).2

This measure constitutes the upper bound for any gain through modularity.

A very low absolute value may indicate that there is no need and space to

further optimise.

� Sum of subsumption tests (SST): the sum of all times of tests triggered

during a single classification run.

2Concretely: everything that happens from reasoner creation to finishing the classification
using the OWL API.

6.2. EMPIRICAL CHARACTERISATION 143

� Hardest subsumption test (HST): the duration of the hardest test triggered

during a single classification.

� Sum of subsumption tests to overall classification time ratio (SST/OCT):

This tells us something about how much time the reasoner spends in the

context of the tableau engine. A large value (close to 1) can suggest a need

for optimising test avoidance as well finding more efficient ways to deter-

mine subsumption. A low value (close to zero) renders attempts to improve

the performance of the tableau engine irrelevant. Note that by itself, the

number does not directly imply the potential applicability of modular tech-

niques, because modular techniques can in principle be beneficial in more

ways than test avoidance or easyfication (for example by facilitating concur-

rent classification, or perhaps more efficient consequence-based reasoning).

We say that subsumption testing has a strong impact on classification time

if it accounts for more than 40% of the OCT. A medium impact is defined

between 20% and 40% and a small impact between 0% and 20%.3

� Hardest subsumption test to overall classification time ratio (HST/OCT):

This tells us something about the complexity of the reasoning problems

inside an ontology. A large value (close to 1) means that a single test

dominates the entire classification time. This raises the question whether it

can be made easier or even be avoided altogether using modular techniques.

� Subsumption test count (STC): The number of subsumption tests triggered

during classification. This number can be used to estimate the effectiveness

of “normal” traversal algorithms (by comparing them against the n2 and

n ∗ log(n) upper bounds). Very low counts indicate that modularity might

not be effectively usable to avoid further tests.

The second research question is of central importance for modularity-based

classification:

Research Question 6.2. How is a reasoner’s subsumption test performance

sensitive to modularly irrelevant axioms? In other words, is the behaviour of

current reasoners expected, optimal, or pathological?

If the behaviour is typically expected (see previous section) and we are dealing

with ontologies for which subsumption testing has strong impact, then there is a

clear opportunity for explicitly module sensitive procedures and optimisations.

3This classification is somewhat arbitrary, but it helps to isolate cases for which modular
techniques for tableau test avoidance and hardness reduction are inapplicable.

144CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

A key sub-question here is whether the variance of reasoner performance be-

tween runs is sufficient to distinguish between stochastic variable performance and

module sensitive variable performance. This is important in order to judge how

reliably we can trace a single subsumption test through different sub-modules of

an ontology, and may also give a warning sign for non-determinism, for example

in the case that a test appears or disappears given a particular ontology-reasoner

pair across runs.

We will address the problem of measurement stability mainly by (1) looking at

the coefficient of variation (COV) of subsumption test hardness, see Section 4.5

for a detailed discussion, across different runs and (2) isolating cases where the

classification time was potentially influenced by (obvious) stochastic effects. We

use varying number of tests triggered across multiple runs as a first lower bound

to label ontology-reasoners pairs as influenced by stochastic effects.

6.3 Experimental Design

We have conducted two separate experiments, each addressing one of our two

research questions:

Experiment 6.1. The characterisation of subsumption test hardness in the con-

text of classification across BioPortal, addressing Research Question 6.1.

Experiment 6.2. The in-depth analysis of a subset of BioPortal for exploring

the effect of modularity on subsumption test hardness, addressing Research Ques-

tion 6.2.

We conducted our study on the BioPortal snapshot described in Section 4.6.3

on Machine cluster 4.1 (Section 4.4.3).

6.3.1 Experimental Pipeline

Landscape of Subsumption Test Hardness

For the first experiment, we executed for each reasoner a single run across the

entire corpus, with a timeout of 60 minutes per run. Due to technical details,

the timeout constituted a lower bound and might not have been triggered until

some minutes later. Note that we included every ontology in the corpus, includ-

ing the ones not strictly in OWL 2 DL (53), but isolate them in the analysis.

6.3. EXPERIMENTAL DESIGN 145

The reason for that is that these ontologies do form part of the landscape, and

reasoners are used on them. The main sources of violations were uses of reserved

vocabulary (37% of all violations across the corpus), illegal punning (32%) and

uses of datatypes not on the OWL 2 datatype map (11%).4

Effect of Modularity

For the second experiment, we selected a set of ontology-reasoner pairs for which,

according to the results of the previous experiment, at least one subsumption

test was measured that was harder than 100 milliseconds. This bound is set for

convenience: it results in a nice sample size, it is easy to memorise and it is clearly

non-trivial. Because of the various claims we have with respect to modules, we

also excluded ontologies that do not fall under OWL 2 DL. Runtime limitations

forced us to exclude the NCIt from the sample, due to the extreme number

of measured subsumption tests (JFact 751,907 tests, Pellet 461,831, FaCT++

605,481). In order to answer Question 6.2, we classified tests by analysing how

modularity affects their hardness. First we identified all super and sub-module

combinations M1,M2 as follows: We obtained random cumulative subsets from

the ontologies in our narrowed down sample, similar to Gonçalvez et al. [GPS12],

with 16 slices. We use the same approach discussed in Section 5.2.1. From the

signature of each subset sampled, we obtained the ⊥-locality module using the

OWL API module extractor. Module properties ensure, given two subsets S1, S2

with S1 ⊆ S2, that MS̃1
⊆MS̃2

[SSZ09]. The module of 16
16

th, MÕ, corresponds

to the whole ontology. We call this nested set of modules a path. Note that the

modules are on average 40% larger than their respective subsets, which will give us

a good sample of relatively large modules with hopefully hard subsumption tests.

Each of the modules obtained was classified three times (i.e., three independent

runs) by each reasoner. Given a path M1 ⊆ M2 ⊆ ... ⊆ Mn, we call P the

set of all pairs Mi,Mj with i < j. Given a pair 〈M1,M2〉 ∈ P and a reasoner

R we compare CT (M1,R) with CT (M2,R) and changes in subsumption test

hardness: ST (A,B,M1) with ST (A,B,M2).

Every pair of measurements has a tendency, a magnitude and a degree of

stability, see Table 6.1.

We call the tendency easier if a test is easier in the super-module than in the

sub-module (potentially pathological), harder the respective reverse, and neutral

4For more details on the violations, see Section 4.6.3

146CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

Table 6.1: Dimensions of subsumption test hardness change under modularity.

Feature Value Measurement

Tendency
Easier Mean hardness change < -5%

Harder Mean hardness change > 5%
Neutral Absolute mean hardness change < 5%

Magnitude
High Absolute mean hardness change > 50%

Medium Absolute mean hardness change 5% - 50%
Low Absolute mean hardness change < 5%

Stability
Clear cut All measurements same tendency

High Overlap of ranges of measurements < 10%
Low Overlap of ranges of measurements > 10%

if the mean measurement difference does not differ by more than 5% between

sub- and super-module. High magnitudes are changes above 50% (the test is

more than 50% harder/easier in the super-module compared to the sub-module),

medium magnitudes are changes between 5% and 50% and low changes are ab-

solute changes below 5%. An effect can be of three degrees of stability : clear cut,

high or low. Given a subsumption test ST (A,B,O) that occurs in two modules

M1,M2 withM1 ⊂M2, and two sets of measurements ST (A,B,M1,R, i) and

ST (A,B,M2,R, j), we call the change stability:

� Clear cut, if either

– for each measurementMi ∈ ST (A,B,M1,R, i) andMj ∈ ST (A,B,M2,R, i)
we have that Mi < Mj or

– for each measurementMi ∈ ST (A,B,M1,R, i) andMj ∈ ST (A,B,M2,R, i)
we have that Mi > Mj.

� High, if the overlap of the ranges of ST (A,B,M1,R, i) and ST (A,B,M2,R, j)
is less than 10% of the range of ST (A,B,M1,R, i) ∪ ST (A,B,M2,R, j)

� Low, if the stability is neither clear cut nor high.

Note that cases of neutral tendency have high stability if both sets of mea-

surements have a variation coefficient of less than 5%. The example in Figure 6.1

shows a clear cut hardness change from module M1 to M2, but one with low

stability from M2 to M3. We sometimes refer to changes of more than 5% as

significant.

6.4. RESULTS 147

10
12
14

M1 M2 M3
module

du
ra

tio
n

Figure 6.1: An example for multiple measurements taken for a single subsumption
test across three modules M1 ⊂M2 ⊂M3.

6.4 Results

Percentages in this section are subject to uniform rounding. The measures used

in this section (OCT, HST, SST) were described in Section 6.2. We group sub-

sumption test hardness into the following bins: Very Hard (> 100 seconds), Hard

(> 10 sec, ≤ 100 sec), Medium Hard (> 1 sec, ≤ 10 sec), Medium (> 100 ms, ≤
1 sec), Medium Easy (> 10 ms, ≤ 100 ms), Easy (> 1 ms, ≤ 10 ms), Very Easy

(> 100 µs, ≤ 1 ms), Trivial (≤ 100 µs).

Out of the 1,320 attempted classification runs (4 reasoners and 330 ontologies),

1,109 (84%) completed successfully. Of the 330 ontologies, 240 ontologies (81%)

were dealt with by all four reasoners within the 60 minute timeout, another 24 by 3

reasoners, 28 by 2, 21 by just 1 and 17 by none of the four reasoners, see Table 6.2.

Since we have considered OWL Full ontologies in this particular survey, we present

the numbers of successfully classified ontologies broken down by OWL profile

category and whether they triggered subsumption tests.5 Table 6.2 also serves

as a binning for further analysis later on, so it makes sense to study it carefully

before moving on. Note that out of the 17 ontologies no reasoner classified within

the timeout, none fell under OWL 2 EL, QL or RL.

Test All reasoners successful Some reasoners successful All Unsuccessful

All 240 73 17

Profile All DL Prof Full All DL Prof Full All DL Prof Full

All Prof. 240 75 146 19 73 37 8 28 17 11 0 6

No test 152 13 136 3 25 4 8 13
17 11 0 6Some test 41 23 10 8 48 33 0 15 - -

All test 47 39 0 8 - - - - - - -

Table 6.2: Binning of all 330 ontologies by success category and test category.

FaCT++ completed 268 ontologies in total (81%), HermiT 284 (86%), JFact

5For example, 13 DL ontologies were classified by all four reasoners (all successful) but only
some of the reasoners triggered a subsumption test.

148CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

270 (82%) and Pellet 287 (87%). Reasons for failure include hitting the timeout,

unsupported datatypes, and ontology inconsistencies. Table 6.3 shows a detailed

account of that; note however that a grouping of reasons for failure by Java ex-

ception is not very informative of the actual reasons of failure. It is very likely

that FaCT++ for example throws a ReasonerInternalException when encounter-

ing an unsupported datatype. Pin-pointing the exact source for each failure for

each reasoner is out of the scope of this thesis.

FaCT++ HermiT JFact Pellet
illegalargument 1 16 1 1
unsupportedoperation 0 0 0 1
owlreasonerruntime 10 0 0 0
reasonerinternal 23 0 29 0
nullpointer 0 0 5 0
arrayindexoutofbounds 0 0 0 1
concurrentmodification 0 0 0 1
inconsistentontology 3 2 0 7
malformedliteral 0 1 0 0
unsupporteddatatype 0 14 0 0
numberformat 0 0 1 0
timeout 4 3 2 24
unknown 21 10 22 8

success 268 284 270 287

Table 6.3: Detailed account of successes and failures, as they were reported in
the form of Java Exceptions. Unknown items are most likely those that had to be
terminated by the test framework, thereby not leaving an explanation of failure.

In order to improve our understanding of how different reasoners compare, we

present in Table 6.4 the number of ontologies broken down by (1) which reasoner

dealt with them and (2) which reasoners they caused to trigger a subsumption

test. As (1) has a strong impact on (2), we decided to present for (2) only the

break-down of the 240 ontologies that all four reasoners successfully classified.

(2) will be discussed in more detail later on. Note that with respect to (1) there

is almost no discernible pattern of reasoner factions (i.e. groups of reasoners that

behaved in a similar fashion). A large proportion of all possible combination is

represented (including unlikely dominant combinations such as JFact, FaCT++

and HermiT, given that the strongest faction, Pellet all by itself (and the fact

that it has the most completed classifications of all four reasoners), appears to

be a sign that Pellet is quite resistant to failure.

6.4. RESULTS 149

J F P H freq
X X X X 240

17
X 13

X X X 9
X X X 8
X X 7

X X 7
X X 6

X 6
X X X 5
X X 5

X X 3
X X X 2
X 1

X 1

J F P H freq
152

X X X X 47
X 18

X X 10
X X X 7
X X X 5

X 1

Table 6.4: Left: Combinations of reasoners to successfully classify an ontology
out of all 330 ontologies. Right: Combinations of reasoners to fire tests out of
the 240 ontologies that all reasoners dealt with.

6.4.1 Role of Subsumption Testing in Classification

In the following, we describe our observations that help us in addressing Research

Question 6.1. We break the main question down into the following sub-questions

before we summarise the most important observations in our discussion.

1. Which ontologies cause reasoners to trigger subsumption tests?

First, we will narrow down how many ontologies are affected, and what

kinds of ontologies are affected. Then we will take a brief look at the

differences between reasoners.

2. What are real subsumption tests like? We will see how many tests

are generally fired and we will analyse them in terms of hardness and the

differences between positive and negative subsumption tests, before we look

in more depth at the differences between the four reasoners.

3. What is the Contribution of Subsumption Test Hardness To Clas-

sification Performance? We will take a look at the SST/OCT ratio (see

Section 6.2), determine the effect of very hard tests and the potential gain

involved making these tests easier or less numerous.

150CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

4. What are the shared characteristics of ontologies with a high im-

pact factor? For those ontologies for which we determined that subsump-

tion testing plays a big role, what are they like? Are there any obvious

structural characteristics that these ontologies share?

5. What is the performance of traversal algorithms? In this ancillary

question, we will look at how traversal algorithms fare against the n∗ log(n)

and naive n2 upper bounds.

Which Ontologies Cause Reasoners to Trigger Subsumption Tests?

Our first observation is that 152 (46.1%) of the ontologies were classified by

all four reasoners and did not trigger a single subsumption test 6, see Ta-

ble 6.2. Another way to put it (from the perspective of successful classifications):

only 33% of all ontology-reasoner pairs in the set of successful classifications in-

volved one or more calls to the tableau engine.7 All four reasoners fired tests

in 47 of the ontologies. 136 ontologies caused at least one reasoner to conduct

a subsumption test. Out of these 136 ontologies, only 10 ontologies fall under

one of the profiles, all of which are pure OWL 2 EL (i.e., they neither fall under

OWL 2 QL nor OWL 2 RL). The remaining 144 ontologies falling under one of

the profiles did not trigger any tests at all. 70% of the above 136 ontologies are

Pure DL, that means of considerable expressivity.

Differences across reasoners. Overall, FaCT++ did not test in 177 cases (66%

of successful classifications), HermiT in 180 (63%), JFact in 182 (67%), and Pellet

did not fire a subsumption test during 209 (73%) successful classifications.

To get a picture about the agreement between the reasoners on whether calls

to the tableau engine are required at all, we will zoom in on the 240 ontologies

that all four reasoners successfully dealt with. Table 6.4 (right side) shows how

reasoners differ in opinion whether tests are necessary. The two largest factions in

cases of disagreement are HermiT all by itself (18 ontologies) and JFact/FaCT++

(10 ontologies). The second faction is perhaps explained by the architectural sim-

ilarity between FaCT++ and JFact, see Section 4.7.2. 63% of the 240 ontologies

did not trigger a test by any of the reasoners. In 8% of the ontologies, only one

reasoner (mainly HermiT, see above) triggered a test, in 4% two reasoners, in 5%

three reasoners and in 20% all four reasoners. Note that all cases for which there

6The reasons for this are still unknown, and investigating them is part of future work.
7It is important to remember that this excludes the initial consistency check, see Section 6.1.

6.4. RESULTS 151

is no agreement on whether tests are necessary or not essentially indicate missed

opportunities for optimisation (at least one reasoner managed to classify without

firing a test).

Table 6.5 shows how these 240 ontologies are distributed across the size bins

(for the definition of the size bins, see end of Section 4.6.3). The main observation

to take from that is that most disagreements (proportionally) happen among

the medium and large ontologies (between 100 and 10,000 axioms). We define

agreement as the cases where either all reasoners or no reasoners fired a test, and

disagreement the respective reverse.

|R| empty very small small medium large very large huge
1 0 0 2 11 5 1 0
2 0 0 0 3 7 0 0
3 0 0 1 8 2 1 0

4 0 0 1 24 15 6 1
0 0 2 21 58 52 17 2

Table 6.5: Contingency table showing ontology size to number of reasoners (|R|)
to fire one or more subsumption tests. The top three rows reflect disagreement
(see text), the bottom two agreement between the reasoners.

Table 6.6 shows how the distribution of ontologies with respect to their ex-

pressive power (or a proxy thereof) and the number of reasoners firing tests while

dealing with them. Only a handful of ontologies that fall under the OWL 2 RL,

EL or QL profiles (10) force some reasoner to trigger a test. All 10 cases are

caused by JFact and FaCT++ (always both). For 18 of the 19 cases that all

reasoners successfully dealt with and only one of the four reasoners firing a test,

that reasoner was HermiT (one FaCT++ case).

|R| OWL Full Profiled Pure DL All
0 3 136 13 152
1 7 0 12 19
2 0 10 0 10
3 1 0 11 12
4 8 0 39 47

Table 6.6: Contingency table showing ontology OWL profile bin to number of
reasoners (|R|) to fire a test.

152CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

R Min. Q1 Med. Avg. Q3 Max. |ST |+ |ST |-
F 2 46 71 7,519 111 2,352,000 24,286 905,011
H 48 418 481 17,390 570 198,900,000 1,911 88,387
J 1 48 88 1,127 169 45,920,000 28,103 1,100,972
P 23 175 246 825 365 35,060,000 634 522,592

Table 6.7: Subsumption test hardness: Descriptive Statistics (unit µs), number
of positive (|ST |+) and negative (|ST |-) tests, by reasoner R.

10

1000

100000

T VE E ME MD MH H VH

pos

0

1

Figure 6.2: Counts of subsumption tests for each hardness bin (log scale), distin-
guished by positive (1) and negative (0) tests.

What are Real Subsumption Tests Like?

Across all 1,109 successful classifications we measured 2,671,896 subsumption

tests, 54,934 out of which turned out positive (2.06%) and 2,616,962 out of which

were negative (97.94%), see Table 6.7. Positive tests account for only between

0.12% (Pellet) and 2.61% (FaCT++) of the overall number of tests (HermiT

2.12%, JFact 2.49%). This low ratio is not surprising, see Section 2.3.2, but we

do not currently know why the ratio for Pellet is much lower than the one of the

others, despite their architectural similarities. Subsumption test hardness varies

widely: while most subsumption tests are easy (e.g., half of all tests take less

than 481 µs for HermiT and less than 71µs for FaCT++), the hardest ones take

over 3 minutes.

Figure 6.2 shows the distribution of subsumption tests across the hardness

bins. Keeping in mind that the figure is presented with a logarithmic scale, we

can see that by far the majority of tests are negative/trivial or negative/very

easy, i.e. 90.18% of all measured test take less than a millisecond.

To get a better picture of the distribution of tests, see Figure 6.3. A striking

feature of HermiT appears to be that negative tests are densely centred around

approximately half a millisecond, while all the other reasoners appear to have

a larger spread of negative test hardness. As a reminder, positive subsumption

tests correspond to negative satisfiability tests, which have often assumed to be

6.4. RESULTS 153

Fact++[EXP] HermiT[EXP]

JFact[EXP] Pellet[EXP]

0
1
2
3
4

0
1
2
3
4

0.1 1 10 100 100010000 0.1 1 10 100 100010000

pos

0

1

Figure 6.3: Kernel density plot of subsumption tests for each hardness bin (x:log
scale, milliseconds), distinguished by positive (1) and negative (0) tests. Sub-
sumption tests across entire experiment.

harder because in the worst case, all branches need to be explored to verify the

unsatisfiability. Another observation to note is that FaCT++ and JFact find a

number of negative tests hard (and no positive ones), while HermiT triggers some

tests that are hard and turn out positive, and few hard negative ones.

In order to better understand how reasoners differ in terms of subsumption

test hardness, we will look at the 39 pure DL ontologies processed by all four

reasoners in more detail. The distribution of subsumption test hardness for those

ontologies is shown in Figure 6.4. Only HermiT fires a handful of positive tests

harder than 100 ms. In terms of negative tests, only Pellet and HermiT have

tests harder than 1 second, and only a handful. Another observation to take

away is that towards the very easy part of the plot (less than 0.01 ms), we find

for FaCT++, JFact and Pellet more positive than negative tests. For these three,

negative tests also seem to be approximately (log-)normally distributed. Whether

the differences for HermiT are due to the architectural differences is up for further

investigation.

To answer the question whether positive tests or negative tests are generally

harder, the choice of the measure of central tendency is crucial. As we can see in

Figure 6.4 the distribution of test hardness is in most cases not even log normal,

in some cases they appear even multi-modal (see positive FaCT++ tests). The

high skew renders the mean a quite deceptive tool to compare the hardness of

positive and negative tests. In terms of median, which is quite insensitive to

outliers but more applicable for these kinds of distributions, we cannot learn

154CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

Fact++[EXP] HermiT[EXP]

JFact[EXP] Pellet[EXP]

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.1 1 10 100 100010000 0.1 1 10 100 100010000

pos

0

1

Figure 6.4: Kernel density plot of subsumption tests for each hardness bin (x:log
scale, milliseconds), distinguished by positive (1) and negative (0) tests. Sub-
sumption tests across 39 OWL 2 DL ontologies with tests triggered by all four
reasoners.

much. For FaCT++, tests resulting in non-subsumptions are generally harder

than positive tests (10 times on average, using median), for HermiT 2.6 times

and for Pellet 1.5 times. JFact, surprisingly, finds positive tests 1.05 times harder

than negative tests. As these aggregations are largely dominated by the fast

tests, it makes sense to take a closer look at the harder ones. Since hardest test

measurements are quite sensitive to experimental error, we focus our attention

on the 90th quantile. Here, the picture appears almost reversed. For FaCT++,

negative tests are still 2.3 times harder than positive ones. For HermiT positive

tests appear 2.03 times harder than negative ones, for Pellet 3.2 times and for

JFact 5.5 times. One interesting observation is the striking similarity between

Pellet and JFact. Both appear to have a wide range of positive tests, and a large

“pillar” of negative tests almost at the center of it, where there is also a small

downward bulge from the positive tests.8 As we described in Section 3.4.1, we

expected negative subsumption tests to be typically harder. It is part of future

work to explain why some reasoners find negative, and some reasoners positive

tests harder; any attempts at an explanation given the current data would remain

speculation.

To determine how prevalent individual hard reasoning problems are, it makes

sense to group the ontologies in our corpus by the hardest test fired. Figure 6.5

shows the entire corpus binned by hardest test. The most important observation

to make here is the rarity of ontologies with tests that take longer than a second

(medium hard bin and above). The dominating cases are ontologies whose hardest

8To date, there is no explanation for this phenomenon.

6.4. RESULTS 155

39

1
0

10
20
30
40
50

fact hermit jfact pellet

Trivial

33

6
13 13

0
10
20
30
40
50

fact hermit jfact pellet

Very Easy

13

42
37 37

0
10
20
30
40
50

fact hermit jfact pellet

Easy

2

40
29

20

0
10
20
30
40
50

fact hermit jfact pellet

Medium Easy

2
10 7 6

0
10
20
30
40
50

fact hermit jfact pellet

Medium

2 4 1
0

10
20
30
40
50

fact hermit jfact pellet

Medium Hard

1 1 1
0

10
20
30
40
50

fact hermit jfact pellet

Hard

1
0

10
20
30
40
50

fact hermit jfact pellet

Very Hard

Figure 6.5: Ontologies in each hardness category. The x-axis represents the num-
ber of ontology in each bin. Bin classification according to hardest subsumption
test.

0

25

50

75

100

20 40 60

Pellet

0

25

50

75

100

20 40 60 80

HermiT

0

25

50

75

100

20 40 60 80

JFact

0

25

50

75

100

20 40 60 80

FaCT++

Figure 6.6: Impact of SST on classification time by reasoner in %. Low line:
hardest individual test; high line: sum of all tests; x-axis: ontologies; y-axis:
contribution in %. Note that x-axis values mean something different for each
reasoner: The set of ontologies for which a given reasoner triggered subsumption
test, ordered by ratio of SST to OCT.

tests range between 1 ms and 100 ms. Note that this observation of low hardness

contradicts observations made by Gonçalvez et al. [GPS12]; many of the tests

they measured were harder than 100 ms. However, satisfiability checks (in their

experiments) were performed in a blackbox fashion from outside the process of

classification, which may have introduced some overhead due to the particular

implementation of the satisfiability method of a given reasoner.

What is the Contribution of Subsumption Test Hardness To Classifi-

cation Performance?

In Figure 6.6 we show the contribution of all subsumption tests and the contri-

bution of the hardest test to the overall classification time (OCT), broken down

by ontology and reasoner.

While the sum of all subsumption tests dominates the OCT only in a few cases

156CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

(very few for HermiT, more for JFact and FaCT++), it occasionally accounts for

more than 80%. Only 1 ontology has more than a 50% contribution of total SST

on OCT for Hermit, 7 for Pellet, 19 for FaCT++ and 23 for JFact. Very rarely can

we observe a single test accounting for more than 10% of the OCT. The maximum

impact for a single test by FaCT++ is 9.2%, Pellet 11.3%, HermiT 23.1% and

JFact 24.8%. According to our notion of strong impact (see Section 6.2) we count

3 for ontologies HermiT, 12 for Pellet, 21 for FaCT++ and 26 for JFact.

