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The Impact of Disjunction on Query Answering Under
Guarded-based Existential Rules

Pierre Bourhis, Michael Morak, and Andreas Pieris

Department of Computer Science, University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. We give the complete picture of the complexity of conjunctive query
answering under (weakly-)(frontier-)guarded disjunctive existential rules, i.e., ex-
istential rules extended with disjunction, and their main subclasses, linear rules
and inclusion dependencies.

1 Introduction

Rule-based languages have a prominent presence in the areas of AI and databases. A
noticeable formalism, originally intended for expressing complex queries over rela-
tional databases, is Datalog, i.e., function-free first-order Horn logic. Strong interest
in enhancing Datalog with existential quantification in rule-heads emerged in recent
years, see, e.g., [1–5]. This interest stems from the inability of plain Datalog to in-
fer the existence of new objects which are not already in the extensional database [6].
The obtained rules are known under a variety of names such as existential rules, tuple-
generating dependencies (TGDs), and Datalog± rules. Unfortunately, the addition of
existential quantification as above easily leads to undecidability of the main reasoning
tasks, and in particular of conjunctive query answering [7]. Therefore, several con-
crete languages which guarantee decidability have been proposed, see, e.g., [1, 3, 5,
8–11]. Nevertheless, TGDs are not powerful enough for nondeterministic reasoning.
For example, a simple and natural statement like “a child is a boy or a girl” cannot be
expressed using TGDs; however, it can be easily expressed using the disjunctive rule
child(X) → boy(X) ∨ girl(X).

Obviously, to be able to represent such kind of disjunctive knowledge, we need to
enrich the existing classes of TGDs with disjunction in the head, or, equivalently, to con-
sider disjunctive TGDs (DTGDs) [12]. Such an extension of plain Datalog (a.k.a. full
TGDs), called disjunctive Datalog, has been studied in [13]. More recently, special
cases of the problem of query answering under guarded-based DTGDs have been inves-
tigated [14, 15]. However, the picture of the computational complexity of the problem
is still foggy, and there are several challenging issues to be tackled.

Our main goal is to better understand the impact of disjunction on query answer-
ing under the main guarded-based classes of TGDs, and how existing complexity results
for TGDs are affected by adding disjunction. Notice that guardedness is a well-accepted
paradigm, giving rise to robust languages that capture important lightweight description
logics such as DL-Lite [16] and EL [17]. In the present work, we concentrate on the
following fundamental questions: what is the exact complexity of conjunctive query



(CQ) answering under (weakly-)(frontier-)guarded DTGDs [1, 9], and their main sub-
classes, i.e., linear DTGDs and disjunctive inclusion dependencies (DIDs) [5]? How is
it affected if we consider a signature of bounded arity, or a fixed set of dependencies?
Moreover, how is it affected if we pose the queries in a more expressive query language,
in particular using unions of CQs (UCQs)? As we shall see, the addition of disjunction
has a significant effect on the complexity of CQ answering. We show an unexpectedly
strong lower bound, which is critical towards the closing of the above issues.

Our contributions can be summarized as follows:

1. We show that CQ answering for (weakly-)(frontier-) guarded DTGDs is 2EXPTIME-
complete in the combined complexity; this also holds for UCQs. Regarding the
data complexity, we show that under frontier-guarded DTGDs it is coNP-complete,
while for weakly-frontier-guarded it is EXPTIME-complete. The upper bounds are
obtained by exploiting results on expressive languages such as guarded negation
first-order logic [18], while the lower bounds are inherited from existing results.

2. We show that CQ answering under a fixed set of DIDs is 2EXPTIME-hard, even
if restricted to predicates of arity at most three. In case of UCQs, the above result
holds even for unary and binary predicates. These strong lower bounds are estab-
lished by a reduction from an appropriate variant of the validity problem of CQs
w.r.t. a Büchi automaton [19]. Together with the 2EXPTIME upper bound discussed
above, this gives us the complete picture for the complexity of our problem.

3. We investigate a natural fragment of DIDs with lower combined complexity. In
fact, we consider frontier-one dependencies (i.e., only one variable is propagated
from the body to the head), and we show that the combined complexity decreases
to EXPTIME-complete.

4. We show that frontier-guarded DTGDs, combined with negative constraints, are
strictly more expressive than DL-LiteHbool [20], one of the most expressive lan-
guages of the DL-Lite family. This allows us to show that query answering under
DL-LiteHbool is in 2EXPTIME in combined complexity. The matching lower bound
holds since our complexity results on DIDs imply that, for every description logic
equipped with limited existential quantification, role inverse and union, query an-
swering is 2EXPTIME-hard.

