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Abstract

Emerging smart grids consist of tightly-coupled systems, namely a power grid and

a communication system. While today’s power grids are highly reliable and mod-

ern control and communication systems have been deployed to further enhance their

reliability, historical data suggest that they are yet vulnerable to large failures. A

small set of initial disturbances in power grids in conjunction with lack of effective,

corrective actions in a timely manner can trigger a sequence of dependent component

failures, called cascading failures. The main thrust of this dissertation is to build

a probabilistic framework for modeling cascading failures in power grids while cap-

turing their interactions with the coupled communication systems so that the risk

of cascading failures in the composite complex electric-cyber infrastructures can be

examined, analyzed and predicted.

A scalable and analytically tractable continuous-time Markov chain model for

stochastic dynamics of cascading failures in power grids is constructed while retain-
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ing key physical attributes and operating characteristics of the power grid. The key

idea of the proposed framework is to simplify the state space of the complex power

system while capturing the effects of the omitted variables through the transition

probabilities and their parametric dependence on physical attributes and operat-

ing characteristics of the system. In particular, the effects of the interdependencies

between the power grid and the communication system have been captured by a para-

metric formulation of the transition probabilities using Monte-Carlo simulations of

cascading failures. The cascading failures are simulated with a coupled power-system

simulation framework, which is also developed in this dissertation. Specifically, the

probabilistic model enables the prediction of the evolution of the blackout probability

in time. Furthermore, the asymptotic analysis of the blackout probability enables

the calculation of the probability mass function of the blackout size, which has been

shown to have a heavy tail, e.g., power-law distribution, specifically when the grid

is operating under stress scenarios. A key benefit of the model is that it enables the

characterization of the severity of cascading failures in terms of a set of operating

characteristics of the power grid. As a generalization to the Markov chain model, a

regeneration-based model for cascading failures is also developed. The regeneration-

based framework is capable of modeling cascading failures in a more general setting

where the probability distribution of events in the system follows an arbitrarily spec-

ified distribution with non-Markovian characteristics.

Further, a novel interdependent Markov chain model is developed, which provides

a general probabilistic framework for capturing the effects of interactions among in-

terdependent infrastructures on cascading failures. A key insight obtained from this

model is that interdependencies between two systems can make two individually

reliable systems behave unreliably. In particular, we show that due to the interde-

pendencies two chains with non-heavy tail asymptotic failure distribution can result

in a heavy tail distribution when coupled.
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Lastly, another aspect of future smart grids is studied by characterizing the funda-

mental bounds on the information rate in the sensor network that monitors the power

grid. Specifically, a distributed source coding framework is presented that enables

an improved estimate of the lower bound for the minimum required communication

capacity to accurately describe the state of components in the information-centric

power grid.

The models developed in this dissertation provide critical understanding of cas-

cading failures in electric-cyber infrastructures and facilitate reliable and quick detec-

tion of the risk of blackouts and precursors to cascading failures. These capabilities

can guide the design of efficient communication systems and cascade-aware control

policies for future smart grids.
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Chapter 1

Introduction

1.1 Overview and motivation

A collection of systems are said to be interdependent if the behavior of a system

affects the other systems’ behavior. Many critical infrastructures are interdependent

systems, wherein the reliability of each system affects the reliability of other sys-

tems. Examples of such interdependent infrastructures are power, communication,

transportation, and financial market infrastructures. Reliable operation of critical

infrastructures is essential as it impacts national security and the economy. Due to

the importance of critical infrastructures it is important to develop frameworks for

accurate prediction of their reliability and complex behavior. However, complexity

and scale of critical infrastructures as well as their interdependencies make modeling

and analysis of such systems challenging. Many proposed frameworks for reliability

analysis of critical interdependent infrastructures consider infrastructures individu-

ally, while emerging efforts consider interdependent infrastructures jointly as a single

system.

In this dissertation, the critical infrastructures under study are power and com-
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munication infrastructures. While power grids are currently highly reliable, historical

data suggest that their complex nature, aging, growing demands, operation near their

limits, as well as lack of infrastructure investment make them vulnerable to inter-

mittent failures. When such systems become stressed due to a small set of initial

disturbances a sequence of dependent component failures may occur in the system.

Such sequence of dependent failures is called cascading failures. As stated in [3],

historical data indicate that many blackouts in power grids result from cascading

failures. Specifically, cascading failures in power grids has gained much attention

due to their cost and large impact on society. For instance, the 2003 blackout in

the Northeast grid of the United States led to electrical service interruption to ap-

proximately 50 million people in eight US states and one Canadian province [2].

Also, the 2003 blackout in Italy affected approximately 57 million people in Italy

and Switzerland [6].

Figure 1.1: A power-law scaling of blackout frequency based on the historical data. Black-
out size is measured by unserved energy (the figure is a copy borrowed from [1].)

Although severe infrastructure disruptions such as large blackouts are rare, new

findings suggest that their probability is higher than what traditional risk analysis
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predicts [1, 7]. Moreover, moderate size cascading failures (interruption of service

to 50,000 customers or less) are surprisingly common according to [3]. Generally,

a power-law scaling of blackout frequency has been observed, as shown in Fig. 1.1

from [1], based on the available historical data, when the blackout size is measured

by unserved energy. The power-law behavior in the distribution of the blackout size

suggests that the probability of large blackouts are larger than what can be ignored.

Therefore, it is important to analyze the risk and probability of large blackouts in

power grids.

Large cascading failures in the transmission grid of power grids can be triggered

by a combination of a small set of initial failures and lack of proper corrective ac-

tions in a timely manner. Power grids are usually operated so that a single failure

of one of the most critical components can be absorbed without cascading failures

(N-1 Criterion). The ability of the grid to operate in this fashion is linked to the

integrity of the sensing and communication systems, as well as to the ability of the

monitoring tools to convey accurate information to human operators and automatic

control systems, which are ultimately responsible for corrective actions such as load

shedding. As we move toward smarter power grids, power grids rely more and more

on the modern control and communication technologies to improve their reliability

and efficiency. However, these gains come with their own vulnerabilities, since the

correct functioning of the power grid depends not only on the integrity of the power

infrastructure but also on the effectiveness of the communication system. Vulnera-

bilities associated with communication systems, such as physical component failures,

cyber attacks and communication-protocol inefficiencies, can threaten the reliability

of power grids specially when they are stressed. Historical data also suggest that

power and communication infrastructures are interdependent and the reliability of

one affects the reliability of the other. For instance, in the 2003 blackout in Italy on

September 28th, unplanned shutdown of a power station led to failures of commu-

nication network nodes and the supervisory control and data acquisition (SCADA)
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system, which were responsible for controlling the power grid. This event, in turn,

led to further failures in the power grid resulting in a large cascading-failure event in

the system [8]. Another example of such interdependency is observable in the 2003

blackout in the Northeast United States, where not only power-component failures

contributed to cascading failures so did the computer and human events. Figure 1.2

presents the timeline of initial power, computer and human events at the start of the

2003 blackout in Ohio [2]. Here, a mishandled restart of a monitoring system led to

a sequence of undetected failures. Subsequent corrective actions, such as load shed-

ding, were also delayed as the operator had never seen requests of such a magnitude

and was unaware of the rapidly developing crisis. As such, miscommunication and

failures in the control and monitoring systems fueled the cascade of failures lead-

ing to a large blackout. In summary, interdependencies and extensive integration of

power grids and communication systems mandate that they should be studied as a

single electric-cyber system specially when the reliability of the system is of concern.

Another important lesson to be learned from the past events is that human error also

plays an important role in the cascading behavior of the system. Although it has not

been explored in this dissertation, human-behavioral aspects of cascading failures

such as the level of stress and panic, and operators susceptibility to errors are also

key components to be investigated in the reliability of electric-cyber infrastructures.

Our research group at the University of New Mexico in collaboration with Fraunhofer

USA Center for Sustainable Energy Systems is currently working on modeling the

behavior of the power-grid operators and its impact on cascading failures.

Another important point regarding cascading failures is that the time evolution

of failures exhibits three phases. The first phase of cascading failures is the precursor

phase, where the progress of failures is slow and the control actions are effective to

mitigate the effects of disturbances. The second phase of cascading failures is the es-

calation phase, where failures occur very fast and preventing blackouts in this phase

is very difficult. The third phase of cascading failures is cascade phase out, where the
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Figure 1.2: The timeline of initial power, computer and human events at the start of the
2003 blackout in Ohio (the figure is a copy borrowed from [2].)

progress of failures becomes slow again. This behavior can be attributed to the fact

that a large number of components have already failed and functional islands have

formed in the system leading to the termination of cascading failures. These three

phases are easily observable in the time evolution of failures in the 2003 blackout

shown in Fig. 1.3. Clearly, the ability to reliably and quickly detect precursors to

cascading failures before the system enters the escalation phase, combined with fast

and correct responses are crucial for mitigating large blackouts. Hence, it is impor-

tant to build predictive tools that can identify the risk of large cascading failures in

integrated power and communication infrastructures.

Nowadays, operators have become more adept at operating the grid near its phys-

ical limits by taking advantage of advances in communications and data processing.

In particular, advances in sensor technologies have accelerated the use of sensors

for continuously monitoring components of critical infrastructures. The employed
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Figure 1.3: Time evolution of failure accumulation in the 2003 blackout in Northeast United
States power grid (the figure is a copy borrowed from [2].)

sensors take samples of the status of components with high frequency and send the

status updates to control centers, enabling them to accurately estimate the state of

the system. As such, smart grids of the future will face large volume of data, which

must be handled efficiently by provisioning necessary computation and communica-

tion resources.

The size of customer demands, available generation resources, and the status of

the control and communication system determine the operating setting of the power

grid. The operating setting can largely affect the resilience of the system in the

case of contingencies. In general, cascading failures in power grids are particularly

complex phenomena as they are attributable to a large number of interacting factors

and stochastic events. It is essential to develop theoretical frameworks driven by the

need to abstract and better understand such complex phenomena in such complex

systems. The fundamental understanding of cascading behaviors guides the design

of control policies for power grids as well as reliable communication networks for

robustness of the power grid. It is also crucial to characterize the severity of cascading

failures in terms of the operating characteristics of the power grid to avoid operating
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modes that increase the probability of large blackouts. Specifically, understanding

cascading failures in interdependent infrastructures is significantly important as the

interdependency between infrastructures can result in new behaviors for the whole

system as a single system, which are not observable in the individual systems.

1.2 Literature review

1.2.1 Prior work on modeling cascading failures in power

grids

In the past two decades, a great volume of work has been devoted to understanding

and analyzing cascading failures. The majority of research in cascading failures in

power grids has been focused on single, non-interacting power systems. A review of

different available methods for analyzing cascading failures in power grids is provided

in [9]. These efforts can be categorized into three classes: analysis of cascading

failures using power-system simulations [10], deterministic analytical models [11–13],

and probabilistic analytical models [5, 14–18]. Each approach sheds light on certain

aspects of cascading failures with various degrees of detail and complexity.

Many of the approaches that are based on power-system simulations use static

line overloads with DC power flow model [10]. In simulation-based approaches there

is a trade-off between complexity and simulation time, on one hand, and details and

diverse scenarios that the simulator can simulate on the other hand.

In the category of deterministic approaches, the work in [12] presents a model

for cascading failures in complex networks. This work is motivated in part by the

propagation of failures and congestion in computer networks. The presented model

for communication networks differs from power-grid models in that it considers flows
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of fully controlled discrete packets of information, rather than flow of electricity in the

power grid. Another example of the deterministic model is a hybrid nonlinear system

model using Lyapunov methods that is proposed by DeMarco in [11] to determine

cascading failures due to dynamic transients in the system. In this work a detailed

RLC circuit model is used as an example to illustrate the concept of cascading failures

in the context of RLC circuits (electrical circuits consisting of resistors, inductors,

and capacitors). Some limitations of the deterministic approaches are their inability

to capture the effects of stochastic events that may affect cascading failures and the

complexity and scalability limitations to large systems.

Probabilistic models for cascading failures can elegantly capture the stochastic

dynamics of cascading failures as well as the general qualitative features of cascading

failures such as the risk of blackout, probability distribution of the blackout size and

the asymptotic behavior of cascading failures in certain cases. In this dissertation,

we focus on the probabilistic approaches for cascading failures in power grids. The

CASCADE model by Dobson et al. [14] models cascading failures triggered by initial

load increments on certain components of the system. In this model, failures occur

due to overloaded components and cascading failures develop as a result of redistri-

bution of loads among the remaining components. However, the re-distribution of

loads are based upon simple assumptions; for example, loads will be added equally

to the components of the system as a result of failures. The CASCADE model is a

simple and analytically tractable model; however, it does not consider the topological

or electrical characteristics of power grids and heterogeneity of capacity of compo-

nents. Probabilistic analytical models based upon branching processes [5, 19, 20]

have also emerged, providing a framework to study the statistical properties of cas-

cading failures such as the probability distribution of the blackout size. Reported

branching-process approaches model cascading failures by considering generations of

failures, whereby each failure in each generation independently produces a random

number of subsequent failures in the next generation, and so on. In [19, 20], the
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authors estimate the failure generation parameter of the branching process model

for cascading failures using historical outage datasets. Notably, in [20] the authors

account for varying failure generation parameter as the cascade progresses instead of

a fixed parameter as in [19]. However, authors in [20] assume that all line outages

are homogeneous in their type. The models presented based on branching process

have the limitation that they do not have sufficient degree of freedom to capture the

effect of physical factors contributing to cascading failures, as the failure generation

parameter is the only parameter used in these models.

Finally, the recent work by Wang et al. [17] provides a Markov-transition model

for cascading failures. The transition probabilities among states are derived from

a stochastic model for line overloading using a stochastic flow redistribution model

based upon DC power-flow equations. The state space of the model [17] is large, as it

requires tracking the functionality status of transmission lines and power flow infor-

mation. This model enables simulating the progression of cascading failures and its

time span. However, due to the analytical complexity of the time-varying transition

probabilities the analytical and asymptotic characterization of probabilistic metrics

such as the blackout probability and distribution of the blackout size is not possible.

1.2.2 Prior work on modeling cascading failures in interde-

pendent infrastructures

Aside from efforts on understanding the reliability of individual infrastructures, there

has been great interest in understanding cascading failures in interdependent infras-

tructures. The general concepts of interdependent infrastructures and challenges in

modeling such systems have been discussed in [21–25]. We categorize the efforts for

modeling cascading failures in interdependent infrastructures into three classes as

described bellow.
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Graph-based models – A body of work has emerged recently in understanding

cascading failures in interdependent infrastructures using network theory and graph-

based models. These efforts use network-theoretic tools to characterize cascading

failures based on network properties and to identify vulnerable areas of the network.

In such efforts, a problem that has been considered is the characterization of the

minimum number of nodes/links whose removal will disrupt the functionality of the

entire network [8, 26–30]. For instance, the work of Buldyrev et al. [31] considers

a graph-based approach that utilizes percolation theory. The authors provide ana-

lytical solutions for the critical fraction of nodes that on their removal will lead to

cascading failures and to a complete fragmentation of two interdependent networks.

Later, Li et al. [32] extended the work to include geographical factors in the cou-

pling between interdependent networks, such as considering the range of interaction

between nodes from different networks. Further, the work in [33] by Wang et al.

extended the work in [31] by taking into account the load, the load redistribution,

and the node capacity in studying the robustness of two interdependent networks.

In general, the graph-based models do not consider the physics of the system and

they only rely on the topological connectivity of the system in their analysis.

Hybrid simulations – These approaches aim to build accurate synchronization

mechanisms between the simulators of the two systems. As mentioned before, in

simulation-based approaches there is a trade-off between complexity and simulation

time, on one hand, and details and diverse scenarios that the simulator can simulate

on the other hand. The extra challenge for the hybrid power and communication

simulation is the synchronization of the continuous time power-system simulators

with the discrete-event communication-system simulators. Examples of such efforts

are [34–36]. The work in [37] is another example that aims to develop a simula-

tion framework which abstracts the physical details of the services provided by the

infrastructures while at the same time capturing their essential operating features.

A group of efforts in this category are the approaches that focus on a specific ef-
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fect of the control and communication system on the power grid and model the

effects directly in the power-grid dynamics and equations. We call such approaches,

effect-driven models. An example of such models is [38], where the role of informa-

tion exchange is investigated in the transient stability of generators and the loss of

generator synchronism in power grids.

Probabilistic models – Probabilistic analysis of the reliability of interdependent

systems is another category of modeling cascading failures in interdependent infras-

tructures. The goal of these efforts is to investigate the risk of large failures as a

result of interdependencies among the systems. For instance, the authors in [39, 40]

introduced the Damon model in conjunction with a mean-field theory to model cou-

pled infrastructure systems. This work suggests that the coupling between systems

can make the whole system vulnerable and increase the probability of large failures.

There are some intersections between the approaches in this category with the graph-

based models in using probabilistic models, for instance the work by Brummitt et

al. [41] characterizes the optimal connectivity between two interdependent networks

while using the multitype branching process framework.

1.3 Contributions of this dissertation

The main thrust of this dissertation is to build a predictive capability of the relia-

bility of a power grid while considering its interdependency with a communication

system. While the majority of the work in this dissertation has been presented for

power grids and communication systems, key general ideas can be applied to different

interdependent infrastructures. We summaries the contributions of this dissertation

as follows.

The first contribution of this dissertation is the development of a scalable proba-

bilistic framework for modeling cascading failures in power grids. The key idea of the
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proposed framework is to simplify the state space of the complex power system so

that we can track the dynamics of cascading failures using a continuous-time Markov

chain while capturing the effects of the omitted variables through the transition prob-

abilities and their parametric dependence on the physical attributes and operating

characteristics of the system. In addition to the framework’s ability to predict the

evolution of blackout probability in time, the asymptotic analysis of the blackout

probability using this model enables the calculation of the probability mass function

of the blackout size and leads to the characterization of the severity of cascading fail-

ures under different system operating characteristics. A key insight provided by this

framework is that the probability distribution of size of failures in power grids has a

heavy tail, which the probability of large blackouts heavily depends on the operating

characteristics of the power grid. The ability to characterize the distribution of the

blackout size in terms of the physical attributes and operating characteristics of the

system while keeping the complexity to a minimum is a critical advantage of this

approach. Other probabilistic approaches [14, 42–45] often lack a strong connection

to the physical characteristics of power grids.

The second contribution of this dissertation is a generalization of the Markov

chain model to another probabilistic framework for modeling cascading failures based

on regeneration theory. Similarly to the Markov chain model, this model provides

a strong tool for capturing the stochastic dynamics of cascading failures, albeit in a

more general setting, namely non-Markovian setting. We derive, as a special case, a

systems of differential equations describing the probability of the blackout for a power

grid with Markovian setting using the regeneration-based framework. The analysis

of this model supplements the analysis of the Markov chain model for cascading

failures.

