373 research outputs found

    Influence of the chemical modeling on the quenching limits of detonation waves confined by an inert layer

    Get PDF
    The effect of chemistry modeling on the flow structure and quenching limits of detonations propagating into reactive layers bounded by an inert gas is investigated numerically. Three different kinetic schemes of increasing complexity are used to model a stoichiometric H2-O2 mixture: single-step, three-step chain-branching and detailed chemistry. Results show that while the macroscopic characteristics of this type of detonations (e.g. velocities, cell-size irregularity and leading shock dynamics) are similar among the models tested, their instantaneous structures are significantly different before and upon interaction with the inert layer when compared using a fixed height. When compared at their respective critical heights, hcrit (i.e. the minimum reactive layer height capable of sustaining detonation propagation), similarities in their structures become apparent. The numerically predicted critical heights increase as hcrit,Detailed << hcrit,1-Step < hcrit,3-Step. Notably, hcrit,Detailed was found to be in agreement with experimentally reported values. The physical mechanisms present in detailed chemistry and neglected in simplified kinetics, anticipated to be responsible for the discrepancies obtained, are discussed in detail

    Hydrodynamic instabilities in gaseous detonations: comparison of Euler, Navier–Stokes, and large-eddy simulation

    Get PDF
    A large-eddy simulation is conducted to investigate the transient structure of an unstable detonation wave in two dimensions and the evolution of intrinsic hydrodynamic instabilities. The dependency of the detonation structure on the grid resolution is investigated, and the structures obtained by large-eddy simulation are compared with the predictions from solving the Euler and Navier–Stokes equations directly. The results indicate that to predict irregular detonation structures in agreement with experimental observations the vorticity generation and dissipation in small scale structures should be taken into account. Thus, large-eddy simulation with high grid resolution is required. In a low grid resolution scenario, in which numerical diffusion dominates, the structures obtained by solving the Euler or Navier–Stokes equations and large-eddy simulation are qualitatively similar. When high grid resolution is employed, the detonation structures obtained by solving the Euler or Navier–Stokes equations directly are roughly similar yet equally in disagreement with the experimental results. For high grid resolution, only the large-eddy simulation predicts detonation substructures correctly, a fact that is attributed to the increased dissipation provided by the subgrid scale model. Specific to the investigated configuration, major differences are observed in the occurrence of unreacted gas pockets in the high-resolution Euler and Navier–Stokes computations, which appear to be fully combusted when large-eddy simulation is employed

    Combustion theory and modeling

    Full text link
    In honor of the fiftieth anniversary of the Combustion Institute, we are asked to assess accomplishments of theory in combustion over the past fifty years and prospects for the future. The title of our article is chosen to emphasize that development of theory necessarily goes hand-in-hand with specification of a model. Good conceptual models underlie successful mathematical theories. Models and theories are discussed here for deflagrations, detonations, diffusion flames, ignition, propellant combustion, and turbulent combustion. In many of these areas, the genesis of mathematical theories occurred during the past fifty years, and in all of them significant advances are anticipated in the future. Increasing interaction between theory and computation will aid this progress. We hope that, although certainly not complete in topical coverage or reference citation, the presentation may suggest useful directions for future research in combustion theory

    Fifth International Microgravity Combustion Workshop

    Get PDF
    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies

    Advanced Fluid Dynamics

    Get PDF
    This book provides a broad range of topics on fluid dynamics for advanced scientists and professional researchers. The text helps readers develop their own skills to analyze fluid dynamics phenomena encountered in professional engineering by reviewing diverse informative chapters herein