Trivial and very easy tests dominate by far in terms of number, but they are

not responsible for the majority of the impact on OCT. Table 6.8 breaks down

the overall impact of tests belonging to a particular hardness category across the

entire corpus (first row), compared to the subset of 39 DL ontologies that all four

reasoners processed (second row). For example, the sum of all negative (0) hard

(H) tests across all 39 DL ontologies is 10.9 minutes. Negative medium (M) and

negative medium-easy (ME) tests, i.e. tests between 10 ms and 1 sec, dominate

performance by far (overall, first row). Interestingly, among the 39 pure OWL 2

DL ontologies that all four reasoners dealt with (second row), the dominating

type of tests are hard negative tests (tests between 10 and 100 seconds). For a

discussion on the hardness of non-subsumptions see Section 3.4.1.

T VE E M ME MH H VH
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1.2 0.0 5.1 0.1 12.2 0.1 90.0 1.4 31.6 0.2 10.4 0.5 12.1 3.1 3.3

1.1 0.0 3.3 0.0 1.2 0.0 1.6 0.2 0.4 0.0 0.4 0.0 10.9 3.1 3.3

Table 6.8: This table shows the sum of all tests in each category in minutes. The
first row accounts for all subsumption tests measured as part of this experiment,
the second corresponds to the 39 pure DL ontologies measured by all four reason-
ers. The abbreviations T, VE,..,VH correspond to the hardness bins from Trivial
to Very Hard, and the 0 or 1 indicates whether the test turned out to be positive
(1) or negative (0).

An optimisation that reduced the mean hardness of subsumption tests by 50%

would, taking into account only those ontologies for which tests were triggered,

reduce the overall classification time on average by 14.2%. There are however

differences between the reasoners: for JFact, the overall classification time could

be reduced by 21.3%, for FaCT++ by 19.4%, for Pellet by 11.4% and for HermiT

only by 5.8%. If we only take into account the 39 ontologies for which all four

reasoners triggered tests, we would have a similar picture: the OCT would be

6.4. RESULTS 157

reduced on average by 16.6% for JFact, by 14.02% for FaCT++, by 12.03% for

Pellet and by 6.9% for HermiT.

What is the Profile of Ontologies with a High Impact Factor?

Only 10 unique ontologies across the corpus cause triggering of hard tests (harder

than 1 second) by any one reasoner, 8 of which are Pure DL (all beyond ALC),
and 2 of which are in OWL Full. Out of the 8 OWL 2 DL ontologies, 4 are

only of medium size (between 100 and 1,000 axioms), 3 are large (between 1,000

and 10,000 axioms) and 1 ontology has more than 100,000 axioms. 7 of the 8

ontologies involve inverse roles, and all 8 ontologies involve role hierarchies (either

languages H or R).

Among the 38 ontologies for which at least one reasoner registered a strong

impact of subsumption testing on the performance of the overall classification

time, 30 were pure OWL 2 DL, 2 fell under OWL 2 EL (fairly inexpressive ALE)

and 6 were OWL Full. The ontologies are scattered across most size ranges: 4

have more than 10,000 axioms, another 20 more than 1000 and 14 ontologies

have less than 1000 axioms. 33 of these 38 ontologies contain inverse roles, and

35 contain role hierarchies, 19 out of which contain more complex role-related

modelling (R). More than half contain nominals.

What is the Performance of Traversal Algorithms?

Current traversal algorithms appear to be mostly efficient, see Figure 6.7, in

particular the ones implemented in Pellet and HermiT: they exceed the N∗log(N)

upper bound only once, and no reasoner comes even close to the naive N2 upper

bound (N being the number of class names in Õ). We discussed both of these

upper bounds in Section 2.3.2. Exceeding the N ∗ log(N) upper bound suggests

that the reasoner was faced with a poly-hierarchy, i.e. an ontology involving

concepts with multiple super-classes. Exploring the relationship between the

number of triggered subsumption tests and the shape of the class hierarchy is

part of future work.

Discussion

A first answer to Question 6.1 is that (tableau) subsumption testing does not

contribute at all to classification time for a substantial number of ontologies. We

158CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

fact hermit

jfact pellet

10
1000

100000
10000000

10
1000

100000
10000000

Ontology/Reasoner pairs

N
um

be
r

of
 te

st
s "ST"

N*log(N)

N^2

ST

Figure 6.7: Subsumption tests carried out in relation to a naive N2 upper bound
and an N log(N) upper bound, ordered by N , the number of names in Õ (y: log
scale).

have established a hard lower bound for ontologies that do not involve subsump-

tion testing at 46% of BioPortal. This lower bound is even slightly naive because

(1) there are most likely a number of ontologies that do not involve tests among

the unsuccessfully classified ones and (2) only 33% of all ontology-reasoner pairs

involved tests. Considering a theoretical union reasoner that always picks the

reasoner that fires the least tests further reduces the need for subsumption test

avoidance and easyfication considerably. The currently secured lower bound for

ontologies actually requiring subsumption testing lies at 14% (i.e. the 47 out of

330 ontologies for which all four reasoners triggered a test). Note that, while this

might seem like a very low number, these might be the 50 or so ontologies in the

world that are hard and matter, and thus worth optimising for. As a side note,

the low numbers of tests for HermiT and Pellet can perhaps be explained by their

internal alternative deterministic engines (for example internal EL-reasoners), see

Section 4.7.2.

It is quite interesting that only 10 out of those 146 ontologies that all reason-

ers processed caused at least one reasoner to fire a test—all of which are pure

OWL 2 EL. Ontologies of the OWL 2 RL or OWL 2 QL family, or less expressive

ontologies, did not cause any reasoner to actually fire a test. This suggests that

for OWL 2 RL and OWL 2 QL ontologies at the very least, the application of

6.4. RESULTS 159

modular techniques must be strictly motivated by a different argument than test

avoidance or test easyfication. Another potentially interesting observation is that

ontologies involving hard tests generally seem to contain rich role-level modelling,

most prominently inverses and role hierarchies.

Subsumption test hardness rarely has a strong impact on classification per-

formance. According to our threshold of “strong impact” at 40% of the overall

classification time, FaCT++ encountered impactful ontologies 7.8% of the time,

JFact 9.6% of the time, Pellet 4.2% of the time and HermiT only in 3 out of

its 284 successful classifications (just around 1.1%). This, and taking into ac-

count the low absolute potential performance gains as described above, creates a

case against modular reasoning techniques motivating them the way we currently

do (avoidance, hardness reduction). These results do not affect modular tech-

niques motivated differently (like partial reclassification in incremental reasoning

or expressivity reduction for partial classification by cheaper algorithms such as

MORe).

The most important threat to the validity of the results presented in the pre-

vious section is the tight (albeit necessary) timeout of 60 minutes, a limitation

that pervades most experiments presented as part of this thesis. It might well

be that the 211 missing ontology-reasoner pairs all triggered subsumption tests,

even hard ones, before they timed out, or would have triggered tests if they were

not rejected for an unsupported datatype. In principle, these failed cases could

create a very good case for modular reasoning. A second threat to validity is

the unavailability9 of fine grained correctness benchmarks. In an independent

study [LMPS15] we revealed at least 9 ontologies in our corpus for which there

was disagreement between the reasoners. Incomplete reasoning could potentially

skew the measurements (test counts and duration) significantly. OWL 2 Full on-

tologies are not dealt with uniformly by all reasoners; essentially anything can

happen when reasoning with them (for example dropping axioms). This is why

the survey does not lend itself to comparisons of the performance of the reasoners

directly (beyond what has been presented).

9At least up until the time of writing, see our recent work [LMPS15].

160CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

6.4.2 Sensitivity to Modularly Irrelevant Axioms

The previous sections were dedicated to studying monolithic traversal/(hyper-)

tableau style classification across BioPortal, specifically for improving the un-

derstanding of the role of subsumption testing for OWL classification. In the

following section, we will discuss Research Question 6.2. We will first describe

general difficulties of measuring the “effect of modules” on subsumption test

hardness, before we address the question and present our insights on sensitivity

to modularly irrelevant axioms, or, in other words, the effect of modularity on

subsumption test hardness, with respect to all four reasoners.

From the previous experiment, according to the process detailed in Section 6.3.1,

3 ontologies were selected for FaCT++, 4 for Pellet, 5 for JFact and 13 for Her-

miT for the following analysis (25 ontology-reasoner pairs). These ontologies have

overall classification times ranging from 7 to more than 1200 seconds (median:

103.20, mean: 210.70). 16 modules were generated per ontology and classified,

which led to 1,200 attempted classifications (3 runs per module, 25 ontology

reasoner pairs) with a timeout of 60 minutes. Of these, 1,093 (91%) terminated

successfully. By reasoner, that is 77.1% for FaCT++, 91.8% for HermiT, 98.4%

for Pellet and 100% for JFact. Out of the 400 module classifications (16 mod-

ules, 25 ontology-reasoner pairs), we have 358 (89.5%) for which we have three

successful classification runs. We exclude the remaining ones from the analysis.

Measuring the Effect of Modularity

There are two important factors that potentially threaten the internal validity of

our results: (1) Experimental error (measurement variability caused by factors

outside the program) and (2) stochasticity in the classification process. Both

problems relate to different phenomena, but are usually not distinguishable from

our experiment data alone.

Multiple runs of the same program do not usually lead to the same execu-

tion times. Experimental error (1) is a major cause for variance across timings.

For example, system-level processes may kick in and add to the CPU load or

varying times for memory allocation and garbage collection. Our measure for

variability is (again) the coefficient of variation (COV), see Section 4.5. For each

module-reasoner pair, we look at the variability of two distinct variables: overall

classification time (OCT) and sum of all subsumption test times (SST).

6.4. RESULTS 161

Fact++[EXP] HermiT[EXP] JFact[EXP] Pellet[EXP]

0
20
40
60
80

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Fact++[EXP] HermiT[EXP] JFact[EXP] Pellet[EXP]

0
20
40
60

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Figure 6.8: Histogram of COV, by reasoner. Top: OCT, bottom: SST

The OCT of only 3 out of 358 (0.84%) module-reasoner pairs (MRP) varies

by more than 30%, of 12 (3.4%) MRP’s (including the ones above 30%) by more

than 20%, and of 19 (5.3%) MRP’s by more than 10%. The module with the

worst variation corresponds to a module taken from a 2
16

th of the Biotop ontology

(727 logical axioms), classified by JFact (min=38.49 sec, max=194.22 sec). By

reasoner, FaCT++ varies for OCT on average (median in brackets) by 0.79%

(0.67%), JFact by 2.53% (0.88%), Pellet by 4.32% (3.12%) and HermiT by 4.15%

(2.33%).

For SST, the reasoners vary as follows: FaCT++ 0.77% (0.66%), HermiT

9.02% (5.65%), JFact 2.61% (0.86%) and Pellet 5.43% (4.28%). A more detailed

picture of the overall variation is given in Figure 6.8 for both OCT and SST.

Next we consider the variance of individual subsumption test hardness: across

all 358 module-reasoner pairs, we measured the hardness of 2,438,983 distinct

subsumption tests. As can be seen in Figure 6.9, the coefficient of variation is

generally log10-normally distributed, but varies considerably across reasoners.

On average, measurements deviate by as much as 13.22% and 13.96% for Pellet

and HermiT, respectively, while measurements for JFact deviate by 3.5%, and for

FaCT++ only 2.83%. A more detailed breakdown can be found in Table 6.9.

Not all variance is a consequence of experimental error. A varying subsump-

tion test count is evidence for stochastic choices in the classification process. For

example, a reasoner might require 10 tests to classify O in the first run, and 12 in

162CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

Fact++[EXP] HermiT[EXP] JFact[EXP] Pellet[EXP]

0

50000

100000

150000

200000

0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0

Figure 6.9: Histogram of COV of subsumption test measurements by reasoner
(x:COV, log-scale).

Reasoner Mean Min 25% Median 75% Max
Fact++ 2.83 0 0.52 0.96 2.93 167.87
HermiT 13.96 0 6.70 13.13 19.85 172.50
JFact 3.54 0 0.73 1.35 2.94 169.07
Pellet 13.24 0 1.60 5.96 18.27 172.65

Table 6.9: Variance of test measurements across reasoners (COV).

the second. With 242 out of 358 cases (67.6%) showing differences in the number

of subsumption tests measured across runs, variation is high. 20 module-reasoner

pairs (5.6%) vary by more than 10% in the number of subsumption tests. These

results cannot be generalised to the entirety of BioPortal (given the nature of

the sample), but they suggest that at least some of the measurement variance

is not a consequence of measurement error, but of stochastic effects. Another

indication of stochastic effects in the classification process is the number of times

a particular test was triggered across a number of runs, for example twice across

three runs. Any number other than the exact number of runs would be evidence

for some stochastic effect. In practice, we found only 105 (less than 0.005 %) such

tests that where not captured by the overall test count metric, i.e. that occurred

in cases with varying overall test count.

Stochastic effects may not only be triggered by non-determinism in the tab-

leau algorithm. FaCT++ for example does not reveal any evidence for stochastic

effects during classification, while JFact does. This suggests that the source for

stochastic effects might lie with data structures or methods in Java [GBE07]

(as FaCT++ is implemented mainly in C++). Unfortunately, the source of the

6.4. RESULTS 163

stochasticity cannot be pinpointed by looking at test order alone: randomness in

the implementation of the classification algorithm can induce changes in the ex-

ploration of non-deterministic branches of the tableau and the other way around.

Effects of modularity may not be determined accurately in the presence of any

strongly stochastic effects. In the following analysis, we will therefore often dis-

tinguish between those classifications for which we witnessed stochastic effects

and those for which we did not.

Note that fluctuations in the number of tests or fluctuating (dis-)appearances

of tests10 across runs establishes merely a lower bound for the number of cases that

are potentially subject to stochastic effects. There are other signs, such as varia-

tion in the test order, that could be signs of stochasticity. Unfortunately, neither

test count, (dis-)appearance nor order, are by themselves explanatory of classifi-

cation hardness. They can neither, as pointed out before, point to the source of

the stochasticity, nor can they be used to quantify the degree of stochasticity, i.e.

the ratio of non-deterministic and deterministic choices. Due to our three run

policy, there is a risk that we are falsely attributing changes in individual test

hardness to modularity (e.g. reduced test hardness) that was actually caused by

stochasticity. For example, consider a test ST (A,B,O) that is measured three

times (across three runs) in the sub, and three times in the super-module, with

all three measurements in the super-module being easier than all three measure-

ments in the sub-module. It could be the case that the difference in signature (1)

induced a test order that triggered randomly other tests before ST (A,B,O) that

do most of the work (cached pseudo-models or similar) or (2) randomly led the

tableau-reasoner into harder non-deterministic branches. In this case it can be

argued that the easyfication, if it is merely due to test order, is not due to modu-

larity, and beneficial non-determinism can be forced merely by changing the test

order. Assuming that the impact of stochastic effects is randomly distributed,

observations made about the population (average, mean variation) should be sta-

ble. For the remaining chapter we call a test measurement potentially subject to

stochastic effects (1) if the test was either triggered during a classification with

varying test counts across runs or (2) if the test appears/disappears across runs

of the same classification (but the overall number of tests remains the same).

10Again: we could have the same number of tests across runs, say 10, but in one run,
ST (A,B,O) is replaced by ST (A,C,O).

164CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

Fact++[EXP] HermiT[EXP] JFact[EXP] Pellet[EXP]

0

10

20

30

0

50

100

150

0
10
20
30
40
50

0

10

20

30

HH HM NL EM HH HM NL EH EM HH HM NL EH EM HH HM NL

Figure 6.10: Hardness changes by reasoner: OCT. Bin labels x-axis: 1st letter:
tendency (easier, neutral, harder), 2nd: magnitude (low, medium, high). Y-axis:
number of comparisons.

What Effect does Modularity have on Subsumption Test Hardness?

In order to investigate the effect of modularity on subsumption test hardness we

sampled 30 sub-module super-module pairs P from the 120 possible combinations

as described in Section 6.3.1. Discarding unsuccessful classifications, we obtained

data from 703 out of 750 possible comparisons. For result stability, we excluded

all pairs that (1) were incomplete, i.e. we measured for either the sub or the

super-module less than 3 runs and (2) the sub and the super-module were equal.

The following analysis is conducted on the remaining 659 cases (87.87% of 750).

Modules: There are 39 cases (around 5.7%) where the OCT of the sub-module

is higher than that of the super-module, and 173 (25.1%) where there is no

significant change in hardness (less than 5% change), compare also Figure 6.10.

From our 659 sub/super-module pair classifications, we obtained a total of

8,664,108 test comparisons. A comparison consists of

� a test ST (A,B,O,R),

� two modules Msub,Msuper with Msub ⊂Msuper ⊆ O,

� a set of measurements {ST (A,B,Msub,R, i) | 1 ⊆ i ⊆ 3} and

� a set of measurements {ST (A,B,Msuper,R, j) | 1 ⊆ j ⊆ 3}.
Sometimes, we refer to such comparisons between sub- and super-module as

“cases”. In what follows, we restrict our analysis to those cases where we have

3 measurements for each set. The reason for that is the following: During a

single classification run, a test can be triggered for CT (Msub,R) and not for

CT (Msub,R), or for CT (Msuper,R) and not for CT (Msuper,R). This fluctuat-

ing appearance is an indication that a test is subject to a stochastic effect. It is

6.4. RESULTS 165

unclear how do deal with tests that are occasionally absent. For example, they

can either be ignored, or they can be counted as zero duration. Our interest lies

solely in determining whether individual tests triggered during classification are

harder or easier in the sub-module. Therefore, we restrict our treatment of po-

tential stochastic effects to isolating ontologies with evidence for stochastic effects

from those without, as described in the previous section.

Overall, subsumption tests are easier in the sub-module than in the super-

module across all reasoners and module pairs in the set. Tests triggered in the

super-module are harder by a factor of 2 (mean). The difference between rea-

soners however is large: While for FaCT++ tests in the super-module are harder

by a factor of 6.18, test hardness for JFact (0.42), Pellet (0.257) and HermiT

(0.075) are much less affected. If we separate out ontologies with varying test

counts as potential subjects to random effects, we find that HermiT finds tests

easier in the super-module (-0.04 change), but harder when classifying ontologies

with evidence for stochastic effects (0.08). Note that these changes are extremely

low and cast doubt on the conjecture that HermiT could benefit from modular-

ity in terms of subsumption test hardness reduction. It is quite possible that

this low effect can be explained by architectural differences: the hyper-tableau

implementation of HermiT mitigates the effect of algorithmic non-determinism

for Horn ontologies by dealing with GCIs directly (rather then having to rewrite

them into potentially costly, non-deterministic disjunctions) [GHM+14]. For Pel-

let we measured changes of 0.87 and 0.20 (potential stochastic effect) and for

JFact 2.91 and -1.43 (potential stochastic effect). Table 6.10 presents an analysis

of percentiles by reasoner. Note the potentially extreme effects of measurement

error as a consequence of dealing with measurements in the microsecond area.

The median, for all four reasoners, is around 0. Figure 6.11 confirms (note the

log-scale on the y-axis) that the majority of tests are centred around 0, i.e. they

do not change in hardness at all. Both JFact and FaCT++ however exhibit a

bi-modal distribution, with at least one very distinct distribution of tests towards

the hard end, i.e., tests that are significantly harder in the super- than in the sub-

module. Interestingly, for almost all of these cases, the test in the sub-module

differs from the test in the super-module by between 220 and 240 ms. This is

quite a lot, given that the average difference between tests is around 0.56 mil-

liseconds. Most likely, an expensive subsumption test in the super-module was

replaced by a cheap look-up in the sub-module.

166CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

R Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max
In cases with no evidence for stochastic effects in classification process.

F -556.60 -24.55 -1.17 -0.14 -0.02 0.00 0.02 0.15 2.28 200.73 2155.73
H -3.17 -2.18 -0.53 -0.40 -0.19 0.00 0.12 0.36 0.54 1.00 2.33
J -1099.59 -24.24 -0.81 -0.20 -0.03 0.00 0.03 0.11 0.28 150.54 2149.22
P -15.90 -0.67 -0.17 -0.11 -0.02 0.05 0.62 1.66 3.67 14.79 136.26

In cases with evidence for stochastic effects in classification process.
H -264.02 -0.31 -0.18 -0.12 -0.03 0.05 0.16 0.28 0.36 0.53 278.37
J -1083.87 -25.21 -19.18 -1.65 -0.08 -0.00 0.02 0.17 0.34 2.62 902.85
P -287.54 -2.48 -0.72 -0.38 -0.09 -0.00 0.11 0.41 0.82 6.05 817.77

Table 6.10: Summary for the change of subsumption test hardness from sub- to
super-module. Measure: redefined normalised fold change. 0 means no change,
0.5 means a change of +50%.

Given the low stability of many test measurements, we will present our analy-

sis using our hardness change categories as introduced in Section 6.3.1, including

tendency, magnitude, stability and potential stochastic effects. This will also clar-

ify the separation of significant and insignificant changes. Figure 6.12 presents the

full break down of the pathological cases with respect to our coding scheme (see

Section 6.3.1). Almost 50% of the tests do not change in hardness significantly

(optimal cases). The branch with the changes towards harder reflect our expected

cases. The branch with the changes towards easier reflect our pathological cases.

At least 2.82% of the tests are likely to be truly pathological: Significantly easier

(more than 50%) in the super-module (therefore harder in the sub), and clear cut

stability, i.e. cases where all three measurements in the sub-module are easier

than all three measurements in the super-module.

Figure 6.13 presents the summary of the binning by hardness change category

for all four reasoners. FaCT++ exhibits mostly neutral hardness changes, i.e. by

far the majority of the tests triggered by FaCT++ do not change by more than

5%. This appears to contradict the observation that Pellet and JFact measure-

ments vary a lot across almost all potential categories. The pathological cases as

described in Section 6.1, corresponding to the EHC category and EHH (tests were

much (H) easier (E) with high stability or even clear cut (H/C)), occur rarely

(compare also the detailed breakdown in Figure 6.12). Out of the 1,653,732 tests

that became easier overall, only 513,704 are of a high magnitude. The bins HHC

and HHH correspond the category of expected behaviour. We can see in Fig-

ure 6.13 again that this behaviour is comparatively rare. Optimal behaviour is

reflected in the NLH category and to a lesser extend by the NLL category, which

6.4. RESULTS 167

Fact++[EXP] HermiT[EXP]

JFact[EXP] Pellet[EXP]

10

1000

100000

10

1000

100000

−1000 0 1000 2000 −1000 0 1000 2000

Figure 6.11: Histogram of change in hardness between sub and super-module.
Counted are only such cases where the test was triggered in all three runs, both
for the sub- and super-module.

involve hardness changes that are on average neutral but have a high standard

deviation.11 These categories are the by far dominant category, compare also the

neutral (N) changes in Figure 6.12 (52.65%). Interestingly, there appears to be no

correlation at all between the difference in the size of the super- and sub-module

to the change in hardness (Pearson correlation coefficient less than 0.01).

Discussion On average, reasoners appear to profit from modularity in terms of

subsumption test hardness, i.e. they are able to ignore irrelevant axioms, therefore

easifying tests. The magnitude however is, depending on the reasoner, surpris-

ingly low. For Pellet and HermiT at least, pathological changes in subsumption

test hardness are often cancelled out by expected positive changes in hardness.

This observation suggests that picking a single subsumption test and tracing its

hardness through sub- and super-modules in isolation may be misleading. The

majority of tests do not change at all under modularity (more than 50%). The

positive results for FaCT++ and (to a lesser extend) JFact (easyfication by a

factor of 6.18 and 0.42 respectively) are due to a comparatively small number of

tests that have extreme changes in hardness, which might be indications for bugs,

11The fact that HermiT alone has mostly unstable tests among the neutral cases cannot
(currently) be explained.

168CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

Figure 6.12: Breakdown of hardness changes for the subsumption tests in the data
set that were easier in the super-module (first branch). The second branching
reflects the magnitude of the change, the third the stability of the measurement.
The number of tests in the “stochastic” category reflects the number of tests for
which there was some evidence that the entire classification process (the test was
part of) was subject to stochastic effects. Percentages are with respect to overall
number of cases.

6.4. RESULTS 169

Fact++[EXP]

HermiT[EXP]

JFact[EXP]

Pellet[EXP]

0
500000

1000000

0
200000
400000

0
500000

1000000
1500000

0
20000
40000
60000

EHC EHH EHL EMC EMH EML HHC HHH HHL HMCHMH HML NLH NLL

EHC EHH EHL EMC EMH EML HHC HHH HHL HMCHMH HML NLH NLL

EHC EHH EHL EMC EMH EML HHC HHH HHL HMCHMH HML NLH NLL

EHC EHH EHL EMC EMH EML HHC HHH HHL HMCHMH HML NLH NLL

Figure 6.13: Hardness changes by reasoner: SST. Bin labels x-axis: 1st letter:
tendency (easier, neutral, harder), 2nd: magnitude (low, medium, high), 3rd:
stability: (clearcut, high, low). Y-axis: number of comparisons. The EHC and
EHH categories correspond to our pathological cases, the HHC and HHH cases
to the expected cases and the NLH and NLL to the category of optimal cases.
The remaining categories are, due to the low number of runs and high variation,
neither clearly pathological nor expected.

170CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

for example during absorption. It remains unclear whether the small number of

significantly pathological tests (2.82%), are really pathological, i.e. the conse-

quence of a bug in the implementation, or whether their hardness merely shifted

to another test. This can be triggered for example by a changed traversal order

due to the difference in signature between the two modules, or random effects

in the classification process that we have not isolated. The current experimental

setup merely attempts to determine a tendency, i.e. whether reasoners are sen-

sitive to axioms that are irrelevant to a particular set of entailments (Research

Question 6.2).