The third contribution of this dissertation is an extension of the Markov chain

model to a novel interdependent Markov chain framework for modeling cascading
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failures in interdependent infrastructures. To the best of the author’s knowledge, in-

terdependent Markov chains have not been proposed heretofore. The interdependent

Markov chain approach proposed in this dissertation provides a probabilistic frame-

work to capture how the stochastic dynamics of a system affects the other system’s

dynamics. The idea of this general approach is to build an integrated framework

consisting of a system of interdependent heterogeneous Markov chains, one for each

physical system. The usual approach for coupling Markov chains relies on the genera-

tion of the Cartesian product of the individual state spaces. This approach, however,

has the shortcoming that the new transition probabilities among the states of the

coupled Markov chain cannot be readily derived from the transition probabilities of

the individual Markov chains. A more serious flaw of this approach is that it is based

on the false and built-in assumption that combining two Markov chains results in a

new Markov chain with its state space being the Cartesian product of the individ-

ual chains. To address these issues, we have proposed the interdependent Markov

chain framework with an interleaving approach for coupling Markov chains. Mean-

while, the similar term “interactive Markov chains” [46], describes models which

fall in the category of process algebra frameworks [47]. Interactive Markov chains

have been introduced as a framework for analyzing concurrent systems. Generally,

process algebras are abstract languages that are used to model concurrent systems

as collections of entities, called agents, to describe their behaviors as well as how

they communicate [48]. In these models, agents communicate by actions. The in-

teractive Markov chain framework combines interacting agents each described by a

continuous-time Markov chain by extending the standard Markov chains with ac-

tion transitions and forming a stochastic process algebra framework. While these

models along with an algorithm to analyze the interactions and dependencies among

agents are applicable for performance analysis of systems with large number of simple

agents, the complexity of the models as well as the agents increases for cases with

few interacting complex systems (few very complex agents). Moreover, they do not
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provide a standard probabilistic framework with its standard analytical tools. The

interdependent Markov chain model presented in this dissertation enables us to char-

acterize the impact of stochastic behavior of a system on its interdependent systems

in a probabilistic framework. A key insight obtained from interdependent Markov

chain framework is that interdependencies between two systems can make two reli-

able systems behave unreliably when they are put together, thereby increasing the

probability of large failures.

The fourth contribution of this dissertation is developing a simulation framework

for simulating cascading failures in electric-cyber infrastructures. Monte-Carlo simu-

lations using this framework is used in parametric modeling of transition rates of the

models for cascading failures presented in this dissertation. The proposed simula-

tion framework is based on an integrated power-flow optimization framework, which

captures certain effects of communication-system vulnerabilities in the power-flow

distribution of the system. This optimization framework enables us to investigate

the effects of communication vulnerabilities as well as the topology of the communi-

cation system on the reliability of the power grid.

The fifth contribution of this dissertation is developing a simulation framework

that enables a systematic way of simulating correlated failures. Generally, physi-

cal infrastructures are vulnerable to spatially correlated failures arising from various

physical stresses such as natural disasters (earthquakes and hurricanes) as well as

malicious coordinated attacks. It is important to study the effects of spatial dis-

tribution of failures on cascading failures. As such, we present a stochastic model,

based on spatial point processes, for representing stress centers on the geographical

plane in order to facilitate the modeling and simulation of spatially inhomogeneous

and correlated component failures in the system. This model is then used to further

generate scenarios with inhibition or clustering between stress centers, which enables

detailed assessment of vulnerabilities of the system to the level of inhomogeneity and
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spatial correlation in the stress-event centers. This simulation framework enables

us to study the effects of spatial correlation of initial failures in communication and

power systems on cascading failures.

The sixth major contribution of this dissertation is developing an information-

theoretic framework for characterizing the information rate of the sensor network

that monitors the power grid to enhance its reliability. Due to the large number of

sensors and the high frequency of sampling from the states of components, exchange

of state information incurs a large communication cost on the communication system

of the power grid. To characterize the minimum required information rate in the

communication system, a lossless distributed source-coding framework is presented to

model the exchange of state information. The framework enables the characterization

of the interplay between the information rate and the correlation among the state

information of various components. Moreover, the proposed framework enables an

improved estimate of the lower bound for the minimum information rate necessary

to accurately describe the state of components in the system. This improvement is

achieved by exploiting the correlation among the state information of components

as well as the available side information in the system.

In Fig. 1.4, we have summarized the contributions of this dissertation in a flow

chart that shows the basic dependencies between the contributions.

1.4 Organization of the dissertation

For the convenience of the reader, whenever appropriate, the chapters provide concise

review of the relevant background information and related work, as well as brief

summary and our conclusions.

This dissertation is organized as follows. In Chapter 2, the structure of electric-
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Figure 1.4: The flow chart of the basic dependencies between the contributions of this
dissertation. The arrows point at the dependent contribution. The solid line represents
the direct dependency between the contributions. This means certain parts of the model
or the theory is used in the other contribution. The dashed line represents an indirect
dependency, which means certain concepts are borrowed from the other contribution.

cyber infrastructures is reviewed. The general assumptions made about the interde-

pendency of power grids and communication systems are stated and the interdepen-

dency parameters used in our models are introduced. In addition, the power-flow

optimization framework that captures the interdependency between the power grid

and the communication system and enables the simulation of cascading failures in

power grids is presented. The simulation results that show the impact of interdepen-

dencies on the reliability of the power grid are also presented. Further, the effects of

the connectivity of the communication system on the reliability of the communication

system and the power grid is investigated.
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The focus of Chapter 3 is on characterizing the effects of spatial distribution of

initial failures on the reliability of communication and power systems. A probabilistic

model for modeling correlated failures is provided that enables a systematic way of

simulating correlated failures. Various scenarios of correlated initial failures in the

communication system and their effects on the reliability of the power grid have been

investigated.

In Chapter 4, a continuous-time Markov chain framework, termed Stochastic

Abstract State Evolution (SASE), for modeling cascading failures in power grids is

presented. The concept of equivalence classes for partitioning the state space of the

power grid is introduced. The transition rates of the Markov chain capturing the

effects of communication interdependencies and operating characteristics are formu-

lated using the power-system simulations. The analytical results on the size and

severity of cascading failures have been presented for various operating conditions.

Finally, the conditions leading to a power-law behavior for the distribution of the

blackout size in power grids are studied.

In Chapter 5, a regeneration-based approach for modeling cascading failures in

power grids is presented. The integral equations describing the evolution of the

blackout distribution are derived using the regeneration-based framework.

In Chapter 6, the problem of modeling cascading failures in interdependent in-

frastructures is formulated by extending the the Markov chain framework to an

interdependent Markov chain framework. The general interdependent Markov chain

approach for modeling any number of interdependent system is presented. As a spe-

cific example, the interdependent Markov chain model for power and communication

infrastructures is developed.

In Chapter 7, the minimum requirement for the capacity of the communication

network for tracking accurate information on the state of components in power grids
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is characterized. A lossless, distributed source-coding framework is presented to

model the exchange of state information. An improved estimate of the lower bound

for the minimum information rate of the communication system is also derived.

Finally, in Chapter 8 possible new lines of research for this work in the future

have been discussed.

1.5 Publications resulting from the dissertation

A list of our publications, related to this dissertation, is as follows:

1. M. Rahnamay-Naeini, and M. M. Hayat, “Stochastic Dynamics of Cascading
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2. M. Rahnamay-Naeini, and M. M. Hayat, “On the Influences of Power-Grid Op-
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3. M. Rahnamay-Naeini, Z. Wang, N. Ghani, A. Mammoli, and M. M. Hayat,
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Reliability”, Proceedings of 20th International Conference on Computer Com-
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Chapter 2

Interdependent electric and cyber

infrastructures

In this chapter, we start by briefly reviewing the structure of the electric-cyber

infrastructure. We then develop a simulation framework that enables simulating

cascading failures in an electric-cyber infrastructure. To do so, we first introduce

the overloading and failure mechanisms assumed in this dissertation for modeling

cascading failures. Next, we review the general sources of interdependency among

critical infrastructures and state the assumptions made about the interdependency

of power grids and communication systems that lead to propagation of failures be-

tween the two systems. Based on these assumptions, we introduce interdependency

parameters that will be used in our models. Further, the power-flow optimization

framework that captures the interdependency between the power grid and the com-

munication system is presented based on the general DC power-flow optimization

framework [49]. Using this optimization framework, we simulate cascading failures

and study the extent to which the interdependency between the two systems affects

the reliability of the coupled system. We show that as the level of interdependency

between the two systems increases the frequency of failures in the individual systems
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increases and severe cascading behavior occurs. The simulation framework proposed

in this chapter will be used for Monte-Carlo simulations of cascading failures and

estimating the parameters of the model presented in Chapter 4.

2.1 Structure of the electric-cyber infrastructure

A power grid is an interconnected network that delivers electricity from generation

resources to consumers. In general, power grids consist of distribution and transmis-

sion networks. The transmission network transmits electricity over long distances.

We describe the transmission network as a set of nodes interconnected by high-

voltage transmission lines. In the transmission network, network nodes represent

load buses L (substations, which are connected to distribution network), generating

stations G, combinations of load and generating buses, and transmission buses that

do not have any load or generating resources and only help in transmitting power

in the transmission network. At a substation, the power is stepped down from a

transmission level voltage to a distribution level voltage and is delivered to individ-

ual customers by distribution lines. Figure 2.1 depicts the schematics of distribution

and transmission networks. As large blackouts and cascading failures are attributes

of the transmission network, we focus on the transmission network of power grids in

this dissertation. We use IEEE 118 bus system (Fig. 2.2) and IEEE 300 bus sys-

tem (Fig. 2.3) as two examples of transmission networks for simulation and analysis

purposes.

Power grids rely on their control and communication systems for efficient and

reliable daily operations. The control and communication systems of power grids are

hierarchical systems (see Fig. 2.1). For instance, in the distribution-network level,

neighbor area networks (NAN) provide network connectivity to endpoints such as

smart meters deployed at customer homes and businesses. At the next level of the
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Figure 2.1: A balancing authority (BA) consisting of a transmission network and two
distribution networks along with their control and communicating systems. The electric-
cyber infrastructures have hierarchical structures.

Figure 2.2: Topology of the IEEE 118 bus system. The control center for this transmission
network is assumed to be co-located with the node marked by the circle.

hierarchy, wide area networks (WAN) connect multiple NANs to the control centers

at the distribution-network level for monitoring and control purposes. Another level
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Figure 2.3: Topology of the IEEE 300 bus system. The topology is plotted based on the
topology map from [3].

of the hierarchy is at the transmission-network level, where sensors, phasor measure-

ment unit (PMU), phasor data concentrators (PDC), and protective relays connect

through a wide area monitoring network that communicates the state information of

transmission-network components to the control center at the transmission-network

level. The control centers employ, for example, SCADA, energy management system

(EMS), or distributed management system (DMS) to control and monitor the system

using the information provided by the communication system.

Considerable efforts have emerged in studying smart-grid communications. A

large subset of such efforts emphasize only on the communication network for the

distribution level of power grids [50]. Communication networks for the transmission

network of power grids have been studied in [51]. This work introduces critical at-

tributes and technology solutions that can be employed at the transmission network

level. Depending on the technology solutions and how they have been employed, the

communication network may have different topologies. One possible network topol-
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ogy for the communication system of the transmission grid is the same topology as

the transmission grid itself, which we call such topology the base topology. The base

topology is a communication topology with a node at each bus and communication

links along transmission lines. This topology may be formed, for example, by em-

ployment of optical ground wires (OPGW) along transmission lines of the power

grid.

Overall, the regional transmission sub-systems in power grids controlled by the

same entity are called balancing authority (BA). For instance, Fig. 2.1 represents a

BA. Each BA has a primary control center (and a set of backup control centers) re-

sponsible for maintaining the stability of the region. The control center monitors the

system, for instance, by employing SCADA systems, and makes control decisions for

the BA. Such decisions are, for example, about integrating and planning generation

resources and finding solutions to the optimal power-flow distribution for the trans-

mission network. Multiple BAs form a reliability coordinator region as is shown in

Fig. 2.4 and finally multiple reliability coordinator regions form an interconnection,

where, for example, the electrical infrastructure of the United States is composed of

three interconnections as shown in Fig. 2.5 [4].

We assume that power-grid components utilize intelligent electronic devices (IEDs),

which host control and measurement agents. The control agents have actuators that

enable the implementation of remote control signals such as breaker tripping and ad-

justment of the transformer tap setting. In this dissertation, we consider two types

of control and measurement agents. First, we consider control agents at substations

that implement remote load-shedding control signals by sending appropriate signals

to their associated distribution network. Second, we consider measurement agents

that measure the temperature of high voltage transmission lines and send the mea-

surements to the control center. We use these agents, which communicate with the

control center using the communication network, to introduce certain interdepen-
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Figure 2.4: A reliability coordinator region composed of two BAs.

Figure 2.5: The electrical infrastructure of the United States is composed of three inter-
connections as described by the North American Electric Reliability Corporation (NERC).
The interconnection map is from [4].

dencies between the power grid and the communication system.
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2.2 Overloading and failure mechanism

Line overloading is a key mechanism in propagation of failures in power grids during

cascading failures. When a line becomes overloaded, it may be tripped by protection

relays or fail due to sagging into nearby trees and shorting to ground. For simplicity

we call the nonfunctional lines (e.g., lines that are tripped by protection relays,

overheated or physically failed) the failed lines. In power grids, the load of failed

lines is shifted onto other lines in the system. In this section, we introduce our

assumptions about line overloading and the failure mechanism.

A transmission line has a power-flow capacity that can be governed by the thermal

limit, the voltage drop limit, or the steady-state stability limit of the line [52]. We

denote the power-flow capacity of a transmission line, say the kth line, by Copt
k . The

Copt
k values of the transmission lines are used by the control center of the power grid

as constraints, for example, in optimizing the power flow in the system.

Similarly to the approach presented in [53], we consider a threshold αk for the

power flow through the kth line above which the protection relay (e.g., circuit breaker

or impedance protective relay) trips the line. Various factors and mechanisms in the

power grid may affect the threshold α for transmission lines. For example, line

overloading may lead to smaller measured impedance than relay settings [54], the

thermal power-flow capacity of a transmission line may vary due to changes in the

surrounding temperature and ambient weather conditions [55], or problems in the

communication/control system may lead to inaccurate Copt
k assumption in the control

center. In all of these examples, the protection relay may trip the line when the power

flow exceeds the threshold αk. Now one may interpret the discrepancy between the

threshold value, αk, which represents the true capacity of the line, and the nominal

capacity, Copt
k , as an error by the control center in its estimation of the true capacity

of the lines. By adopting this point of view, in this dissertation we term Copt
k − αk

26



Chapter 2. Interdependent electric and cyber infrastructures

the capacity estimation error. While the approach presented in [53] considers a

fixed threshold, here we assume varying threshold to capture the effects of various

parameters on the threshold and consequently on the cascading behavior. In our

simulations, we quantify Copt
k − αk by a fraction of Copt

k , i.e., Copt
k − αk = eCopt

k for

e ∈ [0, 0.5]. Therefore, we assume a line is overloaded when the power flow through

the line exceeds (1−e)Copt
k . As such, the parameter e controls the capacity estimation

error. Moreover, we categorize all the transmission lines in the power grid based

upon their capacity values into five categories with values from the set C = {20MW,

80MW, 200MW, 500MW, 800MW} [52]. Similarly to the work presented in [56], in

our simulations we allow only one line trip at a time by randomly (according to the

size of overload) tripping one of the overloaded lines.

Studies of major blackouts have shown that incorrect operation of protection

relays contributes to cascading failures [4]. To capture this effect in our simulations,

we have considered a small probability (0.04) for mis-operation of protection relays.

Due to space constraints, we will not investigate the effects of the mis-operation

of the protection relays on cascading behavior further. A study of such effects is

presented in [57].

2.3 Interdependency parameters

In this section, we introduce interdependency parameters assumed in this disserta-

tion based on the agents introduced in Section 2.1. The assumed interdependencies

may lead to propagation of failures between the two systems; however, interdepen-

dencies can generally increase or decrease the reliability of interdependent systems.

In line with the definitions presented in [23], we introduce three primary categories

of interdependencies considered in this dissertation between the power grid and the

communication system.
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• Physical interdependencies: Example of such interdependency is when

communication nodes rely on the power-grid energy delivery to operate. As

such, failures in the power grid may interrupt the operation of the communi-

cation network.

• Cyber interdependencies: The efficient and reliable operation of the power

grid relies on the information transfer and information processing by control

and communication systems. For example, transmitting remote control signals

to remote substations to implement load shedding or opening a circuit breaker

in the case of contingencies relies on the communication network. Moreover,

having an accurate estimate of the state of the power grid depends heavily on

accurate and reliable information processing in the control and communication

systems.

• Geographical interdependencies: Geographically correlated events can af-

fect components of both of the systems if components of the interdependent

systems are geographically co-located. In other words, a local environmental

event can cause failures in both of the systems. For example, if a transmission

tower collapses then both the transmission line and the OPGW communication

line using that tower will fail simultaneously.

Next, we introduce the interdependency parameters assumed in this dissertation.

Recall that in the previous section we introduced parameter e, which captures the

effects of various factors and mechanisms that may lead to failure of transmission

lines when their power flow is within a certain range of the maximum capacity

assumed by the control center. We use parameter e to control the error in estimating

the capacity of lines. As mentioned earlier this parameter can capture the effects

of inefficiencies in the control and communication systems on the threshold. This

interdependency parameter, namely capacity estimation error, can capture certain

cyber interdependencies.
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Although this interdependency parameter can capture a wide range of scenarios,

here we explain its application with a specific example. A key solution in reacting to

contingencies in power grids is to safely utilize the existing transmission capacity to

its maximum in order to avoid over-curtailment of loads and limiting power delivery.

Clearly, monitoring the transmission capacity is critical for carrying out this solution.

The power-flow capacity of a transmission line can be defined, for example, by its

thermal limit. The measurement agents send the measured temperatures to the

control center. Estimating the temperature from the measurements and accurately

estimating the capacity of the transmission lines can help in reacting to emergency

scenarios more efficiently. However, error in these estimations due to error, delay

and interruption in communication networks can result in either underutilization of

resources or overloading of lines, which can severely affect the reliability of the power

grid.

The second interdependency parameter considered in this dissertation is load-

shedding constraint level. Load shedding is a critical control action when the system

must be reconfigured to accommodate the disturbances on the grid. The efficiency of

the load shedding in responding to cascading failures depends upon the constraints

in implementing the load shedding in the system. The constraint level is governed,

for example, by control and marketing policies, regulations, physical constraints, and

communication limitations. The ratio of the uncontrollable loads (loads that do not

participate in load shedding) to the total load of a substation is termed the load-

shedding constraint level, denoted by θ ∈ [0, 1], where θ = 1 means load shedding

cannot be implemented and θ = 0 means unconstrained load shedding. The load-

shedding constraint level can also capture certain cyber interdependencies.