A technical report containing the full proofs is available at http://www.cs.ox.ac.uk/
people/michael.morak/pubs/DL2013-techrep.pdf.

2 Preliminaries

Technical Definitions. We define the following pairwise disjoint (infinite) sets: a set
Γ of constants, a set ΓN of labeled nulls, and a set ΓV of regular variables. We denote
by X sequences (or sets) of variables X1, . . . , Xk. A relational schema R is a set of
relational symbols (or predicates). A position r[i] in R is identified by r ∈ R and its i-th
argument. A term t is a constant, null, or variable. An atom has the form r(t1, . . . , tn),
where r is a relation, and t1, . . . , tn are terms. For an atom a, we denote terms(a)
and var(a) the set of its terms and the set of its variables, respectively; these extend
to sets of atoms. Conjunctions and disjunctions of atoms are often identified with the
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sets of their atoms. An instance I for a schema R is a (possibly infinite) set of atoms
r(t), where r ∈ R and t is a tuple of constants and nulls. A database D is a finite
instance such that terms(D) ⊂ Γ . We assume the reader is familiar with (unions of)
conjunctive queries ((U)CQs). The answer to a (U)CQ q over an instance I is denoted
q(I). A Boolean (U)CQ q has positive answer over I , denoted I |= q, if ⟨⟩ ∈ q(I).

Disjunctive Tuple-generating Dependencies. A disjunctive tuple-generating de-
pendency (DTGD) σ over a schema R is a first-order formula of the form ∀Xφ(X) →∨n

i=1 ∃Yψi(X,Yi), where n > 1, X ∪Y ⊂ ΓV , and φ,ψ1, . . . , ψn are conjunctions
of atoms over R; φ is the body of σ, denoted body(σ), while

∨n
i=1 ψi is the head of σ,

denoted head(σ). If n = 1, then σ is called tuple-generating dependency (TGD). For
brevity, we will omit the universal quantifiers in front of DTGDs. An instance I satisfies
σ, written I |= σ, if whenever there exists a homomorphism h such that h(φ(X)) ⊆ I ,
then there exists i ∈ {1, . . . , n} and h′ ⊇ h such that h′(ψi(X,Yi)) ⊆ I; I satisfies a
set Σ of DTGDs, denoted I |= Σ, if I satisfies each σ ∈ Σ.

A DTGD σ is guarded if there exists an atom a ∈ body(σ), called guard, which con-
tains all the variables occurring in body(σ). Weakly-guarded DTGDs extend guarded
DTGDs by requiring only the body-variables that appear at affected positions, i.e., po-
sitions at which a null value may appear during the disjunctive chase (see below) to
appear in the guard; for the formal definition see [9]. The concept of frontier can be
used to generalize (weakly-)guarded DTGDs. The frontier of a DTGD σ is the set of
variables var(body(σ)) ∩ var(head(σ)). σ is frontier-guarded if there exists an atom
a ∈ body(σ) which contains all the variables occurring in its frontier. The class of
weakly-frontier-guarded DTGDs is defined analogously. A DTGD σ is linear if it has
only one body-atom. Disjunctive inclusion dependencies (DIDs) are obtained by re-
stricting linear DTGDs as follows: the head is a disjunction of atoms (and not of con-
junctions), and there are no repeated variables in the body or in the head.

Query Answering. The models of D and Σ, denoted mods(D,Σ), is the set of
instances {I | I ⊇ D and I |= Σ}. The answer to a CQ q w.r.t. D and Σ, denoted
ans(q,D,Σ), is the set of tuples of constants

∩
I∈mods(D,Σ){t | t ∈ q(I)}. The answer

to a Boolean CQ q w.r.t.D andΣ is positive, denotedD∪Σ |= q, if ⟨⟩ ∈ ans(q,D,Σ).
The answer to a UCQ w.r.t. D and Σ is defined analogously. The problem, called
CQAns, tackled in this work is defined as follows: given a CQ q, a database D, a set Σ
of DTGDs, and a tuple of constants t, decide whether t ∈ ans(q,D,Σ). The problem
UCQAns is defined analogously. Notice that (U)CQAns for arbitrary CQs can be easily
reduced to (U)CQAns for Boolean CQs, just by substituting the given tuple t into the
CQs; thus, we focus on Boolean CQs. The data complexity of the above problems is
calculated taking only the database as input. For the combined complexity, the query
and set of DTGDs count as input as well.