Methodological Reflection

Our original goal was to be able to determine the hardness change of a particular

subsumption test ST (A,B,O,R) from a sub- to a super-module. We learned that

some tests get significantly harder, most tests do not change in hardness, but some

tests also get significantly easier. We therefore conclude that it is insufficient to

trace a particular set of tests - the whole population of tests have to be studied

at once. We believe that the current experimental design allows for identifying

a tendency, but any conclusions about the magnitude of the overall effect should

be avoided. First, we ignore tests that are triggered in only one of the two

modules entirely. It is possible that the changes in hardness shift to tests outside

of the range of tests we are observing. Second, we cannot conclusively isolate

stochastic effects if we do not observe the internals of any given subsumption

test, and consider changing test orders. It remains to be seen what causes the

changes in hardness exactly. Lastly, the sample of ontologies was not meant to

be representative of the population. A representative sample would take by far

too long to be processed with the current analytic pipeline.

As a side observation, we noted the high average variation between individ-

ual test measurements across runs. This is most likely a consequence both of

stochastic effects and measurement error, due to the lack of accuracy of our tim-

ing methods (see Section 4.4.2). For any experiments that cannot be statistically

significant because of time constraints, this means that the threshold for effects

related to individual subsumption tests should be set higher than 5% (we used

either 50%, or clear cut).

In this chapter, we have focused on subsumption test hardness and deliber-

ately omitted looking at subsumption test avoidance and traversal. In the next

6.5. SUMMARY OF KEY OBSERVATIONS 171

chapter, we will study what difference subsumption test hardness and avoidance

makes for decomposition-based classification.

6.5 Summary of Key Observations

In the following, we will briefly summarize the key observations made in this

chapter:

� We re-confirm the almost 20 years old results by Horrocks [Hor97] that

subsumption tests are generally rather easy.

� The impact of tableau subsumption testing is significant only for a small

number of ontologies, which threatens the applicability of modular tech-

niques to reduce the number of tests or test hardness, at least for ontolo-

gies within the performance range of this survey. No conclusions can be

drawn on the applicability of modular techniques for ontologies (1) outside

these bounds (i.e., CT (O,M) ≥ 1hr) and (2) for a reason other than sub-

sumption test hardness reduction or avoidance (e.g. parallelism, efficient

delegate).

� Two thirds of the ontology-reasoner pairs in our sample show strong evi-

dence for random effects in the classification process (varying test counts

across runs and absence and presence of individual tests). This, and the

low number of feasible runs, preclude observation of changes in hardness

for individual subsumption tests (rather than for the entire population).

� Subsumption test hardness increased on average by a factor of 2 between

the sub- and super-module pairs sampled as part of Experiment 6.2.

� However, the majority (more than 50%) of the tests in our sample did not

change at all or only to a very small degree in hardness between the sub-

and the super-module.

� We have isolated pathological cases of tests being easier in a super than

in a sub-module from obvious stochastic effects. However, easier tests are

often accompanied by harder ones, which suggests that often, the hardness

merely shifts from one test to another.

� HermiT and Pellet appear to be sensitive to modularly irrelevant axioms

only to some small degree. For HermiT, this may be due to mitigated

non-determinism (see Section 6.4.2). This limits the potential of modules

to reduce subumption test hardness. JFact and FaCT++ have greater

172CHAPTER 6. SUBSUMPTION TEST HARDNESS AND MODULARITY

reductions in test hardness on average under modularity. The experimental

design was sufficient only for exploratory analysis: Larger studies are needed

to determine whether a particular reasoner would generally profit from the

protective effect of modularity.

Chapter 7

Modular Classification in Action

In the previous chapters, we have established the risk of pathological modules for

modularity-based techniques for Description Logic classification (Chapter 5) and

analysed the effect of modularity on subsumption test hardness. In this chapter

we will explore how modular techniques fare in practice, measuring their overhead

(see Section 3.5.1), and potential benefits for subsumption test avoidance and

hardness reduction.

7.1 Definitions and Models

The phenomenon under investigation is the viability of modular and module-

based decompositions (see Section 2.5) for improving Description Logic classifi-

cation performance. We quantify performance as execution time, operationalised

as described in Section 4.4.2.

The intuition behind the assumption that modularity-based classification might

be superior compared to traditional monolithic classification has been discussed

extensively in Chapter 3. Given an ontology O, a reasoner R, a module M of

O with M ⊆ O, two concept names A,B ∈ M̃ (and therefore in Õ), T OR being

the traversal space (Definition 2.1) of reasoner R during the classification of O
and ST (A,B,O,R) a subsumption test triggered by R during the classification

of O; we conjecture that:

� time(ST (A,B,O,R)) ≥ time(ST (A,B,M,R)) (see Section 3.4.1)

� |T OR | ≥ |T MR | (see Section 3.4.2)

We have described our model of modular reasoning in Section 3.2. In order to

assess the performance of modular techniques, we mainly rely on comparisons to

the monolithic approach. While our default model of decomposition-based clas-

sification is a pure blackbox model, i.e. we assume that each chunk is processed

individually and there is no communication between the delegates, we want to

investigate a number of what-if scenarios or analytic models, described in the

174 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

following.

The second scenario or model—the first being the blackbox model—is the

encoded decomposition. We know from experience that computing the decom-

position constitutes a major overhead for modular techniques. In Section 3.5.1

we have discussed the possibility of encoding the modular structure into the se-

rialisations of the ontology. Note that we take a simplified view on decoding

the modular structure and assume that it does not add any overhead to the

de-serialisation of the ontology.

The third model is the glassbox model. One of the sources of overhead of

decomposition-based classification is redundancy, a consequence of overlapping

chunks in the decomposition. In order to avoid re-doing work, for example

determining a particular subsumption or non-subsumption more than once, we

need to communicate results between delegate reasoners. Our default scenario

does not involve any communication between the different delegate reasoners.

The original MORe approach involves a minimum amount of communication by

adding already determined subsumptions from the classification of the DL (re-

mainder) module to the L-module before ELK processes it (see Section 3.3.1).

That way, the result of the L-module classification equals the classification O.

However, consequence-based reasoners such as ELK do not need to communicate

known non-subsumptions. For traversal/ (hyper-) tableau style delegate reason-

ers, we model the glassbox approach in the following way. We assume, perhaps

naively, that delegate reasoners have access to a shared representation of known

subsumptions—and non-subsumptions. That way, once the a delegate reasoner

has determined that O |= A v B or O 6|= A v B, no subsequent delegate reasoner

with A and B in its signature will have to trigger that test.

The fourth model is simply a combination of the second and the third model,

i.e. the encoded chunking and glassbox model combined. While this scenario will

not give us many additional insights into the performance of modular techniques,

it will give us a better sense of the potential benefit of decomposition-based

classification. However, since our glass box model is naive (there are a number of

sources of redundancy unaccounted for, like redundancy during pre-processing),

it does not reflect the maximum potential of decomposition-based classification.

7.2. IMPLEMENTED MODULAR CLASSIFICATION STRATEGIES 175

7.2 Implemented Modular Classification Strate-

gies

In this section, we will describe the five modular classification approaches we have

considered in our experiment, two of which reflect the known approaches involv-

ing modular decompositions as implemented by MORe and Chainsaw and three

(novel) experimental approaches based on the Atomic Decomposition (modularity-

based decompositions). We have discussed the differences between modular and

module-based decompositions in Section 2.5.

Note that we measure the monolithic approach in the same way as we measure

the modular approaches: as part of Katana. The monolithic approach therefore

goes through the same stages as any modular reasoner would, with the difference

that the decomposition phase is omitted, the dispatch is simply an assignment

of the whole ontology to the only delegate reasoner, and the classification stage

involves only a single delegation.

All five approaches/strategies are listed in the following:

� The Maximal Module approach is based on the Atomic Decomposition and

classifies the maximal modules in the Atomic Decomposition one-by-one

(MM). This approach is similar, but not the same, as the one employed by

Chainsaw.

� The MORe approach (Section 3.3.1) is based on the MORe decomposition

of O into an L-module and a remainder module (MOR).

� The Connected Component approach is based on the Atomic Decomposition

and involves classifying the set of connected components in the Atomic

Decomposition one-by-one (CC).

� The Optimised Connected Component approach is based on the CC ap-

proach, summarising small connected components into larger ones to miti-

gate the overhead of creating overly many delegations (CCO).

� The Community Detection-based approach is based on the Chainsaw ap-

proach, summarising sets of strongly connected maximal modules (commu-

nities) to chunks of similar sizes in order to mitigate the overhead of creating

overly many delegations (CD).

All strategies share two core components: (1) A single factory for (a place

to instantiate) full-fledged OWL 2 delegate reasoners and a second factory for

OWL 2 EL delegate reasoners. (2) An optional mechanism to dispatch a subset

176 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

to an optimised EL-delegate reasoner (a flag that, if set, checks the profile of a

chunk and assigns it to an optimised delegate).1

7.2.1 Chainsaw Strategy (MM)

The Chainsaw approach is based on the Atomic Decomposition and works es-

sentially on the assumption that, if the ontology is decomposed into very small

modules, the subsequent pruning of the search space (and possibly the reduction

of the test hardness) outweighs the overhead induced by computing the decom-

position. All maximal modules (or root modules, see Section 2.5.1) of the Atomic

Decomposition are classified as they come, with the results being, at each classifi-

cation, merged into a unified class hierarchy. The approach was further described

in Section 3.3.2.

The main threat from employing the MM strategy2 in a black-box fashion

is the potentially huge redundancy induced by the overlap of its chunks. Note

that Chainsaw is doing a bit more: It avoids subsumption tests based on cer-

tain properties of the labelled Atomic Decomposition. As current (delegate)

OWL reasoners perform full classification before answering individual subsump-

tion queries, this additional traversal layer does not make any practical difference,

see Section 3.3.2. However, the Katana framework could be easily extended to

accommodate, for example, for an Atomic Decomposition-sensitive traversal.

As all chunks in the decomposition correspond to modules, we say that the

MM decomposition is a modular decomposition (Definition 2.5).

7.2.2 MORe Strategy (MOR and MORA)

The MORe-approach was described in detail in Section 3.3.1. Note that we

strictly distinguish between the MORe-decomposition, which is formed by com-

puting two (potentially overlapping) modules according to a particular method

and the MORe-classification strategy, which is (at least approximately) defined

as classifying the OWL module first with a full fledged OWL reasoner and then

computing the remaining class hierarchy by classifying the L-module with ELK

(Section 3.3.1). Note that in Katana (and in this Chapter), we consider the

1The dynamic dispatch feature is implemented, but will not be used as part of the experi-
ments in this Chapter.

2Apart from the potentially severe cost of computing the decomposition, a general risk shared
by all modular strategies, most importantly by those building on the Atomic Decomposition.

7.2. IMPLEMENTED MODULAR CLASSIFICATION STRATEGIES 177

MORe L-module to be a module for ELK. In this chapter we also investigate a

slight modification of MOR, MORA, which simply dispatches both modules in

the decomposition to the full fledged OWL reasoner delegate.

The main threats to the MORe approach are considerable overlap of the two

modules, and that the DL (remainder) module is so large that classification can

suffer from the unfriendly non-determinism observed in Chapter 5.

Like the MM decomposition, the MORe-decomposition is classified as modu-

lar, as both chunks that make up the decomposition are modules.

7.2.3 Connected Components Strategy (CC)

The Connected Component strategy is based on the experience that the redun-

dancy induced by the overlap of the set of maximal modules is critically harming

performance (MM, or Chainsaw, strategy). Connected components are logically

independent from each other (see Section 2.5.1). It is important to understand

that a single connected component can be, but is not necessarily, a module. The

first obvious case where a connected component corresponds to a module is if

it contains only a single maximal module (i.e., the connected component would

simply be equal to that maximal module). If the connected component however

contains more than one maximal module, it does not necessarily correspond to a

module.3 Another (obvious) case where the connected component corresponds to

a module is if it is equivalent to the entire ontology. Following the CC strategy,

the reasoner first computes the Atomic Decomposition, and then delegates each

connected component in the decomposition to a separate delegate reasoner.

The most important threat to the connected component strategy is the large

main–tiny satellites effect: There may be a large number of connected compo-

nents, but one of them is huge (or in the worst case corresponds to the whole),

and the others are tiny, in practice sometimes only a single axiom. This may

be harmful because (1) the main component may be almost as big as the parent

ontology, thus voiding almost all potential gains from modularity and (2) a po-

tentially large number of tiny connected components requires a large amount of

delegate reasoner instantiations. Another threat emanates from the fact that con-

nected components may lose the protectiveness of modularity, which may cause

them, in the worst case scenario, to behave like hard subsets, i.e., they may be

harder to classify than the whole ontology as discussed in Chapter 5.

3See page 100 in PhD thesis of Del Vescovo for an example [DV13].

178 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

As connected components may or may not correspond to modules, and each

connected component can be described as a union of its maximal modules, we

classify the strategy as classification-preserving (module-based), but not modular

(chunks do not necessarily correspond to modules).

7.2.4 Optimised Connected Component Strategy (CCO)

A straightforward answer to deal with the large number of delegations to trivial

chunks of the large main—tiny satellites problem is to merge small components

together. This “collapsing” is implemented in a slightly naive fashion as follows.

We first determine the size of the largest chunk. Then we define a quarter of the

size of the largest chunk as the maximum threshold for a merged chunk. Following

that, we iterate through the set of connected components. If a component is

smaller than the threshold, we find the smallest chunk smaller than the threshold

and add the component to it (i.e. merge them). This is done until there is at

most one chunk left that is smaller than the threshold. We call this strategy

Optimised Connected Component strategy. Choosing a quarter of the largest

chunk as a threshold means that new chunks as a result of a merge can never be

more than half the size of the largest component.

While this does not address the problem of a single very large connected com-

ponent, it mitigates the overhead induced by creating a large number of delegate

reasoners for potentially tiny, sometimes single axiom, connected components.

With the same rationale as the CC strategy, the underlying decomposition of

this approach is classified as classification-preserving, but not modular.

7.2.5 Atomic Decomposition Community Detection Strat-

egy (CD)

The main threat of the MM approach is that the maximal modules in the de-

composition overlap to such an extend that potential benefits of search space

pruning are outweighed by the redundancy induced by the overlap. On the other

hand, the CC strategy might have little to no redundancy (logically disconnected

chunks), but suffers from the large main–tiny satellites problem. A compromise

between the two is to summarize somehow stronger connected sets of maximal

modules into chunks.

A known approach in graph theory to partition a graph into sub-graphs that

7.2. IMPLEMENTED MODULAR CLASSIFICATION STRATEGIES 179

b bb

b b

b

bC1

C2

(a) Communities.

b bb

b b

b

bCH1

CH2

(b) Chunks.

Figure 7.1: An example of the community detection-based method. Nodes and
arrows represent the atoms and dependencies of the Atomic Decomposition. Left:
communities (C1 and C2) as determined by the community detection algorithm.
Right: corresponding chunks (CH1, CH2) as extracted from the set of communi-
ties.

are densely connected inside, but more sparsely connected outside is community

detection [For10]. As the Atomic Decomposition is a graph, we generate chunks

in the following way. We first partition Atomic Decomposition as a set of com-

munities using the implementation of the modularity based community detection

in Gephi [BHJ09], based on an algorithm by Blondel et al. [BGLL08]. The set

of communities all by themselves is not classification-complete (see Section 2.5)

because, for any given atom part of some community, it is not guaranteed that

all its dependencies are also in the same community. Therefore, we re-define a

chunk as the union of maximal modules corresponding to the set of maximal

atoms in a community. That way, not only is it possible that axioms in the orig-

inal community are discarded—if a community does not include any top atoms,

it is discarded entirely. In other words, this approach attempts to summarise

the set of maximal modules to larger chunks that are more strongly connected

internally, that way (hopefully) merging some of the maximal modules with very

large overlap and reducing the number of necessary delegate reasoners. As each

vertex in a graph belongs to exactly one community, no maximal atom is present

in more than one chunk. In order to mitigate the risk of potentially many chunks,

we employ the same method as the CCO strategy to merge very small chunks.

180 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

The main threat to this approach is the overhead of computing the commu-

nities (on top of the danger that the redundancy is still outweighing the gains

in terms of traversal space pruning). The decomposition produced by the CD

approach is classified as classification-preserving, but not modular.

Table 7.1 shows a summary of the approaches with threats and rationale.

Table 7.1: Overview of modular and module-based decompositions analysed in
this chapter

DO Chunking Rationale Primary
Threat

MORe EL
+
OWL

Decomposition Cheap EL classifica-
tion, small remain-
der

Pathological
remainder,
overlap

MM AD Set of all maximal
modules in AD

Smallest possible
chunks

Large overlap

CC AD CC’s in AD Mitigate redun-
dancy of MM

large main–
tiny satellites

CCO AD CC’s in AD, small
ones merged

Mitigates CC over-
head caused by small
chunks

Large main

CD AD Communities in AD,
small ones merged

Possibly smaller
stronger related
chunks than CC

Large over-
lap, comput-
ing communi-
ties

7.3 Empirical Characterisation

In this chapter, we are addressing the following question:

Research Question 7.1. Are decomposition-based reasoning techniques suitable

to improve classification performance?

In order to address this question, we will analyse the five modular classification

approaches described in Section 7.2, specifically with respect to the following five

dimensions:

� Overall performance

� Potential for reasoning hardness reduction in general and test hardness

reduction in particular (Section 3.4.1),

� Potential for test avoidance (Section 3.4.2),

7.3. EMPIRICAL CHARACTERISATION 181

� Threat of subsumption testing redundancy (Section 3.5.3) and

� Threat of overhead (Section 3.5.1).

Because of their close connection, we will analyse the potential for test avoid-

ance and the threat of test redundancy as well as the overall performance and

computational overhead together. For a reminder of some of the measures (fold

change, coefficient of variation) used, please see Section 4.5.

7.3.1 Overall Performance

In order to determine the performance of all five (six, if we count MORA)

decomposition-based classification approaches, we pitch them against the mono-

lithic version of their primary delegate reasoner. There are two key questions

which will be analysed with respect to overall performance: (1) Which methods

show the most promise? (2) How do factors of interest contribute performance?

We will describe the metrics of comparison and the operationalisation of our

models of modular approaches (see Section 7.1) in the following.

Table 7.2 shows an overview of how we quantify the performances of each

technique according to our (four) models. The main metric of performance is

the overall classification time (OCT): The duration of the entire reasoning time

(including pre- and post-processing).

Considering the encoded chunking scenario, the OCT will be re-computed by

simply reducing it by the time it takes to compute the decomposition. For the

glassbox model, we re-calculate the overall classification time by subtracting the

sum of redundant test times and the sum of initial consistency check test times.

The set of redundant tests is defined as follows:

Definition 7.1. Given a reasoner R, an ontology O, I a classification run of O
by R, A and B two names with A,B ∈ Õ, ST (A,B,O,R, I) a single subsumption

test triggered during I to determine whether O |= A v B and Sall the set of all

subsumption tests triggered during I, then we call:

� Sun the set of unique subsumption tests if for each ST (A,B,O,R, I) ∈ Sun

there is no easier test ST (A,B,O,R, I) ∈ Sall and

� Sall \Sun the set of redundant subsumption tests.

For each of the classification approaches we want to find out (1) are they

perform better compared to the monolithic case and (2) how do they fare against

182 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

the other decomposition-based classification approaches. We defined a scoring

system for the performance of a technique as follows:

Procedure 7.1. Scoring classification performance

1. Select a metric of interest.

2. For each ontology and primary delegate, determine a ranking of the mod-

ular classification strategies based on the OCT (distinguishing between all

four scenarios; blackbox, glassbox, encoded chunking, glassbox + encoded

chunking), with (rank) 1 being the best.

3. From the ranking, assign 5 points to a technique whenever it ranked first

(for any ontology, primary delegate and model), 4 points if it ranked second,

3 if third, 2 if fourth, 1 if fifth and 0 points if it ranked lower less than fifth

or failed to produce the metric (i.e. to classify in time) altogether.

4. The final score for each technique (distinguishing between activated EL-

Dispatch, primary delegate and classification model) is computed by adding

all points together across ontologies.

Metric: Overall Classification Time

In the following, we present the (performance-wise) dominant sub-processes con-

tributing to the overall classification time (OCT), all of which will be taken into

account when analysing the OCT. For an overview of the entire process, refer

back to Figure 3.2.

� Preprocessing time: We will, for all classification strategies in an equal

manner, ignore the initial consistency check during M1 (which is totally

redundant, given that consistency is checked for each chunk). That means

that preprocessing involves decomposition, (possibly) chunking and delega-

tion.

– Decomposition time: Computing the modular decomposition is, espe-

cially in cases that involve the Atomic Decomposition, sometimes the

biggest contributor to OCT. Therefore, we report the decomposition

time separately from the (rest of the) preprocessing time.

� Modular Classification: the time it takes to compute the partial class hier-

archies for every chunk and delegate reasoner. The two main contributors

of interest to this stage are:

– Sum of initial consistency check times (SCC): This number is of inter-

est, because (1) it is often a primary contributor to OCT and (2) it is

7.3. EMPIRICAL CHARACTERISATION 183

clearly avoidable (once we establish the consistency of a single module,

we know it for the rest).

– Sum of subsumption test times (SST): This metric is a key metric to

assess the performance of modular classification, and represents the

overall consequence of test avoidance, test redundancy and changes in

hardness. Depending on the scenario (blackbox, etc.), this metric in-

cludes redundant tests. In the glassbox scenario, this metric is reduced

to the sum of unique tests (Definition 7.1).

– Hardest delegation (HDL): The classification time of the hardest chunk.

All metrics will be reported with respect to their contribution to the overall

classification time (OCT), i.e METRIC
OCT

.

7.3.2 Traversal Space

The second dimension we analyse for all five classification approaches is their

potential for avoiding tests and their proneness to redundancy. Again, this will

be done by comparing each approach to the monolithic case represented by the

behaviour of the primary delegate reasoner of the approach. For the comparison

against the monolithic case, we need two metrics: Avoided tests and extra tests,

defined as follows:

Definition 7.2. Given a monolithic reasoner Rmon, a modular reasoner Rmod,

an ontology O, i a classification run of O by Rmon, j a classification run of

O by Rmod, A and B two names with A,B ∈ Õ, ST (A,B,O,R, i) a single

subsumption test triggered during i to determine whether O |= A v B, Smon the

set of all subsumption tests triggered during i and Smod the set of all subsumption

tests triggered during j, then we call ST (A,B,O,Rmod, j):

� avoided if ST (A,B,O,Rmon, i) ∈ Smon and ST (A,B,O,Rmod, j) 6∈ Smod,

� common if ST (A,B,O,Rmon, i) ∈ Smon and ST (A,B,O,Rmod, j) ∈ Smod

and

� extra if ST (A,B,O,Rmon, i) 6∈ Smon and ST (A,B,O,Rmod, j) ∈ Smod.

In other words, avoided tests are those triggered during the classification by

the monolithic reasoner that were not triggered during the classification of the

modularity-based approach. Extra tests are those tests that were triggered dur-

ing the modularity based approach (potentially multiple times!) that were not

triggered by the monolithic reasoner. Common tests were triggered by both.

184 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

We will quantify aspects of the traversal space using two groups of metrics

(1) Attributes of the classification approach (redundancy) and (2) attributes of

the comparison to the monolithic case (avoided and extra tests) in the following:

� Attributes of the classification approach

– Total test count (STC): The total number of tests triggered during a

modular classification.

– Unique test count (UTC): The number of unique tests triggered.

– Unique test time (UTT): The sum of all unique tests triggered.

– Redundant test count (RTC): STC-UTC

– Redundant test times (RTT): SST-UTT

� Attributes of the comparison to the monolithic case

– Avoided test count (ATC): The number of unique tests triggered by

the monolithic reasoner not triggered by the modular approach.

– Avoided test total time (ATT): The sum of all avoided test times.

– Extra test count compared to the monolithic case (ETC): The num-

ber of tests triggered by the modular approach not triggered by the

monolithic approach.

– Extra test times compared to the monolithic case (ETT): The sum

of test times triggered by the modular approach not triggered by the

monolithic approach.

– Common test count modular reasoner (CTC): The number of tests

triggered by both the monolithic and the modular approach

– Common test times modular reasoner (CTT-MOD): the sum of test

times of all common tests as the modular approach triggered them.

– Common test times monolithic reasoner (CTT-MON): the sum of test

times of all common tests as the monolithic approach triggered them.

We further produce an avoidance score, which is computed as follows (always

from the perspective of the modular reasoner): We first determine the ratio of

ATC-ETC to the common test count +1 (CTC) (ATC−ETC
CTC+1

); the +1 one is needed

to accommodate for the case that CTC equals 0. If the resulting value is positive,

then we say that the modular technique at hand has a tendency of avoiding tests.

If it is negative, we say that the modular technique has a tendency of adding

extra tests. If ATC=ETC, we say that avoided and extra tests cancel each other

out. We further distinguish between four levels of magnitude. If the number of

avoided/extra tests is more than 10 times the number of common tests, we say

7.3. EMPIRICAL CHARACTERISATION 185

the effect is of high magnitude. Otherwise, if the number is more than equal

to the number of common tests, we say the effect is of medium magnitude. If

the number is more than 10% of the number of CTC, the magnitude is low, else

it is neutral. This computation of the avoidance score relates to the blackbox

model. When considering the glassbox model, ETC is replaced by unique extra

test count, and CTC by unique common test count.

The effect of modularity on subsumption test hardness has been investigated

extensively in Chapter 6. The only additional aspect we will investigate as part

of this chapter is how beneficial/harmful modular reasoning techniques are com-

pared to each other and compared to the monolithic case. Our primary metrics

to quantify the effect of a classification approach on test hardness is mean sub-

sumption test hardness.