We explain the load-shedding constraint level with the following example. The

power grid relies on the communication system for transmitting load-shedding control

signals to substations in the case of contingencies. We assume that communication
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irregularities may lead to the inability of control agents to efficiently implement the

load shedding. Sources of such inabilities include failure of communication system to

send the load-shedding control signal from the control center to the control agents,

for example, due to denial of service (DoS) attack to certain servers, as well as failures

at the control agents. Note that physical limitation of components and marketing

policies in the power grid may also restrict the application of the optimal load-

shedding controls. For example, different customers may have different interruption

costs for the load curtailment; alternatively, there may exist critical loads that cannot

be curtailed from the grid (based on policy or physical constraints) or the priorities

that may apply to load shedding. The parameter θ can capture such scenarios

and controls the level of controllability of the load shedding at substations in our

simulations. To implement this constraint in the simulator, we decompose the load

of a substation (represented by Li) into a dispatchable part (controllable load) with

value (1 − θi)Li and a fixed load with value θiLi. These values are used in the

power-flow optimization problem introduced in the next section.

The last interdependency parameter assumed in this dissertation is called failure

propagation probability, which captures the dependency of the communication system

on the power grid. Similarly to [31], we assume that a communication component fails

probabilistically (with probability q) if a power component in its geographical vicinity

fails. This dependency leads to propagation of failures from the power system to the

communication network. The failure propagation probability can capture certain

physical or geographical interdependencies.

To summarize, the introduced interdependency parameters are capacity estima-

tion error, load-shedding constraint level, and failure propagation probability. The

effects of these parameters on the power-flow distribution are captured by a coupled

power-flow optimization framework as described in the next section.
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2.4 Coupled power-flow optimization framework

Consider the transmission system of a power grid with V nodes (substations) inter-

connected by m transmission lines. The sets L and G are the set of load buses and

the set of generator buses, respectively. The notation Li represents the demand at

the load bus i. The DC power-flow equations [49] can be summarized as

F̃ = AP̃ , (2.1)

where P̃ is a power vector whose components are the input power of nodes in the

grid (except the reference generator), F̃ is a vector whose m components are the

power flow through the transmission lines, and A is a matrix whose elements can be

calculated in terms of the connectivity of transmission lines in the power grid and

the impedance of lines. This system of equations does not have a unique solution.

Therefore, to find the solution to this system we use, as done in [53], a standard

optimization approach with the objective of minimizing the simple cost function

below:

Cost =
∑

i∈G

wg
igi +

∑

j∈L

wℓ
jℓj. (2.2)

A solution to this optimization problem is the pair gi and ℓj that minimizes the

cost function in (2.2). Note that ℓj = θjLj + bj , where bj will be determined by

the optimization solution. In this cost function, wg
i and wℓ

j are positive values

representing the generation cost for every node i ∈ G and the load-shedding price

for every node j ∈ L, respectively. We assume a high price for load shedding so that

a load is to be curtailed only when there is generation inadequacy or transmission

capacity limitations. The constraints for this optimization problem are listed below.

(a) DC power flow equations: F̃ = AP̃ .

(b) Limits on the generators’ power: 0 ≤ gi ≤ Gi
max, i ∈ G.

(c) Limits on the controllable loads: (1− θj)Lj ≤ bj ≤ 0, j ∈ L.
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(d) Limits on the power flow through the lines:

|F̃k| ≤ Copt
k for k ∈ {1, ..., m}.

(e) Power balance constraints (power generated and consumed must be balanced):
∑

i∈G gi +
∑

j∈L ℓj = 0.

Note that in the above formulation, the quantities ℓjs are negative and the gis

are positive by definition.

Besides the interdependency parameters that affect the solution of this optimiza-

tion framework, we introduce another power grid operating setting termed power-grid

loading level, which represents the level of stress over the grid in terms of the loading

level of its components. We denote the power-grid loading level by r, defined as the

ratio of the total demand to generation-capacity of the power grid. The operating

parameter r affects the initial load on the system, i.e., the Ljs. Furthermore, we

assume that the load at substations are constant over the time interval that cascad-

ing failures occur since the duration of cascading failures is short. The solution to

this optimization problem determines the amount of load shed, generation and the

power flow through the lines. If failures occur in the power grid, we assume that the

control center redistributes the power in the grid by solving the above optimization

problem. If the new power-flow distribution overloads lines (based on the overload

definition in Section 2.2), more failures will occur in the power grid. This process

iterates until no more failures occur in the system.

We use MATPOWER [58], a package of MATLAB m-files, for solving the op-

timal power flow and simulating cascading failures. The quasi-static approaches

that employ a power-flow distribution framework together with a method to identify

overloaded lines and individual failures to model cascading failures have been used

in several works in the literature such as [54, 56, 59].
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2.5 Impact of interdependencies on reliability of

the electric-cyber infrastructure

In this section, we first introduce four scenarios representing different levels of interde-

pendencies between the power grid and the communication system. These scenarios

include no-coupling, coupling through capacity estimation error, coupling through

the load-shedding controllability, and coupling through both of the last two param-

eters. In the no-coupling scenario, the effects of failures do not propagate from the

communication network to the power grid and vice versa. The no-coupling scenario

is similar to the case that we consider cascading failures in the power grid alone

while assuming perfect communication system. We also use the failure propagation

parameter q, introduced earlier to change the strength of interdependency between

the communication system and the power grid. In the introduced coupling scenarios,

failures propagate to the communication system with probability q and failures in

the communication network affect cascading failures in the power grid through the

interdependency parameters introduced in Section 2.3, namely θ and e. In our sim-

ulations presented here, we have considered the IEEE 118 bus system along with a

communication network with the same topology as the IEEE 118 bus system shown

in Fig. 2.2 with the control center marked with the circle. We assume that failure

of a line in the power grid results in probabilistic failure of the corresponding link

in the communication network as well as its adjacent communication links, which

share the communication node with that link. We set the value of parameter θ at

different substations based on their connectivity to the control center, namely, if a

substation is connected to the control center we assume θ = 0 and otherwise θ = 1.

We also simply assume that the value of parameter e depends on the connectivity

of the communication network and increases with the hop distance from the control

center due to possible delays in the communication network as the distance increases.
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Figure 2.6: Average size of cascading failures (number of tripped lines) as a function of q
and different levels of coupling between the power system and the communication network
(here, LS stands for load shedding).

We have triggered cascading failures in the power grid by two or three random

initial failures. The size of cascading failures is obtained by simulations of cascading

failures in the power grid using the power-flow optimization framework introduced

in Section 2.4. The results shown in Fig. 2.6 are obtained by averaging the size of

cascading failures over 500 realizations. We measure the size of cascading failures

using the number of tripped overloaded lines in the power grid. As expected, in

Fig. 2.6 we observe that the size of cascading failures increases with the level of

coupling between the two systems. We observe that coupling through load shedding is

highly sensitive to connectivity of the communication system and the communication

system disconnections make the cascading behavior more severe.

The goal of the next experiment is to study the effects of partially or fully losing

control over substations for performing load shedding on the cascading behavior of

the power grid. We have generated approximately 10,000 realizations of the vector

θ. For each realization, we have calculated the ratio of total controllable load over

the total load in the grid, rc/t
△

= (
∑

i∈L(1−θi)Li)/
∑

i∈L Li. Next, we categorized the
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realizations based on the calculated rc/t values into 10 equal-length sub-intervals in

[0, 1]. In order to have the same number of realizations in each interval we selected

200 realizations in each interval. For each of the realizations we ran Monte-Carlo

simulation 200 times, where in each simulation we select three transmission line

failures randomly.

The average number of failed lines due to overloading is shown in Fig. 2.7-a as

a function of rc/t for both scenarios of binary θi values as well as θi values in the

interval (0, 1]. From the results shown in Fig. 2.7-a we observe that when full control

is achievable over the loads in the grid (e.g., when there are no vulnerabilities in the

control/communication system), control actions can mitigate the effects of initial

disturbances and prevent the occurrence of cascading failures. Therefore, there are

only few (e.g., < 5) failures on average when rc/t = 1. However, losing control over

the load buses results in an increase in the average number of failures and a high

probability of cascading failures. In addition, we observe that when the power grid is

operating near its maximum capacity, vulnerabilities in the control/communication

system can have drastic effects. In Fig. 2.7-a we have shown the cascading-failure

phenomenon, measured by the number of transmission-line failures in the system.

Our simulations show a similar trend in the cascading behavior if we consider the

amount of unserved loads in the system, as shown in Fig. 2.7-b. The reason for

the similarity in the trends in cascading behavior in both cases (when considering

the number of transmission-line failure and unserved loads) can be explained as

follows. In the presence of control/communication vulnerabilities, it is more likely

that lines become overloaded and hence fail. Thus the load buses disconnect from the

grid in addition to the loads that have been curtailed from the system. Therefore,

the total amount of unserved load in these cases are larger than that in the case

when controlled load curtailment is performed. Another intuitive observation made

from Fig. 2.7-a is that for a fixed amount of uncontrollable load over the grid, the

scenario for which we totally lose control over certain load buses results in a more
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Figure 2.7: (a) Average number of failed lines, and (b) average total unserved load, due to
cascading failures as a function of the ratio of total controllable loads over the total load
in the grid.

severe cascading effect compared to that for the scenarios where we lose control

over a portion of the load in the load buses. This may correspond to the scenario,
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where the automatic relays can still perform sub-optimally without the control center

interference.

2.6 Impact of communication system’s connectiv-

ity on cascading failures

In this section, using the introduced simulation framework, we show that the con-

nectivity of the communication system affects the reliability of the power grid. Using

this simulation framework, we also identify characteristics of the areas of the power

grid, which require more protection and communication connectivity.

In this section, we consider a set of candidate topologies for the communication

system of the power grid. This set includes a network with the same topology as the

power grid connectivity, the base topology. We also consider random variations of

the base topology by generating two random sets of topologies based upon the base

topology; one set with randomly removed links while maintaining the connectivity

(smaller average degree of nodes, where degree is defined to be the number of nodes

having direct link to the node) and one set with randomly added links (larger average

degree of nodes). Note that the set of nodes in all the topologies are assumed to

be the same. Similarly to the previous section, we assume that failure of a line

in the power grid results in probabilistic failure of the corresponding link in the

communication network as well as its adjacent communication links, which share the

communication node with that link. We set the value of parameter θ at different

substations based on their connectivity to the control center, namely, if a substation

is connected to the control center we assume θ = 0 and otherwise θ = 1. In general,

we assume that the communication connectivity affects the load shedding constraint

level of substations.
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Figure 2.8: Average size of cascading failures (number of tripped lines) as a function of
average degree of nodes in the communication network when probability of propagation of
failures to the communication system is 0.5.

We trigger cascading failures in the power grid by two or three random initial

failures. The size of cascading failures is obtained by simulations of cascading fail-

ures in the power grid using the power-flow optimization framework introduced in

Section 2.4. In the simulations, for each value of the average degree of nodes we

have used 20 randomly generated topologies with approximately the same average

degree. In Fig. 2.8, we observe that the connectivity of the communication network

affects cascading failures in power grids. The results presented in Fig. 2.8 suggest a

critical value of average degree of nodes (approximately 3 in this example) for which

the size of cascading failures drops sharply. We interpret this value as the minimum

connectivity of the communication network that can considerably reduce the risk of

large cascading failures in the power grid. Thus we conjecture that the communica-

tion network can be strengthened by adding more links to enhance the robustness of

the power grid to cascading failures. Further, notice that as described earlier when

the level of coupling between the two systems increases the probability of cascading

failures also increases.
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Figure 2.9: Probability of cascading failure as a function of the minimum total capacity of
the connected lines to substations with communication problems for three different number
of substations.

In the next study, we identify vulnerable areas of the communication system

where connectivity problems (disconnections from the control center, which result

in θ = 1) increase the risk of cascading failures. In this study, we consider certain

number of substations (specifically 3, 5, or 8) randomly selected from the power grid

and assume that they are disconnected from the control center, i.e., we set θ = 1 for

the selected substations. We study the effects of the area, where such communication

failures occur, on cascading failures and describe such areas based on the character-

istics of the power system. As such, we identify the area of the power grid that

requires more protection and communication connectivity. In Fig. 2.9, we present

the probability of having ten or more failures beyond the initial three failures. Based

on the simulation results presented in Fig. 2.9 we observe that when the minimum

total capacity of the lines connected to a substation with communication problems

is above a certain threshold, then the probability of having cascading failures drops

sharply. The behavior observed in Fig. 2.9 can be explained as follows. Since we

assume that the load-shedding control action cannot be implemented on the sub-

stations with communication problems then if they have lines with low capacities,
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there is a high probability of overloading such line in the case of contingencies that

necessitate load curtailments. Thus, based on these results we conjecture that the

capacity of the lines connected to the substations with communication problems im-

pact the cascading behavior. In particular, substations that have weak lines are

vulnerable areas in the case of communication problems in their associated control

and communication components.

2.7 Summary and conclusions

In this chapter, we stated the assumptions made about the interdependency of the

power grid and the communication system that lead to propagation of failures be-

tween the two systems. We developed a simulation framework for simulating cascad-

ing failures in electric-cyber infrastructures. The proposed framework is an integrated

power-flow optimization framework, which captures the effects of the introduced in-

terdependencies on the power-flow distribution of the system. Based on the simula-

tion results presented in this chapter, we conjecture that interdependencies between

the power grid and communication system as well as the level of coupling between

the two systems affect the cascading behavior in a substantial way. Furthermore,

we showed that the connectivity of the communication network, measured by the

average degree of nodes, does affect the cascading behavior in the power grid also in

a substantial way. Thus, it is essential to consider such interdependencies in analy-

sis of the reliability of electric-cyber infrastructures. As such, we have investigated

the effects of interdependencies between power and communication systems on the

stochastic dynamics of cascading failures in Chapters 4 and 6 and we have identified

interdependency characteristics that largely affect the probability of large blackouts.

40



Chapter 3

Impact of spatial distribution of

failures on the infrastructure

reliability

Physical infrastructures are vulnerable to spatially correlated failures arising from

various physical stresses such as natural disasters (earthquakes and hurricanes) as

well as malicious coordinated attacks. Correlated component failures in physical

systems, such as power and communication systems, and their effects on reliability

of the system have been largely the concern of researchers for a long time [60–62].

However, there are very few effective works in modeling such real-world scenarios. In

this chapter, we present a simulation framework, which provides a systematic way of

simulating correlated failures. We use this framework to study the effects of spatial

distribution of failures on the reliability of the power grid and the communication

system.

Some disaster events such as earthquakes and terrorist attacks may occur in

more than one location in a short period of time. Hence, multiple sets of correlated
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failures may occur if more events occurred before the previous set of failures were

repaired. Here, the statistical properties of induced-failure patterns depend upon

the spatial interaction among stress centers (e.g., interaction among earthquake or

attack locations). We present a stochastic model, based on spatial point processes,

for representing stress centers in geographical plane in order to facilitate the modeling

of spatially inhomogeneous and correlated failures in an infrastructure. This model

is then used to further generate scenarios with inhibition and clustering between

stress centers, which enables detailed assessment of vulnerabilities of the system to

the level of inhomogeneity and spatial correlation in the stress-event centers.

3.1 Modeling spatially correlated failures

3.1.1 Related prior work

There are several works on characterizing the effects of correlated failures on the

reliability of various systems. Most of the works in this area are in the context of

communication networks. Meanwhile, the effects of correlated failures have not been

extensively studied in the context of power grids. Here, we provide a short review of

the efforts in understanding the effects of correlated failures in both contexts.

In an early work for modeling correlated failures [63], the authors considered

the dependence between link failures in a communication system and presented an

event-based reliability model. In their model, independent events are used to gen-

erate dependent link failures. This is achieved by defining independent events over

sets of components (links), which, for example, share common equipments. Early

origins of correlated failures in communication networks were primarily the common

equipments between a set of components and the fact that failure of the equipment

results in failure of all the components in the set. Here, the events have certain
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probabilities of occurrence; however, components in the set sharing the equipment

fail with certainty if the event happens. In a similar way, the concept of Shared Risk

Link Group (SRLG) has been proposed in [64] in order to address multiple correlated

link failures. An SRLG is a set of links sharing a common physical resource (cable,

conduit, etc.) and thus a common risk of failure. Later, the authors in [65] used

the concept of probabilistic SRLG to address the stochastic correlated component

failures. In this model components in an SRLG fail in a probabilistic sense.

In contrast to previously mentioned works, there are other works that have fo-

cused on failures within specific geographical regions [66], [67]; such a assumption

implies that the failed components do not necessarily share the same physical re-

sources [68]. In [62], a framework is presented to model correlated failures caused

by disasters on the networks using vertical cuts; nonetheless, the model is limited

to bipartite networks and vertical regional disasters, making it inadequate for mod-

eling stress from events such as attacks and earthquakes. The authors in [66] have

modeled the disaster or attack using a circular cut, which is modeled as a disk of

certain radius centered at the event location; they have assessed the vulnerability of

fiber infrastructures to both circular and vertical cuts. In a similar approach, the

authors in [68] used a probabilistic failure model in which components in the vicinity

of the disaster (inside the disc) fail with some probability while other components

(outside the disc) do not fail. However, using the same probability of failure for all

the components inside the disc is not realistic since the effect of events reduces as

the distance to the center of the event increases.

Correlated failures have also been studied in logical topologies (higher layers of

network protocol stack) of networks [69] and [70]. In many of these kind of studies,

random graphs and percolation theory [71] are common tools to evaluate the effect

of random component failures in the network. An example of the source of such

correlated failures are logical attacks such as coordinated cyber attacks, e.g., DoS
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(Denial of Service) affecting higher layer components of networks such as routers.

There are other works that discuss correlated failures in various contexts ( [72, 73])

other than communication networks. There are also some models for temporally

correlated failures [74]. Most related work to our approach is the work in [68], which

considers multiple disasters with circular cuts. Akin to this effort, we have also

identified the most vulnerable points of the network by defining various scenarios of

events on the network.

Studies of correlated failures in the context of power grids are limited to few

works [60, 61, 75]. In [60, 61], the authors study the effects of correlated failures on

cascading failures. This model, which is inspired by methods developed for network-

survivability analysis, is used to identify the most vulnerable location in the grid. In

this work, authors consider contingency events that are initiated by geographically

correlated failures modeled using a disk of certain radius. However, the vulnerable

locations of the grid have been identified by computational geometric methods only

based on the topological properties of the grid, which were then fed into the power-

flow distribution problem as the initial trigger points for correlated failures. The

effects of correlated power-line failures on the total system load shed have been

investigated in [75]. This work uses Monte-Carlo simulations of cascading failures for

estimating the statistics of the system load shed as a function of stochastic failures.

However, correlated failures considered in this work are not spatially correlated;

the correlation is based on the total correlation defined between the random binary

variables representing the functionality of lines.

