1,172 research outputs found

    Resilience Enhancement for the Integrated Electricity and Gas System

    Get PDF

    Human Requirements Validation for Complex Systems Design

    Get PDF
    AbstractOne of the most critical phases in complex systems design is the requirements engineering process. During this phase, system designers need to accurately elicit, model and validate the desired system based on user requirements. Smart driver assistive technologies (SDAT) belong to a class of complex systems that are used to alleviate accident risk by improving situation awareness, reducing driver workload or enhancing driver attentiveness. Such systems aim to draw drivers’ attention on critical information cues that improve decision making. Discovering the requirements for such systems necessitates a holistic approach that addresses not only functional and non-functional aspects but also the human requirements such as drivers’ situation awareness and workload. This work describes a simulation-based user requirements discovery method. It utilizes the benefits of a modular virtual reality simulator to model driving conditions to discover user needs that subsequently inform the design of prototype SDATs that exploit the augmented reality method. Herein, we illustrate the development of the simulator, the elicitation of user needs through an experiment and the prototype SDAT designs using UNITY game engine

    Questions for Resilience Assessment

    Get PDF
    This report was produced on behalf of University College London(UCL) for the National Infrastructure Commission (NIC). It was commissioned by the NIC as part of a special study on infrastructure resilience. The following report addresses the need to provide a refined set of hypotheses and questions to enable resilience assessment. A number of stages were followed, centred on expert appraisal, which culminated in a set of categorised questions and a revised list of hypotheses. The stages are described in the following sections: 1. Preparation, 2. Expert review, 3. Analysis and categorisatio

    Designing Scalable Business Models

    Full text link
    Digital business models are often designed for rapid growth, and some relatively young companies have indeed achieved global scale. However despite the visibility and importance of this phenomenon, analysis of scale and scalability remains underdeveloped in management literature. When it is addressed, analysis of this phenomenon is often over-influenced by arguments about economies of scale in production and distribution. To redress this omission, this paper draws on economic, organization and technology management literature to provide a detailed examination of the sources of scaling in digital businesses. We propose three mechanisms by which digital business models attempt to gain scale: engaging both non- paying users and paying customers; organizing customer engagement to allow self- customization; and orchestrating networked value chains, such as platforms or multi-sided business models. Scaling conditions are discussed, and propositions developed and illustrated with examples of big data entrepreneurial firms

    Quantifizierung der Zuverlässigkeit und Komponentenbedeutung von Infrastrukturen unter Berücksichtigung von Naturkatastropheneinwirkung

    Get PDF
    The central topic is the quantification of the reliability of infrastructure networks subject to extreme wind loads. Random fields describe the wind distributions and calibrated fragility curves yield the failure probabilities of the components as a function of the wind speed. The network damage is simulated taking into account possible cascading component failures. Defined "Importance Measures" prioritize the components based on their impact on system reliability - the basis for system reliability improvement measures.Zentrales Thema ist die Quantifizierung der Zuverlässigkeit von Infrastrukturnetzen unter Einwirkung extremer Windlasten. Raumzeitliche Zufallsfelder beschreiben die Windverteilungen und spezifisch kalibrierte Fragilitätskurven ergeben die Versagenswahrscheinlichkeiten der Komponenten. Der Netzwerkschaden wird unter Berücksichtigung von kaskadierenden Komponentenausfällen simuliert. Eigens definierte „Importance Measures“ priorisieren die Komponenten nach der Stärke ihres Einflusses auf die Systemzuverlässigkeit - die Basis für Verbesserungen der Systemzuverlässigkeit

    Stochastic Dynamics of Cascading Failures in Electric-Cyber Infrastructures

    Get PDF
    Emerging smart grids consist of tightly-coupled systems, namely a power grid and a communication system. While today\u27s power grids are highly reliable and modern control and communication systems have been deployed to further enhance their reliability, historical data suggest that they are yet vulnerable to large failures. A small set of initial disturbances in power grids in conjunction with lack of effective, corrective actions in a timely manner can trigger a sequence of dependent component failures, called cascading failures. The main thrust of this dissertation is to build a probabilistic framework for modeling cascading failures in power grids while capturing their interactions with the coupled communication systems so that the risk of cascading failures in the composite complex electric-cyber infrastructures can be examined, analyzed and predicted. A scalable and analytically tractable continuous-time Markov chain model for stochastic dynamics of cascading failures in power grids is constructed while retaining key physical attributes and operating characteristics of the power grid. The key idea of the proposed framework is to simplify the state space of the complex power system while capturing the effects of the omitted variables through the transition probabilities and their parametric dependence on physical attributes and operating characteristics of the system. In particular, the effects of the interdependencies between the power grid and the communication system have been captured by a parametric formulation of the transition probabilities using Monte-Carlo simulations of cascading failures. The cascading failures are simulated with a coupled power-system simulation framework, which is also developed in this dissertation. Specifically, the probabilistic model enables the prediction of the evolution of the blackout probability in time. Furthermore, the asymptotic analysis of the blackout probability as time tends to infinity enables the calculation of the probability mass function of the blackout size, which has been shown to have a heavy tail, e.g., power-law distribution, specifically when the grid is operating under stress scenarios. A key benefit of the model is that it enables the characterization of the severity of cascading failures in terms of a set of operating characteristics of the power grid. As a generalization to the Markov chain model, a regeneration-based model for cascading failures is also developed. The regeneration-based framework is capable of modeling cascading failures in a more general setting where the probability distribution of events in the system follows an arbitrarily specified distribution with non-Markovian characteristics. Further, a novel interdependent Markov chain model is developed, which provides a general probabilistic framework for capturing the effects of interactions among interdependent infrastructures on cascading failures. A key insight obtained from this model is that interdependencies between two systems can make two individually reliable systems behave unreliably. In particular, we show that due to the interdependencies two chains with non-heavy tail asymptotic failure distribution can result in a heavy tail distribution when coupled. Lastly, another aspect of future smart grids is studied by characterizing the fundamental bounds on the information rate in the sensor network that monitors the power grid. Specifically, a distributed source coding framework is presented that enables an improved estimate of the lower bound for the minimum required communication capacity to accurately describe the state of components in the information-centric power grid. The models developed in this dissertation provide critical understanding of cascading failures in electric-cyber infrastructures and facilitate reliable and quick detection of the risk of blackouts and precursors to cascading failures. These capabilities can guide the design of efficient communication systems and cascade aware control policies for future smart grids

    Cybersecurity Challenges of Power Transformers

    Full text link
    The rise of cyber threats on critical infrastructure and its potential for devastating consequences, has significantly increased. The dependency of new power grid technology on information, data analytic and communication systems make the entire electricity network vulnerable to cyber threats. Power transformers play a critical role within the power grid and are now commonly enhanced through factory add-ons or intelligent monitoring systems added later to improve the condition monitoring of critical and long lead time assets such as transformers. However, the increased connectivity of those power transformers opens the door to more cyber attacks. Therefore, the need to detect and prevent cyber threats is becoming critical. The first step towards that would be a deeper understanding of the potential cyber-attacks landscape against power transformers. Much of the existing literature pays attention to smart equipment within electricity distribution networks, and most methods proposed are based on model-based detection algorithms. Moreover, only a few of these works address the security vulnerabilities of power elements, especially transformers within the transmission network. To the best of our knowledge, there is no study in the literature that systematically investigate the cybersecurity challenges against the newly emerged smart transformers. This paper addresses this shortcoming by exploring the vulnerabilities and the attack vectors of power transformers within electricity networks, the possible attack scenarios and the risks associated with these attacks.Comment: 11 page
    corecore