All dimensions of the analysis are summarised in Table 7.2.

Table 7.2: Summary of metrics used to quantify key aspects of dimensions, by
classification model.

Classific.
Model

Dimension of
analysis

Central metrics for analysis

BB Performance OCT
Traversal Impact analysis of avoided, extra and

redundant tests
Test Hardness Descriptive statistics of test times

EC Performance OCT, w/o decomposition
Traversal -
Test Hardness -

GB Performance OCT, w/o redundant tests, w/o dele-
gate consistency

Traversal Impact analysis of avoided and extra
tests

Test Hardness Descriptive statistics of test times
EC+GB Performance OCT, w/o redundant tests, w/o dele-

gate consistency, w/o decomposition
Traversal -
Test Hardness -

186 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

7.4 Experimental Design

We have conducted our experiment using three of the four (modified) reasoners

described in Chapter 6, HermiT, Pellet and JFact, embedded into the Katana

Framework, as extensively described in Section 4.2:4

Experiment 7.1. Benchmark of 5 decomposition-based classification approaches,

involving the analysis of overall performance, overhead and subsumption test hard-

ness, avoidance and redundancy.

We ran the experiment on two corpora: The first corpus was based on the 19

Pure DL BioPortal ontologies that involved all those ontologies we processed as

sampled for Experiment 6.2, for which at least one reasoner triggered a subsump-

tion test that was harder than 100 ms (corpus henceforth called K1). Three on-

tologies were excluded from the analysis, two out of which caused out-of-memory

exceptions during the analysis (NEMO, NCIT), and one caused at least one dele-

gate reasoner to trigger the same test multiple times (OBI).5 All experiments were

randomly distributed over machine cluster 4.1, with a timeout of 2 hours each,6

and repeated 3 times. The second corpus was based on the 39 ontologies analysed

as part of Experiment 6.1 (henceforth called K2) which caused all four reasoners

to trigger at least one subsumption test during classification. Four ontologies

were excluded: for the same reason as before, NEMO and NCIT, and CPRO and

CSEO again because of duplicate subsumption tests. The experiment was, due

to its considerable runtime of more than two machine months, run on 8 instances

of Amazons EC2 (machine cluster 4.2; experiments randomly distributed across

all instances). Due to the much higher completion rates (next section) of K2,

this will be our primary corpus of analysis. Interesting differences with K1 will

be reported where appropriate.

4The experiment has a runtime of around a month. As we are primarily interested in
the modular classification strategies, we decided to restrict ourselves to only three different
delegate reasoners. Since FaCT++ used a slightly different method (C-based) for making time
measurements (making the analysis a bit more complicated), we decided to focus on the delegate
reasoners implemented in Java.

5The bug has been reported to the developers of FaCT++ and JFact, and was reported
fixed for the latest release.

6Due to the potentially high cost of classifying many modules, we give a more generous
timeout than in the previous experiments. The necessity for the timeout due to resource
limitations remains the same.

7.5. RESULTS 187

7.4.1 Experimental Pipeline

For the experiment, we ran Katana with the following 7 configurations:

1. MOR: MORe decomposition with MORe strategy

2. MORA: MORe decomposition with default strategy (using full OWL 2 rea-

soner on both modules)

3. MM: Atomic Decomposition with maximal module strategy

4. CC: Atomic Decomposition with connected component strategy

5. CD: Atomic Decomposition with community detection based strategy

6. CCO: Atomic Decomposition with optimised connected component strategy

7. MON: no decomposition, default strategy

Item 7 reflects the “normal” monolithic strategy. Details on Katana can be

found in Section 4.2.

7.5 Results

Out of the 1,008 classification runs (16 ontologies, 3 reasoners, 7 configurations,

3 runs) over corpus K1, 644 (63.89 %) successfully terminated, i.e. produced a

classification. Out of the 2,250 classification runs (35 ontologies, 3 reasoners, 7

configurations, 3 runs) over corpus K2, 2,170 (98.41%) successfully terminated.

For a full break down of completition rates by technique, see Table 7.3. The huge

difference in completion rates can be explained by the difference in hardness: On

average, ontologies in K2 took 24.9 seconds to classify, and ontologies in K1 479.8

seconds (disregarding timeouts). The full list of ontologies in K1 and K2 can be

found in Table A.1 (appendix).

One interesting observation with respect to experiment run K1 is that there

are cases where a modular technique succeeded in classifying the ontology within

the given timeout, and the respective monolithic reasoner failed. 3.3% of the clas-

sification runs of modular techniques did not have a comparable run of a mono-

lithic reasoner (same ontology, same delegate reasoner as monolithic reasoner).

There are 12 such cases involving JFact, and 39 involving Pellet, scattered across

5 different ontologies (BIOMODELS, DRON, ICO, ONL-MSA, VSO), and no

cases involving HermiT. Such cases exist involving all 6 modular reasoning tech-

niques configurations (7 minus MON), the most successful ones being MOR with

16, MORA with 15 cases and MM with 6 cases.

188 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

R Tech K2 K2 % K1 K1 %
H CC 105 100.00 42 87.50
H CCO 105 100.00 42 87.50
H CD 104 99.05 42 87.50
H MM 99 94.29 33 68.75
H MON 105 100.00 47 97.92
H MOR 105 100.00 48 100.00
H MORA 105 100.00 48 100.00
J CC 105 100.00 30 62.50
J CCO 105 100.00 30 62.50
J CD 101 96.19 30 62.50
J MM 102 97.14 27 56.25
J MON 105 100.00 30 62.50
J MOR 105 100.00 36 75.00
J MORA 105 100.00 36 75.00
P CC 102 97.14 17 35.42
P CCO 102 97.14 16 33.33
P CD 98 93.33 13 27.08
P MM 102 97.14 15 31.25
P MON 104 99.05 14 29.17
P MOR 103 98.10 24 50.00
P MORA 103 98.10 24 50.00

Table 7.3: Completion rates for all approaches. R is the reasoner (by first letter);
Tech the technique or approach. See text for coding of techniques.

The variance of the OCT measurements was 5.61% and 3.64% on average, for

K1 and K2 respectively, see Table 7.4. As can be seen by the (comparatively) low

value for the third quartile (3rd Qu.), the majority of the variance comes from

a few extreme outliers. In order for the analysis to not be too affected by these

outliers, which may well be due to measurement error, we decided to sample the

median (or closest to median) measurement and continue our analysis on those

measurements only.

Cor Min. 1st Qu. Median Mean 3rd Qu. Max.
K1 0.11 0.87 1.94 5.61 4.26 137.80
K2 0.02 1.42 2.81 3.86 4.86 54.32

Table 7.4: Variance analysis of the Katana experiment. Metric: Overall classifi-
cation time. Variance across multiple runs of the exact same experiment configu-
ration, reported Coefficient of Variation (COV) in %. For example, the K2 OCT
measurements varied on average by 3.64%.

7.5. RESULTS 189

Note that MORe does not always produce an L-module, see Section 3.3.1.

In our sample, this happens in 13 of the 35 ontologies: BCO, BDO, COGPO,

DDI, EMO, FHHO, HEIO, HPIO, JERM, OBIWS, OMRSE, OPL, PCO. Sim-

ilarly, the Atomic Decomposition sometimes consist of only a single connected

component. This renders the CC and CCO strategies useless (and in some rare

cases also the CD strategy). This happens in 23 out of the 35 ontologies: BCO,

BDO, BHO, COGPO, DDI, DIKB, EMO, FHHO, GFO, GRO, HEIO, HPIO,

HUPSON, JERM, KISAO, NGSONTO OBIWS, OMRSE, ONTOKBCF OPL,

PCO, SPO, TMO. We therefore exclude from the following analysis all those

cases for which the decomposition consisted of only a single chunk—the whole

ontology—considering this a failure of the modular approach by default because

it merely produces overhead without any possible gains (other than benevolent

random effects). This “single-chunk problem” poses a serious limitation to the

applicability of decomposition-based techniques as we investigate them in this

chapter.

7.5.1 Overall Performance

Figures 7.2 and 7.4 show the final ranking of all techniques, broken down by rea-

soner and classification model (see Procedure 7.1 for details on the method). The

ranking resulting from experiment run K2 in particular, Figure 7.4, shows that

the monolithic approach outperforms the modular approaches in the majority of

cases—regardless of the analytic model (blackbox, glassbox, etc.). This obser-

vation is strengthened by Figure 7.3 that shows how many times each technique

took first, second and third place in the ranking (experiment run K1). Note that

MOR, MORA, CC and CCO perform much worse in the ranking than one might

expect in particular because of the large amount of cases where the the decompo-

sition was of size one (and therefore excluded). Two modular approaches that do

reasonably well in the ranking are MORA and MM. MORA, as a reminder, uses

the MORe decomposition and classifies both modules using the primary OWL

reasoner (for example HermiT). It is surprising that this approach does better

than MOR, which uses ELK for the L-module.7

A considerably different picture is revealed for the ranking by SST (sum of

subsumption test times) rather than OCT, Figure 7.5 (K1) and Figure 7.6 (K2).

7We use version 0.4.1 of ELK, a release produced in August 2013. It is quite possible that
this years release, 0.4.2, is considerably faster.

190 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

hermit jfact pellet

CCO
MOR

CC
MORA

MM
MON

CD

CCO
MOR

CC
MORA

MM
MON

CD

CCO
MOR

CC
MORA

MM
MON

CD

CCO
MOR

CC
MORA

MM
MON

CD

B
B

E
C

E
C

G
B

G
B

0 20 40 0 20 40 0 20 40
points

Figure 7.2: Ranking of approaches for experiment run K1, broken down by pri-
mary delegate reasoner and analytic model. The x-axis is the total number of
points a technique scored based on our ranking method.

1 2 3

CC (def)

CCO (def)

CD (def)

MM (def)

MON (def)

MOR (def)

MORA (def)

0 25 50 75 0 25 50 75 0 25 50 75
Frequency

Figure 7.3: Number of times an approach has taking first, second or third position
in the ranking (blackbox model, experiment run K1).

7.5. RESULTS 191

hermit jfact pellet

CC
CCO
MOR

CD
MM

MORA
MON

CC
CCO
MOR

CD
MM

MORA
MON

CC
CCO
MOR

CD
MM

MORA
MON

CC
CCO
MOR

CD
MM

MORA
MON

B
B

E
C

E
C

G
B

G
B

0 50 100 150 0 50 100 150 0 50 100 150
points

Figure 7.4: Ranking of approaches for experiment run K2, broken down by pri-
mary delegate reasoner and analytic model. The x-axis is the total number of
points a technique scored based on our ranking method.

While, considering the blackbox model, monolithic reasoning is faster than mod-

ular techniques for HermiT and Pellet, the differences are considerably smaller,

and, for JFact, both CD and MM do better in terms of SST than the respec-

tive monolithic strategy. Considering the glassbox model, the picture looks even

better for modular techniques: the sum of subsumption test times for MM and

ST is often less than the comparable monolithic reasoner, at least in the cases

of Pellet and JFact. Again, the connected component based decompositions and

the MORe decomposition-based approaches suffer from the many exclusions due

to single-module decompositions. We will see later that in terms of subsump-

tion test hardness reductions, modular approaches nearly always outperform the

monolithic ones. Note that when using HermiT (Novel Approach, hyper-tableau

based), modular techniques do not seem as effective as when using Pellet and

JFact, the two Enhanced Traversal, tableau-based OWL reasoners. This can

have a number of explanations. For example, Hermit’s traversal might be more

efficient, which reduces the effect of modular techniques on traversal space prun-

ing; or HermiT might simply be, as we have concluded from Chapter 6, less

sensitive to modularly irrelevant axioms, therefore reducing the benevolent effect

192 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

hermit jfact pellet

CC
MOR
CCO

MORA
MM
CD

MON

CC
MOR
CCO

MORA
MM
CD

MON

B
B

G
B

0 20 40 60 0 20 40 60 0 20 40 60
points

Figure 7.5: Ranking of approaches based on SST, for experiment run K1, broken
down by primary delegate reasoner and analytic model. The x-axis is the total
number of points a technique scored based on our ranking method.

of modularity on subsumption test hardness.

It is also important to remember at this point that results for Pellet with

respect to subsumption test duration and counts are influenced by the fact that

it can potentially fall back on its internal EL-reasoner. While this does not

happen for the whole ontology, it is quite possible that this happens for individual

chunks in the decomposition. That means that a particular subsumption might

be derived by the internal reasoner, but show up in this analysis as avoided. In

these cases, the effect of modularity would not be to prune the search space, but

to replace potentially hard SAT tests by a cheaper alternative (in this case a

sequence of derivation rules). It remains to be a part of future work to include

the measurements of derivation rules triggered by the internal EL-reasoner.

7.5.2 What Stages in the Reasoning Process Contribute

to OCT?

Table 7.5 breaks down the contribution of sub-processes to the overall classifica-

tion time (OCT). The first thing to note, and also the reason why a breakdown

by delegate reasoner was necessary, is that the relative impact varies significantly

across primary delegate reasoners. For example, the sum of pre-reasoning pro-

cessing times of all delegates is generally higher for HermiT than for the other two

reasoners, because this stage is more dominant in HermiT per se: during PRP,

HermiT performs satisfiability tests of the leaf-nodes in the class graph, work

that the other reasoners have to do during the ST stage. This can be observed

7.5. RESULTS 193

hermit jfact pellet

CCO
CC

MOR
MORA

MM
CD

MON

CCO
CC

MOR
MORA

MM
CD

MON

B
B

G
B

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
points

Figure 7.6: Ranking of approaches based on SST, for experiment run K2, broken
down by primary delegate reasoner and analytic model. The x-axis is the total
number of points a technique scored based on our ranking method.

in Table 7.5: for example, monolithic (MON) HermiT (H) spends 46.9% of the

classification time during pre-reasoning processing (PR in table), and only 20.0%

in the traversal stage (ST), while Pellet (P) spends 0.2% only in PR and 42.3%

in ST.

The impact of decomposition time is, unsurpringly, generally higher for ap-

proaches based on the Atomic Decomposition (CC and CCO). In the case of CD,

that impact is shifted to another part of the pre-processing phase (M1), which is

dominated by the extremely inefficient implementation of the community detec-

tion algorithm. In the case of MM, the relative impact of the decomposition is,

most likely, diminished by the overhead induced by the overlap of maximal mod-

ules and a potentially large amount of delegates (see Section 7.2.1 for more about

these threats). The contribution of the decomposition time to the overall classi-

fication time is probably most informative for the CCO strategy, as this strategy

typically involves little redundancy and little overhead because of delegate rea-

soner creation (compare also Table 7.7). For our K2 corpus, the decomposition

(for CCO) takes on average between 19% and 37% of OCT (depending on the

primary delegate reasoner); for the K1 corpus between 16% and 28%.

The high values of the second Res column (second to last in Table 7.5) for

approaches employing ELK for EL modules reflect the time spend by ELK doing

classification (in our case only MOR). This shows that ELK does in fact most of

the work during the MOR classification.

194 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

T R M1 DC Res M2 PP CC PR ST PO Res M3
CC H 42.2 36.6 5.6 57.6 11.6 0.3 20.9 17.6 7.0 0.3 0.2
CC J 31.8 27.7 4.1 68.1 28.7 0.1 0.0 33.2 5.8 0.3 0.1
CC P 21.1 18.7 2.4 78.8 38.4 1.0 0.3 35.1 3.6 0.4 0.1
CCO H 42.7 36.2 6.5 57.1 9.7 0.1 21.6 18.5 7.3 0.1 0.2
CCO J 32.3 27.5 4.8 67.6 28.8 0.1 0.0 32.9 5.7 0.0 0.1
CCO P 22.1 19.0 3.0 77.8 37.1 1.0 0.2 36.0 3.4 0.0 0.1
CD H 91.4 4.5 86.9 8.6 0.8 0.1 2.9 4.3 0.5 0.0 0.0
CD J 87.1 3.7 83.4 12.9 3.4 0.2 0.0 8.9 0.4 0.0 0.0
CD P 82.6 4.3 78.3 17.4 4.6 1.9 0.0 9.3 1.6 0.0 0.0
MM H 13.7 9.7 3.9 86.3 25.7 4.0 21.0 24.9 9.8 0.8 0.0
MM J 13.7 10.0 3.7 86.2 41.2 1.6 0.1 33.3 7.9 2.1 0.0
MM P 9.0 6.6 2.5 90.9 32.7 7.0 0.2 38.3 10.9 1.8 0.0
MON H 4.7 0.2 4.5 95.0 15.4 3.1 46.9 20.0 9.5 0.0 0.3
MON J 2.5 0.1 2.4 97.3 41.1 1.6 0.0 48.9 5.8 0.0 0.2
MON P 1.0 0.0 0.9 98.9 45.4 4.5 0.2 42.3 6.4 0.0 0.1
MOR H 6.2 5.8 0.4 93.7 3.2 0.0 12.5 8.3 2.0 67.6 0.1
MOR J 5.7 5.3 0.4 94.2 12.5 0.2 0.0 16.4 1.7 63.4 0.1
MOR P 3.9 3.6 0.3 96.0 23.0 0.6 0.1 26.7 1.4 44.2 0.1
MORA H 19.8 18.2 1.6 79.9 13.8 0.4 24.2 30.1 11.3 0.1 0.3
MORA J 13.9 12.8 1.1 85.9 37.2 0.3 0.0 41.9 6.6 0.0 0.2
MORA P 7.1 6.6 0.5 92.8 45.3 1.1 0.2 41.4 4.6 0.0 0.1

Table 7.5: Impact of sub-processes in % of overall classification time (OCT),
experiment run K2. The columns in gray represent the three main modular
classification stages: M1 pre-processing, M2 modular classification and M3 post-
processing. DC is the decomposition time, columns PP, CC, PR, ST and PO
stand for the sum of the contribution of the delegate reasoners: PP is the sum
of pre-processing stages of all delegates (in % of OCT), CC the sum of all con-
sistency checks, PR the pre-reasoning processing, ST the time spend traversing
the class graph and PO the sum of all post-processing time measurements. The
two columns labelled Res. represent the remaining time not accounted for by the
preceding columns with respect to M1 and M2 respectively.

Figures 7.7 (K1) and 7.8 (K2) show the performance profiles of three exam-

ple ontologies, i.e. the break down of sub-processes contributing to the overall

classification time. The full set of all ontologies can be found in the appendix

(Section A.4). The x-axis represents total classification time; the actual values are

not of interest (only the ratio between the techniques), and the axis is re-scaled

for every sub-plot. The BT ontology in Figure 7.7 is a quite unusual case. As

can bee seen, OCT is heavily dominated by subsumption test time (in the case of

HermiT, including pre-traversal, as described before). Apart from MM, there are

virtually no differences between the different approaches. MM is beneficial using

JFact, and detrimental using HermiT. BT is an example where decomposition

time has no impact on OCT. A decomposition with small chunks (redundancy

7.5. RESULTS 195

mitigated) might have a significant effect on OCT by pruning the search space

and making tests easier.

Another interesting example is NPO (same figure as before). NPO is a very

clear example of where modular approaches fail due to the strong impact of the

decomposition time (DEC), which all by itself takes much longer (HermiT and

Pellet) or almost as long (JFact) as it took the monolithic approach to classify the

ontology entirely. The MORe approaches are not as detrimental due to the faster

decomposition, but are generally doing worse than the monolithic approach in

all cases. STATO8 shows a different picture depending on the primary delegate:

using HermiT, the monolithic approach does considerably better than the mod-

ular one, using JFact, the picture is inverted: MM (both EL and default variant)

does almost three times better than the monolithic variant (otherwise exhibiting

a similar profile in terms of relative impact of sub-stages).

Figure 7.8 shows three examples from K2. Without going much into depth,

we want to point out that many of the ontologies in K2 have a relatively low

impact of SST. In Table 7.6 we can see a breakdown of the contribution of SST

to OCT (mean), by technique and primary delegate reasoner. Overall, the im-

pact of subsumption testing in K1 contributes to OCT rather moderately: 15%.

CAO is a notable exception: here, subsumption testing is dominant, regardless

of the modular approach. Like STATO, it is known to cause problems to reason-

ers [LMPS15]. Modular approaches using HermiT do a bit better on CAO than

monolithic HermiT, and similar to BT (Figure 7.7), the overhead of computing

the decomposition does not play any role. This suggests that benefits from mod-

ularity are related to the impact of subsumption test time. K1 provides some

further evidence to this conjecture: subsumption testing accounts on average for

47% of overall classification time and modular approaches did considerably better

in experiment run K1 than in experiment run K2.

The last factor of interest with respect to contributions to overall classification

time is the contribution of the hardest delegation. Figure 7.9 shows the distribu-

tion of relative impact of the hardest chunk broken down by modular technique.

In general, the stronger the possibility for a decomposition to contain a large

chunk (that needs to be processed by a full fledged OWL reasoner), the more the

central tendency of the distribution shifts towards the right. For example, chunks

in the MM-decomposition are generally quite small; therefore, the vast majority

8STATO is known to cause problems for reasoners [LMPS15].

196 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

hermit jfact pellet

MM
MON

MORA
MOR
CCO

CC

MM
MON

MORA
MOR
CCO

CC

MM
MON

MORA
MOR
CCO

CC

bt
npo

stato

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure 7.7: Performance profiles of three example ontologies from experiment
run K1. x-axis is time spent, the full extent of the bar represents the OCT,
ratios between times being preserved across ontologies. As we are only inter-
ested in comparing ratios, we omitted the axis labels. Dec is the decomposition
time, PP (no DEC) is the remaining time needed for preprocessing (assigning
ontologies to delegate reasoners, determining order), DEL-PP is the total time
spent by delegate reasoners doing pre-processing, DEL-SCC is the total time
spend consistency checking, DEL-PRP pre-reasoning processing and DEL-SST
subsumption testing. Overhead is the time spend recording subsumption tests
and other meta-data during classification. Note that we have excluded the CD
strategy on all plots because it was dominated by PP (no DEC) and rendered
the other techniques unreadable.

hermit jfact pellet

CC
CCO

MORA
MOR
MON

MM

CC
CCO

MORA
MOR
MON

MM

CC
CCO

MORA
MOR
MON

MM

bao
cao

ecg

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure 7.8: Performance profiles of three example ontologies from experiment run
K2. See caption of Figure 7.7

7.5. RESULTS 197

R Tech K1 K2
HermiT CC 25.13 12.56
HermiT CCO 23.42 12.69
HermiT CD 26.29 13.59
HermiT MM 39.04 12.71
HermiT MON 21.59 12.69
HermiT MOR 20.93 5.52
HermiT MORA 20.93 11.59
JFact CC 76.27 26.68
JFact CCO 76.08 26.33
JFact CD 72.81 26.21
JFact MM 66.23 19.60
JFact MON 75.19 26.76
JFact MOR 50.08 10.15
JFact MORA 52.22 18.40
Pellet CC 50.92 11.51
Pellet CCO 51.37 12.13
Pellet CD 41.85 13.12
Pellet MM 29.15 9.61
Pellet MON 51.20 14.04
Pellet MOR 16.26 6.62
Pellet MORA 19.93 8.13

Table 7.6: Contribution of subsumption testing (SST) to OCT (blackbox model)
in %. For example, for the CC approach, using HermiT as primary delegate,
subsumption testing took up, on average, 12.56% in K2.

of hardest delegations contribute less than 25% to the overall classification time

(note the log scale). In the cases of MOR and MORA, we can also observe a

hardness shift: because MOR will process the large L-module with ELK (more

efficient), it will be less dominant on OCT. Note that it is quite possible that the

hardest delegation in the MOR case is, occasionally (remember the mean relative

impact, Table 7.5), the classification of the generally smaller remainder module.

In the MORA case however, the L-module will be processed by the full fledged

OWL reasoner (JFact, Pellet or HermiT). As the L-module is typically a quite

large fraction of the ontology, classifying it with the more inefficient reasoner will

make the L-module classification be a much larger proportion of the OCT. In

Figure 7.9, this effect can be observed by the distribution shifting considerably

to the right from MOR to MORA.

198 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

CC CCO CD

MM MOR MORA

1

10

1

10

0 30 60 90 0 30 60 90 0 30 60 90

co
un

t

Figure 7.9: Histogram of the contribution of the hardest chunk in the classification
OCT in %.

7.5.3 Test Avoidance and Redundancy

In the following, we will analyse the effect of modularity on test avoidance and

redundancy. We consider 402 comparisons: the number of modular approach/del-

egate/ontology combinations that (1) successfully classified and (2) have a de-

composition containing at least 2 chunks. As a reminder: avoided tests are those

triggered by the monolithic reasoner that are not triggered by the modular tech-

nique and extra tests are those triggered by the modular approach not triggered

by the monolithic approach (Definition 7.2); common tests are triggered by both

the monolithic and the comparable modular approach. Redundant tests are those

triggered by the modular approach more than once, and unique tests are the hard-

est instances of single test triggered during a classification run (Definition 7.1);

Figure 7.10 breaks down the approaches by whether they are generally avoiding

tests, generally producing extra tests, or whether extra tests and avoided tests

are generally cancelling each other out. The coding was explained in depth in

Section 7.3.2.