The model presented in this chapter is different from the above works, as it pro-

vides a powerful tool to systematically generate scenarios of multiple disaster events

with various level of spatial correlation among their centers in order to accurately

capture the geographical correlation that exists in real-world scenarios. This frame-

work can be used for Monte Carlo simulations of correlated failures to study the
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reliability of the system. We use this framework to first study the effects of corre-

lated failures on communication networks and next, to investigate how correlated

failures in the communication system affect the reliability of the power grid through

the interdependencies introduced in Chapter 2.

3.1.2 Probabilistic model for spatially correlated failures

In this section, we present a probabilistic approach for modeling correlated failures

due to multiple external stress-events in a physical system. We present this model in

the context of communication network with the understanding that it is applicable

to any geographically distributed physical system. In this model, we describe a tech-

nique for determining the probability of physical damages (failures) for an arbitrary

collection of links due to external stress-events with spatially correlated centers. As

described earlier, while disaster events are stochastic they can exhibit spatial cor-

relations. Furthermore, there can be spatial inhomogeneity in the concentration of

event centers since certain locations are more prone to host the events than others.

(a) (b)

Figure 3.1: Superposition of 50 realizations of a point process each having 5 event centers
in the plane. (a) Points resulting from uniform (homogeneous) intensity function; and
(b) points resulting from an inhomogeneous intensity function with two regions of high
concentration.

Figure 3.1-a shows an example of a uniform (homogeneous) Poisson point process
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in the plane. In this case, events can occur anywhere in the plane and without

any spatial structure; namely, these patterns are the result of a uniform intensity

function (i.e., a flat surface over the geographical plane of interest) [76]. In contrast,

Fig. 3.1-b shows an inhomogeneous point process with two concentration locations

for events. The inhomogeneity in the concentration of events is affected by a non-

constant intensity function representing the probability of hosting individual stress-

events at each point of the plane. For example, to allow more events to occur in

a specific geographical area of interest, we set a peak in the probability intensity

surface over the specific area.

(a) (b)

Figure 3.2: Realizations of a Strauss point process with inhomogeneous intensity function
and interaction between events for the cases of (a) inhibition and (b) clustering.

Next, we employ an interaction point process model [76] to capture both spatial

inhomogeneity and spatial interaction between event centers. The assumption for

certain events is that the occurrence of an event in a location affects the likelihood

of the occurrence of other events in its vicinity. This effect is called inhibition if the

likelihood is reduced and it is called clustering if the likelihood is increased. The

Strauss point process is the simplest yet very effective model for inhibition and clus-

tering effects [77]. In the case of inhibition, the probability of the occurrence of points

within a fixed radius of an existing point is reduced. When this probability is zero,

the inhibition is referred to as hard-core inhibition. In a similar way, in the clustering
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case the probability of occurrence of events inside of a fixed radius of existing events

is enhanced. To simulate the Strauss point process, we use the algorithm presented

in [78]. Figure 3.2 shows realizations of Strauss point process with inhomogeneous

intensity function (Fig. 3.1-b) and inhibition and clustering effects between centers.

Note that the model tends to bias the event centers to be more likely to occur in the

vicinity of the two regions of high concentration shown in Fig. 3.1-b. At the same

time, however, there is inhibition and clustering effects between these points defined

through the interaction function described bellow. Figure 3.2-a shows a realization

with inhibition between event centers, while in Fig. 3.2-b there are clusters of event

centers. Next, we will briefly describe pairwise interaction point-processes [76] of

the type used here in order to introduce the key controls of the model in generating

various interesting scenarios of events that are relevant to reliability.

Let D be a bounded subset of the plane. An interaction point process is a Dn-

valued random vector, v = (V1, V2, ..., Vn), which has a probability density of the

form

f(v) = z−1
∏

1≤k≤n

Θ(vk)
∏

1≤i≤j≤n

ϕ(‖vi − vj‖), (3.1)

where v = (v1, ..., vn) ∈ Dn, and ‖ · ‖ is the Euclidean norm in the plane and z is a

normalizing constant [76]. The function Θ represents the intensity function of point

distributions. The function ϕ : [0,∞) → [0,∞) is called the pairwise interaction

function; the pairwise behavior of events can be defined through this function. As

an example, in the Strauss model [77], ϕ is defined to be equal to a specified value,

c, for pairs of points that are within the range R, and it is set to unity otherwise.

The density function of the Strauss process is then

f(v) = z−1cSv(R), (3.2)

where for R > 0 and

Sv(R) =
∑

1≤i≤j≤n

I(0,R](‖vi − vj‖) (3.3)
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is the number of pairs of coordinates (points) in v with pairwise distance less than

or equal to R, and for any set A, IA(a) = 1 whenever a ∈ A and IA(a) = 0 otherwise.

Based on the density function of the Strauss model, a value of c greater than 1 results

in clustering and a value of c less than 1 results in inhibition. Note that when c = 1

we obtain the totally random (Poisson) scenario of events in the geographical plane.

Furthermore, the parameter R in the Strauss model controls the range of interactions

between pairs of points.

Figure 3.3: A representative CLpd corresponding to a sample realization of 4 event loca-
tions.

Next, we define the conditional likelihood function of physical damage, CLpd(u),

u ∈ R2, for all the points over the geographical plane. Specifically, we define the

intensity of the damage at points of the plane using Gaussian functions placed atop

each event center. The Gaussian function is a convenient and appropriate function

to model the range and intensity of the disaster events over the geographical plane

because of its symmetric bell shape that quickly falls off towards plus/minus infinity.

The variance of the Gaussian function controls the width of the bell or the range

and intensity of the disaster event. The Gaussian functions on top of multiple events

are summed up and normalized (to unity) to yield CLpd(·). Summing the Gaussian

functions also captures the net result of adding the effects of multiple individual

disaster events as the Gaussian functions overlap. We define the probability that a
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line, say k, fails after the occurrence of a disaster event to be maxu∈k(CLpd(u)).

Figure 3.3 shows a representative CLpd corresponding to a sample realization

of four event locations with the Gaussian functions atop each event. Note that

conditional on a particular realization of CLpd, the physical failures of links (in any

collection of links) are independent; however, correlation between physical damage

is inherited from the correlation in the event centers associated with CLpd and the

geographical proximity of the links to the event centers. The c and R parameters

of the Strauss model as well as the variance of the Gaussian function give us the

ability to capture scenarios of events with various spatial correlations among their

centers with non-uniform spatial intensity in a plane of interest. As a result, we

have an effective tool to simulate desirable scenarios of spatial stress-events on the

geographical plane to assess the reliability and efficiency of the network in the case

of various stress scenarios.

3.2 Impact of correlated failures on communica-

tion systems

In this section, the reliability and efficiency of communication networks in the pres-

ence of geographically correlated failures due to multiple disaster events are evaluated

using Monte-Carlo simulations. Specifically, a Monte-Carlo simulator for generating

correlated failures based on the model presented in the previous section is developed

in MATLAB. The evaluations of the reliability and efficiency of the network are pre-

sented here for different scenarios of interest for the spatial distribution of the stress

centers. In our simulations, we have considered the topology of a fiber backbone

operated by a major network provider in the United States as shown in Fig. 3.4.

As described earlier the model enables us to control the clustering and inhibition
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characteristics of the disaster events through the selection of the c and R parameters

of the Strauss model. It also enables the control of the severity of the events (how

strong is the disaster event in affecting the network components and the range of

their impact) through the selection of the variance of the Gaussian functions. For

a larger intensity of disaster events, a larger variance for the Gaussian function is

used.

Figure 3.4: A random sample of stress-event centers with the Strauss settings of c = 0.3
and R = 500, and the variance of Gaussian function set to 600.

We shall define four scenarios of interest for the locations of stress-events and

evaluate the reliability of the network in these four scenarios. In the first scenario we

use the inhibition setting in the Strauss model so as to generate random realizations

of event centers that are likely to be far from each other. In this scenario the

probability of the occurrence of events within a fixed radius of an existing point is

reduced. We define the radius to be 500 miles (R1 = 500 miles), the c parameter to

be 0.3 and the variance of the Gaussian functions is set to 600. A random sample of

this scenario is shown in Fig. 3.4.

The rest of the scenarios are based on clustering mode in the Strauss model with

the cluster radius used as a free parameter. In these scenarios, we assume that the

probability of events happening farther than R miles is reduced. For each scenario

we set the maximum distance between events to R2 = 200, R3 = 100, and R4 = 20
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miles, respectively, and the c parameter for all these scenarios is set to 80. Random

samples of each of these scenarios are presented in Figs. 3.5, 3.6 and 3.7. Note that

in the samples of the Strauss model corresponding to the fourth scenario, events are

not farther than 20 miles apart; therefore, stress centers are closer than those in

the remaining clustering scenarios. In all the simulations of this section we assume

four number of disaster events; however, any number of events can be assumed. For

comparison, we also consider the independent link failure scenario without the use

of external events to represent the case of totally uncorrelated link failures in the

network. (In the latter scenario we do not follow the event-center approach to insure

that there is no correlation in the failures.) Next, we present our predictions of the

effects of the aforementioned failure scenarios on network reliability and efficiency.

Figure 3.5: A random sample of stress-event centers with the Strauss settings of C = 80
and R = 200, and the variance of Gaussian function set to 600.

We have evaluated the reliability of the network based on two metrics: the average

two-terminal reliability (ATTR) [68], which is a measure of global connectivity of the

network, and the connectivity probability, which is the fraction of the number of

times the network remains connected over all runs of the simulations. In Fig. 3.8,

the ATTR values for the four mentioned scenarios and the independent link failure

case are presented for different values of the stress effects represented by the variance

of the Gaussian functions. For each scenario we have generated 500 random samples
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Figure 3.6: A random sample of event centers with the Strauss settings of C = 80 and
R = 100, and the variance of Gaussian function set to 600.

Figure 3.7: A random sample of stress-event centers with the Strauss settings of C = 80
and R = 20, and the variance of Gaussian function set to 600.

and the presented results are the average over all 500 samples. (Note that for the

independent link failure scenario, we have calculated the average number of failed

links in other four scenarios for each variance value and then generated the same

number of failures randomly among the links.)

Based on Fig. 3.8, in the first failure scenario the ATTR is higher than those for

other scenarios except for the independent link failure case. For small values of the

variance of the Gaussian functions, the correlation among failures due to geographical

proximity decreases. Moreover, since in the first scenario the event centers do not
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Figure 3.8: Average two-terminal reliability.
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Figure 3.9: Average two-terminal reliability.

occur closer than R1 of each other, the ATTR value is higher for smaller variances

compared to independent link failure case. However, as effect-range or intensity

of the disaster increases, the correlation between link failures due to geographical

proximity increases, which, in turn, causes the reliability of the network to decrease

compared with independent link failure scenario. The other interesting observation

in Fig. 3.8 is that the reliability of the network is less affected in the scenarios with

smaller cluster radius than that in the larger clusters. Note that size of clusters

assumed to be less than 20 percent of the size of the geographical plane over which
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the network is expanded.

Figure 3.9 shows the ATTR value for the samples with the same number of

failures and for the variance of the Gaussian functions set to 1200. In this case,

we have taken the average of ATTR over all the realizations with the same number

of failures for the four aforementioned scenarios. As such, this plot shows that if

we have the same number of failures in the network with different characteristics,

they will have different effects on the network reliability. We can conclude based

on these two plots that the clustering scenarios with larger effect-range, namely the

second scenario (R2 = 200), affect the ATTR value more significantly than the other

scenarios. As before, the independent random link failure case affects the reliability

less severely than other scenarios because of the lack of geographical correlation

between the failures.
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Figure 3.10: Connectivity probability.

Figure 3.10 presents the connectivity probability of the network for the different

scenarios based on the variance of the Gaussian functions. Note that the clustering

scenarios have lower connectivity probability than other scenarios. This is because

the geographical correlation that is present amongst stress centers results in substan-

tial geographically correlated link failures, thereby lowering reliability.
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Figure 3.11: Global efficiency of the network.

In studying the network efficiency, we have adopted the global efficiency metric

defined in [79], which is the average of the inverse of the shortest path length between

all the nodes of the network. The results of the global efficiency of the network are

presented in Fig. 3.11. Note the similarity of the behavior of the efficiency metric in

this figure compared to the ATTR metric shown in Fig. 3.9.

Finally, we have also conducted a study on the most vulnerable regions of the

network and the worst-case scenario of the link failures. To do this, we tested 2000

random samples of each scenario with four number of disaster events and searched for

the stress-distribution scenario that resulted in the least network reliability amongst

the four stress-event center scenarios. In this simulation, we fixed the intensity of the

stress-event occurrence to 600. The “vulnerable” regions are identified with circles in

Fig. 3.12. These regions are nearly matched with the results presented by Agarwal et

al. [68], which did not use a stochastic approach for the distribution of stress-event

centers but rather used a greedy heuristic approach that finds the vulnerable points

of the network for two simultaneous events. Furthermore, the worst-case scenario for

the four number of the disaster events is the second scenario, which is a clustering

scenario with a radius of 200 miles.
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Figure 3.12: Vulnerable points of the network assuming a variance of 600 for the Gaussian
functions and a random sample of the third stress-event-center scenario.

3.3 Impact of correlated failures on the reliability

of electric-cyber infrastructures

In this section, we investigate the effects of spatial distribution of failures in the

communication network on cascading failures in power grids using the simulation

framework presented in Section 3.1.2. Specifically, we study the effects of inhibition

and clustering among communication failures on cascading failures. We consider the

IEEE 118 bus system as the transmission grid and assume the same topology as

the power grid for the communication system. We also assume that communication

node failures occur only due to external stressors such as natural disasters. In other

words, we assume that failures do not propagate from the power grid to the commu-

nication system and thus the only set of failures in the communication network is the

initial correlated failures. The effects of interdependencies between the power grid

and communication system and propagation of failures between the two systems are

studied in Chapter 2. We use the interdependency parameter, namely load-shedding

constraint level, introduced in Chapter 2, to capture the effects of correlated com-

munication failures on the power grid. We assume that communication nodes that
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have been failed or disconnected from the control center due to initial external events

become uncontrollable for load shedding control actions and hence we set θ = 1 for

such substations.

Figure 3.13: Cascading behavior of the power grid for various distributions of communica-
tion failures. Two scenarios, each shown in a sub-figure, are considered for two scenarios
of two initial transmission line failures.

First, we study how the distribution of communication failures affects the cascad-

ing behavior. Understanding the effects of the spatial distribution and topological

location of control/communication failures is useful in designing reliable coupled con-

trol/communication system for power grids. For this study, we use the simulation

framework based on point processes in a setting with c = 1, which results in totally

random (Poisson) and uniformly distributed scenarios of events in the geographical

plane. We identify five load substations with the highest probability of failure in each
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Figure 3.14: Cascading behavior of the power grid for two scenarios of power-line failures in
the power grid shown in each sub-figure along with various distributions of five substations
with communication failures.

scenario and we assume that they are incapable of load shedding due to communica-

tion failures. We have selected the scenarios, which the value of rc/t (introduced in

Chapter 2) for them lies in the interval [0.9, 1). In other words, in this experiment

we have zoomed into the interval [0.9, 1) for the values of rc/t. We run Monte-Carlo

simulations for different realizations of three random initial transmission line fail-

ures for each scenario. For each of the transmission line failure realizations we carry

out 1,000 iterations, each with a realization of random selection of communication

failures as described above.

For better observability, the results obtained on four realizations of the initial

transmission-line failures are shown in Figs. 3.13 and 3.14. Similar behavior can be

seen in the rest of the samples. In each subfigure of Figs. 3.13 and 3.14, we have shown

the results on the number of failures due to cascading failures for each of the 1,000

realizations of the randomly and uniformly selected load buses with uncontrollable

loads with small blue dots. Note that each dot in each of the plots corresponds to one
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realization from all the combinations of five communication node failures as shown in

Fig. 3.13. As can be seen, the results show that both the topological location of power

line failures and the spatial distribution of failures in the communication system

affect the cascading behavior of the power grid. For example, the initial triggering

disturbance in Fig. 3.13(b) resulted in a more pronounced cascading phenomenon

compared to that in Fig. 3.13(a). Similarly, for a fixed distribution of the two initial

failures (fixed sub-plot), we observe a clear change in the cascading behavior as we

change the combination of communication failures.

Next, we have generated correlated communication failures using the simulation

framework based on point processes. In our simulations presented here, inhibition

refers to cases where the communication failures cannot be close to each other (e.g.,

closer than 50 miles) in a geographic sense, and clustering refers the cases where

communication failures are close to each other (e.g., within a radius of 20 miles). We

have assumed that IEEE 118-bus network is spanned over a 100 miles by 150 miles

area. We tested cascading failures with 250 realizations with clustering effect and

250 realizations with inhibition effect. However, we have selected 50 realizations from

each scenario such that the value of rc/t for such scenarios lies in the interval [0.9, 1).

These realizations are shown in Fig. 3.13: the square markers correspond to scenarios

with inhibition and circles correspond to the scenarios with clustering. We observe

that when there is clustering effect in the distribution of communication failures the

occurrence of cascading failures are less likely compared to the case in which there is

inhibition effect. This may be attributed to the ability of the power grid to isolate the

problem locally in the case when the uncontrollable buses are within close proximity

of one another, which may impede the propagation of subsequent failures through

the grid.
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3.4 Summary and conclusions

In this chapter, we developed a simulation framework that enables a systematic way

of simulating correlated failures. The presented approach is based on spatial point

processes, for representing stress centers on the geographical plane in order to facil-

itate the modeling of spatially inhomogeneous and correlated component failures in

system. Using Monte Carlo simulations with the proposed framework, we showed

that it is important to study the effects of spatial distribution of failures on reliability

of infrastructures. We showed that correlated failures in communication networks

have severe impact on the reliability of communication networks compared to random

failures. We also showed that correlations among failures in the communication sys-

tem affects the reliability of the power grid through the interdependencies introduced

in Chapter 2. Interestingly, we observed that inhibition effect in the distribution of

communication failures have severe impact on cascading failures compared to the

clustering effect. Understanding the effects of distribution of failures in electric-

cyber infrastructures on their reliability is important in identification of vulnerable

points of the system as well as designing reliable control and communication systems

for future smart grids.
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Markov chain framework for

cascading failures

In this chapter, a scalable and analytically tractable probabilistic model for the

stochastic dynamics of cascading failures in power grids is constructed while re-

taining key physical attributes and operating characteristics of the power grid. The

operating characteristics of the power grid are defined to include the interdependency

parameters, namely the load-shedding constraint level and the capacity estimation

error in addition to the power-grid loading level, all introduced in Chapter 2. The key

idea of the proposed framework is to simplify the state space of the complex power

system so that we can track the dynamics of cascading failures using a continuous-

time Markov chain while capturing the effects of the omitted variables through the

transition probabilities and their parametric dependence on the physical attributes

and operating characteristics of the system. To do so, we define a reduced abstraction

of the state space of large scale power grids by defining a relatively small number of

equivalence classes of power-grid states. The aggregate state variables used in defin-

ing the reduced state space represent critical power-grid attributes, which have been

shown, from prior simulation-based and historical-databased analysis, to strongly
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influence the cascading behavior. We call the proposed framework Stochastic Ab-

stract State Evolution (SASE) as it describes the stochastic dynamics of cascading

failures using the introduced abstract state space and the parametrized transition

rates. The transition rates among states are formulated in terms of certain parame-

ters that capture grid’s operating characteristics. The model allows the prediction of

the evolution of blackout probability in time. Moreover, the asymptotic analysis (in

the limit as time tends to infinity) of the blackout probability enables the calculation

of the probability mass function of the blackout size. It is shown that the proba-

bility mass function of the blackout size has a heavy tail specifically when the grid

is operating under stress scenarios. We have specifically investigated the transition

probabilities for the Markov chain model that lead to a power-law distribution for

the blackout size. Further, a key benefit of the model is that it enables the character-

ization of the severity of cascading failures in terms of the operating characteristics

of the power grid.