Disjunctive Chase. We employ the disjunctive chase introduced in [12]. Consider
an instance I , and a DTGD σ : φ(X) →

∨n
i=1 ∃Y ψi(X,Y). We say that σ is appli-

cable to I if there exists a homomorphism h such that h(φ(X)) ⊆ I , and the result
of applying σ to I with h is the set {I1, . . . , In}, where Ii = I ∪ h′(ψi(X,Y)), for
each i ∈ {1, . . . , n}, and h′ ⊇ h is such that h′(Y ) is a “fresh” null not occurring in
I , for each Y ∈ Y. For such an application of a DTGD, which defines a single DTGD
chase step, we write I⟨σ, h⟩{I1, . . . , In}. A disjunctive chase tree of a database D and
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Combined complexity Bounded arity Fixed rules Data complexity
L/ID EXPTIME-hard Π2

P-hard Π2
P-hard coNP-complete

G 2EXPTIME-hard EXPTIME-hard Π2
P-hard coNP-complete

W-G 2EXPTIME-hard EXPTIME-hard EXPTIME-hard EXPTIME-complete
F-G 2EXPTIME-hard 2EXPTIME-hard Π2

P-hard coNP-hard
W-F-G 2EXPTIME-hard 2EXPTIME-hard EXPTIME-hard EXPTIME-hard

Table 1. Known complexity results for (U)CQAns.

a set Σ of DTGDs is a (possibly infinite) tree such that the root is D, and for every
node I , assuming that {I1, . . . , In} are the children of I , there exists σ ∈ Σ and a
homomorphism h such that I⟨σ, h⟩{I1, . . . , In}. The disjunctive chase algorithm for
D and Σ consists of an exhaustive application of DTGD chase steps in a fair fashion,
which leads to a disjunctive chase tree T of D and Σ; we denote by chase(D,Σ) the
set {I | I is a leaf of T}. Note that each leaf of T is well-defined as the least fixpoint of
a monotonic operator. By construction, each instance of chase(D,Σ) is a model of D
and Σ. Interestingly, chase(D,Σ) is a universal set model of D and Σ, i.e., for each
I ∈ mods(D,Σ), there exists J ∈ chase(D,Σ) and a homomorphism hJ such that
hJ (J) ⊆ I [21]. This implies that, given a UCQ Q, D ∪ Σ |= Q iff I |= Q, for each
I ∈ chase(D,Σ).

Guarded Negation FO. Guarded negation first-order logic (GNFO) restricts first-
order logic by requiring that all occurrences of negation are of the form a∧¬φ, where a
is an atom containing all the free variables of φ [18]. The formulas of GNFO are gener-
ated by the recursive definition φ ::= r(t1, . . . , tn)|t1 = t2|φ1 ∧φ2|φ1 ∨φ2|∃X φ|a∧
¬φ. GNFO is strictly more expressive than guarded first-order logic (GFO) [22].

3 Known Results on Guarded-based DTGDs

We give an overview over known results, and we survey the best existing lower bounds
that can be immediately inherited. Our discussion is outlined in Table 1, where each row
corresponds to a fragment of DTGDs (which is decoded by substituting L for linear, G
for guarded, W for weakly and F for frontier), each column corresponds to a complexity
variant, and known completeness results are shown in boldface.

Overview. To the best of our knowledge, the only work done on query answering
under guarded-based disjunctive DTGDs can be found in [14] and [15]. The first paper
investigates the data complexity of query answering under (weakly-)guarded and linear
DTGDs. For weakly-guarded it is EXPTIME-complete, while for guarded and linear it
is coNP-complete. Moreover, the case of atomic queries has been considered, and it was
shown that it is in LOGSPACE. Notice that the above coNP-hardness is implicit in [23],
where it was shown that query answering under a TBox with a single axiomA ⊑ B⊔C,
which is equivalent toA(X) → B(X)∨C(X), is coNP-hard. The second paper studies
both the combined and data complexity of atomic query answering under guarded and
linear DTGDs. For guarded DTGDs the combined complexity is 2EXPTIME-complete,
while the data complexity is coNP-complete (which agrees with the analogous result
above). For linear DTGDs the combined complexity is EXPTIME-complete, while the
data complexity is in AC0 (improving the LOGSPACE upper bound mentioned above).
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Notice that the AC0 upper bound was obtained by showing that the problem is first-
order rewritable.