Considering the blackbox analytic model, we see that CD and MM have the

potential to prune the traversal space the most—but also have the most detri-

mental cases of any technique by far. Overall, there are 12 cases where modular

approaches significantly prune the search space (high magnitude), 1 case of CC,

4 cases of MM, 4 cases of MOR and 3 cases of MORA. 4 cases related to the

RXNO ontology, 2 to the ECG, WB-BT, NGSONTO ontologies, and 1 to ECO

and FHHO. The extreme cases of extra tests were all caused by the MM strategy

7.5. RESULTS 199

Avoiding Cancelling out Extra

0

20

40

60

CC CCO CD MM MORMORA CC CCO CD MM MORMORA CC CCO CD MM MORMORA
Modular technique

C
ou

nt
 o

f c
as

es

Magnitude High Low Medium Neutral

Figure 7.10: Break down of cases by whether they are predominantly avoiding
tests, producing extra tests, or both extra and avoided tests cancelling each other
out, further broken down by the magnitude of the effect (blackbox model). For
example, there are 33 cases (classification runs) for which CD has helped avoiding
subsumption tests. Out of these, 9 have a medium magnitude of avoidance, 14
have a low magnitude, and the remaining 10 are neutral.

on the following ontologies: BHO, EMO, GFO, HUPSON, OPE and SAO. It is

very possible that the average size of the chunks in the decomposition have some-

thing to do with the potential to prune: For MM, the average size of the chunk

is only about 100 axioms, for CC 379 (note the large standard deviation), for CD

2,120, for CCO 2,237, for MOR and MORA 2295 and for MON (the monolithic

approach) 4,771.

For the cancelling out cases, the vast majority (83%) have neither extra nor

avoided tests, and therefore an avoidance score of 0. There are 12 cases with one

extra, one avoided test, and 5 cases with equal numbers of tests in both categories

higher than 1.

Figure 7.11 shows the same analysis, while ignoring redundant tests (glassbox

model). While the cases where avoided and extra tests are cancelling each other

out remain mostly unchanged (all except for a single one), 21 cases (12.2%) of all

the 172 extra cases under the blackbox model now move to the avoiding group.

12.4% out of the 129 avoiding cases under the blackbox model changed to a higher

category in terms of magnitude. All 5 newcomers to the avoiding category with

high magnitude were cases of MM. Altogether, the number of cases in which there

are potential gains in terms of traversal space pruning only barely outweigh the

200 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

Avoiding Cancelling out Extra

0

10

20

30

40

50

CC CCO CD MM MORMORA CC CCO CD MM MORMORA CC CCO CD MM MORMORA
Modular technique

C
ou

nt
 o

f c
as

es

gb_Magnitude High Low Medium Neutral

Figure 7.11: Break down of cases by whether they are predominantly avoiding
tests, producing extra tests, or both extra and avoided tests cancelling each other
out, further broken down by the magnitude of the effect (glassbox model).

number of cases that are detrimental (by 151 to 147). This suggests that at least

in the case of decomposition-based classification, it is quite likely that heuristics

are needed to determine the applicability of a modular approach upfront (similar

to the mechanism that decides whether the internal EL classifier of a reasoner

can be used).

The effect on the traversal space does not necessarily have any great con-

sequences on the overall classification time. Figure 7.12 directly corresponds to

Figure 7.10. Instead of numbers of tests however, we visualise the effect in terms of

proportion of OCT. The metric is computed by the following formula: ATT−ETT
OCT

.

The vast majority of cases only have low to no (neutral) impact. Beneficial

(avoiding) cases of medium and high impact constitute only about 4.7% of the

cases overall. In contrast to that, 14.7% of the high and medium impact cases are

beneficial in experiment run K1 (10.7% being of high magnitude). We conclude

from these observations two things: (1) avoided or extra tests do not necessarily

make a difference to overall classification time and (2) for some ontologies using

the decomposition is beneficial, for some other ontologies detrimental—modular

techniques do not generally prune the search space.

Table 7.7 shows the mean values of some of the key metrics in this section.

BBA and GBA are the mean values of our avoidance score, for the blackbox (BB)

and glassbox (GB) models respectively. Negative values indicate extra tests, and

7.5. RESULTS 201

Avoiding Cancelling out Extra

0

20

40

60

CC CCO CD MM MORMORA CC CCO CD MM MORMORA CC CCO CD MM MORMORA
Modular technique

C
ou

nt
 o

f c
as

es

Change High Low Medium Neutral

Figure 7.12: Impact of avoidance on OCT (K2), quantified as the total time of
avoided tests (ATT), minus the total time of extra tests (ETT), divided by overall
classification time (OCT). The magnitude of the effect is high, if it higher than
50% of the overall classification time, medium if it is between 10% and 50%, low
if it is between 1% and 10% and neutral if it is less than 1%. For example, there
is one case of CD for which the difference of avoided to extra tests accounted for
more than 50% of the OCT (high magnitude).

positive values subsumption test avoidance. As we have pointed out before, the

differences across ontologies are great; mean values should be read with caution.

The AV, COM and EX should give a sense of the average proportions of avoid-

ed/common/extra tests. All three metrics are represented as ratios of STC-MOD

(total subsumption test count of modular reasoner). As can be seen, common

tests dominate in most cases. In the cases where they do not, extra tests are

typically inflated because of redundancy: A subsumption test triggered by the

modular reasoner multiple times, which has not been triggered by the monolithic

reasoner. In terms of redundancy (RED), the CD (around 24%) and MM (around

77%) approaches are dominating by far. It is obvious that despite having typi-

cally much smaller modules in MM than in CD the redundancy is significantly

higher. This suggests considerable overlap between some of the chunks in the

decomposition. It is interesting that the CC and CCO strategies do not generate

any redundancy at all. This is probably due to the fact that both decompositions

are partitions, i.e. all chunks in the decomposition are mutually non-intersecting.

The very low redundancy of the MORA approach is most likely due to the fact

202 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

that the remainder module is typically small. The fact that Pellet has a pre-

dominantly large proportion of common tests suggests that it typically did not

fall back into the internal EL-reasoner for dealing with the L-module.

R MT BBA GBA AV COM EX RED UN
HermiT CC -3.56 -3.56 9.49 86.60 13.40 0.00 100.00
JFact CC -0.01 -0.01 6.28 93.72 6.28 0.00 100.00
Pellet CC 35.74 35.74 38.98 89.00 11.00 0.00 100.00
HermiT CCO 18.24 18.24 29.41 86.81 13.19 0.00 100.00
JFact CCO -4.17 -4.17 5.58 91.63 8.37 0.00 100.00
Pellet CCO 26.55 26.55 33.15 87.38 12.62 0.00 100.00
HermiT CD -67.52 -40.66 19.64 60.77 39.23 22.61 77.39
JFact CD 25.51 31.59 33.67 91.91 8.09 24.89 75.11
Pellet CD 69.42 75.63 67.90 76.27 23.73 24.85 75.15
HermiT MM -951.39 -517.08 3.22 33.22 66.78 74.82 25.18
JFact MM 30.03 513.40 53.61 80.60 19.40 78.06 21.94
Pellet MM 49.76 2937.63 165.51 76.47 23.53 77.60 22.40
HermiT MOR 113.88 113.88 76.99 75.82 24.18 0.00 100.00
JFact MOR 97.89 97.89 100.32 96.44 3.56 0.00 100.00
Pellet MOR 366.92 366.92 186.62 93.67 6.33 0.00 100.00
HermiT MORA 113.09 113.05 73.10 74.56 25.44 0.31 99.69
JFact MORA 45.18 45.18 52.41 96.53 3.47 3.89 96.11
Pellet MORA 367.31 367.36 192.94 93.15 6.85 0.04 99.96

Table 7.7: Avoidance and redundancy analysis of K2. BBA is the mean avoidance
score using the blackbox model. A positive number indicates that avoided tests
outweigh extra tests. The closer the value to 0, the less magnitude that effect
has. GBA is the same, recalculated under the glassbox model. AV, COM and
EX are the proportion of avoided, common and extra tests to the total number of
tests (in %) as measured by the modular reasoner (blackbox model). RED and
UN are the respective proportions of redundant and unique tests.

As a side observation, there are 6 cases in which the monolithic reasoner

triggered a test, and the comparable modular technique did not trigger any tests

at all (4 MM, 1 CC, 1 CD). This number is not significant (1.5% of the cases),

but it is interesting to know that this effect can occur at all. There were 4 cases

for HermiT and 2 cases for Pellet. It is possible that both were able to use their

internal deterministic engines, without the need to trigger any tests.

7.5. RESULTS 203

7.5.4 Test Hardness

Table 7.8 shows the effect of the decomposition on the hardness of subsumption

tests. It is striking that in nearly all cases, the decomposition was beneficial to the

hardness of the tests triggered by both the monolithic and the modular reasoner

(which constitute the majority, see Table 7.7). Detrimental effects can be found

only for the MM strategy (most likely due to duplicate tests), and only under the

blackbox model. Among the cases with changes in hardness of common tests of

more than a 10-fold we can find all three delegates, all using the MM strategy,

and scattered across 8 different ontologies. The magnitude varies a lot across

primary delegate and modular approach. In general, these results confirm the

observation in Chapter 6 that subsumption test hardness is, on average, reduced

under modularity. The occasionally much higher effect witnessed in this chapter

might be due to the fact the modules in the decompositions we have investigated

are typically smaller than the ones sampled by our subset-signature approach

(Section 6.3.1).

Modular techniques have a, occasionally great, potential to reduce the average

hardness of subsumption tests. In only 4 out of 18 configurations (delegate rea-

soner - modular approach pair) did the decomposition have a detrimental effect

on mean test hardness, all of which involve modular techniques with potentially

large chunks (CC ,CCO, MOR). 3 of the configurations involve Pellet and one

HermiT. Again, we have that, the smaller the chunks (MM,CD), the more po-

tential for hardness reduction. The MM strategy is able to, on average, reduce

the mean hardness of tests by more than 200%. Note that it is possible that the

magnitude of this effect was caused by replacing hard subsumption tests with

(possibly harder) alternative tests conducted by the internal non-deterministic

reasoners, which our framework ignores; however, given that JFact exhibits a

similar profile without having an internal consequence based reasoner, we do not

expect this to happen often.

204 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

R Tech COM STM COMU
HermiT CC -15.15 -14.01 -15.15
HermiT CCO -9.32 7.11 -9.32
HermiT CD -21.07 -19.55 -37.00
HermiT MM 89.00 -166.55 -73.06
HermiT MOR -22.12 -1.21 -22.12
HermiT MORA -40.75 -13.30 -42.57
JFact CC -1.06 -1.09 -1.06
JFact CCO -6.60 -6.42 -6.60
JFact CD -5.63 -22.36 -23.06
JFact MM 22.18 -204.54 -36.04
JFact MOR -5.25 -3.81 -5.25
JFact MORA -1.44 -4.66 -3.54
Pellet CC -39.50 15.42 -39.50
Pellet CCO -25.48 14.14 -25.48
Pellet CD -44.55 -22.24 -57.00
Pellet MM 56.41 -238.04 -137.81
Pellet MOR -2.86 5.97 -2.86
Pellet MORA -13.63 -0.32 -13.63

Table 7.8: Effect of decomposition on subsumption test hardness (K2). COM
is the fold change of the total time of tests triggered both by the monolithic
and the modular approach. STM is the (respective) fold change of mean test
hardness (taking into account all tests). COMU is the fold change of common
test under the glassbox model (redundant tests ignored). A positive value (in all
cases) indicates a detrimental effect of the modular technique on the measure.
The fold change is, due to some extreme outliers, aggregated as median for all
three measures and here reported in %.

7.6 Discussion

Blackbox decomposition based approaches rarely outperform their monolithic

counterparts. However, the applicability of blackbox decomposition-based rea-

soning based on syntactic locality-based modules differs extremely across on-

tologies. Some ontologies, typically involving a lot of subsumption testing, can

benefit from the decomposition. There are even a few rare case where a modular

approach was able to classify, while the comparable monolithic strategy was not.

One of the strongest arguments against employing the CC, CCO and MORe-

based strategies is their limited applicability. The single chunk problem renders

any efforts in extracting modules totally useless; we therefore judge them as

failures by default. CC and CCO were only applicable to less than 35% of the

7.6. DISCUSSION 205

ontologies in K2, and the MOR and MORA approaches failed by default in more

than 37% of the cases. Note that the single chunk caveat only applies to the

specific approaches we have investigated as part of this chapter.

What are the main reasons for modular approaches failing to be beneficial?

Initially, we expected the decomposition time to contribute considerably more to

the overall classification time. This was the motivation for the encoded chunking

(EC) analytic model. From Figures 7.2 and 7.4 we could see that presuming a

somehow encoded decomposition did not make a big difference at all. We also

know from email communication9 that the optimised Atomic Decomposition as

implemented in the latest releases of FaCT++ can be up to 10 times faster than

the (experimental) implementation as part of the OWL API tools. At least for

K2, this would mean that decomposition time could be reduced to less than 3-5%

of OCT–better than anticipated. However, from experience we know that it can

take many hours, even days, to compute the Atomic Decomposition on some of

the larger (and often harder) ontologies. More experiments need to be carried

out to cover ontologies of all sizes and difficulties.

The second main threat to the application of decomposition-based classifi-

cation approaches is the redundancy induced by the overlap between chunks.

As part of this chapter, we have analysed the redundancy of subsumption test-

ing. Our main conclusions are that there are cases (a modular approach using a

particular primary delegate on some ontology) for which the modular technique

proved highly beneficial with respect to test avoidance, and some others where it

proved highly detrimental. We will, as part of future work, improve our charac-

terisation of beneficial and detrimental cases and try to develop heuristics that

can determine the applicability of a modular decomposition to improve reasoning

time upfront. Most likely, these heuristics will be based on the logical structure

of the ontology, its size, potential axiom interactions and its expressivity. Note

however, that subsumption testing is by no means the only source of redundancy.

In fact, as can be seen in Section A.4 (appendix), many classifications have a

considerable impact of delegate pre-processing time. It is quite likely that a lot

of what is done during pre-processing, depending on the reasoner (for example

normalisation, told subsumers or absorption) is repeated across multiple chunks.

Some cases are even effected by a significant contribution of the (totally redun-

dant) consistency check that monolithic reasoner conducts before classification. It

9Dmitry Tsarkov and Ignazio Palmisano.

206 CHAPTER 7. MODULAR CLASSIFICATION IN ACTION

remains to be seen whether it is worth adjusting the implementations of delegate

reasoners in such a way that these redundancies can be avoided (shared pre-

processing, shared partial classifications, shared knowledge of consistency, etc.)

or whether it will be necessary to implement a fully modularity-sensitive OWL

reasoner, see Section 3.1.1, instead.

7.6.1 Methodological Reflections

The choice of the K2 corpus as the major point of analysis was a difficult, and

questionable one. Biasing the sample to those ontologies that all reasoners have

successfully dealt with (within a timeout of 1 hour) will necessarily create a bias

towards easier ontologies—for harder ontologies it is more than likely that at

least one reasoner is not able to deal with them in time. But, as we saw from our

comparisons with the K1 corpus, modular techniques seem to be more effective

in the context of harder ontologies. Therefore, the K2 analysis might emphasise

the detrimental effects of modular techniques. The next step in the course of our

investigation will include an in-depth analysis of the nature of ontologies that are

more agreeable to decomposition based reasoning.

One interesting thing to note is that the variance between our Amazon EC2

run K2 and our own Mac Mini cluster run K1 appears mostly similar. We ex-

pected the variance on the Amazon cloud to be much worse. While the median

variance is slightly higher for the Amazon run K2, the mean is slightly lower. At

a closer look, two of the top four classifications with the worst variation in K1

relate to a single ontology, PORO (and both HermiT and JFact), which suggests

that the source of the variance could also be the ontology itself.10 In K2, the top

three cases of variance relate to the same ontology (OPL), with different delegates

(Pellet an JFact) involved, and all different modular techniques. Based on these

observations, we make the preliminary suggestion that running reasoning time ex-

periments on the cloud is safe (from the variance point-of-view). However, high

variance can have consequences on the conclusions to be drawn. In this thesis, we

only ever checked the variance to convince ourselves that it is acceptable overall.

In the future, we want to take into account the variance more systematically by

creating a variance score per ontology that can be used across experiments.

10PORO is known to cause problems for reasoners from previous experience.

7.7. SUMMARY OF KEY OBSERVATIONS 207

7.7 Summary of Key Observations

In the following, we will summarize the key observations made as part of this

chapter.

� Decomposition-based approaches are not generally suitable to improve clas-

sification performance.

� In some cases, modular approaches outperform their monolithic counter-

parts.

� Suitability to improve performance depends largely on the ontology. A pre-

liminary indicator for suitability is the impact of subsumption test hardness

to overall classification time.

� Reasoning with decompositions rarely has a detrimental and frequently a

very beneficial effect on subsumption test hardness. We confirmed our

observation in Chapter 6 that, on average, test hardness is reduced under

modularity. Our results suggest that the smaller the module, the stronger

the effect of hardness reduction.

� Whether reasoning with decompositions has a detrimental or beneficial ef-

fect on subsumption test avoidance depends heavily on the particular on-

tology at hand. The techniques with the largest potential for avoidance for

some ontologies (CD, MM) also have the largest potential for extra tests

on others. A lot, but not all, of the detrimental cases are caused by the

occasionally great amount of redundancy.

� JFact is considerably more amenable to decomposition-based reasoning than

HermiT and Pellet.

Chapter 8

Conclusions

In this thesis, we have investigated the use of modules and module-based decom-

positions to optimise OWL classification. In particular, we have shown that:

� Syntactic locality-based ⊥-modules are occasionally harder than their par-

ent ontology. Such pathological modules are typically, but not always, large

fractions of the parent ontology.

� The impact of subsumption testing is significant only for a small proportion

of BioPortal, which threatens the applicability of modular approaches to

optimise classification by reducing test hardness.

� Using modules and module-based decompositions reduces the average hard-

ness of subsumptions tests. The magnitude of the effect differs significantly

by reasoner and modular technique employed. However, as subsumption

testing is only occasionally a major contributor to overall classification time,

the overall savings due to reduced test times are not always significant.

� The effect of modular decompositions on search space pruning depends

heavily on the ontology. Modular techniques have the potential to prune

the traversal space significantly, but can also induce significant amounts of

extra tests. Further efforts are needed to characterise the ontologies which

are likely to benefit—and which are likely not to.

� Contrary to our expectations, decomposition time does not generally con-

stitute the majority of the overhead of decomposition-based classification

approaches. Redundancy is often a more dominant problem.

Furthermore, we have:

� Designed a framework (Katana) for benchmarking decomposition-based

classification approaches.

� Designed a benchmark and analysis pipeline that allows a more fine grained

view of traversal-based classification approaches (OWL Reasoner Stage Bench-

mark).

8.1. SUMMARY OF CONTRIBUTIONS 209

� Designed a number of novel methods to measure the effects of modularity

on OWL classification.

� Created, published and characterised a large dataset with fine grained tim-

ings of classification time, including sub-processes and individual subsump-

tion test times, as a basis for furthering the understanding of modular and

monolithic classification.

8.1 Summary of Contributions

In this thesis we set out to investigate the potential of using locality-based ⊥-

modules to make classification easier, specifically by reducing the hardness of

subsumption tests or avoiding them altogether. We have not conclusively an-

swered the question of whether modules are generally beneficial. We rooted our

benign module conjecture (no module is ever harder than its parent ontology)

in the fact that any module contains all the reasons for a subsumption to hold

between classes in its signature. In practice, this conjecture turned out to be

false, casting some initial doubt on the usefulness of modularity for classifica-

tion. However, as such pathological cases occurred only rarely, and we were

able to observe the protective effect of modularity in general—random subsets

that are harder to classify than the ontology became easier than the ontology

when “modularised”—we continued our investigation to determine the effect of

modularity on subsumption test hardness as triggered during classification. We

showed that only a minority of the ontologies in BioPortal are actually amenable

to subsumption test hardness reduction: most ontologies in the corpus are fairly

inexpressive and did not require reasoners to trigger subsumption tests at all. We

continued to investigate a subset of BioPortal for the question of how the size of

modules effects the hardness of subsumption tests. We were able to show that

the majority of subsumption tests triggered did not change at all in hardness

from a sub- to its super-module. We concluded that OWL reasoners, especially

Pellet and HermiT, were only to a very small degree sensitive to modularly ir-

relevant axioms. We were able to isolate a number of subsumption tests that

were harder in the sub-module than in the super-module, but remained unsure

about the cause of that effect. The high degree of perceived stochasticity in the

classification process and the much higher potential for measurement error in

the microsecond area precluded any conclusions about the pathological nature of

210 CHAPTER 8. CONCLUSIONS

these tests. However, on average, reasoners appeared to profit, if slightly, from

modularity in terms of subsumption test hardness. In the last chapter, we moved

on to observe decomposition-based classification techniques in action. Not unex-

pectedly, decomposition-based classification techniques often have a great detri-

mental effect on classification performance, due to the occasionally severe degree

of redundancy induced by overlapping modules or, to a lesser degree, the over-

head induced by the inefficiency of current decomposition implementations. We

were able to observe some strong positive effects in terms of search space prun-

ing and average subsumption test hardness reduction. Some other cases where

decomposition-based classification proved detrimental on the other hand led us

to conclude that the applicability of a particular decomposition-based strategy

depends heavily on the nature of the particular ontology at hand.

Many of the results in this thesis are unsatisfyingly negative, or at least not

clearly positive. Our initial intention was to show how beneficial modules could

be, and that we would find some clear answer of the type: “the smaller the

module, the easier the test” or “the more (smaller) modules in the decomposi-

tion, the higher the effect of traversal space pruning”. We have not arrived at

that point. In fact, the doubt that we initially intended to dispel is still there,

only some of the folklore like “Atomic Decomposition-based reasoning will never

work” or “reasoning with a module is of course easier” have now been substanti-

ated a bit more, and the observations we made form a sound basis for future work

in this direction. These results should shed some light into the performance of

modularity-based reasoners such as Chainsaw and MORe in practice. In particu-

lar, the factors that impact the time both negatively (e.g. overhead, redundancy)

and positively (e.g. traversal space pruning) are isolated and their prevalence

and magnitude observed empirically. Apart from increasing our understanding

on modularity-based reasoning, we have gained some insight on classification in

general, for example the average hardness of tests and test counts and the charac-

terisation of ontologies that do not force any tests to be triggered—or particularly

many.

Apart from generating insight, we have gathered a significant corpus of data

about classification with modules1 and learned a lot about experimental method-

ologies. It was not a focus of this thesis to understand classification performance

as such better, nor to characterise the delegate reasoners themselves in depth

1The data collected as part of this thesis are available at the supplementary materials website.

8.2. OUTSTANDING ISSUES AND FUTURE WORK 211

with respect to their classification behaviour. However, we hope that the data

we have generated will serve as a stepping stone for researchers that are inter-

ested in understanding classification better. A completely unexplored dimension

of the dataset for example is the order of the tests triggered: if a relationship

could be established between test order and the overall classification time, it may

be possible to develop heuristics that force more beneficial test orders. Another

community we expect to benefit from our dataset investigates (typically machine

learning based) methods to predict classification time. Prediction models often

depend on large amounts of training data, and as gathering such data is very

expensive (both from a time and from an effort perspective), and as our dataset

contains data from multiple runs, classification times and metadata of random

subsets and modules and millions of individual subsumption test measurements,

it should prove a valuable resource. Some of the methodological insights we

gained were related to the variance across classification runs. Depending on the

ontology and the reasoner, variance can be extremely high, an observation that

should once and for all end the unjustified one-run policy still prevailing in our

community. We have gathered some preliminary evidence that benchmarking in

the cloud does not result in a higher degree of variance than using a (local) cluster

of typical desktop machines. The high degree of fluctuations in test counts sug-

gest that classification is in many cases subject to stochastic effects. Pinpointing

these effects is a part of future work, but only being aware of them should again

at least put another weight against the one-run practice of our community (in

particular when verifying the performance of test avoiding optimisations through

counting).

8.2 Outstanding Issues and Future Work

Many aspects of the research presented as part of this thesis are still in an early

stage (stage benchmark, modular reasoning). We hope that we were able to

lay the foundations for systematic investigations into the effect of modularity on

reasoning hardness. However, many open questions, both technical and method-

ological, remain.

212 CHAPTER 8. CONCLUSIONS

8.2.1 Modular Reasoning

With respect to modular reasoning, we want to address a number of open ques-

tions. At the time of writing, we are experimenting with dynamic dispatch to

OWL 2 EL delegate reasoners, i.e. in the case where a chunk in the decomposition

is in OWL 2 EL, automatically dispatch it to an appropriate delegate reasoner.

We would like to extend this route of investigation to all sorts of specialised rea-

soners, and see whether this can make a difference. In this thesis, we referred to

this problem as the optimal dispatch problem. The goal of this research is the de-

velopment of heuristics that could guide the automated assignment of appropriate

delegate reasoners to particular chunks in the decomposition.

Conceptually, we want to tackle the problem of communicating known non-

subsumptions between delegate reasoners, preferably without having to manip-

ulate the existing implementations too much. One way to achieve this is with

ABox witnesses: If we assert an individual to be an instance of Au¬B, then we

know that A cannot be a subclass of B. However, the potentially huge number of

necessary witnesses and the subsequent detrimental effects are likely to outweigh

the burden of simply triggering the SAT test again. Therefore, we are looking for

ways to improve the representation of non-entailments.

The next step in our analysis of modular techniques is to characterise in

more depth the ontologies that are likely to profit from decomposition-based (or

modular) reasoning. So far, we only have an intuition that ontologies that cause

reasoners to do a lot of subsumption testing are likely to benefit the most. Based

on those characterisations, heuristics could be developed to decide whether a

particular decomposition is likely to give any benefits at all.

Lastly, we want to increase our understanding of the stochastic effects impact-

ing classification in general. We are mainly interested in two questions: (1) What

are the exact sources of stochasticity? These could be non-deterministic choices

during a satisfiability check or a random effect induced by the programming en-

vironment (for example, random keys in a hash set). (2) If stochasticity has a

significant effect on classification performance, can we develop heuristics based

on our data that allow algorithms to make better choices, i.e. to force them into

a more benign space?