4.1 State space and equivalence classes

In general, a large number of parameters, such as voltage and frequency at various

points in the grid, power-flow distribution, and the functionality of the grid’s com-

ponents contribute to the definition of the state of the power grid at each time. As

such, detailed modeling of the state space of power grids for analytical modeling may

not be feasible due to its prohibitively large size. For instance, even in the case where

only the functionality status of the m transmission lines of the system are considered

to describe the state of the system, the size of the state space of the power grid is

exponential in m. The approach to overcome this challenge is to identify few key

parameters that govern the cascading behavior of the system.

Our power-system simulations as well as available historical blackout data [2, 4,
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Figure 4.1: Average size of blackouts, resulting from three initial line failures, as a function
of maximum capacity of the initial line failures for three different power-grid loading level.

80], together suggest that the functionality status of transmission lines and their

power-flow capacities [52] are key physical attributes that should be considered in

modeling cascading failures. Here, we present simulation results and two examples

of real scenarios of cascading failures that support the role of the number and the

capacity of the failed lines in cascading behavior of the system. The importance

of these attributes are clear as line failures have always been a part of historical

large blackouts and the capacity of transmission lines determine the power-delivery

capacity of the grid. The results of simulations of cascading failures in the IEEE 118

bus system shown in Fig. 4.1 indicate that the size of cascading failures increases as

a function of the capacity of the initial failures that trigger cascading failures.

Figure 4.2-a presents the time evolution of the cumulative line failures for the

blackouts in July 1996 and August 1996 in the Western Interconnection [4]. The

number of initial and final transmission-line failures are very close in these two black-

outs. However, the approximate average line-failure rate in the July 1996 blackout

is 1.6 failures per minute during the escalation phase of the cascading failures, while

it is 4 failures per minute in the August 1996 blackout. Most notably, the initial
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Figure 4.2: Cumulative line failures in (a) July 1996 WSCC blackout (solid line), August
1996 WSCC blackout (dashed line), and (b) August 2003 blackout [2, 4]. The time of the
initial failure is set to zero. Figures are reproduced in the same way as in [5].

disturbance of the blackouts were two 345KV transmission-line failures in the July

1996 blackout and two 500KV transmission-line failures in the August 1996 blackout.

Next, the time evolution of the cumulative line failures for the blackout in the August

2003 in Eastern Interconnection [2] is shown in Fig. 4.2-b. Based upon the data, the

average line-failure rate is approximately 1.4 failures per minute at the beginning

phase while it is 18 failures per minute at the escalation phase of cascading failures.

This can be described by the larger number of failures in the grid in the second

phase as well as failure of some critical lines with high capacities. In summary, the

aforementioned observations extracted from historical data and our simulations both

support the selection of the capacity of the failed lines and the number of failures as

key players in the formulation of the abstract state space.

As such, we consider the following aggregate state variables to represent the

power-grid state. The first variable is the number of failed lines, F , which has been

commonly considered in the probabilistic modeling of cascading failures to represent

power-grid states [5, 17, 20, 53]. Next, we consider the maximum of the capacities of

all the failed lines, Cmax. As shown in the simulation results presented in Fig. 4.1,
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Cmax dominates the effect of the capacity of the failed lines in cascading failures.

In addition, our simulations presented in Fig. 4.3 indicate that certain power-grid

states are cascade-stable, defined as a state for which once entered no further failures

occur in the system. The simulations of cascading failures in the IEEE 118 bus

system and the IEEE 300 bus system shown in Fig. 4.3 show the probability that

certain states with specific F and Cmax are cascade stable. We will explain these

figures in more detail later in this chapter. According to the cascade-stable attributes

of certain states, we define a new aggregate state variable, termed cascade-stability,

which collectively captures many other physical attributes of the power grid (as the

physical attributes specify whether a power-grid state is cascade-stable or not). We

represent the cascade-stability by a binary state variable I, where I = 1 indicates a

cascade-stable state and I = 0 indicates otherwise.
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Figure 4.3: (a) Probability of cascade-stability for states as a function of Fi and (b) prob-
ability of cascade-stability for states as a function of (Cmax

i ) for the IEEE 118-bus system
and the IEEE 300-bus system for r = 0.7, e = 0.1, and θ = 0.

By utilizing the three introduced state variables as the descriptors of power-grid

states, we partition the space of all detailed power-grid states into a collection of

equivalence classes denoted by S. Such coarse partitioning of the state space of the
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power grid implies that detailed power-grid states with the same aggregate state-

variable values (i.e., the same value of F , Cmax and I) will belong to one class and

will be indistinguishable as far as the reduced abstraction is concerned. We term each

class of the power-grid states an abstract power-grid state or in short an abstract state,

and label each as Si = (Fi, C
max
i , Ii), where Si ∈ S.

Figure 4.4: Power-grid states, abstract states and transitions between the abstract states.

The notion of power-grid states, abstract states, and transition between the ab-

stract states is sketched in Fig. 4.4. Each large circle represents an abstract state

and each of the four topological graphs inside each large circle represents a detailed

power-grid state, albeit with common values for F , Cmax and I. We assume that

the power-flow capacity of the lines can be quantized into a discrete and finite set

of capacity values, i.e., C = {C1, C2, ..., CK}. Thus, the cardinality of the abstract-

state space S is N = 2Km. Therefore, the equivalence-class approach reduces the

complexity associated with tracking the stochastic dynamics of the power grid from

exponential (when considering the functionality status of every line in the system)

to linear in m.
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4.2 Stochastic Abstract State Evolution model

The Stochastic Abstract State Evolution (SASE) model describes the stochastic dy-

namics of cascading failures using a finite state continuous-time Markov chain whose

state space is defined by the abstract states Si = (Fi, C
max
i , Ii) for i = 1, 2, . . . , N .

Recall that the state variable I indicates whether a state is cascade-stable; hence, it

is utilized to specify the absorbing (I = 1) and non-absorbing (I = 0) states of the

Markov chain. We term the non-absorbing states as transitory states. We reiterate

that with this definition of the state, there are two abstract states associated with

any power-grid state: one is an absorbing state and the other is a transitory state.

The definition of absorbing states in the state space of the Markov chain enables

modeling of cascading failures, which can be terminated (with some probability) at

any power-grid state with any Fi and Cmax
i instead of continuing to induce further

failures. In contrast, a pure birth chain model [81] with positive upward transition

probabilities, in which each birth represents a new failure in the system, has a single

absorbing state (due to the finite size of the system) corresponding to the complete

failure of the system. As such, models like the pure-birth chain model are not effec-

tive in modeling the real world cascading failures as the real failure scenarios also

suggest that depending on control actions and islands formed in the system, cascad-

ing failures may result in different size of failures [4]. The definition of the absorbing

states in the presented Markov chain framework enables modeling of various sizes of

blackouts in the system by modeling stable states in the system, which the system

may enter with certain probability. On the other hand, the pure-birth model does

not allow for different blackout sizes. Another way of capturing the effects of stable

states in the state-space of the system is by defining partially absorbing states, which

the system never leaves such states with certain probability. We will introduce and

use the latter definition in Chapter 5.

We consider two types of state transitions in the SASE model. The first type
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is termed as cascade-stop transition, which is from a transitory state, say Si, to an

absorbing state, say Sj, (i.e., Ii = 0 and Ij = 1) such that Fj = Fi and Cmax
j =

Cmax
i . The cascade-stop transition leads to the end of the chain of failures, which

in real systems can occur as a result of the implementation of successful control

actions, formation of operating islands in the power grid, or occurrence of a large

blackout. The second type of transitions is termed a cascade-continue transition.

We assume that the cascade-continue transition occurs as a result of a single line

failure in the system. The single-failure-per-transition approximation is based upon

the assumption that time is divided into sufficiently small intervals such that each

interval can allow only a single failure event. By cascade-continue transition we mean

transition from a transitory state, say Si, to another transitory state, say Sj (i.e.,

Ii = Ij = 0) such that Fj = Fi + 1 and Cmax
j ≥ Cmax

i . To this end, the cascading

failure can be described as a sequence of Markovian transitions among transitory

states with a final transition to some absorbing state.

We represent the state of the system at time t ≥ 0 by X(t), an S-valued,

continuous-time Markov chain. The transition probability matrix of the chain X(t)

is denoted by P(t), where its ijth element is pij(t) = P{X(τ + t) = Sj|X(τ) = Si},

t ≥ 0. Note that the notation P is used to represent probability measure defined on

the collection (σ-algebra) F of all events (subsets of the sample space Ω) generated

by the random variables defined in this dissertation.

Let qij for i 6= j represents the probability rate of transition from state Si to

state Sj, which depends upon the origin and destination states of the transition.

This dependency allows for cascading behavior and will be explained in details in

Section 4.3. The qij is defined as

qij =







limh→0+
pij(h)

h
for i 6= j

− limh→0+
1−pij(h)

h
for i = j

, (4.1)

where qii satisfies qii = −
∑N

j=1,j 6=i qij [81]. A Markov chain X(t) is completely
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determined by the transition rate matrix Q with qij as its ijth element.

We formulate the transition rates of the SASE model based upon the transition

probabilities of its embedded Markov chain (EMC). We denote the state of the EMC

at discrete time instant ℓ by X(ℓ). The one-step transition probability matrix of

the EMC is denoted by PEMC. According to the definition of the SASE model, the

elements of PEMC have the following form

pEMC

ij =



























0 Fj < Fi or Fj − Fi > 1 or

Cmax
j < Cmax

i or (Ii = 1 and j 6= i)

1 Ii = 1 and j = i

Ptrans(Si, Sj) otherwise

, (4.2)

where Ptrans(Si, Sj) represents the probability that the system transits from a tran-

sitory state, say Si, to state Sj for which the value of Fj and Cmax
j does not violate

the transition rules in (4.2). In Section 4.3, we will parametrically characterize

Ptrans(Si, Sj) based upon our observations from simulations.

We approximate qij based upon (4.1) and for a small ∆t as qij ≈
pEMC
ij

∆t
for i 6=

j. We consider ∆t as (the small) unit of time approximating the average time

between failures during the rapid escalation phase of the cascading behavior, which

is relatively small compared to the total duration of cascading failures. We estimate

such ∆t using the historical blackout data provided in [4,5]. Note however that based

upon the individual blackout events, ∆t may vary depending on the power system

and its operating characteristics. For example, historical data suggest approximately

18 transmission-line failures per minute on average during the rapid escalation phase

of the cascading failure for the August 2003 Eastern Interconnection blackout (∆t ≈

0.055 min) [4] while this number is 4 failures per minute for the August 1996 Western

Interconnection blackout (∆t ≈ 0.25 min) [5]. In our calculations we have selected an

intermediate value of ∆t = 0.1 min. We emphasize that while we consider a fixed ∆t

for the system, it is the state-dependent nature of the transition probabilities, pEMC

ij ,
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that inherently adjusts the transition rates to accommodate all phases of cascading

failures, such as the precursor and escalation phases.

In the next section, we use our power-system simulation methodology introduced

in Chapter 2 for parametric formulation of pEMC

ij .

4.3 Parametric modeling of transition rates

In this section, we parametrically model Ptrans(Si, Sj) introduced in (4.2). In order to

simplify the formulation of the Ptrans(Si, Sj), we consider the probability components

depicted in Fig. 4.5. We will introduce the components represented in Fig. 4.5 as we

go through this section and refer to this figure as necessary.

Figure 4.5: The components of Ptrans(Si, Sj). First, transition from a transitory state Si

is divided into two categories: transition to an absorbing state S∗
i and transition to a

transitory state (states in the dashed circles are transitory states). Next, the transition
to a transitory state is also divided into two categories: transition to a state S∗∗

i with the
same Cmax values as that of Si, and transition to a state whose maximum capacity of the
failed lines is larger than Cmax associated with the state Si.
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Note that for every transitory state, say Si ∈ S, there is a single associated

absorbing state, which we denote by S∗
i (see Fig. 4.5). Note that state S∗

i has the

same F and Cmax values as those for Si but it has I∗i = 1 (where as Ii = 0).

Based upon whether the next state of the transition is an absorbing state or not, we

decompose the transition probability as follows:

Ptrans(Si, Sj)=

P{X(ℓ+1)=Sj|X
(ℓ)=Si, X

(ℓ+1)=S∗
i }P{X

(ℓ+1)=S∗
i |X

(ℓ)=Si}

+P{X(ℓ+1)=Sj|X
(ℓ)=Si, X

(ℓ+1)6=S∗
i }P{X

(ℓ+1)6=S∗
i |X

(ℓ)=Si}. (4.3)

Note that X(ℓ+1) = S∗
i implies that cascading failure ends in the system. As

such, we define the probability of cascade-stop transition as Pstop(Si)
△

= P{X(ℓ+1)=

S∗
i |X

(ℓ)=Si}. Clearly, P{X(ℓ+1)=Sj|X(ℓ)=Si, X
(ℓ+1)=S∗

i } = δS∗

i ,Sj
, where δS∗

i ,Sj
= 1

when Sj is equal to S∗
i and δS∗

i ,Sj
= 0 otherwise. Moreover, we define P{X(ℓ+1)=

Sj|X(ℓ)=Si, X
(ℓ+1) 6=S∗

i }
△

= (1 − δS∗

i ,Sj
)Pcont(Si, Sj), where Pcont(Si, Sj) is the condi-

tional cascade-continue transition probability. Thus, we rewrite (4.3) as

Ptrans(Si, Sj) = δS∗
i ,Sj

Pstop(Si)

+ (1− δS∗

i ,Sj
)Pcont(Si, Sj)(1− Pstop(Si)), (4.4)

for Si, S
∗
i , Sj ∈ S. Note that

∑N
j=1 Ptrans(Si, Sj) = 1.

The rest of this section is devoted to the parametric representation of Pstop(Si)

and Pcont(Si, Sj), and therefore, the parametric formulation of Ptrans(Si, Sj) due to

(4.4).

4.3.1 Cascade-stop probability

In this section, we present simulation results that show the dependency of Pstop(Si) on

Fi and Cmax
i . To simplify the observation of the effects of Fi and Cmax

i on Pstop(Si), we
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have studied Pstop(Si) as a function of Fi and Cmax
i individually represented, respec-

tively, by P
(1)
stop(Fi) and P

(2)
stop(C

max
i ). In Appendix A, we present a simple approach

similar to the approach presented in [82] in conjunction with certain reasonable

assumptions (originated from the simulations of the power grid and power grid char-

acteristics) to approximately represent Pstop(Si) in terms of a weighted superposition

of P
(1)
stop(Fi) and P

(2)
stop(C

max
i ) as

Pstop(Si) = wP
(1)
stop(Fi) + (1− w)P

(2)
stop(C

max
i ), (4.5)

where in our formulation we simply set w = 0.5.
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Figure 4.6: Simulation results of P
(1)
stop(Fi) for r = 0.7, e = 0.1 and three values of θ. The

solid line is the parametric approximated function when θ = 0.

Figures 4.3-a and 4.3-b show the simulation results of P
(1)
stop(Fi) and P

(2)
stop(C

max
i ),

respectively, for the IEEE 118-bus and the IEEE 300-bus systems. The IEEE 118-bus

system has 186 transmission lines and the IEEE 300-bus systems has 411 transmission

lines. Note that P
(1)
stop(Fi) and P

(2)
stop(C

max
i ) exhibit the same general behavior in both

grids. Due to the space constraints, we will limit our presentation to the IEEE 118-

bus system with the knowledge that a similar approach for the parametric modeling

of transmission rates can be applied to larger scale grids by adjusting the parameters

of the model.
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Figure 4.7: Simulation results of P
(2)
stop(C

max
i ) for r = 0.7, e = 0.1 and three values of θ.

The solid line is the parametric approximated function when θ = 0.

Figures 4.6 and 4.7 show the simulation results of P
(1)
stop(Fi) and P

(2)
stop(C

max
i ) for

the IEEE 118-bus system, respectively, for different operating settings of the grid.

The results of our simulations are obtained using 1,000 scenarios of random initial

disturbances with two or three random line failures. We considered three different

values of load-shedding constraint level θ in order to show that operating charac-

teristics of the power grid affect the stability probabilities while the value of r and

e are fixed to be 0.7 and 0.1, respectively (the effects of r, and e are discussed in

Section 4.3.3).

From Fig. 4.6, we observe that P
(1)
stop(Fi) is bowl shaped, with three identifiable

phases, which are described in detail below. The importance of the bowl-shape form

is that it reflects the general cascading behavior as failures accumulate. Similar three-

phase behavior can be observed in the historical cascading-failure data presented in

Fig. 4.2. Specifically, we will revisit the bowl-shape function in Section 4.5.1.1 and ex-

plain that the bowl-shape form for the cascade-stable probability generally increases

the size of large blackouts and leads to heavy-tail property for the distribution of the

blackout size.

First phase– This phase represents the regime when the likelihood of an additional
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failure increases substantially as a function of the number of failures. A qualitatively

similar increase in the failure propagation probability has also been observed by

Dobson [20]. This phase starts at Fi = 2 (due to N-1 criterion). To this end,

we define the parameter a1 as P
(1)
stop(2), which represents, intuitively speaking, the

reliability of the power grid to initial disturbances with two failures. Also in the first

phase, P
(1)
stop(Fi) decreases from a1 to a small P

(1)
stop(Fi) value, ǫ (our results suggest

ǫ = 0.05), as the number of failures increases and reaches a critical Fi = a2m value.

Second phase– This phase represents the escalated phase of cascading failures.

During this phase P
(1)
stop(Fi) is small (we assume P

(1)
stop(Fi) = ǫ during this phase) and

the power grid is highly vulnerable. This phase starts at Fi = a2m, which represents

the number of failures in the power grid after which the cascading failure enters the

escalated phase. As expected, our results show that during this phase the efficiency

of the control action (represented by θ) hardly affects P
(1)
stop(Fi).

Third phase– As Fi increases further, the probability of having an additional

failure decreases as cascading-failure behavior begins to phase out. This behavior can

be attributed to the finite size of the power grid or the fact that as more failures occur

“functional islands” may form in the grid, leading to the termination of cascading

failures. Therefore, in this phase the value of P
(1)
stop(Fi) rises and finally P

(1)
stop(m) = 1.