Inherited Lower Bounds. The best existing lower bounds for our problem are
the following: (i) 2EXPTIME in combined complexity, and also EXPTIME in case of
bounded arity, for guarded DTGDs [9], (ii) 2EXPTIME for frontier-guarded DTGDs
in case of bounded arity [2, 24], (iii) EXPTIME for DIDs in combined complexity; this
holds since the rules employed in [15] to prove an analogous result for linear DTGDs are
DIDs, and (iv) Π2

P for fixed sets of DIDs; this follows from a result in [25] which states
that query answering under fixed universal GFO sentences isΠ2

P-hard. Notice that in the
proof of this result a sentence of the form ∀X∀Y ∀Z r(X,Y, Z) → s(X,Y )⊕ s(X,Z)
is used; however, the result holds even if we replace ⊕ with ∨ since the minimal models
of a ∨ b coincide with those of a⊕ b.

4 The Complexity of Query Answering

Apart from the three known completeness results which are shown in boldface in Ta-
ble 1, for all the other cases the exact complexity is unknown. We tackle these open
problems, and we present a complete complexity picture.

4.1 Combined Complexity

Upper Bound. First, we establish an upper bound for query answering under the most
expressive class that we treat in this paper, i.e., weakly-frontier-guarded DTGDs, by
exploiting a result on satisfiability of GNFO.

Theorem 1. UCQAns under weakly-frontier-guarded DTGDs is in 2EXPTIME in com-
bined complexity.

Proof (sketch). We provide a reduction to satisfiability of GNFO which is in 2EXP-
TIME [18]. First, we polynomially reduce our problem to UCQAns under frontier-
guarded DTGDs by exploiting the reduction from weakly-frontier-guarded TGDs to
frontier-guarded TGDs proposed in [2]. Thus, given a UCQ Q, a database D, and set
Σ of weakly-frontier-guarded DTGDs, there exists a polynomial translation τ such that
D ∪ Σ |= Q iff τ(D) ∪ τ(Σ) |= τ(Q), where τ(Σ) is a set of frontier-guarded DT-
GDs. It is easy to see that τ(Σ) can be equivalently rewritten as a GNFO formula [26].
More precisely, a frontier-guarded DTGD ∀Xφ(X) → ∃Y ψ(X,Y) is equivalent
to ¬(∃Xφ(X) ∧ ¬∃Y ψ(X,Y)) which falls in GNFO since all the free variables of
∃Y ψ(X,Y) appear in the frontier-guard of φ(X). Moreover, ¬τ(Q) trivially falls in
GNFO. Therefore, τ(D) ∧ τ(Σ) ∧ ¬τ(Q) is a GNFO formula and the claim follows
since τ(D) ∪ τ(Σ) |= τ(Q) iff τ(D) ∧ τ(Σ) ∧ ¬τ(Q) is unsatisfiable.

Notice that an alternative way to obtain the above result is to reduce our problem to
query answering under GFO which is also in 2EXPTIME [25].

Lower Bound. Recall that CQAns for guarded TGDs is 2EXPTIME-hard [9] in
combined complexity, while for frontier-guarded TGDs remains 2EXPTIME-hard even
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in the case of bounded arity [2]. Although these results, together with Theorem 1, close
the combined complexity for (weakly-)(frontier-)guarded, and also the case of bounded
arity for (weakly-)frontier-guarded, they are not strong enough to complete the com-
plexity picture of our problem. In what follows we present a series of strong 2EXP-
TIME lower bounds for query answering. We assume the reader is familiar with Büchi
automata and infinite trees (see, e.g., [27]).

Theorem 2. CQAns under DIDs is 2EXPTIME-hard, even for predicates of arity at
most two.

Before proving the above theorem, we first introduce the following intermediate re-
sult: Given a finite set of labels Λ, we define a schema S = {child , parentorchild}∪Λ.
These predicates are used to represent binary trees, with the obvious semantics. Given
a CQ q over S and a Büchi tree automaton T over binary trees, where all states are
accepting and have at least one successor state, we define q to be valid w.r.t. T , iff
it holds that every (possibly infinite) binary tree accepted by T entails q. We claim
that deciding this problem is hard for 2EXPTIME, which can be shown by adapt-
ing the 2EXPTIME-hardness of the same problem for finite trees over schema S ′ =
{child , descendent} ∪ Λ in [19].