8.2. OUTSTANDING ISSUES AND FUTURE WORK 213

8.2.2 Experimental Pipeline

My main interest with respect to OWL and reasoning is improving the exper-

imental pipeline that helps with evaluations, in particular with respect to the

following aspects:

� Datasets: Ontology corpora and experimental analyses.

� Experimental Setup: Infrastructure, guides and checklists.

� Reproducibility: Fully executable analysis pipelines, from data gathering

all the way through analysis.

One of the starting points of our tour into the world of OWL reasoner bench-

marking was the detailed characterisation of existing OWL corpora and the def-

inition of new ones. It was striking to see that people were still using either old

corpora such as Tones2 or browsing the web and manually assembling corpora.3

We have made some efforts to gather information on existing corpora4 and make

them available. However, a lot still needs to be done in terms of delivery. At

the moment, we provide a service for ontology researchers to assemble suitable

corpora for their problems (for example all RL ontologies larger than 100 axioms,

or all ontologies with unsatifiable classes). At the moment we create these sets

more or less manually by executing a series of scripts that filter, de-duplicate

and characterise the ontologies according to the input criteria. In the future, we

would like to fully automate the entire process: from the dataset definition by the

client to the automated assembly and full characterisation of the corpus (metrics,

plots, reports).

A second (related) aspect is the re-use of analysis results. We recently received

a request for the results of the ORE reasoner competition to drive an experiment

into using Machine Learning to predict OWL reasoner robustness. This dataset

covers roughly 7.5 days worth of machine hours on classifications. Many months

worth of classification time measurements were gathered as part of this thesis.

It would be both a saving for the environment (think carbon footprint) and a

reduction of human effort if datasets like this would be shared in a form that

made them usable by others. We have started building an OWL experiment

2In fact, at the time of this writing, I received a request for a copy of Tones—September
2015.

3A colleague in the community recently “downloaded” BioPortal by manually navigating to
all 350 or so entries and downloading the ontologies from their websites—one by one.

4http://mowlrepo.cs.manchester.ac.uk/

http://mowlrepo.cs.manchester.ac.uk/

214 CHAPTER 8. CONCLUSIONS

ontology5 (mainly as a structured vocabulary for the metrics used as part of our

experiments), and we would like to integrate this in the future with STATO and

other efforts to share our experimental data.

Our next concern is the improvement of OWL experiment infrastructure. We

have recently started running experiments in the cloud (Experiment 7.1). There

is however as yet little knowledge about how to control the variance when ex-

perimenting with non-dedicated virtual servers, how many runs are necessary to

ensure a meaningful classification time result and how to distinguish variance

caused by algorithmic non-determinism from measurement error. We are pro-

ducing some guidelines and checklists for the community to run experiments on

the cloud, covering many of the typical problems OWL researchers have with

experimentation (timeouts, OWL API, metrics gathering, etc.), but also plan to

run some of our own experiments to investigate the above mentioned problems.

Lastly, we want to help the community to make experiments fully repro-

ducible. We made some first steps by publishing datasets with DOI’s on a data

publishing platform (Zenodo6), and coding up our analyses completely in R.

There are however still a lot of disconnected components to be tied together, for

example the integration of the metrics gathering and analyses that are conducted

as part of a Java-based experiment and the actual analysis scripts (Python, R,

Matlab).

5https://github.com/matentzn/owlexperimentontology
6https://zenodo.org/

https://github.com/matentzn/owlexperimentontology
https://zenodo.org/

Bibliography

[AM05] Eyal Amir and Sheila McIlraith. Partition-based logical reason-

ing for first-order and propositional theories. Artificial Intelligence,

162(12):49–88, 2005. (Cited on pages 60 and 61.)

[AYL15] Nourhne Alaya, Sadok Ben Yahia, and Myriam Lamolle. What

Makes Ontology Reasoning So Arduous?: Unveiling the Key Onto-

logical Features. In Proceedings of the 5th International Conference

on Web Intelligence, Mining and Semantics, New York, NY, USA,

2015. (Cited on page 16.)

[BCM+07] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider. The Description Logic Hand-

book: Theory, Implementation and Applications (Second Edition).

Cambridge University Press, Cambridge, 2007. (Cited on pages 10,

13, 25, 33, and 34.)

[BDGR12] Fernando Bobillo, Miguel Delgado, and Juan Gmez-Romero. De-

Lorean: A Reasoner for Fuzzy OWL 2. Expert Systems with Appli-

cations, 39(1):258–272, 2012. (Cited on page 231.)

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and

Etienne Lefebvre. Fast Unfolding of Communities in Large Net-

works. Journal of Statistical Mechanics: Theory and Experiment,

2008(10), 2008. (Cited on page 166.)

[BH08] Marian Babik and Ladislav Hluch. A Testing Framework for OWL-

DL Reasoning. In Fourth International Conference on Semantics,

Knowledge and Grid, SKG ’08, Beijing, China, December 3-5, 2008,

pages 42–48, 2008. (Cited on page 91.)

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi:

An Open Source Software for Exploring and Manipulating Net-

works. In Proceedings of the Third International Conference on We-

blogs and Social Media, ICWSM 2009, San Jose, California, USA,

May 17-20, 2009., 2009. (Cited on page 166.)

216 BIBLIOGRAPHY

[BHN+94] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jrgen

Profitlich, and Enrico Franconi. An empirical analysis of optimiza-

tion techniques for terminological representation systems. Applied

Intelligence, 4(2):109–132, 1994. (Cited on page 35.)

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL

- A Polynomial-Time Reasoner for Life Science Ontologies. In Au-

tomated Reasoning, Third International Joint Conference, IJCAR

2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, pages

287–291, 2006. (Cited on page 231.)

[BNJ14] Jaroslaw Bak, Maciej Nowak, and Czeslaw Jedrzejek. RuQAR: Rea-

soning Framework for OWL 2 RL Ontologies. In The Semantic Web:

ESWC 2014 Satellite Events - ESWC 2014 Satellite Events, Anis-

saras, Crete, Greece, May 25-29, 2014, Revised Selected Papers,

pages 195–198, 2014. (Cited on page 231.)

[Boy08] Brent Boyer. Robust Java Benchmarking, Part 1: Issues. Technical

report, IBM developerWorks, 2008. (Cited on page 87.)

[BP10] Franz Baader and Rafael Pealoza. Axiom Pinpointing in General

Tableaux. Journal of Logic and Compution, 20(1):5–34, 2010. (Cited

on page 26.)

[BPS11] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Extracting Fi-

nite Sets of Entailments from OWL Ontologies. In Informal Pro-

ceedings of the 24th International Workshop on Description Logics

(DL-2011), Barcelona, Spain, July 13-16, 2011., 2011. (Cited on

page 21.)

[BS08] Fernando Bobillo and Umberto Straccia. fuzzyDL: An Expressive

Fuzzy Description Logic Reasoner. In FUZZ-IEEE 2008, IEEE In-

ternational Conference on Fuzzy Systems, Hong Kong, China, 1-6

June, 2008, Proceedings, pages 923–930, 2008. (Cited on page 231.)

[BVSH09] Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar.

Package-Based Description Logics. In Modular Ontologies: Con-

cepts, Theories and Techniques for Knowledge Modularization,

BIBLIOGRAPHY 217

pages 349–371. Springer-Verlag Berlin Heidelberg, 2009. (Cited on

pages 39 and 62.)

[CGL+11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-

izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo

Rosati, Marco Ruzzi, and Domenico Fabio Savo. The MASTRO

System for Ontology-based Data Access. Semantic Web, 2(1):43–

53, 2011. (Cited on page 231.)

[Con13] The Gene Ontology Consortium. Gene Ontology Annotations

and Resources. Nucleic Acids Research, 41(D1):D530–D535, 2013.

(Cited on page 10.)

[DCtTdK11] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette

de Keizer. Comparison of Reasoners for Large Ontologies in the

OWL 2 EL Profile. Semantic Web, 2(2):71–87, 2011. (Cited on

pages 91 and 92.)

[DLZC13] Chan Le Duc, Myriam Lamolle, Antoine Zimmermann, and Olivier

Cur. DRAOn: A Distributed Reasoner for Aligned Ontologies. In

Informal Proceedings of the 2nd International Workshop on OWL

Reasoner Evaluation (ORE-2013), Ulm, Germany, July 22, 2013.,

pages 81–86, 2013. (Cited on pages 62 and 231.)

[DV13] Chiara Del Vescovo. The Modular Structure of an Ontology: Atomic

Decomposition and its Applications. PhD thesis, University of

Manchester, 2013. (Cited on pages 35, 36, 37, 40, 41, 42, 43, 70,

and 164.)

[DVPSS11a] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas

Schneider. The Modular Structure of an Ontology: Atomic De-

composition. In IJCAI 2011, Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, Barcelona, Catalonia,

Spain, July 16-22, 2011, pages 2232–2237, 2011. (Cited on pages 39

and 42.)

[DVPSS11b] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas

Schneider. The Modular Structure of an Ontology: Atomic Decom-

position and Module Count. In Modular Ontologies - Proceedings of

218 BIBLIOGRAPHY

the Fifth International Workshop, WoMO 2011, Ljubljana, Slove-

nia, August 2011, pages 25–39, 2011. (Cited on pages 106 and 107.)

[EOS+12] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran,

and Guohui Xiao. Query Rewriting for Horn-SHIQ Plus Rules.

In Proceedings of the Twenty-Sixth Conference on Artificial Intelli-

gence (AAAI-2012), Toronto, Ontario, Canada, July 22-26, 2012.,

2012. (Cited on page 231.)

[For10] Santo Fortunato. Community Detection in Graphs. Physics Reports,

486(3):75–174, 2010. (Cited on page 166.)

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically

Rigorous Java Performance Evaluation. In Proceedings of the 22nd

Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2007, Oc-

tober 21-25, 2007, Montreal, Quebec, Canada, pages 57–76, 2007.

(Cited on page 149.)

[GBJR+13] Rafael S. Gonalves, Samantha Bail, Ernesto Jimnez-Ruiz, Nicolas

Matentzoglu, Bijan Parsia, Birte Glimm, and Yevgeny Kazakov.

OWL Reasoner Evaluation (ORE) Workshop 2013 Results: Short

Report. In Informal Proceedings of the 2nd International Workshop

on OWL Reasoner Evaluation (ORE-2013), Ulm, Germany, July

22, 2013., pages 1–18, 2013. (Cited on pages 14, 20, 90, and 91.)

[GCH+13] Martin Giese, Diego Calvanese, Peter Haase, Ian Horrocks, Yannis

Ioannidis, Herald Kllapi, Manolis Koubarakis, Maurizio Lenzerini,

Ralf Mller, and others. Scalable End-user Access to Big Data. Big

Data Computing, pages 205–245, 2013. (Cited on page 90.)

[GHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike

Sattler. Modular Reuse of Ontologies: Theory and Practice. Jour-

nal of Artificial Intelligence Research, 31:273–318, 2008. (Cited on

pages 13, 14, 26, 35, and 36.)

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia,

Peter F. Patel-Schneider, and Ulrike Sattler. OWL 2: The Next Step

BIBLIOGRAPHY 219

for OWL. Journal of Web Semantics, 6(4):309–322, 2008. (Cited

on pages 11 and 22.)

[GHM+12] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Gior-

gos Stoilos. A Novel Approach to Ontology Classification. Journal

of Web Semantics, 14:84–101, 2012. (Cited on pages 16, 28, 35,

and 92.)

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe

Wang. HermiT: An OWL 2 Reasoner. Journal of Automated Rea-

soning, 53(3):245–269, 2014. (Cited on pages 49, 112, 152, and 231.)

[GHWK07] Bernardo Cuenca Grau, Christian Halaschek-Wiener, and Yevgeny

Kazakov. History Matters: Incremental Ontology Reasoning Using

Modules. In The Semantic Web, 6th International Semantic Web

Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +

ASWC 2007, Busan, Korea, November 11-15, 2007., pages 183–

196, 2007. (Cited on pages 13, 58, and 59.)

[GI13] Andrey V. Grigorev and Alexander G. Ivashko. TReasoner: Sys-

tem Description. In Informal Proceedings of the 2nd International

Workshop on OWL Reasoner Evaluation (ORE-2013), Ulm, Ger-

many, July 22, 2013., pages 26–31, 2013. (Cited on page 231.)

[GKW14] William Gatens, Boris Konev, and Frank Wolter. Lower and Upper

Approximations for Depleting Modules of Description Logic On-

tologies. In ECAI 2014 - 21st European Conference on Artificial

Intelligence, 18-22 August 2014, Prague, Czech Republic - Including

Prestigious Applications of Intelligent Systems (PAIS 2014), pages

345–350, 2014. (Cited on page 38.)

[GM12] Mara del Mar Roldn Garca and Jos Francisco Aldana Montes. Eval-

uating DBOWL: A Non-materializing OWL Reasoner based on Re-

lational Database Technology. In Informal Proceedings of the 1st In-

ternational Workshop on OWL Reasoner Evaluation (ORE-2012),

Manchester, UK, July 1, 2012., 2012. (Cited on page 231.)

[GMPS13] Rafael S. Gonalves, Nicolas Matentzoglu, Bijan Parsia, and Uli Sat-

tler. The Empirical Robustness of Description Logic Classification.

220 BIBLIOGRAPHY

In Proceedings of the ISWC 2013 Posters & Demonstrations Track,

Sydney, Australia, October 23, 2013, pages 277–280, 2013. (Cited

on pages 11, 12, 16, 20, 91, and 92.)

[Gon14] Rafael S. Gonalves. Impact Analysis in Description Logic On-

tologies. PhD thesis, University of Manchester, 2014. (Cited on

page 229.)

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A Bench-

mark for OWL Knowledge Base Systems. Journal of Web Seman-

tics, 3(2-3):158–182, 2005. (Cited on page 91.)

[GPS12] Rafael S. Gonalves, Bijan Parsia, and Ulrike Sattler. Performance

Heterogeneity and Approximate Reasoning in Description Logic On-

tologies. In The Semantic Web - ISWC 2012 - 11th International

Semantic Web Conference, Boston, MA, USA, November 11-15,

2012, Proceedings, Part I, pages 82–98, 2012. (Cited on pages 52,

57, 62, 71, 101, 102, 107, 108, 111, 132, and 142.)

[GTH06] Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for

an Automated Comparison of Description Logic Reasoners. In The

Semantic Web - ISWC 2006, 5th International Semantic Web Con-

ference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Pro-

ceedings, pages 654–667, 2006. (Cited on page 91.)

[HB11] Matthew Horridge and Sean Bechhofer. The OWL API: A Java

API for OWL Ontologies. Semantic Web, 2(1):11–21, 2011. (Cited

on pages 26 and 77.)

[HHMW12] Volker Haarslev, Kay Hidde, Ralf Mller, and Michael Wessel. The

RacerPro Knowledge Representation and Reasoning System. Se-

mantic Web, 3(3):267–277, 2012. (Cited on page 231.)

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irre-

sistible SROIQ. In Proceedings, Tenth International Conference on

Principles of Knowledge Representation and Reasoning, Lake Dis-

trict of the United Kingdom, June 2-5, 2006, pages 57–67, 2006.

(Cited on pages 11, 12, 22, 25, and 71.)

BIBLIOGRAPHY 221

[Hla05] Jan Hladik. A Generator for Description Logic Formulas. In In-

formal Proceedings of the 18th International Workshop on Descrip-

tion Logics (DL-2005), Edinburgh, Scotland, UK, July 26-28, 2005.,

2005. (Cited on page 15.)

[HM01] Volker Haarslev and Ralf Mller. RACER System Description.

In First International Joint Conference of Automated Reasoning

(IJCAR-2001), Siena, Italy, June 18-23, 2001., pages 701–706,

2001. (Cited on pages 12 and 15.)

[HMP+14] Matthew Horridge, Jonathan Mortensen, Bijan Parsia, Ulrike Sat-

tler, and Mark A. Musen. A Study on the Atomic Decomposition

of Ontologies. In The Semantic Web - ISWC 2014 - 13th Inter-

national Semantic Web Conference, Riva del Garda, Italy, October

19-23, 2014. Proceedings, Part II, pages 65–80, 2014. (Cited on

page 71.)

[HMT01] Volker Haarslev, Ralf Mller, and Anni-Yasmin Turhan. Exploiting

Pseudo Models for TBox and ABox Reasoning in Expressive De-

scription Logics. In Automated Reasoning, First International Joint

Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceed-

ings, pages 61–75, 2001. (Cited on page 127.)

[Hom07] Martin Homola. Distributed Description Logics Revisited. In In-

formal Proceedings of the 20th International Workshop on Descrip-

tion Logics (DL-2007), Brixen-Bressanone, Italy, 8-10 June, 2007.,

2007. (Cited on page 62.)

[Hor97] Ian R Horrocks. Optimising Tableaux Decision Procedures for De-

scription Logics. PhD thesis, University of Manchester, 1997. (Cited

on pages 12 and 158.)

[Hor98] Ian Horrocks. The FaCT System. In Proceedings of the International

Conference of Automated Reasoning with Analytic Tableaux and Re-

lated Methods (TABLEAUX-98), Oisterwijk, The Netherlands, May

5-8, 1998., pages 307–312, 1998. (Cited on pages 12 and 15.)

[Hor11] Matthew Horridge. Justification-based Explanation in Ontologies.

PhD thesis, University of Manchester, 2011. (Cited on page 26.)

222 BIBLIOGRAPHY

[HPS98] Ian Horrocks and Peter F. Patel-Schneider. DL Systems Compari-

son (Summary Relation). In Informal Proceedings of the 11th Inter-

national Workshop on Description Logics (DL-1998), Povo-Trento,

Italy, June 6-8, 1998., 1998. (Cited on page 91.)

[Kaz08] Yevgeny Kazakov. RIQ and SROIQ Are Harder than SHOIQ. In

Proceedings of the 11th International Conference on Principles of

Knowledge Representation and Reasoning (KR-2008), Sydney, Aus-

tralia, September 16-19, 2008., pages 274–284, 2008. (Cited on

page 12.)

[Kaz09] Yevgeny Kazakov. Consequence-Driven Reasoning for Horn SHIQ

Ontologies. In Proceedings of the 21st International Joint Confer-

ence on Artificial Intelligence (IJCAI-2009), Pasadena, California,

USA, July 11-17, 2009., pages 2040–2045, 2009. (Cited on pages 33

and 71.)

[KJM+12] Julie Klein, Simon Jupp, Panagiotis Moulos, Myriem Fernandez,

Bndicte Buffin-Meyer, Audrey Casemayou, Rana Chaaya, Aris-

tidis Charonis, Jean-Loup Bascands, Robert Stevens, and others.

The KUPKB: a Novel Web Application to Access Multiomics Data

on Kidney Disease. The FASEB Journal, 26(5):2145–2153, 2012.

(Cited on page 11.)

[KK13] Yevgeny Kazakov and Pavel Klinov. Incremental Reasoning in OWL

EL without Bookkeeping. In The Semantic Web - ISWC 2013 -

12th International Semantic Web Conference, Sydney, NSW, Aus-

tralia, October 21-25, 2013, Proceedings, Part I, pages 232–247,

2013. (Cited on page 59.)

[KKS14] Yevgeny Kazakov, Markus Krtzsch, and Frantisek Simancik. The In-

credible ELK - From Polynomial Procedures to Efficient Reasoning

with EL Ontologies. Journal of Automated Reasoning, 53(1):1–61,

2014. (Cited on pages 12, 25, 28, 33, 44, 53, and 231.)

[KLK12] Yong-Bin Kang, Yuan-Fang Li, and Shonali Krishnaswamy. Pre-

dicting Reasoning Performance Using Ontology Metrics. In The

Semantic Web - ISWC 2012 - 11th International Semantic Web

BIBLIOGRAPHY 223

Conference, Boston, MA, USA, November 11-15, 2012, Proceed-

ings, Part I, pages 198–214, 2012. (Cited on page 16.)

[KLPW10] Boris Konev, Carsten Lutz, Denis Ponomaryov, and Frank Wolter.

Decomposing Description Logic Ontologies. In Proceedings of the

12th International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR-2010), Toronto, Ontario, Canada,

May 9-13, 2010., 2010. (Cited on page 39.)

[KRRM+14] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guo-

hui Xiao, and Michael Zakharyaschev. Answering SPARQL Queries

over Databases under OWL 2 QL Entailment Regime. In The Se-

mantic Web - ISWC 2014 - 13th International Semantic Web Con-

ference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,

Part I, pages 552–567, 2014. (Cited on page 231.)

[LMPS15] Michael Lee, Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler. A

multi-reasoner, justification-based approach to reasoner correctness.

In The Semantic Web - ISWC 2015 - 14th International Semantic

Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Pro-

ceedings, Part II, pages 393–408, 2015. (Cited on pages 20, 25, 82,

146, and 182.)

[LWW07] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative Exten-

sions in Expressive Description Logics. In IJCAI 2007, Proceedings

of the 20th International Joint Conference on Artificial Intelligence,

Hyderabad, India, January 6-12, 2007, pages 453–458, 2007. (Cited

on page 36.)

[MBK06] Christopher J. Matheus, Kenneth Baclawski, and Mieczyslaw M.

Kokar. BaseVISor: A Triples-Based Inference Engine Outfitted

to Process RuleML and R-Entailment Rules. In Rules and Rule

Markup Languages for the Semantic Web, Second International

Conference, RuleML 2006, Athens, Georgia, USA, November 10-

11, 2006, Proceedings, pages 67–74, 2006. (Cited on page 231.)

[MBP13a] Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A Corpus of

224 BIBLIOGRAPHY

OWL DL Ontologies. In Informal Proceedings of the 26th Interna-

tional Workshop on Description Logics (DL-2013), Ulm, Germany,

July 23 - 26, 2013., pages 829–841, 2013. (Cited on page 19.)

[MBP13b] Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A Snapshot

of the OWL Web. In The Semantic Web - ISWC 2013 - 12th Inter-

national Semantic Web Conference, Sydney, NSW, Australia, Oc-

tober 21-25, 2013, Proceedings, Part I, pages 331–346, 2013. (Cited

on pages 19 and 93.)

[MDOS14] Chris Mungall, Heiko Dietze, and David Osumi-Sutherland. Use of

OWL within the Gene Ontology. In Proceedings of the 11th Inter-

national Workshop on OWL: Experiences and Directions (OWLED

2014) co-located with 13th International Semantic Web Conference

on (ISWC 2014), Riva del Garda, Italy, October 17-18, 2014., pages

25–36, 2014. (Cited on page 11.)

[Men12] Julian Mendez. jcel: A Modular Rule-based Reasoner. In Informal

Proceedings of the 1st International Workshop on OWL Reasoner

Evaluation (ORE-2012), Manchester, UK, July 1, 2012., 2012.

(Cited on page 231.)

[MGH+12] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille

Fokoue, and Carsten Lutz. OWL 2 Web Ontology Language Profiles

(Second Edition), December 2012. (Cited on pages 23 and 94.)

[MHM13] Raghava Mutharaju, Pascal Hitzler, and Prabhaker Mateti. DistEL:

A Distributed EL+ Ontology Classifier. In Proceedings of the 9th

International Workshop on Scalable Semantic Web Knowledge Base

Systems (SSWS-2015), Sydney, Australia, October 21, 2013., pages

17–32, 2013. (Cited on page 33.)

[MHML15] Raghava Mutharaju, Pascal Hitzler, Prabhaker Mateti, and Freddy

Lcu. Distributed and Scalable OWL EL Reasoning. In Proceedings

of the 12th European Semantic Web Conference, (ESWC-2015),

Portoroz, Slovenia, May 31 - June 4, 2015., pages 88–103, 2015.

(Cited on page 231.)

BIBLIOGRAPHY 225

[MJL13] Alejandro Metke-Jimenez and Michael Lawley. Snorocket 2.0: Con-

crete Domains and Concurrent Classification. In Informal Proceed-

ings of the 2nd International Workshop on OWL Reasoner Eval-

uation (ORE-2013), Ulm, Germany, July 22, 2013., pages 32–38,

2013. (Cited on pages 33 and 231.)

[MKC14] Till Mossakowski, Oliver Kutz, and Mihai Codescu. Ontohub: A

Semantic Repository for Heterogeneous Ontologies. In Proceedings

of the Theory Day in Computer Science (DACS-2014), Bucharest,

Romania, 2014., 2014. (Cited on page 10.)

[MLH+15] Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sattler, and

Bijan Parsia. A Survey of Current, Stand-alone OWL Reasoners.

In Informal Proceedings of the 4th International Workshop on OWL

Reasoner Evaluation (ORE-2015), Athens, Greece, June 6, 2015.,

pages 68–79, 2015. (Cited on pages 19, 26, 51, 59, 68, 97, and 230.)

[MNP+14] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan

Olteanu. Parallel Materialisation of Datalog Programs in Cen-

tralised, Main-Memory RDF Systems. In Proceedings of the Twenty-

Eighth Conference on Artificial Intelligence (AAAI-2014), Qubec

City, Qubec, Canada, July 27 -31, 2014., pages 129–137, 2014.

(Cited on page 231.)

[MP14a] Nicolas Matentzoglu and Bijan Parsia. The Manchester OWL Cor-

pus (MOWLCorp),Original Serialisation. University of Manchester,

July 2014. (Cited on page 20.)

[MP14b] Nicolas Matentzoglu and Bijan Parsia. The OWL Full/DL Gap in

the Field. In Proceedings of the 11th International Workshop on

OWL: Experiences and Directions (OWLED 2014) co-located with

13th International Semantic Web Conference on (ISWC 2014), Riva

del Garda, Italy, October 17-18, 2014., pages 49–60, 2014. (Cited

on pages 19 and 94.)