Note that here we simply consider a fixed parametric model for the third phase of

P
(1)
stop(Fi), which only roughly approximates the average scenario of various operating

settings.

We propose the following parametric model to capture the three aforementioned

phases in P
(1)
stop(Fi):

P
(1)
stop(Fi) =



















a1

(

a2m−Fi

a2m

)4

+ ǫ 2 ≤ Fi ≤ a2m

ǫ a2m < Fi ≤ 0.6m

min
{

(

Fi−0.6m
m−0.6m

)4
+ ǫ, 1

}

0.6m < Fi ≤ m

. (4.6)
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The parametric P
(1)
stop(Fi) is shown in Fig. 4.6 for θ = 0. Recall that we have judi-

ciously selected a common parametric model for the third phase of the bowl-shaped

function across various operating settings. Consequently, the parametric function

P
(1)
stop(Fi) shown in Fig. 4.6 does not accurately match the simulation results for

θ = 0 scenario in the third phase.

The empirically calculated P
(2)
stop(C

max
i ) is shown in Fig. 4.7. The value of P

(2)
stop(C

max
i )

indicates, intuitively speaking, the reliability of the power grid when the maximum

capacity of the failed lines in the grid is Cmax
i . Note that P

(2)
stop(C

max
i ) decreases as

Cmax
i increases, which means that the power grid is more vulnerable to additional

failures when it has lost at least a line with a large capacity value. We also observe

that P
(2)
stop(C

max
i ) decreases for all Cmax

i values as θ increases; however, the effect of

θ on the reliability is larger when Cmax
i is smaller. This is because control actions

are most effective when they are implemented in the beginning phase of cascading

failures where Cmax is more likely to be small.

The P
(2)
stop(C

max
i ) is formulated parametrically as

P
(2)
stop(C

max
i ) = max

{

a3

(

Cmax
i −max{C}

max{C}

)4

, a4

}

, (4.7)

where a3 , P
(2)
stop(min{C}) and a4 , P

(2)
stop(max{C}). The parametric function of

P
(2)
stop(C

max
i ) is also shown (in solid line) in Fig. 4.7. This completes the paramet-

ric modeling of Pstop(Si) based on (4.5). In Section 4.3.3 we show that the value

of a1, ..., a4 are affected by r, e, and θ. In the SASE model we will perceive the

parameters a1, ..., a4 beyond abstract model parameters but as parameters that gov-

ern the cascading behavior while maintaining a physical connection to the operating

characteristics of the system.
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Figure 4.8: Simulation results of Phc(Si) as a function of Fi and Cmax
i for r = 0.7, e = 0.1

and θ = 0.1.
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Figure 4.9: Simulation results of PCmax(Si, Sj) as a function of Cmax
i and Cmax

j for r = 0.7
and e = 0.1 and two values of θ. The parametric approximations are represented by solid
lines.

4.3.2 Cascade-continue probability

Recall that for every transitory state Si there is only one transitory state with the

same Cmax as that of state Si and exactly one more failure than that for state Si. We

denote such state by S∗∗
i (see Fig. 4.5). Failure of a line with capacity smaller than
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or equal to Cmax
i results in transitioning from state Si to state S∗∗

i . Similarly to (4.3),

depending on whether the next line failure has larger capacity than Cmax
i or not, we

can write the conditional cascade-continue transition probability by conditioning on

S∗∗
i as

Pcont(Si, Sj) = (1− Phc(Si))δS∗∗

i ,Sj

+ (1− δS∗∗

i ,Sj
)PCmax(Si, Sj)Phc(Si), (4.8)

for Si, S
∗∗
i , Sj ∈ S and Ij = 0, where Phc is defined as the probability of having

a line failure that results in a higher capacity of the failed lines than Cmax
i . In

(4.8) Phc(Si)
△

= P{X(ℓ+1) 6=S∗∗
i |X(ℓ)=Si, X

(ℓ+1) 6=S∗
i } and (1 − δS∗∗

i ,Sj
)PCmax(Si, Sj)

△

=

P{X(ℓ+1)=Sj |X(ℓ)=Si, X
(ℓ+1)6=S∗∗

i , X(ℓ+1)6=S∗
i }.

The empirically calculated Phc(Si) as a function of Fi and Cmax
i is shown in Fig. 4.8

with the same simulation settings as that of the previous subsection. Our simulation

results show strong evidence that Fi and Cmax
i affect Phc(Si). Results suggest that

regardless of the Cmax
i value of the power-grid state, as Fi increases the probability

that a line with capacity larger than Cmax
i fails increases. This is meaningful because

as the number of failures increases the power grid becomes vulnerable and hence

large transmission lines may be affected by contingencies. Moreover, the ratio of the

number of transmission lines with capacity larger than Cmax
i to the total number of

functional lines increases with Fi. The next general observation from Fig. 4.8 is that

for the same Fi value, as Cmax
i increases the probability that a line with capacity

larger than Cmax
i fails decreases. This is mainly due to decrease in the number of

lines with capacity value larger than Cmax
i (as Cmax

i increases). Furthermore, it is

less likely to have states with Cmax
i value after Fi reaches a certain threshold denoted

by Γi (the value of Γi increases as C
max
i increases). This means that as Fi approaches

Γi, line failures with capacity larger than Cmax
i become highly likely.

Based upon our simulations the role of θ, r and e in Phc(Si) is subtle. Therefore,

here we approximate Phc(Si) for different operating characteristics of the power grid
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with a fixed function. The above trends in Phc(Si) are captured by:

Phc(Si) =







α(Fi + β)3 2 ≤ Fi ≤ Γi

1 Γi < Fi

, (4.9)

for Si ∈ S, where α = 6 × 10−7 and β is Cmax
i dependent. The parametric Phc(Si)s

are shown in Fig. 4.8. Note that the over-estimation of the curves in Fig. 4.8 is due

to employing a common parametric model for various operating settings as well as

the introduced parameter Γi (there is no simulation data when Fi is beyond Γi.)

Next, we find the parametric formulation for PCmax(Si, Sj). Our simulation results

suggest that Cmax
i and Cmax

j play key roles in determining PCmax(Si, Sj). Figure 4.9

shows the empirically calculated PCmax(Si, Sj) as a function of Cmax
i and Cmax

j . From

Fig. 4.9 we observe that conditional on the occurrence of an additional failure with

capacity larger than Cmax
i the probability of transitioning to state Sj decreases as

Cmax
j increases. The results suggest that lines with capacity value close to Cmax

i have

a higher probability of failure than those with much larger capacities than Cmax
i .

We also observe that the probability of transitioning to state Sj increases as Cmax
i

increases. This is because the power grid becomes more vulnerable when Cmax
i is

large. By comparing the simulation results correspond to two values of θ in Fig. 4.9

we conclude that role of θ in PCmax(Si, Sj) is also subtle and similarly to Phc(Si), the

effect of operating characteristics on PCmax(Si, Sj) is not considered. To capture the

described trends, PCmax(Si, Sj) is modeled parametrically as

PCmax(Si, Sj) =
w(Cmax

j )
∑

k:Ck>Cmax
i

w(Ck)
, (4.10)

where w(Ck) is what we term the weight of transition to a state with the maximum

capacity of the failed line equal to Ck. We have assigned these weights such that

they approximate the simulation results presented in Fig. 4.9 using (4.10). Here, the

value of the weights are set to w(80MW) = 2.2, w(200MW) = 1.5, w(500MW) = 0.5,

and w(1500MW) = 0.01. This completes the modeling of pEMC

ij presented in (4.2).
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Figure 4.10: SASE-model parameters (a) a1, (b) a2, (c) a3, and (d) a4 as a function of r
parameterized by e.

4.3.3 Effects of operating characteristics on parameters of

the SASE model

The SASE model parameters a1, ..., a4 determine different cascading behaviors. These

parameters may vary under different operating conditions and also across different

power grids due to different connectivity pattern and components characteristics. Re-

call that we made the general observation that the power grid is more reliable when

a1, ..., a4 are larger. To illustrate the effects of operating characteristics on a1, ..., a4,

the values of these parameters (obtained based upon simulation results) are shown

in Fig. 4.10 and Fig. 4.11 for different values of the load-shedding constraint level θ,
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Figure 4.11: SASE-model parameters (a) a1, (b) a2, (c) a3, and (d) a4 as a function of e
parameterized by θ.

the power-grid loading level r and the transmission capacity estimation error e. Our

simulation results suggest that the power grid is more reliable (a1, ..., a4 are larger)

when r, e, and θ are small. We observe that when any of the r, e, and θ parameter

increase they add more stress to the system and the effect of contingencies becomes

larger. Therefore, the probability of an additional failure in the system increases

(a1, a3, and a4 decrease). We also observe that when any of r, e, or θ increase, the

cascading failure enters the rapid escalation phase with smaller number of failures

(a2 decreases).
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4.4 Analysis of the SASE model

In this section, we analyze the SASE model by understanding the properties of the

transition probability matrix P(t). To simplify the analysis, we first rearrange the

indices of states in S by following three simple rules so thatQ becomes upper diagonal

matrix denoted by Qd. The three rules pertain the indices of states in Qd such that:

(1) i < j if Fi < Fj; (2) i < j if Fi = Fj but Cmax
i < Cmax

j ; and (3) j = i + 1 if

Fi = Fj and Cmax
i = Cmax

j , but Ii = 0 and Ij = 1. Note that the SASE Markov

chain is not irreducible (and hence not ergodic) because Qd is upper diagonal. This

further implies that there is no stationary distribution for the SASE model and the

canonical limit theorems of ergodic Markov chains are not applicable. Regardless,

P(t) is governed by

P′(t) = QdP(t), (4.11)

where P′(t) denotes the matrix whose elements are time derivative of pij(t) [81].

In principle, the solution of (4.11) is given by P(t) = eQ
dtP(0). While the nu-

merical solutions of P(t) can be easily obtained, to have better insight we pursue

an analytical approach which can result in the asymptotic solution of P(t). To

do so, the eigenvalues λ1, λ2, . . . , λN of Qd and a complete system of associated

right eigenvectors u1,u2, . . . ,uN need to be determined. Then, P(t) can be rep-

resented as P(t) = eQ
dt = UΛ(t)V, where U is the matrix whose column vectors

are u1,u2, . . . ,uN and V = U−1. The matrix Λ(t) is diagonal with eλit as its ith

diagonal element.

Due to the upper diagonal form of Qd and by carrying out simple matrix manip-

ulations, we can express pij(t) as

pij(t) = βij +
∑

i<k<j

αike
λkt, (4.12)

where βij
△

= U(i, j)V(j, j) and αik
△

= U(i, k)V(i, k). Notice that V(j, j) = 1/U(j, j)
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for j = 1, 2, . . . , N . Since Qd is upper diagonal λk is negative for all k, and hence

limt→∞ pij(t) = βij .

Further, using the asymptotic analysis, we can derive the conditional probability

that a power grid eventually reaches a state with n failures from an initial state Si

defined as

D(n|Si)
△

=
∑

j∈Jn

lim
t→∞

pij(t) =
∑

j∈Jn

βij . (4.13)

Hence, the probability mass function (PMF) of the blackout size, conditional on the

initial state, can be computed by calculating D(n|Si) for n = Fi, . . . , m.

Now, let B(t,M |Si) be the conditional probability of reaching a state with M

or more failures by time t starting from an initial state Si. Then B(t,M |Si) can be

obtained as follows:

B(t,M |Si) =

m
∑

n=M

∑

j∈Jn

pij(t), (4.14)

where Jn represents the set of indices of states with n failures, i.e., Jn
△

= {j : Fj =

n}. B(t,M |Si) estimates the evolution of the risk of cascading failures in time.

Theorem 4.4.1 represents a more elegant representation of B(t,M |Si) with a system

of differential equations. Before stating Theorem 4.4.1, we introduce the notation

used in this theorem. Recall that Pstop(Si) represents the cascade-stop probability

introduced in Section 4.3.1, γW represents the transition rate corresponding to (1−

Phc(Si)), γUj
represents the transition rate corresponding to Phc(Si)PCmax(Si, S

uj)

and γ =
∑

j∈J γUj
+ γW . Further, SW and Suj denote states with the same Cmax as

the initial state Si and with larger Cmax than the initial state Si, respectively. Here,

if Cf represents the capacity of the new failure in the system then the subscript j in

Uj is for j ∈ J , where J
△

= {j|Cf = Cj , Cj ∈ C andCj > Cmax}.

Theorem 4.4.1. The probability of reaching a blackout of size M or larger in a time

interval t and from an initial state Si (with Fi < M) is characterized by the following
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system of differential equation:

dB(t,M |Si)

dt
= −γB(t,M |Si) + (1− Pstop(Si))

(

γWB(t,M |Sw)

+
∑

j

γUj
B(t,M |Suj )

)

,

(4.15)

with the following initial conditions:

B(t,M |Si) = 1, if Fi ≥ M. (4.16)

The approach to prove Theorem 4.4.1 is based on regeneration theory presented

in Chapter 5. We will therefore postpone the proof of Theorem 4.4.1 to Chapter 5.

As the probability of reaching blackout for a power-grid state Si is expressed based

on the probability of reaching a blackout starting form states Suj and Sw, we have

a set of coupled differential equations which must be solved simultaneously. We can

also use asymptotic analysis to derive the asymptotic behavior of B(t,M |S) based

on (4.13) as following:

ρi(M)
△

= lim
t→∞

B(t,M |Si) =
m
∑

n=M

D(n|Si). (4.17)

4.5 Analytical results

In this section, we present results obtained from the SASE model applied to IEEE-

118 bus system.

4.5.1 Conditional blackout probability

The PMF of the blackout size conditional on the initial state, D(n|Si), is calculated

using (4.13) and shown in Fig. 4.12 for a fixed initial state with Fi = 2 and Cmax
i =
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20MW. Figure 4.12 also shows the effects of the operating characteristics of the

power grid on D(n|Si). The results suggest that when the power grid operates

under a reliable operating configuration (small values of r, e and θ) the PMF of the

blackout size shows an exponential decay, which has also been observed empirically

by Dobson (see Figs. 1, 2 in [20]) using real outage datasets [80]. On the other hand,

when the power grid is stressed (large values of r, e and θ) the probability of large

blackouts increases and a hump appears near the tail of the PMF. Note that the

hump represents a heavy tail property in the distribution of the blackout size. The

analysis of historical blackout data [1, 39, 83] has been suggested that the PMF of

the blackout size for power grids has a heavy tail property, specifically, when they

are operating close to their critical limits (see Fig. 1.1). Another example of the

heavy tail distributions is the power-law distribution, which has gained attention

as it is attributed to the complex system dynamics. We will discuss the power-law

distribution of the blackout size in Section 4.5.1.1.

These conclusions from the analytical SASE model are confirmed by power-

system simulation results as shown in Fig. 4.13. Note that the set of simulation

results used to validate these conditional probabilities are different from the set of

results used to identify the model parameters. All in all, these results validate that

the SASE model with its low-dimensional, abstract state space is effective in captur-

ing the dynamics of cascading failures in the power grid.

Note that the average size of cascading failures is approximately four in the

scenario without stress (Fig. 4.13-a) while this number is approximately 61 in the

scenario with stress (Fig. 4.13-b). Therefore, one could use the SASE model to char-

acterize the conditions for occurrence of large blackouts by identifying the operating

characteristics that result in a heavy tail PMF for the size of failures.

Next, consider the conditional probability of reaching a blackout state with at

least M failures from an initial state Si, i.e., ρi(M), as introduced in (4.17). For a
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Figure 4.12: Conditional PMF of the blackout size for four operating-characteristic settings
and Fi = 2 and Cmax

i = 20MW.
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Figure 4.13: The analytical and empirical conditional PMF of the blackout size (a) without
stress, i.e., r = 0.7, e = 0.25 and θ = 0, and (b) with stress, i.e., r = 0.7, e = 0.35 and
θ = 0.2, for the initial state with Fi = 2 and Cmax

i = 20MW.

fixed M and Fi = 2 and Cmax
i = 20MW, the dependence of ρi(M) on r and e is

shown in Fig. 4.16-a and on e and θ in Fig. 4.16-b. As expected, ρi(M) increases

with r, e, and θ. The results also suggest that at certain settings of the operating

characteristics, a phase transition occurs in the blackout probability. This represents
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the critical operating settings for which the power grid becomes highly vulnerable to

cascading failures.

4.5.1.1 A discussion on the power-law distribution

Power grids are believed to exhibit some attributes associated with complex systems

[1,39,83]. It has been suggested that the PMF of the blackout size for these systems

has a heavy tail, specifically, when they are operated near their critical limits. In the

analytical results presented in Fig. 4.12 we showed that the PMF of the blackout size

has a heavy tail when the operating characteristics of the power grid introduce stress

to the system and the size of the hump at the tail increases as the stress increases in

the system.

Another example of the heavy tail distributions is the power-law distribution,

which has gained attention as it is attributed to complex-system dynamics. In this

subsection, we identify attributes of the transition probabilities for the Markov chain

modeling cascading failures that lead to the power-law distribution for the blackout

size. To simplify the analysis, we simplify the SASE model to a Markov chain that

considers the number of failures F and stability variable I as the state variables.

This simplified Markov chain model is presented in Fig. 4.14.

Figure 4.14: A simplified Markov chain model with F and I state variables, which models
the stochastic dynamics of cascading failures in a power grid.
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Recall that in Section 4.3.1 we described how power-system simulations produce

a bowl-shape form for the cascade-stop probability as a function of number of failures

in the system, i.e., P
(1)
stop(Fi). The attributes of the bowl-shape function depend on

the operating characteristics of the power grid (see Fig. 4.6). In this subsection, by

using the simplified Markov-chain model presented in Fig. 4.14, we back calculate the

cascade-stop probability Pstop(Fi) for the model that precisely results in the power-

law distribution for the blackout size. Interestingly, we will show that the numerically

calculated Pstop(Fi), based on this simplified analytical model, is necessarily of a

bowl-shape form for Pstop(Fi); the detail is given below.

As before, we denote the probability of a blackout with n failures by D(n|Si),

which can be easily derived in the following difference equation using the model

presented in Fig. 4.14,

D(n+ 1|Si) =
Pstop(n + 1)(1− Pstop(n))

Pstop(n)
D(n|Si). (4.18)

If we assume, without loss of generality, that the initial state of the power grid has

one failure with I = 0, i.e., Si = (1, 0), then the boundary condition for (4.18) is

D(1|Si) = Pstop(1)

Based on (4.18) if the transition probabilities of the Markov chain are constant,

i.e., Pstop(Fi) is constant, then the chain can model cascading failures in a system

for which the PMF of the blackout size follows an exponential distribution. Next,

to identify the Pstop(Fi) function which results in a power-law distribution for the

blackout size, we input the values of D(n|Si) using the corresponding values of the

PMF of a discrete power-law distribution, namely Zipf’s law. The PMF of this

distribution is as follows

P (n, s,m) =
1

∑m
i=1 i

−s
n−s, (4.19)

where s is the parameter of the distribution andm is the number of lines in the power

grid. In other words, we setD(n|Si) = P (n, s,m), where s is the free parameter of the
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Figure 4.15: (a) PMF of the blackout size, D(n|Si), in log-log scale following the power-law
distribution with various s parameters, and (b) Pstop(Fi) function deduced from D(n|Si)s
of part (a).

model. We have shown the distribution of blackout size, i.e., D(n|Si) = P (n, s,m),

for different values of n and s in log-log scale in Fig. 4.15-a.