Proof (sketch). The proof is by reduction from the validity problem of CQs q over S
w.r.t. Büchi tree automata T over binary trees, as defined above. We construct a database
D, a set Σ of DIDs, and a query q′ = q over schema R, such that D ∪ Σ |= q′ iff q is
valid w.r.t. T . Let ST be the set of states of T . The schema R is as follows: It includes
S, and for each pair (s, a), where s ∈ ST and a ∈ Λ, there are unary predicates s
and ps,a in R. Moreover, for each transition (s, a) 7→ s1, s2 in the transition function δ
of T , we have binary predicates child i[(s, a), s1, s2], for i ∈ {1, 2}, in R. Intuitively,
child i[(s, a), s1, s2](X,Y ) says that Y is the i-th child of X , where X is in state s and
labelled a, and Y is in state si. We now define Σ as follows:

– For each s ∈ ST , s(X) →
∨

a∈Λ and δ(s,a) ̸=∅ ps,a(X)

– For each (s, a) ∈ ST × Λ, ps,a(X) → a(X)
– For all transitions (s, a) 7→ s1, s2:

• ps,a(X) → ∃Y child i[(s, a), s1, s2](X,Y )

• child i[(s, a), s1, s2](X,Y ) → si(Y )

• child i[(s, a), s1, s2](X,Y ) → child(X,Y )
– child(X,Y ) → parentorchild(X,Y )
– child(X,Y ) → parentorchild(Y,X).

The database D contains a single atom sI(c), where sI is the initial state of T . For
each instance I ∈ chase(D,Σ), if restricted to the child - and label-predicates only,
by construction and due to the fact that each state of T has at least one successor, this
is an infinite binary tree accepted by T . Moreover, the parentorchild -predicate in I is
semantically equivalent to the parentorchild -relation of T , and therefore we get that
D ∪Σ |= q′ only if q is valid w.r.t. T . The converse direction follows from the fact that
all states are accepting.
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Notice that the constructed set Σ of DIDs in the above proof depends on T , and the
underlying schema R contains a predicate for every state and label of T . This proof can
now be extended, such that Σ is a fixed set of DIDs and R a fixed schema with arity at
most two. However, to devise this encoding, we need the expressive power of UCQs.

Theorem 3. UCQAns under fixed sets of DIDs is 2EXPTIME-hard, even for predicates
of arity at most two.

Proof (sketch). We adapt the proof of Theorem 2 as follows: Instead of labelling each
tree node with a state s and label a, we generate a chain of nodes, with the length of the
chain encoding s and a. This can be done by the DIDs next(X) → ∃Y chain(X,Y )
and chain(X,Y ) → next(Y )∨ end(Y ). Using this adaptation, neither the schema nor
the set of DIDs depends on T any longer. The CQ of the proof of Theorem 2 can now
be carefully adapted to this new encoding of states and labels, and also to check that:
(i) any chain has length at most n, where n is polynomial in the size of T , and (ii) each
node and its two children are consistent with the transition function of T .

In the following, we will show that the above theorem holds also for CQs, at the
expense of increasing the arity of the underlying schema by one. In the sequel, given a
schema R, let arity(R) be the maximum arity over all predicates of R. Notice that the
following technical result holds for arbitrary DTGDs, and not just for DIDs.

Lemma 1. Let R be a relational schema. Consider a UCQ Q over R, a database D
for R, and a set Σ of DTGDs over R. We can construct in polynomial time a CQ q′

over a schema R′, a databaseD′ for R′, and a setΣ′ of DTGDs such that arity(R′) =
arity(R) + 1, and D ∪Σ |= Q iff D′ ∪Σ′ |= q′.

Proof (sketch). The schema R′ is obtained from R by increasing the arity of every
predicate by one. Moreover, we add three predicates or , true and false. Each DTGD
in Σ is adapted in such a way that it always propagates this additional position to the
atoms in the head. Each CQ qi ∈ Q is translated into a new CQ q′i[Xi], where a fresh
variable Xi is added to all atoms in qi at the new position. The body of the new query
q′ is false(Z1)

∧
qi∈Q q

′
i[Xi] ∧ or(Zi, Xi, Zi+1) ∧ true(Zk+1), where k = |Q|. The

database D′ is obtained from D by extending each atom in such a way that the fresh
constant t ∈ Γ appears in the new position. Also, the atoms true(t) and false(f),
where f ∈ Γ is a fresh constant, are added. Furthermore, we add an isomorphic image
of every q′i[Xi] to D′, where Xi is replaced by f . Finally, we add the atoms or(t, t, t),
or(f, t, t), or(t, f, t) and or(f, f, f).