[MP14c] Nicolas Matentzoglu and Bijan Parsia. OWL/ZIP: Distributing

Large and Modular Ontologies. In Proceedings of the 11th Inter-

national Workshop on OWL: Experiences and Directions (OWLED

226 BIBLIOGRAPHY

2014) co-located with 13th International Semantic Web Conference

on (ISWC 2014), Riva del Garda, Italy, October 17-18, 2014., pages

37–48, 2014. (Cited on pages 19, 71, and 118.)

[MPS14] Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler. An Empirical

Investigation of Difficulty of Subsets of Description Logic Ontolo-

gies. In Informal Proceedings of the 27th International Workshop on

Description Logics (DL-2014), Vienna, Austria, July 17-20, 2014.,

pages 659–670, 2014. (Cited on page 19.)

[MRW14] Francisco Martn-Recuerda and Dirk Walther. Fast Modularisation

and Atomic Decomposition of Ontologies Using Axiom Dependency

Hypergraphs. In The Semantic Web - ISWC 2014 - 13th Inter-

national Semantic Web Conference, Riva del Garda, Italy, October

19-23, 2014. Proceedings, Part II, pages 49–64, 2014. (Cited on

page 43.)

[MRW15] Francisco Martin-Recuerda and Dirk Walther. HyS: Fast Atomic

Decomposition and Module Extraction of OWL-EL Ontologies.

Semantic Web, Unpublished, Major Revision, 2015. (Cited on

page 43.)

[MSP15] Nicolas Matentzoglu, Uli Sattler, and Bijan Parsia. Empirical Inves-

tigation of Subsumption Test Hardness in Description Logic Clas-

sification. In Informal Proceedings of the 28th International Work-

shop on Description Logics (DL-2015), Athens, Greece, 7-10, 2015.,

2015. (Cited on page 19.)

[MTPS14] Nicolas Matentzoglu, Daniel Tang, Bijan Parsia, and Uli Sattler.

The Manchester OWL Repository: System Description. In Proceed-

ings of the ISWC 2014 Posters & Demonstrations Track a track

within the 13th International Semantic Web Conference, ISWC

2014, Riva del Garda, Italy, October 21, 2014., pages 285–288, 2014.

(Cited on page 93.)

[MYQ+06] Li Ma, Yang Yang, Zhaoming Qiu, Guo Tong Xie, Yue Pan, and

Shengping Liu. Towards a Complete OWL Ontology Benchmark.

In The Semantic Web: Research and Applications, 3rd European

BIBLIOGRAPHY 227

Semantic Web Conference, ESWC 2006, Budva, Montenegro, June

11-14, 2006, Proceedings, pages 125–139, 2006. (Cited on page 91.)

[NNS11] Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt. Log-

Linear Description Logics. In IJCAI 2011, Proceedings of the 22nd

International Joint Conference on Artificial Intelligence, Barcelona,

Catalonia, Spain, July 16-22, 2011, pages 2153–2158, 2011. (Cited

on page 231.)

[NSW+09] Natalya Fridman Noy, Nigam H. Shah, Patricia L. Whetzel, Ben-

jamin Dai, Michael Dorf, Nicholas Griffith, Clement Jonquet,

Daniel L. Rubin, Margaret-Anne D. Storey, Christopher G. Chute,

and Mark A. Musen. BioPortal: Ontologies and Integrated Data

Resources at the Click of a Mouse. Nucleic Acids Research, 37(Web-

Server-Issue):170–173, 2009. (Cited on pages 10, 92, and 93.)

[Pal15] Ignazio Palmisano. JFact Reasoner Repository, 2015. (Cited on

page 231.)

[PCMB15] Niels Peek, Carlo Combi, Roque Marin, and Riccardo Bellazzi.

Thirty Years of Artificial Intelligence in Medicine (AIME) Con-

ferences: A Review of Research Themes. Artificial Intelligence in

Medicine, 2015. (Cited on page 10.)

[PGSH14] Sambhawa Priya, Yuanbo Guo, Michael Spear, and Jeff Heflin. Par-

titioning OWL Knowledge Bases for Parallel Reasoning. In Pro-

ceedings of the International Conference on Semantic Computing,

Newport Beach, CA, USA, June 16-18, 2014., pages 108–115, 2014.

(Cited on page 61.)

[PLTS07] Thi Anh Le Pham, Nhan Le-Thanh, and Peter Sander. Some Ap-

proaches of Ontology Decomposition in Description Logics. In Com-

plex Systems Concurrent Engineering, pages 537–546. Springer Lon-

don, 2007. (Cited on page 61.)

[PLTS08] Thi Anh Le Pham, Nhan Le-Thanh, and Peter Sander.

Decomposition-based Reasoning for Large Knowledge Bases in De-

scription Logics. Integrated Computer-Aided Engineering, 15(1):53–

70, 2008. (Cited on page 61.)

228 BIBLIOGRAPHY

[PMG+15] Bijan Parsia, Nicolas Matentzoglu, Rafael S. Gonalves, Birte

Glimm, and Andreas Steigmiller. The OWL Reasoner Evaluation

(ORE) 2015 Competition Report (accepted). In Proceedings of the

11th International Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS-2015), Bethlehem, Pennsylvania, USA, Octo-

ber 11, 2015., 2015. (Cited on pages 12, 14, 17, 60, 68, 69, 90, 93,

and 96.)

[PS00] Peter F. Patel-Schneider. System Description: DLP. In Proceed-

ings of the 17th International Conference on Automated Deduction

(CADE-17), Pittsburgh, PA, USA, June 17-20, 2000, Proceedings.,

pages 297–301, 2000. (Cited on pages 12 and 15.)

[PS10] Bijan Parsia and Thomas Schneider. The Modular Structure of an

Ontology: An Empirical Study. In Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the Twelfth International

Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010,

2010. (Cited on page 106.)

[R C15] R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria,

2015. (Cited on page 77.)

[RAK06] Rachel L. Richesson, James E. Andrews, and Jeffrey P. Krischer.

Use of SNOMED CT to Represent Clinical Research Data: A Se-

mantic Characterization of Data Items on Case Report Forms in

Vasculitis Research. Journal of the American Medical Informatics

Association, 13(5):536–546, 2006. (Cited on page 10.)

[RBLZ13] Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese.

BUNDLE: A Reasoner for Probabilistic Ontologies. In Proceedings

of the 7th International Conference of Web Reasoning and Rule Sys-

tems (RR-2013), Mannheim, Germany, July 27-29, 2013., pages

183–197, 2013. (Cited on page 231.)

[RGH12] Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks.

MORe: Modular Combination of OWL Reasoners for Ontology

BIBLIOGRAPHY 229

Classification. In The Semantic Web - ISWC 2012 - 11th Interna-

tional Semantic Web Conference, Boston, MA, USA, November 11-

15, 2012, Proceedings, Part I, pages 1–16, 2012. (Cited on pages 13,

14, 43, 52, 71, 77, 82, and 231.)

[RKGH15] Ana Armas Romero, Mark Kaminski, Bernardo Cuenca Grau, and

Ian Horrocks. Ontology Module Extraction via Datalog Reasoning.

In Proceedings of the Twenty-Ninth Conference on Artificial Intel-

ligence (AAAI-2015), January 25-30, 2015, Austin, Texas, USA.,

pages 1410–1416, 2015. (Cited on pages 37 and 71.)

[SAMN13] Manuel Salvadores, Paul R. Alexander, Mark A. Musen, and Na-

talya Fridman Noy. BioPortal as a Dataset of Linked Biomedical

Ontologies and Terminologies in RDF. Semantic Web, 4(3):277–284,

2013. (Cited on page 93.)

[SCVJ08] Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo.

The Role of Replications in Empirical Software Engineering. Empir-

ical Software Engineering, 13(2):211–218, 2008. (Cited on page 90.)

[Ser13] Baris Sertkaya. The ELepHant Reasoner System Description. In

Informal Proceedings of the 2nd International Workshop on OWL

Reasoner Evaluation (ORE-2013), Ulm, Germany, July 22, 2013.,

pages 87–93, 2013. (Cited on page 231.)

[SGL14] Andreas Steigmiller, Birte Glimm, and Thorsten Liebig. Cou-

pling Tableau Algorithms for Expressive Description Logics with

Completion-Based Saturation Procedures. In Automated Reasoning

- 7th International Joint Conference, IJCAR 2014, Held as Part

of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July

19-22, 2014. Proceedings, pages 449–463, 2014. (Cited on page 29.)

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude:

System Description. Journal of Web Semantics, 27:78–85, 2014.

(Cited on pages 12, 29, 68, 92, 97, and 231.)

[SM15] Uli Sattler and Nicolas Matentzoglu. List of Reasoners (owl.cs),

2015. Modified: 01/09/2014. (Cited on page 97.)

230 BIBLIOGRAPHY

[SMH14] Frantisek Simancik, Boris Motik, and Ian Horrocks. Consequence-

based and Fixed-parameter Tractable Reasoning in Description Log-

ics. Artificial Intelligence, 209:29–77, 2014. (Cited on page 15.)

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-

pur, and Yarden Katz. Pellet: A Practical OWL-DL Reasoner.

Journal of Web Semantics, 5(2):51–53, 2007. (Cited on pages 59

and 231.)

[SS11] Michael Schneider and Geoff Sutcliffe. Reasoning in the OWL 2 Full

Ontology Language Using First-Order Automated Theorem Prov-

ing. In Proceedings of 23rd International Conference on Automated

Deduction (CADE-2011), Wroclaw, Poland, July 31 - August 5,

2011., pages 461–475, 2011. (Cited on page 23.)

[SSB14] Viachaslau Sazonau, Uli Sattler, and Gavin Brown. Predicting Per-

formance of OWL Reasoners: Locally or Globally? In Proceedings

of the 14th International Conference on Principles of Knowledge

Representation and Reasoning (KR-2014), Vienna, Austria, July

20-24, 2014., 2014. (Cited on page 16.)

[SSD12] Weihong Song, Bruce Spencer, and Weichang Du. WSReasoner:

A Prototype Hybrid Reasoner for ALCHOI Ontology Classification

using a Weakening and Strengthening Approach. In Informal Pro-

ceedings of the 1st International Workshop on OWL Reasoner Eval-

uation (ORE-2012), Manchester, UK, July 1, 2012., 2012. (Cited

on page 231.)

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev.

Which Kind of Module Should I Extract? In Informal Proceedings of

the 22nd International Workshop on Description Logics (DL-2009),

Oxford, UK, July 27-30, 2009., 2009. (Cited on pages 36 and 132.)

[ST05] Luciano Serafini and Andrei Tamilin. DRAGO: Distributed Rea-

soning Architecture for the Semantic Web. In The Semantic Web:

Research and Applications, Second European Semantic Web Con-

ference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1,

2005, Proceedings, pages 361–376, 2005. (Cited on page 62.)

BIBLIOGRAPHY 231

[TDKM14] Dorothea Tsatsou, Stamatia Dasiopoulou, Ioannis Kompatsiaris,

and Vasileios Mezaris. LiFR: A Lightweight Fuzzy DL Reasoner.

In The Semantic Web: ESWC 2014 Satellite Events - ESWC 2014

Satellite Events, Anissaras, Crete, Greece, May 25-29, 2014, Re-

vised Selected Papers, pages 263–267, 2014. (Cited on page 231.)

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Rea-

soner: System Description. In Automated Reasoning, Third Inter-

national Joint Conference, IJCAR 2006, Seattle, WA, USA, August

17-20, 2006, Proceedings, pages 292–297, 2006. (Cited on pages 25,

35, 66, 90, and 231.)

[TNNM13] Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and

Mark A. Musen. Using Semantic Web in ICD-11: Three Years Down

the Road. In The Semantic Web - ISWC 2013 - 12th International

Semantic Web Conference, Sydney, NSW, Australia, October 21-25,

2013, Proceedings, Part II, pages 195–211, 2013. (Cited on page 10.)

[Tob01] Stephan Tobies. Complexity Results and Practical Algorithms for

Logics in Knowledge Representation. PhD thesis, Technische Uni-

versitt Dresden, 2001. (Cited on page 12.)

[TP12a] Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: a Metarea-

soner for Large Ontologies. In Informal Proceedings of the 1st In-

ternational Workshop on OWL Reasoner Evaluation (ORE-2012),

Manchester, UK, July 1, 2012., 2012. (Cited on pages 13, 42, 52,

54, 56, 77, 80, and 231.)

[TP12b] Dmitry Tsarkov and Ignazio Palmisano. Divide et Impera: Metar-

easoning for Large Ontologies. In Informal Proceedings of the 9th

Workshop on OWL: Experiences and Directions (OWLED-2012),

Heraklion, Crete, Greece, May 27-28, 2012., 2012. (Cited on

page 54.)

[TPR10] Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable

OWL 2 Reasoning Infrastructure. In The Semantic Web: Research

and Applications, 7th Extended Semantic Web Conference, ESWC

2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,

Part II, pages 431–435, 2010. (Cited on pages 25 and 231.)

232 BIBLIOGRAPHY

[Tsa12] Dmitry Tsarkov. Improved Algorithms for Module Extraction and

Atomic Decomposition. In Informal Proceedings of the 25th Inter-

national Workshop on Description Logics (DL-2012), Rome, Italy,

June 7-10, 2012., 2012. (Cited on page 43.)

[Tsa14] Dmitry Tsarkov. Incremental and Persistent Reasoning in FaCT++.

In Informal Proceedings of the 3rd International Workshop on OWL

Reasoner Evaluation (ORE 2014), Vienna, Austria, July 13, 2014.,

pages 16–22, 2014. (Cited on page 59.)

[TV03] Christoph Tempich and Raphael Volz. Towards a Benchmark for

Semantic Web Reasoners - An Analysis of the DAML Ontology Li-

brary. In EON2003, Evaluation of Ontology-based Tools, Proceedings

of the 2nd International Workshop on Evaluation of Ontology-based

Tools held at the 2nd International Semantic Web Conference ISWC

2003, 20th October 2003 (Workshop day), Sundial Resort, Sanibel

Island, Florida, USA, 2003. (Cited on page 91.)

[VKP+13] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler,

Thomas Schneider, and Dmitry Tsarkov. Empirical Study of Logic-

Based Modules: Cheap Is Cheerful. In The Semantic Web - ISWC

2013 - 12th International Semantic Web Conference, Sydney, NSW,

Australia, October 21-25, 2013, Proceedings, Part I, pages 84–100,

2013. (Cited on pages 36, 42, and 67.)

[VNP15] Edgaras Valincius, Hai H. Nguyen, and Jeff Z. Pan. A Power Con-

sumption Benchmark Framework for Ontology Reasoning on An-

droid Devices. In Informal Proceedings of the 4th International

Workshop on OWL Reasoner Evaluation (ORE-2015), Athens,

Greece, June 6, 2015., pages 80–86, 2015. (Cited on page 16.)

[WH14] Kejia Wu and Volker Haarslev. Parallel OWL Reasoning: Merge

Classification. In Revised Selected Papers of the Third Joint In-

ternational Conference of Semantic Technology (JIST-2013), Seoul,

South Korea, November 28-30, 2013., pages 211–227, 2014. (Cited

on page 61.)

[WLL+07] Timo Weithner, Thorsten Liebig, Marko Luther, Sebastian Bhm,

Friedrich W. von Henke, and Olaf Noppens. Real-World Reasoning

BIBLIOGRAPHY 233

with OWL. In The Semantic Web: Research and Applications, 4th

European Semantic Web Conference, ESWC 2007, Innsbruck, Aus-

tria, June 3-7, 2007, Proceedings, pages 296–310, 2007. (Cited on

page 91.)

[WPH06] Taowei David Wang, Bijan Parsia, and James A. Hendler. A Survey

of the Web Ontology Landscape. In The Semantic Web - ISWC

2006, 5th International Semantic Web Conference, ISWC 2006,

Athens, GA, USA, November 5-9, 2006, Proceedings, pages 682–

694, 2006. (Cited on page 27.)

[XE11] Guohui Xiao and Thomas Eiter. Inline Evaluation of Hybrid Knowl-

edge Bases. In Proceedings of the 5th International Conference of

Web Reasoning and Rule Systems (RR-2011), Galway, Ireland, Au-

gust 29-30, 2011., pages 300–305, 2011. (Cited on page 231.)

[ZBL+14] Riccardo Zese, Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, and

Fabiano Aguiari. Semantics and Inference for Probabilistic Descrip-

tion Logics. In Uncertainty Reasoning for the Semantic Web III

- ISWC International Workshops, URSW 2011-2013, Revised Se-

lected Papers, pages 79–99, 2014. (Cited on page 231.)

[ZBLR13] Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi.

A Description Logics Tableau Reasoner in Prolog. In Proceedings of

the 28th Italian Conference on Computational Logic, Catania, Italy,

September 25-27, 2013., pages 33–47, 2013. (Cited on page 231.)

Appendix A

Appendix

A.1 List of ontologies in BioPortal Snapshot

O PROF ABox TBox Expressivity K1 K2

AAO Profiled 0 2673 ALE

ABA-AMB Profiled 0 3441 ALCI

ACGT-MO OWL Full 96 5317 SROIQ(D)

ADO Pure DL 0 2400 SHI X

ADW OWL Full 3 635 ALCOF(D)

AEO Profiled 0 368 ALE

AERO Pure DL 81 1578 SHOIQ(D)

AMINO-ACID Pure DL 0 477 ALCF(D)

APO Profiled 0 304 AL

ASDPTO Profiled 0 283 AL

ATC Profiled 0 10153 AL

ATMO Profiled 0 208 ALE

ATO Profiled 0 12163 ALE

AURA Pure DL 714 37661 SHOIQ(D)

BAO Pure DL 0 4282 SROIQ(D) X

BAO-GPCR Pure DL 0 1010 ALERI+(D)

BCO Pure DL 25 365 SROIF(D) X

BCTEO Profiled 0 458 ALE

BDO Pure DL 26146 19806 SHIF(D) X

BFO Pure DL 0 95 ALC

BHN Profiled 0 2542 AL

BHO Pure DL 0 1925 ALCIF(D) X

BIOMODELS Pure DL 220948 439208 SRIF X

BIRNLEX Profiled 0 3572 AL

BMO Profiled 0 336 ALE

BMT Profiled 0 282 ALI

BNO Profiled 0 104 AL

BOF Pure DL 768 603 ALCF(D)

BP Pure DL 0 381 SHIN(D)

BRIDG OWL Full 496 2808 SROIN(D)

A.1. LIST OF ONTOLOGIES IN BIOPORTAL SNAPSHOT 235

BRO OWL Full 32 587 SHIF(D)

BSAO Profiled 0 353 ALE+

BSPO Pure DL 0 242 ALEHI+

BT Pure DL 0 837 SRI X

BTO Profiled 0 6726 ALE

CABRO Pure DL 4 94 ALCHIQ

CANCO OWL Full 12 352 ALCH(D)

CANONT Profiled 0 51 AL

CAO Pure DL 0 428 SHIQ(D) X X

CARELEX Profiled 0 321 ALH(D)

CARO Profiled 0 54 ALE+

CARRE Pure DL 0 454 ALCQ(D) X

CBO Profiled 0 342 SRF(D)

CCO Pure DL 0 2249883 ALEHI+

CCON Pure DL 364 214 SHOI

CCONT Pure DL 2 25112 SROIF

CDAO OWL Full 37 362 SROIQ(D)

CHD Profiled 0 508 AL

CHEBI Profiled 0 140957 ALE+

CHEMBIO Pure DL 0 475 SHIN(D)

CHEMINF OWL Full 71 1275 SROIN(D)

CHMO Profiled 0 3215 ALCH

CL Pure DL 0 18010 SH

CLO OWL Full 82541 64 SHIN(D)

CMO Profiled 0 3075 ALE+

CMPO Profiled 0 393 ALER+

CNO OWL Full 49 590 SHOIF(D)

CO-WHEAT Profiled 0 175 AL

COGAT Pure DL 0 4100 ALC

COGPO Pure DL 58 595 SHOIN(D) X

CPRO Pure DL 63 343 SHIF(D)

CPTAC Profiled 0 1118 ALCF(D)

CSEO Pure DL 0 26540 SRI(D)

CSSO Profiled 0 297 AL

CTCAE Profiled 0 6940 AL(D)

CTX Pure DL 1553 364 ALCOIN(D)

DCM OWL Full 3174 27 SHOIF(D)

DCO-DEBUGIT Pure DL 0 2531 SRIN(D) X

DDANAT Profiled 0 347 ALE+

DDI Pure DL 50 339 SHOIN(D) X

DERMLEX OWL Full 18301 6151 ALUF(D)

DERMO Profiled 0 3992 ALE+

236 APPENDIX A. APPENDIX

DIAGONT OWL Full 7 245 ALCOF(D)

DIKB Pure DL 12 643 ALCHOIN(D) X

DOCCC Profiled 177 203 AL(D)

DPO Profiled 0 2496 ALE

DRON Pure DL 21 747701 SHO X

ECG Pure DL 0 1294 ALCIF(D) X

ECO Pure DL 0 1243 ALC X

EDAM OWL Full 0 4376 ALCI

EDDA Profiled 0 213 ALEI

EHDA Profiled 0 8339 ALE

EHDAA Profiled 0 2336 ALE

EHDAA2 Profiled 0 13511 ALE+

ELIG Profiled 2 38 AL

EMAP Profiled 0 13730 ALE

EMO Pure DL 132 248 ALCRQ X

ENVO Pure DL 0 1970 SHI

EOL Profiled 0 659 ALE

EP OWL Full 48064 124618 SHF(D)

EPILONT Profiled 0 137 ALH(D)

ERO OWL Full 24 4964 SHOIF(D)

FAO Pure DL 0 115 ALEI+

FB-BT Profiled 0 24309 SH

FB-CV Profiled 0 896 SH

FB-DV Profiled 0 621 ALEH+

FB-SP Profiled 0 6587 AL

FBBI Profiled 0 548 S

FHHO Pure DL 12 512 ALCHIF(D) X

FIRE Profiled 16 105 ALCHOI

FIX Profiled 0 1684 ALE

FLOPO Profiled 0 31902 AL

FMA OWL Full 1076839 87056 ALCOIN(D)

FYPO Profiled 0 22854 SH

GALEN Pure DL 0 36738 ALEHIF+

GAZ Profiled 0 652361 ALE+

GCO Pure DL 0 10 ALIF

GENE-CDS Pure DL 0 4322 ALCQ

GEXO Pure DL 0 549075 SRI

GFO Pure DL 0 190 SHIQ X

GFO-BIO OWL Full 2 428 SHIN

GFVO Pure DL 0 113 ALCH(D)

GLYCO OWL Full 32887 595 SHOIQ(D)

GMM Profiled 0 1895 AL

A.1. LIST OF ONTOLOGIES IN BIOPORTAL SNAPSHOT 237

GO Profiled 0 80762 ALEH+

GO-EXT Profiled 0 68775 SH

GRO Pure DL 7 945 ALCHIQ(D) X

GRO-CPD Profiled 0 235 ALE

GRO-CPGA Profiled 0 2434 S

HAO Profiled 0 4384 SR

HEIO Pure DL 11575 272 ALCHIF(D) X

HINO OWL Full 0 137761 ALERI+

HIV Profiled 0 9 AL+

HIVO004 OWL Full 260 778 ALCHIQ(D)

HL7 Profiled 0 8072 AL

HOM Profiled 0 83 ALC

HP Profiled 0 13832 AL

HPIO Pure DL 27 359 SHI X

HRDO Profiled 0 85019 ALEH

HUGO Profiled 0 32917 AL

HUPSON Pure DL 25 3704 SHOIF(D) X

IAO OWL Full 172 280 ALRIF+(D)

ICD11-BODYSYSTEM Profiled 0 28 AL

ICECI OWL Full 11376 2236 AL(D)

ICF OWL Full 17223 1991 ALCHOIF(D)

ICO Pure DL 16 715 SROIN(D) X

ICPS OWL Full 4090 948 SHOIQ(D)

IDO Pure DL 83 1009 SROIF

IDOBRU Pure DL 63 7539 SROIQ(D)

IDODEN Pure DL 0 5958 SRIF

IDOMAL Profiled 0 3563 ALER+

IDQA Profiled 0 275 ALEI

IFAR Profiled 0 4977 AL

IMGT-ONTOLOGY OWL Full 0 14298 SHIN(D)

IMMDIS Profiled 0 1676 AL

INO OWL Full 0 514 ALERI+

INTERNANO Profiled 0 268 AL

IXNO Profiled 0 39 AL

JERM Pure DL 78 383 SHI(D) X

KISAO Pure DL 0 736 ALCRIQ(D) X

LDA Profiled 0 35 AL

LHN Profiled 0 347 ALE

LIPRO Pure DL 0 2349 ALCHIN

LSM Profiled 0 472 AL+

MA Profiled 0 4108 ALE+

MAMO Pure DL 0 136 ALCR

238 APPENDIX A. APPENDIX

MAT Profiled 0 504 ALE

MCBCC Profiled 0 2732 ALCH(D)

MCCL Profiled 0 13584 ALCH(D)

MCCV OWL Full 0 99 ALUHIN(D)

MEDO Profiled 0 84 ALH

MEGO Profiled 0 431 ALE+

MEO Profiled 0 783 AL

MF Pure DL 20 1022 SROIQ

MFO Profiled 0 4402 ALE

MFOEM Pure DL 20 1311 SROIQ X

MHC Pure DL 0 13781 ALCIQ(D) X

MIRNAO Profiled 0 764 ALEI

MIRO Profiled 0 4457 ALE+

MIXS Profiled 0 0 ALH

MIXSCV Profiled 0 518 AL

MMO Profiled 0 629 AL

MO OWL Full 932 494 ALEOF(D)

MP Profiled 0 13077 AL

MPATH Profiled 0 946 ALE+

MS Profiled 0 2878 ALE+

NATPRO OWL Full 91351 68647 SHOIN(D)