As mentioned in [1,39] the NERC historical data indicates a power law scaling of

blackout frequency, when the blackout is measured by unserved energy and the power-

law exponent s of this scaling is approximately between 0.6 to 1.9. Many probabilistic

models have attempted to capture the power-law behavior for the distribution of

size of failures in cascading failures [5,14]. For instance, the PMF of failures for the

CASCADE model presented in [14] is a power law distribution with exponent 1.4.

We have numerically calculated Pstop(Fi) using the difference equation in (4.18)

for the distributions shown in Fig. 4.15-a. The results for function Pstop(Fi) are

shown in Fig. 4.15-b. An important point to notice here is that the results presented

in Fig. 4.15-b using the difference equation (4.18) also represent a bowl-shape func-

tion similar to the one plotted using power-system simulations in Fig. 4.6. Due to

the lack of sufficient parameters that parametrically model the simulation results in

88



Chapter 4. Markov chain framework for cascading failures

(a)

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

Power−grid loading level, r

 ρ
i(4

0
)

 

 

e = 0.1

e = 0.2

e = 0.3

(b)

0.40.350.30.250.2
0

0.2

0.4

0.6

0.8

Capacity estimation error, e

 ρ
i(4

0
)

 

 

θ = 0

θ = 0.1

θ = 0.2

Figure 4.16: Conditional blackout probability ρi(M) for M = 40 as a function of (a) r

parameterized by e, and (b) e parameterized by θ, for the initial state with Fi = 2 and
Cmax
i = 20MW.

Fig. 4.6, we cannot fit the parameters of the SASE model to the bowl-shape func-

tions obtained here; however, based on the results presented in Section 4.3.3, we

can conjecture that the attributes of the bowl-shape function depend on the operat-

ing characteristics of the power grid and thus certain operating characteristic of the

system may lead to the bowl-shape functions that obtained in this subsection. Fur-

ther, we conclude that the bowl-shape behavior for the state-dependent transition

probabilities Pstop(Fi) increases the probability of larger blackouts. In particular,

certain bowl-shape functions result in the power-law distribution for the PMF of the

blackout size. Moreover, as the simulation results in Fig. 4.6 suggest certain operat-

ing characteristics of the system set the system in critical conditions that lead to a

heavy tail, specifically, the power-law distribution for the blackout size. We wish to

emphasize here that the state-dependent transition probabilities are key elements of

the Markov chain framework for modeling cascading failures to capture a wide range

of stochastic behaviors for complex systems such as power grids.
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4.5.2 Conditional blackout probability as a function of time

The numerical results of the conditional blackout probability B(t,M |Si) are calcu-

lated using (4.11) and (4.14). The same results can be obtained using Theorem 4.4.1.

As a representative example, we have calculated B(t, 30|Si) for r = 0.7, e = 0.2 and

θ = 0.1 for different initial states, Si, as shown in Fig. 4.17. As the results show,

the values of Fi and Cmax
i associated with the initial state affect the evolution of the

blackout probability. In particular, both the probability of reaching a power-grid

state with M or more failures and its rate of change during escalation phase increase

with Fi and Cmax
i . We reiterate that while we have assumed a single-line failure

at a time in our model, the escalation phase in the cascading failure occurs as a

result of shorter time between failures due to higher transition rates for such states

(as the transition rates are state dependent). Also, note that B(t,M |Si) exhibits

three phases. Interestingly, the three-phase theme of cascading failures were also

seen in the behavior of the cascade-stop probability as well as the evolution of the

accumulative number of failures.
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Figure 4.17: Probability of reaching a blackout, B(t,M |Si), with M = 30 or more failures
for r = 0.7, e = 0.2, θ = 0.1, and initial states (a) with Fi = 3, and (b) with Fi = 6, and
different values of Cmax

i .
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4.5.3 Failure evolution

Figure 4.18 shows four realizations of the cascading-failure scenarios in terms of the

evolution of the cumulative number of failures obtained using the SASE Markov

chain. The initial state of the power grid in all the four realizations has two line

failures with Cmax
i = 80MW. Note that in the realization with 163 eventual failures,

the number of failures increases relatively gently at the beginning; however, failure

of a line with large capacity at t = 10 min results in rapid increase in the number of

failures in the power grid. In contrast, the number of failures in other realizations

increases rapidly right from the beginning but they transit to stable state earlier as

the value of Pstop(Si) in these cases is larger. Note that from Fig. 4.18 we observe

similar forms to those shown in Fig. 4.2 for the historical blackouts.
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Figure 4.18: Realizations of the evolution of the cumulative line failures using the SASE
model for r = 0.7, e = 0.2, θ = 0.1, Fi = 2, and Cmax

i = 80MW.

4.5.4 Size of cascading failures

To assess the severity of cascading failures we consider the number of subsequent

failures induced by each initial failure. For a given initial state Si with Fi initial
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failures, we define RSi

△

= (Fi − F end
i )/Fi, where F end

i is the random variable for the

final number of failures in the power grid after cascading failure ends. Here, we study

the mean of RSi
as a metric representing the severity of cascading failures, which

can be calculated as E[RSi
] =

∑N
j=1 limt→∞ pij(t)(Fj −Fi)/Fi. (For this metric to be

meaningful the initial number of failures Fi must be small, which in general is met in

most real scenarios.) Figures 4.19 and 4.20 show that E[RSi
] (for Fi = 3) increases

with r, e and θ. From results in Fig. 4.19 we observe that there is a critical value of

load-shedding constraint level (approximately θ = 0.2) above which strong cascading

behavior is observed. Furthermore, this trend becomes more evident and aggressive

as the capacity estimation error e increases. Similarly, the results in Fig. 4.20 suggests

that there is a critical loading level (approximately r = 0.8) for which the rate of

change in E[RSi
] increases abruptly for all values of e. Here, we reiterate that the

N-1 criterion has been ensured in all loading levels of the power grid; therefore, the

initial contingency is assumed to have at least two initial failures.
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Figure 4.19: E[RSi
] for the IEEE 118-bus system as a function of load-shedding constraint

level θ and the capacity estimation error e for r = 0.7 and the initial state with Fi = 3 and
Cmax
i = 20MW.
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Figure 4.20: E[RSi
] for the IEEE 118-bus system as a function of the power-grid loading

level r and the capacity estimation error e for θ = 0 and the initial state with Fi = 3 and
Cmax
i = 20MW.

4.6 Summary and conclusions

We have developed a scalable and analytically tractable probabilistic model, termed

the stochastic abstract-state evolution (SASE) model, which describes the stochastic

dynamics of cascading failures using Markov chains. The state space of the SASE

model is a reduced, abstract state space extracted from the large space of all possible

power-grid states. The definition of the abstract states retains key physical attributes

of the power grid. We introduced absorbing states in the state space to model the

stable states of the system. In contrast to the models that are based on pure birth-

chains, the definition of the absorbing states in the state-space of the Markov chain

enables modeling of various blackout sizes in the system. We have formulated the

state-dependent transition rates associated with the SASE model in terms of key

operating characteristics of the power grid including the power-grid loading level,

the load-shedding constraint level and the capacity estimation error. The analysis of

the SASE model and its asymptotic behavior together enable determining the PMF

of the blackout size, the evolution of the blackout probability from a specific initial
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state, as well as assessing the severity of the cascading behavior as a function of

various operating settings of the power grid. The SASE model also enables the iden-

tification of critical regions of the space of key power-grid operating characteristics

for which severe cascading behavior may occur. A key insight provided by this model

is that the PMF of the blackout size has a heavy tail specifically when the grid is

operating under stress scenarios. We also identified the transition probabilities for

the Markov chain model, which result in power-law distribution for the blackout size.

Numerical results based on the analytical model and the power-system simulations

both indicate that the probability that cascading phenomenon terminates in a state

(cascade-stop probability) has a bowl-shape form as a function of number of failures

in the system. The importance of the bowl-shape function is that it results in the

heavily tail distribution for the blackout size and thus represents a condition for

the critical behavior in the system. To the best of our knowledge, this important

fact about the critical form for cascade-stop probability that leads to the heavy-tail

distribution for the blackout size was not known heretofore.
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Chapter 5

Regeneration-based framework for

cascading failures

In Chapter 4, we introduced Markov chains with state-dependent transition prob-

abilities as a strong tool to model cascading failures. In this chapter, we present

another probabilistic framework for modeling cascading failures based on regenera-

tion theory, which similarly to the Markov chain model, provides a strong tool for

capturing the stochastic dynamics of cascading failures, albeit in a more general set-

ting, as described next. Although exponential distribution for events (e.g., failures)

in power grids is a well-accepted assumption, the presented model in this chapter

is sufficiently general to capture an arbitrarily specified probability distribution for

the events in the system in a non-Markovian setting. Here, we formulate a general

regeneration-based framework for modeling the stochastic dynamics of cascading

failures in power grids. We also derive, as a special case, a systems of differential

equations describing the probability of the blackout for a power grid with Marko-

vian settings using this framework, which supplements the analysis in Section 4.4.

Specifically, this framework provides an elegant approach for proving Theorem 4.4.1

describing the probability of reaching a blackout with a specified number of failures
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in a time interval.

5.1 Preliminaries

Similarly to the Markov-chain model, the presented framework in this chapter de-

scribes the stochastic dynamics of the system by a sequence of transitions among

the states of the system. Similarly to the SASE model, we define the state space of

this framework based on extracting a reduced abstraction of large-scale power grids

using a small number of aggregate state variables.

In this framework, we use the number of failed lines F and the maximum capacity

of the failed lines Cmax as the descriptor of the state of the power grid. We denote

the state of the power grid by Si = (Fi, C
max
i ). Note that compared to the state

space introduced for the SASE model in Chapter 4 we do not consider the stability

parameter I as a state variable. This point simplifies the regeneration equations

introduced in this chapter. Meanwhile, we capture the effect of stability of certain

states through the probability of transiting out of states. In other words, the prob-

ability that transiting out of a state never occurs is equal to the cascade-stability

probability introduced in Chapter 4. As such, the states of this model are partially

absorbing, which we define to be states that when hit then the system will never

leave them with certain probability (cascade-stop probability).

The idea of regeneration is that the occurrence of an event regenerates, or stochas-

tically replicates, the same problem albeit with new initial conditions. The problem

considered here is the characterization of the probability of reaching a blackout of an

arbitrary size in any time interval starting from an initial grid state. In our model,

the event that regenerates the problem is the first line failure in a power-grid state.

Before formulating this problem theoretically, let us review the failure events in the

system.
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In this dissertation, we assume at most a single failure occurs at any time instant

in the system. Recall from Chapter 4 that when a single line failure occurs in the

system with state Si = (Fi, C
max
i ) then the state of the system changes in one of

the following ways. First, if the capacity of the newly failed line, Cf is larger than

Cmax
i then the new grid state becomes Su

i+1 = (F u
i+1, C

u,max
i+1 ) where Cu,max

i+1 = Cf

and F u
i+1 = Fi + 1. Second, if Cf ≤ Cmax

i then the new grid state becomes Sw
i+1 =

(Fw
i+1, C

w,max
i+1 ) where Cw,max

i+1 = Cmax
i and Fw

i+1 = Fi + 1. Hence, we can categorize

the events that transpire after a line failure, starting from state Si = (Fi, C
max
i ), into

two types. These categories of events are introduced to simplify the characterization

of the transition rates among the states as introduced in Chapter 4. Let Uj and

W represent the time of the transition of state Si to state S
uj

i+1 and to state Sw
i+1,

respectively. The subscripts of the first random variable is for j ∈ J , where J
△

=

{j|Cf = Cj, Cj ∈ C andCj > Cmax
i }.

The key point in the regeneration-based model is to define a certain special ran-

dom variable, called the regeneration time, τ , defined as τ
△

= minj{Uj ,W}, which

represents the time to the first failure, or equivalently, the time of transition to a new

state. To reiterate, the key feature of the event at time τ is that its occurrence will

regenerate the problem at τ , which has the same statistical properties and dynamics

as the original problem but with different initial configurations, viz., different num-

ber of failures with possibly different maximum capacity of the failed lines. Next, we

present the general regeneration-based framework for the introduced problem.

5.2 Regeneration-based formulation

Similarly to Chapter 4, we use the notation B(t,M |Si) to represent the probability of

reaching blackout size M or larger (a blackout with M or more line failures) in a time

interval t and initial grid state Si = (Fi, C
max
i ). We denote the probability density
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function (pdf) of τ by fτ (s). In the non-Markovian setting fτ (s) can follow arbitrarily

specified probability distributions. Note that when Fi ≥ M then B(t,M |Si) = 1.

This is because the state has at least M failures and the probability of reaching a

blackout state of size M or larger is one. Now, we consider the case Fi < M and

state the general integral equations describing B(t,M |Si) in Theorem 5.2.1.

Theorem 5.2.1. The probability of reaching a blackout of size M or larger in a

time interval t and from an initial state Si = (Fi, C
max
i ), where Fi < M and the

probability distribution of events in the system follows an arbitrary distribution fτ (s)

can be characterized by the following differential equation:

B(t,M |Si) = (1− Pstop(Si))

∫ t

0

(

P{Eτ = W |τ = s}B(t− s,M |Sw)

+
∑

j∈J

P{Eτ = Uj |τ = s}B(t− s,M |Suj)

)

fτ (s)ds, (5.1)

with the following initial conditions:

B(t,M |Si) = 1, if Fi ≥ M. (5.2)

Next, we present the proof of Theorem 5.2.1.

Proof. By exploiting the properties of conditional expectations we can write,

B(t,M |Si) = (1− Pstop(Si))

∫ t

0

B(t,M |Si, τ = s)fτ (s)ds. (5.3)

Note that B(t,M |Si, τ = s) is the probability of reaching a blackout with at least M

failures in the time interval t conditioning on τ being equal to s (first event occurs

at s). We write this probability as

B(t,M |Si, τ = s) = P{Eτ = W |τ = s}B(t,M |Si, τ = s, Eτ = W )

+
∑

j∈J

P{Eτ = Uj |τ = s}B(t,M |Si, τ = s, Eτ = Uj),

(5.4)
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where Et represents the category of the event that occurred at time t. The condi-

tional probabilities in (5.4) for the event {Eτ = Uj} can be written as follows, which

represents the regeneration of a new problem with new initial conditions.

B(t,M |Si, τ = s, Eτ = Uj) = B(t− s,M |Suj ). (5.5)

The new problem that has been regenerated based on (5.5) is the characterization of

the probability of reaching a blackout of size M or large in a time interval with length

t− s and the initial power-grid state as Suj . Similarly, we can write B(t,M |Si, τ =

s, Eτ = W ) = B(t − s,M |Sw). The proof of the regeneration equation of (5.5) is

similar to the approach presented in [84]. Substituting (5.5) in (5.4) and substituting

the result in (5.3) completes the proof.

The general framework presented in this section describes a system of integral

equations, where for each state Si as the initial state we have an equation in the

form of (5.1). We have to solve this system of coupled equations simultaneously in

order to numerically calculate B(t,M |Si).

5.3 Regeneration-based formulation with Markov

property

As a special case of the general framework presented in Theorem 5.2.1, in this section,

we derive the closed form differential equations for B(t,M |Si) when fτ (s) has Markov

property (i.e., follows an exponential distribution). The discussion here based on the

framework presented in Section 5.2 leads to the proof of Theorem 4.4.1.

Assume that random variables Uj and W are mutually independent and follow an

exponential distribution with parameters (inverse of the mean) γUj
and γW , respec-

tively. As mentioned in Chapter 4, we assume that γUj
and γW are state dependent
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and also depend on the operating characteristics of the grid. If we assume that ran-

dom variables in the system are independently and identically distributed following

exponential distribution (i.e., having Markov property) then this implies that the

minimum of these random variables is also an exponential random variable. As such,

τ is also an exponential random variable with rate γ =
∑

j∈J γUj
+ γW . Further,

P{Eτ = W |τ = s} = γW/γ, and P{Eτ = Uj |τ = s} = γUj
/γ. Based on our discussion

in Section 4.3, γW represents the transition rate among the states corresponding to

(1 − Phc(Si)) (probability that a new failure in the system has a smaller or equal

capacity compared to the current Cmax
i ) and γUj

represents the transition rate among

the states corresponding to Phc(Si)PCmax(Si, S
uj), (where PCmax(Si, S

uj) represents

the probability of transiting to state Suj with larger capacity compared to Cmax
i ).

For completeness we restate Theorem 4.4.1, which describes B(t,M |Si) using a

system of differential equations.

Theorem 4.4.1 The probability of reaching a blackout of size M or larger in a

time interval t and from an initial state Si (with Fi < M) and fτ (s) following

an exponential distribution is characterized by the following system of differential

equation:

dB(t,M |Si)

dt
= −γB(t,M |Si) + (1− Pstop(Si))

(

γWB(t,M |Sw)

+
∑

j

γUj
B(t,M |Suj )

)

,

(5.6)

with the following initial conditions:

B(t,M |Si) = 1, if Fi ≥ M. (5.7)
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Proof. Following the steps presented for the proof of Theorem 5.2.1, we can write

B(t,M |Si) = (1− Pstop(Si))

∫ t

0

(

γWB(t− s,M |SW )

+
∑

j∈C

γUj
B(t− s,M |Suj )

)

e−γsds. (5.8)

Now, by using the Leibnitz integral rule and change of variables in (5.8), we can

derive (5.6).

Because the probability of reaching a blackout for a power-grid state Si is ex-

pressed based on the probability of reaching a blackout starting form states S
uj

i+1 and

Sw
i+1, we have a set of coupled differential equations which must be solved simulta-

neously to obtain the numerical results for B(t,M |Si).

5.4 Summary and conclusions

In this chapter, we presented a probabilistic regeneration-based framework for the

stochastic dynamics of cascading failures in power grids. This general framework is

applicable to more general settings where the system variables can be non-Markovian

random variables. Similarly to the Markov-chain model, the state space of this frame-

work is defined based on extracting a reduced abstraction of large-scale power grids

using a small number of aggregate state variables. In this chapter, we first formu-

lated a general regeneration-based framework for modeling the stochastic dynamics

of cascading failures in power grids. Then, as a special case, we derived the sys-

tem of differential equations based on the general regeneration-based framework,

describing the probability of the blackout for a power grid in a Markovian setting.