    Modelling challenges of stationary combustion in inert porous media

    Get PDF
    Thanks to strong heat recirculation, submerged combustion within porous media presents unique technological features such as broadened flammability limits and extended power range. The associated possibility to burn ultra-lean mixtures with minimal CO/NOx emissions makes porous media combustion a potential alternative in the industry, for instance in domestic heat generation or clean aviation where low pollutant emissions and robust operability are of paramount importance. However, even though this combustion mode has been studied for decades, there remains many open questions regarding the intertwined flame structure and the validity of associated low-order modelling. To date, volume-averaged models are mostly based upon ad hoc hypotheses and still present large discrepancies with experiments. Aiming to chal- lenge and strengthen these models, the present work presents analytical and numerical studies of the volume-averaged equations, followed by 3D direct pore-level simulations of methane-air and hydrogen-air combustion. Chapters 1 and 2 provide a critical review of concepts associated to flows and flames within porous media, with a focus on non-adiabatic combustion and macroscopic effective characteriza- tion. A classification of gaseous flames in terms of the thermal Péclet number is proposed, and the upscaling procedure on the pointwise equations is presented. Chapter 3 presents asymptotic results based on the volume-averaged equations, and the proposed theoretical framework un- veils the first fully-explicit formulae for flame speed in infinite and finite-length porous burners. Multi-layered burners are also considered theoretically for the first time, and the important con- cept of contact resistance between two stacked porous plates is underlined. Chapter 4 proposes a general classification of porous media combustion in three distinct regimes for increasing inter- phase heat transfer, only based on two reduced parameters, in order to reconcile the literature frameworks of local thermal equilibrium (LTE) and non-equilibrium (LTNE). Chapter 5, 6 and 7 present 3D pore-level direct numerical simulations of flames within porous media using complex kinetics, for various structural topologies and pore sizes. As a major technical hurdle encountered during the thesis, the meshing workflow from X-ray tomography to conformal computational mesh is given for practical use in the community. These DNS unveil the internal flame structure of methane-air and hydrogen-air flames within typical porous burners, and it is shown that when the pore size is larger than the flame thickness, sharp and locally- anchored flame fronts are observed. These local discontinuities related to the strongly non-linear reaction rates are shown to be in direct violation of the classical volume-averaged hypotheses. This demonstrates that new volume-averaged models are required, and accordingly a closure for reaction rates based upon phenomenology and observations in the 3D DNS is proposed. Eventually, the pore-level specificities of hydrogen combustion at pore scale are described

    Burning of liquid pools in reduced gravity

    Get PDF
    The existing literature on the combustion of liquid fuel pools is reviewed to identify the physical and chemical aspects which require an improved understanding. Among the pre-, trans- and post-ignition processes, a delineation was made of those which seem to uniquely benefit from studies in the essential environment offered by spacelab. The role played by the gravitational constant in analytical and experimental justifications was developed. The analytical justifications were based on hypotheses, models and dimensional analyses whereas the experimental justifications were based on an examination of the range of gravity and gravity-dependent variables possible in the earth-based laboratories. Some preliminary expositions into the questions of feasibility of the proposed spacelab experiment are also reported

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Design and Experimentation of a Premixed Rotating Detonation Engine

    Get PDF
    Desire for a more efficient air breathing engine has shifted research attention to the Rotating Detonation Engine (RDE). Detonation is a more efficient combustion process than deflagration and provides a pressure gain. The RDE detonation cycle occurs in a compact volume to produce a high specific impulse engine. Computational fluid dynamic (CFD) models have predicted higher specific impulse and detonation wave speeds than has been seen in experimental RDE. The CFD models frequently assume premixed reactants and ignore inlet geometries to facilitate rapid computation. An experimental premixed RDE was sought to test if the premixed assumption in CFD was the root cause of the discrepancy between computational and experimental results. Design of a successful premixed RDE employed a feed system that simultaneously arrested flashback into the premixture while it fed the detonation. Flashback arresting feed designs were explored with single injector tests and validated with a fully premixed RDE. A relationship between arresting length and detonation feed requirements was derived and used to design a premixed RDE that fed premixture through feed slots that were 2.5 cm long and 0.5 mm high and operated on ethylene fuel and air oxidizer. The premixed RDE operated within a narrower region of equivalence ratio than a non-premixed RDE. Chemiluminescence video indicated that the premixed RDE experience combustion reactant-product mixing, and supports the theory that mixing delays are the root cause of slower wave speeds in experimental RDE. Time averaged chemiluminescence results indicate that RDE detonations to not complete the reaction within the detonation wave, and suggest that future CFD studies should assume unmixed reactants, model the full injection geometry, and include a comprehensive chemical mechanism
    • …
    corecore