NBO Profiled 0 1296 ALE

NCBITAXON Profiled 0 847755 AL

NCCO Profiled 0 397 AL

NCIT Pure DL 89292 156923 SH(D)

NEMO Pure DL 182 2628 SHIQ(D)

NEOMARK3 OWL Full 0 1213 ALCHQ(D)

NEOMARK4 Pure DL 0 387 SHIQ X

NGSONTO Pure DL 0 244 SRQ(D) X

NIFCELL OWL Full 111 3433 SROIF

NIFDYS OWL Full 111 3387 SROIF

NIFSUBCELL OWL Full 111 3924 SROIF

NIGO Profiled 0 8833 SH

NIHSS Pure DL 88 79 ALROF(D)

NMOSP Profiled 0 1339 AL

NMR Pure DL 0 978 SRIQ

NPO Pure DL 0 16289 SHIN(D) X

NTDO Pure DL 0 1133 SRIQ X

OAE OWL Full 28 7001 SRIQ

OBCS Pure DL 33 1105 SROIQ(D) X

OBI Pure DL 237 5846 SROIQ(D)

OBI-BCGO Pure DL 57 3547 SROIN(D)

A.1. LIST OF ONTOLOGIES IN BIOPORTAL SNAPSHOT 239

OBIWS Pure DL 42 508 SROIQ(D) X

OBOREL Profiled 0 25 ALR+

OCRE OWL Full 45 967 ALCROIQ(D)

OGDI Pure DL 1095 754 SHIN(D)

OGG Pure DL 0 70026 SRIQ

OGI Pure DL 48 655 SRIQ(D)

OGMD Profiled 0 133 AL

OGMS Pure DL 20 385 SROIQ

OGR Profiled 0 38 AL

OGSF Pure DL 120 981 SROIQ(D) X

OMIT Pure DL 0 3816 SRI

OMRSE Pure DL 21 206 ALCHOIQ X X

ONL-DP Pure DL 0 1445 SHIQ

ONL-MR-DA Pure DL 84 1787 SHOIQ

ONL-MSA Pure DL 1826 3849 ALCHOIQ(D) X

ONLIRA Pure DL 53 304 ALCHOQ(D)

ONSTR OWL Full 83 2554 SROIQ(D)

ONTOAD Profiled 10889 8364 ALH

ONTODM-CORE OWL Full 356 1925 SHOIQ(D)

ONTODM-KDD Pure DL 0 591 SHI

ONTODT Pure DL 278 489 SHOI

ONTOKBCF Pure DL 0 651 ALCHIF X

ONTOMA Profiled 27 373 ALC

ONTOPNEUMO Profiled 0 1153 ALH

ONTOVIP OWL Full 84 4718 SHOIQ(D)

OOEVV Pure DL 21 167 ALCO(D)

OPB Pure DL 0 924 ALCHIQ(D)

OPE Pure DL 0 85 ALCHIQ(D) X

OPL Pure DL 20 863 SHOIF X

ORDO Profiled 0 45825 ALE

ORTHO OWL Full 0 67 ALUHI(D)

PAE Profiled 0 2434 S

PATHLEX Profiled 0 1783 AL

PATO Profiled 0 2068 SH

PCO Pure DL 20 2467 SROIQ X

PDO Pure DL 0 366 ALUHI

PDON Profiled 0 1252 ALE

PEAO Pure DL 0 2802 ALCHQ(D)

PECO Profiled 0 557 AL

PEDTERM Profiled 0 1760 AL

PHARE Pure DL 0 403 ALCHIF(D)

PHENX Profiled 0 339 AL

240 APPENDIX A. APPENDIX

PHYLONT Pure DL 2 210 ALCH(D)

PIERO OWL Full 288481 212 ALRI+

PLIO Pure DL 0 1055 ALE

PMA Profiled 0 10 AL(D)

PMR Pure DL 0 163 ALU

PO Profiled 0 2802 S

PORO Pure DL 2 963 SRIQ X

PPIO Profiled 0 2892 ALE+

PR Pure DL 0 222268 S

PROPREO OWL Full 96 616 SHOIN(D)

PROVO Pure DL 2 135 ALCRIN(D)

PSDS Profiled 0 313 ALE+

PSEUDO Profiled 0 19 AL

PSIMOD Profiled 0 3587 ALE+

PTO Profiled 0 1490 ALE+

PTRANS Profiled 0 24 AL

PW Profiled 0 2001 ALE

QIBO OWL Full 683 1016 ALUIF(D)

QUDT OWL Full 116 369 SHIN(D)

RB Pure DL 0 423 ALEHIF+(D)

REPO Profiled 0 91 AL

RETO Pure DL 0 415494 SRI

REX Profiled 0 734 ALE

REXO Pure DL 0 463742 SRI

RH-MESH Profiled 0 432805 ALE

RNAO OWL Full 0 547 SRIQ

RNPRIO Profiled 0 76 AL

RNRMU Profiled 0 2243 AL

ROO Pure DL 29 151 ALCHI(D)

RPO Profiled 0 2047 ALF(D)

RS Profiled 0 5399 ALE

RSA Pure DL 4 22 ALUHOF(D)

RXNO Pure DL 0 1256 ALCH X

SAO Pure DL 0 2908 SHIN(D) X

SBO Profiled 0 641 AL

SBOL Profiled 0 47 ALE+

SCHEMA OWL Full 0 1996 ALU(D)

SDO OWL Full 110 2716 SHOIQ(D)

SEDI Pure DL 0 138 ALCHIQ(D)

SEP Profiled 0 193 AL

SHR Pure DL 0 417 ALH(D)

SIO Pure DL 0 2142 SRIQ(D)

A.1. LIST OF ONTOLOGIES IN BIOPORTAL SNAPSHOT 241

SITBAC OWL Full 557 615 ALCON(D)

SO Pure DL 11 2445 SHI

SOY Profiled 0 1832 AL

SPD Profiled 0 843 ALE+

SPO Pure DL 0 641 ALERIF+ X

SPTO Profiled 0 422 ALE

SSE OWL Full 2323 267 SHIF

SSO OWL Full 1474 210 ALIF(D)

STATO Pure DL 85 1654 SROIQ(D) X

SUICIDEO Pure DL 110 346 SO

SUICIDO Pure DL 93 294 SHOI

SWEET OWL Full 3764 6210 SHOIN(D)

SWO OWL Full 13855 5142 ALRI+(D)

SYMP Profiled 0 840 AL

SYN Profiled 0 15353 ALF

TAO Pure DL 0 5186 ALERI+

TAXRANK Profiled 0 58 AL

TEDDY OWL Full 0 12562 SRIQ(D)

TESTONTO Profiled 1 3 AL

TMA Profiled 0 60 ALI(D)

TMO Pure DL 26 459 SRIN(D) X

TOK Pure DL 50 397 SRIQ(D)

TOP-MENELAS Profiled 0 1018 ALCH

TRAK Profiled 0 1829 ALER+

TRON Profiled 0 2065 ALEH

TTO Profiled 0 38639 AL

TYPON Pure DL 0 195 SHQ(D)

UBERON Pure DL 0 41218 SRIQ

UNITSONT Profiled 1 62 AL

UO Profiled 0 389 ALE

VARIO Profiled 0 402 ALE+

VHOG Profiled 0 1688 ALE+

VIVO OWL Full 13 1034 ALEHIN+(D)

VO Pure DL 68 12335 SROIQ

VSAO Profiled 0 453 ALER+

VSO Pure DL 0 763 SRIQ X

VT Profiled 0 3929 AL+

VTO Profiled 0 106894 AL

WB-BT Pure DL 0 12372 ALC X

WB-LS Profiled 0 1282 ALEH+

WB-PHENOTYPE Profiled 0 2531 AL+

WIKIPATHWAYS Profiled 2 26 ALC(D)

242 APPENDIX A. APPENDIX

WSIO Profiled 0 32 ALE

XAO Profiled 0 5150 ALE+

XCO Profiled 0 563 ALE+

XEO Profiled 0 237 ALE

ZEA Profiled 0 217 ALE

ZFA Pure DL 0 11279 SHI

Table A.1: Full list of ontologies in the BioPortal snapshot we use as part of this
thesis. PROF is the main profile category, ABox is the number of ABox axioms,
TBox the number of TBox axioms, Expressivity is the corresponding Description
Logic language, an X in the K1 category indicates that the ontology was used as
part of experiment run K1 in Chapter 7; K2 analogously.

A.2 Method for RDFS detection

The original version of the method was written by Rafael Gonçalves [Gon14].

This is the updated version, including the check whether domain restrictions are

restricted to class names.

Algorithm A.2.1: Method for RDFS detection
Data: Ontology O

Result: Boolean RDFS

RDFS = TRUE ;

AXIOMS = O.getLogicalAxioms() ;

while AXIOMS.hasNext() do

AX = AXIOMS.next();

if AX.type(SUBCLASSOF or SUBOBJECTPROPERTY) then

if AX.getSub().isAnonymous() or AX.getSuper().isAnonymous() then

RDFS = FALSE;

break;

end

else if ASSERTION)) then

do nothing;

else if AX.type(PROPERTY-(DOMAIN or RANGE orASSERTION)) then

if AX.getDomainOrRange().isAnonymous() then

RDFS = false;

break;

end

else if AX.type(CLASSASSERTION) then

if AX.getClassExpression().isAnonymous() then

RDFS = false;

break;

end

else

comment: some other axiomtype;

RDFS=FALSE;

break;

end

end

A.3. OWL REASONERS 243

A.3 OWL Reasoners

Table A.2 gives an overview of existing OWL reasoners. A more comprehensive

analysis can be found in [MLH+15].

244 APPENDIX A. APPENDIX

Table A.2: Overview of the OWL reasoners. SC stands for soundness/complete-
ness, P for profile, O1 for OWL 1 and O2 for OWL 2. CALC is the main
underlying calculus, EXP the highest expressive language supported. ACT indi-
cates whether there is active development (B=Bugfixes, D=Active development,
N=No development)

Name Institution SC ACT CALC EXP
BaseVISor[MBK06] VIStology, Inc. P B Rete Network NA
BUNDLE[RBLZ13] Univ. of Ferrara O2 D Tableaux SROIQ

CEL[BLS06] Technische Universitt Dres-
den

P N Consequence-based EL+

Chainsaw[TP12a] Univ. of Manchester O2 D Modular Reasoner SROIQ
Clipper[EOS+12] Vienna Univ. of Technology P B Query Rewriting Horn-SHIQ
DBOWL[GM12] Univ. of Malaga O1 D Relational Alge-

bra and fixed-point
iterations

SHOIN

DeLorean[BDGR12] Not given O2 D Fuzzy NA
DistEL[MHML15] Wright State Univ. P D Consequence-based NA
DRAOn[DLZC13] Univ. of Paris 8, IUT of

Montreuil
O1 D Compressed models NA

DReW[XE11] Vienna Univ. of Technology P B Datalog Rewriting EL++
ELepHant[Ser13] Not given I D Consequence-based EL++

ELK[KKS14] Univ. of Ulm, Germany I D Consequence-based EL+
ELOG[NNS11] Not given P B Integer Linear Pro-

gramming
NA

FaCT++[TH06] Univ. of Manchester O2 D Tableaux SROIQ
fuzzyDL[BS08] ISTI - CNR I D Tableaux SHIF

HermiT[GHM+14] Univ. of Oxford O2 N Hypertableaux SROIQ
jcel[Men12] Technische Universitt Dres-

den
P B Consequence-based EL+

JFact[Pal15] Univ. of Manchester I D Tableaux SROIQ
Konclude[SLG14] Univ. of Ulm, derivo GmbH O2 D Hybrid SROIQV

LiFR[TDKM14] Centre for Research and
Technology Hellas (CERTH)

P D Hypertableaux OWL DLP

Mastro[CGL+11] Sapienza Univ. of Rome P D Query Rewriting DL-LiteA
MORe[RGH12] Univ. of Oxford O2 D Modular Reasoner SROIQ

ontop[KRRM+14] Free Univ. of Bozen-Bolzano P D Query Rewriting OWL 2 QL
Pellet[SPG+07] Clark & Parsia, LLC O2 D Tableaux SROIQ

Racer[HHMW12] Concordia Univ., Montreal,
Canada; Univ. of Luebeck,
Germany;

P B Tableaux SRIQ

RDFox[MNP+14] Univ. of Oxford P D Datalog Rewriting OWL 2 RL
RuQAR[BNJ14] Poznan Univ. of Technology P D Datalog Rewriting

Snorocket[MJL13] CSIRO I D Consequence-based EL++
TReasoner[GI13] Tyumen State Univ. O2 B Tableaux SROIQ
TRILL[ZBLR13] Univ. of Ferrara O1 D Tableaux SHOQ

TRILLP[ZBL+14] Univ. of Ferrara O1 D Tableaux ALC
TrOWL[TPR10] Univ. of Aberdeen P D Consequence-based SROIQ

WSClassifier[SSD12] Univ. of New Brunswick,
Canada

I B Hybrid ALCHOI

A.4. SUPPLEMENTARY MATERIALS CHAPTER 7 245

A.4 Supplementary materials Chapter 7

T R M1 DC Res M2 PP CC PR ST PO Res M3
CC H 16.3 16.1 0.2 83.7 1.1 0.0 45.4 37.0 0.1 0.0 0.0
CC J 16.1 15.5 0.5 83.9 7.6 0.0 0.0 75.9 0.3 0.0 0.0
CC P 28.1 27.9 0.2 71.9 34.9 0.0 0.0 36.9 0.1 0.0 0.0
CCO H 16.4 16.1 0.2 83.6 1.0 0.0 48.4 34.1 0.1 0.0 0.0
CCO J 16.1 15.5 0.7 83.8 7.4 0.0 0.0 76.1 0.3 0.0 0.0
CCO P 27.9 27.6 0.3 72.2 35.0 0.0 0.0 37.0 0.1 0.0 0.0
CD H 22.0 8.9 13.1 78.0 2.5 0.5 47.8 26.4 0.8 0.0 0.0
CD J 14.1 5.9 8.2 85.9 5.1 1.1 0.0 79.2 0.4 0.0 0.0
CD P 14.7 3.4 11.2 85.3 21.9 2.2 0.0 60.1 1.1 0.0 0.0
MM H 4.2 2.8 1.4 95.8 8.3 1.9 38.0 45.0 2.4 0.1 0.0
MM J 3.7 2.5 1.2 96.3 12.0 2.8 0.0 79.9 1.5 0.1 0.0
MM P 6.3 4.1 2.2 93.7 17.6 7.1 0.1 63.4 5.4 0.2 0.0
MON H 0.7 0.0 0.7 98.5 4.2 0.4 63.2 25.3 5.3 0.0 0.8
MON J 0.3 0.0 0.3 99.7 7.6 0.6 0.0 91.0 0.4 0.0 0.0
MON P 0.4 0.0 0.4 98.0 9.6 2.3 0.0 74.5 11.6 0.0 1.6
MOR H 3.8 3.7 0.1 96.2 4.6 0.3 49.9 35.8 1.1 4.5 0.0
MOR J 2.1 2.0 0.1 97.8 5.9 0.0 0.0 88.7 0.3 3.0 0.0
MOR P 2.8 2.8 0.0 97.1 44.4 0.1 0.0 49.2 0.6 2.9 0.0
MORA H 3.7 3.6 0.1 96.3 5.1 0.1 51.0 38.4 1.8 0.0 0.0
MORA J 2.4 2.2 0.1 97.6 6.2 0.0 0.0 90.8 0.6 0.0 0.0
MORA P 3.3 3.3 0.0 96.6 22.1 0.1 0.0 72.9 1.5 0.0 0.0

Table A.3: Impact of sub-processes in % of overall classification time (OCT),
experiment run K1. The columns in gray represent the three main modular
classification stages: M1 pre-processing, M2 modular classification and M3 post-
processing. DC is the decomposition time, columns PP, CC, PR, ST and PO
stand for the sum of the contribution of the delegate reasoners: PP is the sum
of pre-processing stages of all delegates (in % of OCT), CC the sum of all con-
sistency checks, PR the pre-reasoning processing, ST the time spend traversing
the class graph and PO the sum of all post-processing time measurements. The
two columns labelled Res. represent the remaining time not accounted for my
the preceding columns with respect to M1 and M2 respectively.

246 APPENDIX A. APPENDIX

hermit jfact pellet

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

MON
MORA

MOR
MM
CC

CCO

ado
bao

bco
bdo

bho
cao

carre
cogpo

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.1: Experiment K2, ontology name starting A to C. Breakdown of factors
contributing to overall reasoning time, by primary delegate reasoner and ontology.
X-axis is time spent, with the ratio between times being preserved across ontology.
As we are only interested in comparing ratios, we omitted the axis labels. Dec is
the decomposition time, PP (no DEC) is the remaining time needed for prepro-
cessing (assigning ontologies to delegate reasoners, determining order), DEL-PP
is the total time spent by delegate reasoners doing pre-processing, DEL-SCC is
the total time spend consistency checking, DEL-PRP pre-reasoning processing
and DEL-SST subsumption testing. Note that we have excluded the CD strategy
on all plots because it was dominated by PP (no DEC) and rendered the other
techniques unreadable (inefficient implementation).

A.4. SUPPLEMENTARY MATERIALS CHAPTER 7 247

hermit jfact pellet

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

CCO
CC

MORA
MON
MOR

MM

ddi
dikb

ecg
eco

em
o

fhho
gfo

gro
heio

hpio
hupson

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.2: Experiment K2, ontology name starting D to H. See Table A.1 for
explanation of legend.

248 APPENDIX A. APPENDIX

hermit jfact pellet

MON

MORA

MOR

CC

CCO

MM

MON

MORA

MOR

CC

CCO

MM

MON

MORA

MOR

CC

CCO

MM

MON

MORA

MOR

CC

CCO

MM

MON

MORA

MOR

CC

CCO

MM

jerm
kisao

m
hc

neom
ark4

ngsonto

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.3: Experiment K2, ontology name starting I to N. See Table A.1 for
explanation of legend.

A.4. SUPPLEMENTARY MATERIALS CHAPTER 7 249

hermit jfact pellet

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

MORA
MOR

CC
CCO
MON

MM

obiw
s

om
rse

ontokbcf
ope

opl
pco

rxno
sao

spo
tm

o
w

b−
bt

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.4: Experiment K2, ontology name starting O to Z. See Table A.1 for
explanation of legend.

250 APPENDIX A. APPENDIX

hermit jfact pellet

MM

CC

CCO

MORA

MOR

MON

MM

CC

CCO

MORA

MOR

MON

MM

CC

CCO

MORA

MOR

MON

MM

CC

CCO

MORA

MOR

MON

MM

CC

CCO

MORA

MOR

MON

biom
odels

bt
cao

dco−
debugit

dron

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.5: Experiment K1, ontology name starting A to H. See Table A.1 for
explanation of legend.

A.4. SUPPLEMENTARY MATERIALS CHAPTER 7 251

hermit jfact pellet

MM

MON

MOR

MORA

CC

CCO

MM

MON

MOR

MORA

CC

CCO

MM

MON

MOR

MORA

CC

CCO

MM

MON

MOR

MORA

CC

CCO

ico
m

foem
npo

ntdo

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.6: Experiment K1, ontology name starting I to N. See Table A.1 for
explanation of legend.

252 APPENDIX A. APPENDIX

hermit jfact pellet

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

MORA

MON

MM

MOR

CC

CCO

obcs
ogsf

om
rse

onl−
m

sa
poro

stato
vso

value

variable

Dec

PP (no DEC)

DEL−PP

DEL−SCC

DEL−PRP

DEL−SST

Rest

Overhead

Figure A.7: Experiment K1, ontology name starting O to Z. See Table A.1 for
explanation of legend.

Glossary

ABox The set of all class assertions and property assertions in the ontology (A

for assertional).. 35

absorption Reasoner optimisation that attempts to reduce the high degree of

non-determinism induced by general concept inclusions, for example by

rewriting axioms.. 78

axiom A statement in OWL, for exampleA v B, Functional(R), DisjointClasses(A,B)..

35

classification Reasoning task that determines, for every pair A,B of concept

names in the ontology, whether A is a subclass of B.. 38

classification time Denoted CT (O,R). The time it takes to classify an ontol-

ogy O by a reasoner R (informal).. 60

classification-preserving decomposition Sets of possibly intersecting sub-

sets of the ontology that, if all are classified one-by-one, add up to the

full classification of the whole ontology.. 51

conjunctive query answering Querying that goes beyond mere instance re-

trieval.. 38

consistency checking Reasoning task that determines the consistency of an

ontology.. 38

decomposition-based reasoner A reasoner that performs classification on a

classification-preserving decomposition of the ontology.. 60

entailment checking Reasoning task that checks, for a given axiom, whether

it is entailed by the ontology.. 38

experiment run A single execution of a task such as classification on a specified

machine.. 76

254 Glossary

General Concept Inclusion A GCI or General Concept Inclusion is an axiom

of the form C v D, were C and D are (potentially complex) concepts. A

TBox for example is a finite set of GCI’s. 61

imports closure The set of ontologies directly or indirectly imported by a given

root ontology.. 35

justification Denoted J α
O . The set of all justifications of an entailment α with

respect to ontology O, i.e. a minimal subset of O that entails α.. 60

logical axiom Denoted α. Subset of axioms that excludes annotation assertions

and entity declarations.. 35

modular reasoner A reasoner that performs reasoning on a set of modules in

the ontology.. 60

monolithic reasoner A reasoner that performs classification on the whole on-

tology rather than on its classification-preserving decomposition.. 60

nominal Given an individual a, we call {a} a nominal, denoting the a class

whose only member is a.. 66

Pearson correlation coefficient Pearson’s correlation coefficient is a measure

of the strength of the association between the two variables.. 167

RDFS Basic schema language that allows for subsumption, assertions, domains

and ranges.. 107

realisation Reasoning task that computes, for all concept names in the ontology,

the named individuals that are members of it.. 38

signature Denoted Õ. The set of all names occurring in the ontology, including

class names, property names and individuals.. 35

subsumption test A subsumption test between two concepts A and B as trig-

gered as part of a traversal based classification procedure (such as Enhanced

Traversal / Tableau) of O. Typically denoted ST (A,B,O).. 60

Glossary 255

subsumption test measurement Denoted ST (A,B,O,R, i). A subsumption

test measurement between A ad B by reasoner R in O, with i denoting the

run.. 60

TBox The set of all logical axioms in the ontology excluding ABox axioms (T

for terminological).. 35

	Acknowledgements
	Abstract
	Declaration
	Copyright
	Introduction
	OWL Reasoning
	The Problem of Modular Reasoning
	Understanding Reasoning Performance
	Contributions
	The Story
	Published Work

	Background
	Terminology Used
	OWL
	Brief Overview of Reasoning in OWL
	Reasoning Tasks for Description Logic Ontologies
	OWL Ontology Classification
	Optimisations

	Modularity
	Types of Modules and Module Extraction

	Classification-preserving Decompositions
	Decompositions Based on the Atomic Decomposition
	The MORe Decomposition

	Summary

	Reasoning with Locality-based Modules
	Terminology and Models
	Reasoner with Modularity-sensitive Calculus vs Modular Meta-reasoning Framework

	Model of Modular Classification
	Applications
	MORe
	Chainsaw
	Hotspot Reasoning
	Module-based Incremental Reasoning
	Optimising Consistency Checking Using Modules
	Other Related Approaches

	An Analytic Argument for Modular Reasoning
	Reducing Test Hardness
	Subsumption Test Avoidance
	Integration of Efficient Delegate Reasoners
	Modules for Parallelism

	Limitations
	Overhead
	Module Hardness
	Redundancy

	Research Agenda
	Summary

	Experimental Framework
	The Reasoner Stage Benchmark
	Overview
	Implementation

	Katana
	Overview
	Implementation
	Katana Correctness

	OWL Experiment API
	Overview
	Implementation
	OWL API Classification

	Experimental Setup
	Timeout Management
	Java Profiling
	Experiment Machines

	Thesis: Metrics
	Reasoner Benchmarking
	Brief Survey of Reasoner Benchmarks
	The Quest for the ``Ultimate'' Dataset
	Thesis Dataset: BioPortal

	OWL Reasoners
	Overview of the DL Reasoner Landscape
	Reasoners in this Thesis

	Supporting Materials and Datasets

	Module Hardness
	Definitions and Models
	Empirical Characterisation
	Method: Finding Pathological Modules

	Experimental Design
	Experimental Pipeline

	Results
	Finding Pathological Modules

	Modified Benign Module Conjecture
	Experimental Pipeline
	Results

	Discussion
	Methodological Reflection

	Summary of Key Observations

	Subsumption Test Hardness and Modularity
	Definitions and Models
	Empirical Characterisation
	Experimental Design
	Experimental Pipeline

	Results
	Role of Subsumption Testing in Classification
	Sensitivity to Modularly Irrelevant Axioms

	Summary of Key Observations

	Modular Classification in Action
	Definitions and Models
	Implemented Modular Classification Strategies
	Chainsaw Strategy (MM)
	MORe Strategy (MOR and MORA)
	Connected Components Strategy (CC)
	Optimised Connected Component Strategy (CCO)
	Atomic Decomposition Community Detection Strategy (CD)

	Empirical Characterisation
	Overall Performance
	Traversal Space

	Experimental Design
	Experimental Pipeline

	Results
	Overall Performance
	What Stages in the Reasoning Process Contribute to OCT?
	Test Avoidance and Redundancy
	Test Hardness

	Discussion
	Methodological Reflections

	Summary of Key Observations

	Conclusions
	Summary of Contributions
	Outstanding Issues and Future Work
	Modular Reasoning
	Experimental Pipeline

	Bibliography
	Appendix
	List of ontologies in BioPortal Snapshot
	Method for RDFS detection
	OWL Reasoners
	Supplementary materials Chapter 7

	Glossary