We can show that the above construction is correct. For any query q′i[Xi], there
exists a homomorphism mapping it to D′. However, this is not useful to satisfy q′, as
Xi is mapped to f . By construction however, the only way to satisfy q′ is to map at
least one subquery q′i[Xi] to chase(D′, Σ′), such that Xi maps to t. Note that the only
atoms in chase(D′, Σ′) containing t are the ones obtained from the original copy of D.
Thus, we have that whenever a subquery qi ∈ Q is true in a model of D ∪Σ, then q′ is
true in the corresponding model of D′ ∪Σ′, and the claim follows.

Theorem 3 and Lemma 1 immediately imply the following:
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Corollary 1. CQAns under fixed sets of DIDs is 2EXPTIME-hard, even for predicates
of arity at most three.

Interestingly, the above corollary closes an open question stated in [25], regarding
the complexity of query answering under fixed GFO sentences. It was shown that the
problem in question is PSPACE-hard even for CQs, and in EXPTIME in case of acyclic
CQs. However, the exact complexity was left as an open problem. Clearly, Corollary 1
gives a 2EXPTIME-completeness result since query answering under GFO is in 2EXP-
TIME in general. By combining Theorem 1 and Corollary 1, we get the following.

Corollary 2. (U)CQAns under (weakly-)(frontier-)guarded DTGDs, linear DTGDs and
DIDs is 2EXPTIME-complete in combined complexity. This holds even for predicates
of arity at most three, and for fixed sets of dependencies.

4.2 Data Complexity

As already discussed in Section 3, for guarded and weakly-guarded DTGDs the data
complexity is coNP-complete and EXPTIME-complete, respectively. Below, we show
that it remains the same for (weakly-)frontier-guarded DTGDs.

Theorem 4. (U)CQAns under frontier-guarded DTGDs is coNP-complete, while for
weakly-frontier-guarded DTGDs it is EXPTIME-complete in data complexity.

Proof (sketch). The coNP upper bound is obtained by reducing our problem to UC-
QAns under GFO sentences. This can be done by employing the linear reduction of
CQAns under frontier-guarded TGDs to UCQAns under GFO sentences given in [2].
The lower bound follows immediately since CQAns under DIDs is already coNP-hard.
Consider now a UCQ Q, a database D, and set Σ of weakly-frontier-guarded DTGDs.
First, we reduce our problem to UCQAns under frontier-guarded DTGDs by replac-
ing the non-affected variables in rules with all possible constants in D. Clearly, the
obtained set Σ′ is of exponential size in the number of non-affected variables, but of
polynomial size in |terms(D)|. As discussed above, a linear translation τ exists such
that D ∪ Σ′ |= Q iff D ∪ τ(Σ′) |= τ(Q), where τ(Σ′) is a GFO sentence and τ(Q)
a UCQ. It is important to say that, although |τ(Q)| depends on D, the size of each CQ
of τ(Q) does not depend on D. As shown in [25], UCQAns under GFO is in 2EXP-
TIME w.r.t. to the size of each CQ of the given UCQ and the maximum arity of the
schema, and in EXPTIME w.r.t. to the size of the sentence. Since the size of each query
of τ(Q) and the maximum arity of the schema are constant, and the size of τ(Σ′) is
polynomial in D, we get an EXPTIME upper bound w.r.t. D. The lower bound follows
immediately since UCQAns for weakly-guarded TGDs is EXPTIME-hard [9].

5 Reducing the Complexity

In this section, we demonstrate a way of reducing the combined complexity of query
answering under DIDs. We consider frontier-one DIDs, i.e., DIDs with a frontier of
cardinality exactly one, for which the complexity is EXPTIME-complete. Notice that the
class of frontier-one TGDs has been proposed in [1]. Clearly, frontier-one formalisms
are quite close to DL axioms since concept inclusions propagate only one object.
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Theorem 5. (U)CQAns for frontier-one DIDs is EXPTIME-complete in combined com-
plexity.

Proof (sketch). Consider a database D, and a set Σ of frontier-one DIDs. It is possible
to associate a tree structure with every instance I ∈ chase(D,Σ): I is partitioned into
bags of atoms, such that I ′ is one such bag, and for each term t occurring in an atom of
I \ I ′, there exists a bag, denoted bag(t), such that the atoms in bag(t) contain t; t is
called the input value of bag(t). These bags are used as labels of the tree structure, such
that the bag containing I ′ labels the root, and two bags bag(t1), bag(t2) are in a parent-
child relation iff there exists an atom containing t2 in bag(t1). Due to the monadic
nature of frontier-one DIDs, the number of atoms in each bag is polynomial in D and
Σ and the number of isomorphic bags is exponential in the size of Σ. The above tree
structure was introduced in [28] for finite instances, but can be extended to infinite trees.
It is therefore possible to show that there exists a Rabin automaton (see, e.g., [27]) that
is empty iff no instance of chase(D,Σ) satisfies q. This tree automaton represents the
tree structure of the instances of chase(D,Σ) that do not satisfy q. Moreover, the size
of the automaton is exponential in D and Σ due to the fact that, as shown in [28], for
every instance I ∈ chase(D,Σ) with I ̸|= q, the tree structure is diversified (i.e., there
is no bag except the root that contains two atoms with the same predicate, and there are
no directly related bags sharing a term at the same position). Given that Rabin automata
can be checked for emptiness in linear time, we establish the desired upper bound.

The lower bound is obtained by a careful adaptation of the proof of Theorem 2
in order to simulate a PSPACE alternating Turing machine using a chain of length n,
instead of a binary tree of depth n, to store the configurations.

Another formalism with a lower combined complexity is the class of full-identity
DIDs, that is, rules of the form r(X1, . . . , Xn) →

∨m
i=1 pi(X1, . . . , Xn) which allow

us only to copy a tuple. It is easy to show that the combined complexity reduces to
coNP-complete. As we are not able to permutate terms, each instance of the chase is
of polynomial size in the database and the schema. Thus, it suffices to guess such an
instance I , and check that it does not entail the query. The lower bound is implicit
in [23], where it was shown that query answering under rules of the form A(X) →
B(X) ∨ C(X) is coNP-hard in data complexity. Notice that query answering under
DIDs where each rule is frontier-one or full-identity is EXPTIME-complete.

6 Relationships with Existing DLs

As already shown in [15], guarded DTGDs are strictly more expressive than ELU [29],
that is, the well-known DL EL extended with disjunction. It is indeed straightforward to
see that every normalized ELU TBox, which may contains axioms of the form A ⊑ B,
A⊓B ⊑ C, A ⊑ ∃R.B and A ⊑ B ⊔C, where A,B,C are concept names and R is a
role name, can be translated in logarithmic space into a set of guarded DTGDs.

The goal of this section is to show an analogous result for DL-LiteHbool [20], one of
the most expressive languages of the DL-Lite family, and also to investigate the im-
pact of our previously established results on query answering under description logics,
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and in particular under DL-LiteHbool. Let us recall that this logical language contains ob-
ject names a0, a1, . . ., concept names A0, A1, . . ., and role names P0, P1, . . .. Complex
roles R and concepts C are defined as follows: R ::= Pk|P−

k , B ::= ⊥|Ak|∃R and
C ::= B|¬B|C1 ⊓ C2. A TBox T is a finite set of concept and role inclusion axioms
of the form C1 ⊑ C2 and R1 ⊑ R2, and its semantics can be defined by translating it
into first-order logic by using an operator τ . We denote by TC and TR the set of concept
inclusions and the set of role inclusions of T , respectively.

Expressive Power. We establish that frontier-guarded[⊥] DTGDs, that is, the for-
malism obtained by combining frontier-guarded DTGDs with negative constraints (NCs)
of the form ∀Xφ(X) → ⊥, where φ is a conjunction of atoms without any syntactic
restrictions, are strictly more expressive than DL-LiteHbool. Notice that the complexity of
query answering under frontier-guarded[⊥] DTGDs is the same as for frontier-guarded,
since deciding whether the given set of dependencies is consistent can be reduced to
query answering under frontier-guarded DTGDs; see, e.g., [5].

It is easy to see that role inclusions are translated by τ into IDs; e.g., τ(R ⊑ S) =
R(X,Y ) → S(X,Y ). However, in general, for a concept inclusion C ⊑ D, τ(C ⊑ D)
is neither a DTGD nor an NC; however, we can show that any τ(C ⊑ D) can be
transformed into a set of frontier-guarded[⊥] DTGDs in polynomial time.

Lemma 2. For every concept inclusion α = C ⊑ D, a set Σα of frontier-guarded[⊥]
DTGDs can be constructed in polynomial time such that τ(C ⊑ D) and Σα are equi-
satisfiable.

Proof (sketch). Let ψ = τ(C ⊑ D). Viewed as an implication, we can treat the left-
hand side as a conjunction and the right-hand side as a disjunction of subformulas.
Whenever such a subformula φ(X) is not atomic or existential (or a negated version of
the two), we introduce a new auxiliary predicate tφ(X) and two implications φ(X) ↔
tφ(X). If φ is itself a disjunction, we additionally split the first implication (i.e., where
φ(X) is on the left) into separate implications for each disjunct, preserving the right-
hand side. We then recursively apply this transformation to the new implications, until a
fixpoint is reached. The resulting implications, after removing negations by converting
negated conjuncts on the left to non-negated disjuncts on the right (and conversely for
disjuncts on the right) are clearly DTGDs or NCs.

Lemma 2 implies that ΣC =
∪

α∈TC
Σα is a set of frontier-guarded[⊥] DTGDs

which can be constructed in polynomial time, and it is equisatisfiable with TC . Thus,
τ(TR) ∪ ΣC is a set of frontier-guarded[⊥] DTGDs which is equisatisfiable with T .
Since s(X) → r(X,X) is not expressible in DL-LiteHbool, the next result follows.

Theorem 6. Frontier-guarded[⊥] DTGDs are strictly more expressive than DL-LiteHbool.

Complexity Results. By exploiting the above construction, query answering under
DL-LiteHbool can be reduced in polynomial time to CQAns under frontier-guarded[⊥]
DTGDs. Recall that an ABox A is a finite set of assertions of the formAk(ai), ¬Ak(ai),
Pk(ai, aj) and ¬Pk(ai, aj); the semantics of A are defined by τ . A TBox T together
with A constitute a knowledge base (KB) K = ⟨T ,A⟩.
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Lemma 3. UCQAns under DL-LiteHbool knowledge bases can be reduced in polynomial
time to UCQAns under frontier-guarded[⊥] DTGDs.

Proof (sketch). Consider a DL-LiteHbool KB K = ⟨T ,A⟩. Let DA be the database ob-
tained from A by replacing each negated atom ¬A(a) and ¬R(a, b) with A¬(a) and
R¬(a, b), respectively, where A¬ and R¬ are auxiliary predicates. Let ΣT = τ(TR) ∪
ΣC ∪Σ⊥, where Σ⊥ contains an NCA(X), A¬(X) → ⊥ andR(X,Y ), R¬(X,Y ) →
⊥, for each concept A and role R in T , respectively. It is not difficult to verify that
K |= Q iff DA ∪ ΣT |= Q, for every UCQ Q over K. Since ΣT is a set of frontier-
guarded[⊥] DTGDs that can be constructed in polynomial time, the claim follows.

It is interesting to observe that the rules employed in the proof of Theorem 2, can be
easily rewritten as DL axioms. This immediately gives us the following lower bound.

Theorem 7. Let L be a DL able to express inclusions of the form C1 ⊑ C2 ⊔ C3,
C ⊑ ∃R, ∃R ⊑ C, R1 ⊑ R2 and R1 ⊑ R−

2 , where C,Ci are concepts and R,Ri are
roles. Then, CQAns under L is 2EXPTIME-hard.

In [20] it was shown that query answering under DL-LiteHbool is coNP-complete in
data complexity; however, the combined complexity was not investigated and left as an
open problem. Since DL-LiteHbool is a description logic equipped with limited existential
qunatification, role inverse and union, Theorems 2 and 7, together with Lemma 3, imply
the next complexity result.

Corollary 3. CQAns under DL-LiteHbool knowledge bases is 2EXPTIME-complete in
combined complexity.

Interestingly, the above corollary significantly strengthens a similar result for the
ALCI DL in [24].

7 Conclusion

We studied the query answering problem under (weakly-)(frontier-)guarded disjunc-
tive TGDs and their main subclasses. Interestingly, query answering under a fixed set
of disjunctive IDs is already 2EXPTIME-hard. We also investigated the impact of our
results on query answering under DL-based formalisms; in particular, we showed that
this problem for DLs equipped with limited existential quantification, role inverse and
union is 2EXPTIME-hard. Regarding future work, we intend to study the impact of the
addition of disjunction to non-guarded-based classes of TGDs, in the same complete
fashion as in this paper.
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