The discussions in this chapter supplement the analysis in Section 4.4 describing the

probability of reaching a blackout with a specified number of failures in a time inter-

val. The regeneration-based approach presented in this chapter is sufficiently general
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to capture the stochastic dynamics of cascading failures in systems with arbitrary

distribution for the random events in the system.
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Chapter 6

Interdependent Markov chain

framework for cascading failures

In this chapter, we present an extension of the Markov chain model presented in

Chapter 4 to a novel interdependent Markov chain framework for modeling cascad-

ing failures in interdependent infrastructures. The interdependent Markov chain

approach proposed in this chapter provides a probabilistic framework to capture the

effects of interdependencies among physical systems on stochastic dynamics of the

interdependent infrastructure. The idea of this general approach is to build an in-

tegrated framework consisting of a system of interdependent heterogeneous Markov

chains, one for each physical system. In this chapter, we consider discrete time

Markov chains as it simplifies the modeling of the interaction between interdependent

systems by characterizing the transition probabilities of the interdependent Markov

chain based on individual chains. Here, we first present the general interdependent

Markov chain framework in Section 6.1. Then, we derive an interdependent Markov

chain model for cascading failures in electric-cyber infrastructures in Section 6.3. A

key insight obtained from the interdependent Markov chain model for the power grid

and the communication system is that interdependencies between the two systems
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can make two reliable systems behave unreliably, thereby increasing the probability

of large failures. For instance, we specifically show that two individual systems with

exponential distribution for the size of failures can be coupled together to have a

power-law distribution for the size of failures in an interdependent setting.

6.1 Interdependent Markov chains

In this section, we propose interdependent heterogeneous Markov chains to model

stochastic dynamics of cascading failures in a collection of systems comprising inter-

dependent physical infrastructures. To do so, starting from individual Markov chains

that approximate the stochastic dynamics of each of the physical systems, we develop

a minimal Markov chain that encompasses the individual chains and approximates

the stochastic dynamics of the entire collection of systems as a single system while

capturing the interdependencies among the systems.

6.1.1 Preliminaries

We describe the interdependent Markov chain approach using two interdependent

systems A and B with the understanding that the same approach can be applied

to any finite number of interdependent systems. Here, we consider a Markov chain

for each of the physical systems similar to the one presented in Fig. 4.14. We have

shown the Markov chains of systems A and B in Fig. 6.1. Note that in Fig. 6.1 a

transition to the same state has been added to the model compared to Fig. 4.14 in

order to simplify the modeling of interdependencies between the Markov chains. The

model presented in Fig. 6.1 can be simplified to the one in Fig. 4.14 by adjusting the

transition probabilities. In these Markov chains the state of the system is denoted

by the number of failures and the stability variable as SA
i = (FA

i , IAi ) for system A
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and SB
i = (FB

i , IBi ) for system B. The state-space of the Markov chain for system

A is denoted by SA, where SA = {1, . . . , mA} × {absorbing, non-absorbing} and mA

is the number of components in system A. Similarly, we denote the state space of

the Markov chain for system B by SB = {1, . . . , mB} × {absorbing, non-absorbing}.

Notice that in general the state space of the Markov chains representing different

physical systems are not the same, neither is their cardinality nor their state variables.

The random process X(t) and Y (t) respectively represent the state of the system A

and B at time t ≥ 0.

Figure 6.1: Two Markov chains representing the stochastic dynamics of cascading failures
in each of the interdependent physical systems and the coupling effect between Markov
chains.

Clearly, the most näıve way to couple two Markov chains is to develop a combined

Markov chain with the state space SC formed by the Cartesian product of the state

space of each of the individual systems, i.e., SC = SA × SB. With this approach,
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we denote the state of the system comprising system A and B at time instant i

by SC
i = (FA

i , IAi , F
B
i , IBi ). Transition probabilities of the combined Markov chain

depend on the state of both of the individual systems.

This approach, however, has the shortcoming that the new transition probabilities

among the states of SC cannot be readily derived from the transition probabilities

of the individual Markov chains. A more serious flaw of this approach is that it

is based on the false and built-in assumption that combining two Markov chains

results in a new Markov chain with its state space being the Cartesian product of

the individual chains. In actuality, even if we assume that marginal processes X

and Y are Markovian it does not necessarily imply that their joint process (X, Y ),

as defined above, is Markovian. To verify this point we present the following simple

example. Let X1, X2, ... be independent and identically distributed (i.i.d.) sequence.

Next, we define the process Yn as Yn = Xn−1+Xn−2 for n > 2 and Y2 = Y1 = X1.The

process Yn is Markov because

P{Yn|Yn−1, ..., Y1} = P{Xn−1 +Xn−2|Xn−2 +Xn−3, ..., X1} =

P{Xn−1 +Xn−2|Xn−2 +Xn−3} = P{Yn|Yn−1},

(6.1)

where the step before last follows from the i.i.d. property of the sequence Xn. There-

fore, both X and Y individually have the Markovian property. However, their joint

distribution does not have the Markovian property because

P{Yn, Xn|Yn−1, ..., Y1, Xn−1, ..., X1}=P{Xn−1 +Xn−2, Xn|Xn−2 +Xn−3, ..., X1, Xn−1, ..., X1}

= P{Xn−1 +Xn−2, Xn|Xn−2 +Xn−3, Xn−1, Xn−2}

= P{Yn, Xn|Yn−1, Xn−1, Xn−2}. (6.2)

The extra term Xn−2 in the last line cannot be dropped, as Yn is not independent

of Xn−1, Xn−2, and Yn−1 due to their common terms, denying the joint distribution

of X and Y of being Markovian. In general, if the random process X(t) and Y (t)
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represent the state of the system A and B, respectively, then the interdependencies

between the two systems will result in correlation between processes X and Y .

Moreover, as the definition of interdependent systems implies stochastic dynam-

ics of each of the systems is affected by the dynamics of the other systems. As such,

the one-step transitions in the whole system can be generally dependent on multiple

previous transitions (past dynamics or multiple-step history) of its constituent sub-

systems A and B. As a result, defining the new state space simply by the Cartesian

product of the state space of each system does not provide sufficient information

to fully capture the interdependency between the systems and to characterize the

transition probabilities among the states of the combined Markov chain. Hence, in

modeling interdependent systems, besides the knowledge from the current state of

each of the systems, we also need to incorporate memory from the past transitions

to adequately characterize the stochastic dynamics of the whole system.

6.1.2 State space and transition probabilities

We denote the probability of transiting to state sCi+1 ∈ SC conditional on all the

history of the transitions for the system by fSC
i+1

|SC
i ,...,SC

1
(sCi+1|s

C
i , ..., s

C
1 ) , P{SC

i+1 =

sCi+1|S
C
i = sCi , ..., S

C
1 = sC1 }, where sCi represents the current state of the system

and the remainder variables represent all the states that the system has visited in

the past. Let us assume that for each a ∈ SC , fSC
i+1

|SC
i ,...,SC

1
(a|·, . . . , ·) is a one-to-

one function on (SC)
i. When a system exhibits the Markovian property, we have

fSC
i+1

|SC
i ,...,SC

1
(sCi+1|s

C
i , ..., s

C
1 ) = P{SC

i+1 = sCi+1|S
C
i = sCi } ≡ f̃SC

i+1
|SC

i
(sCi+1|s

C
i ). In this

case, the function fSC
i+1

|SC
i ,...,SC

1
(a|·, . . . , ·) cannot be one-to-one in general on (SC)

i

since it maps all different history sequences with the same current state to the same

value. In contrast, when we considerM-step memory then fSC
i+1

|SC
i ,...,SC

1
(sCi+1|s

C
i , ..., s

C
1 ) =

P{SC
i+1 = sCi+1|S

C
i = sCi , ..., S

C
i−M+1 = sCi−M+1} ≡ f̃SC

i+1
|SC

i ,...,SC
i−M+1

(a|sCi , ..., s
C
i−M+1).
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In this case, the function f̃SC
i+1

|SC
i ,...,SC

i−M+1
(a|·, ..., ·) can be one-to-one on (SC)

M . For

further discussion on, for example, the two-step Markov point processes we refer the

reader to [85]. The incorporation of memory in the model beyond one step provides

a mean for capturing the detail of dynamics of the system that is required to fully

capturing the interdependencies between the two systems.

As we pointed in the previous section, stochastic dynamics of system A and B

generally depends upon the M1-step and M2-step memory from the system B and

A, respectively. For simplicity of notation and without loss of generality, we assume

that M1 = M2 = M . The standard Markov chains are assumed to have one state

memory (namely 1-step memory). To capture the effects of the M-step memory for

each of the systems in stochastic dynamics of the combined system, the transition

probability function must be

f : (SC)
M × SC → [0, 1], (6.3)

where (SC)
M captures the information from the current state (1-step memory) as

well as the previous M-1 states. The last SC in the domain of transition probability

function f captures the destination space of transitions.

In summary, the transitions among the states of the SC are not independent

of the past transitions of the system. To build the equivalent Markov chain for

the finite state machine with the state space SC and transition probabilities that are

functions of the previous states of the system, we need to extend the state space SC to

incorporate the memory of the past states. For instance, to build an interdependent

Markov chain while capturing M-step memory the state-space can be defined as

SI = (SA × SB)
M . Due to the embedded memory in the definition of the states the

size of the state space SI can be prohibitively large in general. Next, we introduce

a quantization approach to reduce the size of the state space while capturing the

memory. Finally, note that the interdependent Markov chain with the state space

SI can be reduced to the combined Markov chain with the state space SC at the cost
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of losing the detail of interaction between the systems.

6.1.3 Memory quantization

In this section, we introduce a memory quantization approach for reducing the size

of the state space of the interdependent Markov chains. In this approach, we quan-

tize the information about the history of the dynamics of the system by defining

equivalence classes of behaviors for the dynamics. For instance, if we can conjecture

that the system is stable or unstable based on the history of its dynamics then we

can categorize the history of the dynamics of the system into two classes of behav-

iors. We denote the set of behavior classes for the system by HI , for which in this

example, it is given by HI = {stable, unstable}. We define a quantization function

as g : (SA ×SB)
M → HI , where HI is the range of g. The function g compresses the

memory from the past into equivalence classes. Clearly, the most detailed HI is when

we exactly know the previous M-steps of the system, i.e., HI = (SA × SB)
M . Note

that a quantization function can also be employed for classification of the individual

system’s behaviors. If we use function g to quantize the memory instead of the M-

step detailed memory then we can represent the state space of the interdependent

Markov chain by SI = HI × (SA ×SB), which can significantly reduce the size of SI .

6.1.4 Capturing the impact of interdependencies

Recall that modeling interactions among interdependent systems requires the knowl-

edge of the behavior of the two systems. Up to this point we have discussed how to

capture the knowledge about the behavior of each of the systems in the model. The

next step is to determine how a specific behavior of a system affects the behavior

of the other system. At a coarse level, the effects of the behavior of a system on

another system can be divided into three categories: (1) improve, (2) worsen, and
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(3) do not change. In the Markov-chain framework presented in Fig. 6.1, these effects

can be translated into: (1) reducing the probability of extra failures, (2) increasing

the probability of extra failures, and (3) not changing the probabilities. Therefore,

the effects of interdependencies can be captured in the transition probability func-

tion f in (6.3), which can associate such effects with the transition probabilities in

the combined system using the knowledge of the current state as well as the past

dynamics of the system. Note that the effects of interdependencies may be constant

in time (homogeneous) but it may change depending on the state of the system.

6.1.5 Interdependency strength

We define the strength of interdependency between two systems based on two fac-

tors: (1) how much the knowledge of the behavior of a system affects the dynamics

of the other system (e.g., the absolute value of change in transition probabilities),

and (2) how much memory of the states of each system is required to capture the

interdependency effects on the other system. For instance, we define a metric δ to

measure the first factor as follows:

δ = sup
xi,xi+1∈SA,yj∈SB ,i−M+1≤j≤i

{

|P{Xi+1=xi+1|Xi=xi}−

P{Xi+1=xi+1|Xi=xi, Yi=yi, ..., Yi−M+1=Yi−M+1}|
}

. (6.4)

In (6.4) metric δ characterizes the maximum influence of the behavior of system B

on system A. Note that when δ is large the interdependency is strong and when

it is zero it implies that the two systems are not interdependent. To measure the

second factor, we introduce K as the smallest integer j such that for all n and for

i > j, Xn and Yn−i are independent. Here, K is the minimum memory required to

be included in the interdependent Markov chain to capture the interdependencies

between the two systems. Note that when K is large the interdependency is strong.

K = 0 means that the knowledge of the current state of system A and B would
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be enough in modeling the interdependencies. In this case, K = −1 represents the

scenario in which the systems are not interdependent.

6.2 Interleaving approach

In this section, we present a new perspective in modeling the interdependent systems

using the interdependent Markov chain approach, which enables us to see the “cause

and effect” of interactions between the systems more clearly. In order to clarify

the interactions between the systems we propose an interleaving approach, which

captures the effects of every single transition in a physical subsystem on the other

physical subsystem right after it occurs. In other words, when a transition occurs

in system A then we need to evaluate how system B transits as a result of the new

transition in system A before more transitions occur in system A. Note that the

transition in system B due to the new transition in system A can even be transiting

back to the current state of system B (no change in the state of system B) when

the new failure has no impact on system B. This is the reason we introduced the

transition back to the state itself in the model presented in Fig. 6.1 compared to

Fig. 4.14. Following the above discussion, we can assume that the two systems

take turns in changing their states. In Fig. 6.1, we have represented the back and

forth mechanism (cause and effect model), which represents this assumption. Every

transition in Fig. 6.1 represented with a solid arrow will be followed by a transition

represented with a dashed arrow and vice versa. We call this approach interleaving

as it interleaves the transitions in system A and B in an order as is shown in Fig. 6.1.

The interleaving approach simplifies the modeling of interdependencies between the

systems by capturing the immediate effects of each transition on the other system.

Moreover, the interleaving approach adds an extra level of detail to the general

interdependent Markov chain model introduced in Section 6.1. We explain this point
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by the following example. Consider an interdependent Markov chain model with two-

step memory, which is partially shown in Fig. 6.2. Note that we have only shown

the number of failures in each system and we have assumed that the other state

variable I equals to zero for both of the systems (we have considered non-absorbing

states). In this example, we observe that in the sequence of transitions a failure in

system A is followed by two failures in system B and again a failure in system A.

Here, the effects of individual failures in system B on system A is not clear. For

instance, one can conjecture that the first failure made system A vulnerable and

the second failure added an extra level of vulnerability and resulted in the extra

failure in system A. Further, one can also conjecture that the first failure did not

have any effect on system A and the second failure was the only reason for the extra

failure. This implies that the interdependent Markov chain model can capture the

combined effects while the interleaving approach can break the combined effects into

more detailed cause and effect scenarios. Note that the interleaved model can be

reduced to the original interdependent Markov chain framework if we aggregate the

effects by allowing multiple transitions in a subsystem.

Figure 6.2: An example of sequence of transitions in an interdependent Markov chain model
with two-step memory. In this example, we have only considered non-absorbing states.

All the definitions for the interdependent Markov chain model presented in Sec-

tion 6.1 are valid for the interleaving framework. The only difference is the assump-

tion of the back-and-forth mechanism for modeling the interdependencies. This

assumption only affects the definition of the state space. In other words, in order

to keep track of the transition turns we require an auxiliary variable, for instance, a

binary variable for two interdependent systems, which increases the size of the state

space by two. We have provided an example of the interleaving approach for the
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interdependent power and communication infrastructures in the next section.

6.3 An interdependent Markov chain model for

cascading failures in electric-cyber infrastruc-

tures

In this section, we develop an interdependent Markov chain framework based on the

interleaving approach, introduced in Section 6.1, for modeling cascading failures in

interdependent power and communication infrastructures. As described in Chapters

1-3, the available historical data and simulation results both suggest that the power

system and the communication network are interdependent infrastructures. While

such interdependencies can increase the reliability and efficiency of both systems, it

can also increase the risk of failures in the individual systems. In this dissertation, we

consider the interdependencies that lead to propagation of failures between the two

systems. Considering such interdependencies are specifically important in analyzing

the reliability of the whole system.

6.3.1 Individual Markov chains

In this section, we refer to the power system by System A and the communication

system by System B. We consider the Markov chains represented in Fig. 6.1 and

assume that they represent the stochastic dynamics of power and communication

infrastructures individually. To simplify the notation, we represent the number of

failures in the power grid, i.e., FA, and in the communication system, i.e., FB, by

the variables x and y, respectively. Further, we denote the probability of transiting

to a stable power-grid state in Markov chain A with p(x), i.e., p(x) = Pstop(x),
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where Pstop(x) is the cascade-stop probability as a function of number of failures in

the system as introduced in Chapter 4. Also, in the Markov chain representing the

communication system, we denote the probability of transiting to a state with an

extra failure in the communication network by q(y). We wish to reiterate that based

on our discussions in Chapter 4, the state-dependent transition probabilities are key

in modeling various stochastic behaviors for the system. Thus the state dependent

p(x) and q(y) enable us to study various behaviors for the individual systems as well

as the whole system.

Without loss of generality, we assume that the first failure occurs in the power

grid. We also assume that cascading failures terminate only when no more failures

occur in the power grid. Therefore, only the Markov chain representing the power

grid has the absorbing states. Moreover, we assume that an extra failure in the

communication system may occur only if a failure has occurred in the power grid in

the last transition. This means that we assume that the communication system is

more reliable than the power grid and that the cascading failure phenomenon grows

faster in the power grid. This is a reasonable assumption based the historical data

for cascading failures [4]. The above assumptions enable us to simplify the Markov

chains in Fig. 6.1 to the ones represented in Fig. 6.3.

Before moving to the next section to build the interdependent Markov chain

model, consider the case where we study the interdependent systems by studying

their Markov chains individually, while capturing the effects of the interdependencies

in the transition probabilities of each of the Markov chains separately. An example

of the latter approach is the SASE model presented in Chapter 4. Specifically, this

approach can consider a general description of communication system (without its

dynamics) and embed the effects of the description (e.g., operating characteristics θ

and e) in the transition probabilities of the power system. As another example, we

may describe the state of the communication system by “efficient” or “inefficient”
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Figure 6.3: The individual Markov chains of the power grid and the communication system
and the coupling effect between them in an interdependent electric-cyber infrastructure.

based on certain operating characteristics such as θ and e. Then, we can study

the Markov chain of the power grid with transition probabilities determined by the

knowledge of efficient or inefficient communication system. This is a special case of

the interdependent Markov chain approach, in which one of the Markov chains is

maximally compressed to have a state space of size one.

6.3.2 State space of the interdependent Markov chain

Here, we use the interleaving approach for coupling the individual Markov chains rep-

resenting stochastic dynamics of cascading failures in electric-cyber infrastructures.

As discussed in Section 6.1.2, the state space of the interdependent Markov chains

should contain the state of both of the systems SA × SB as well as the memory of

the past transitions. The information from the past transitions enables us to identify

if a system is behaving stable or unstable. We assume that when the communica-
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tion system becomes less stable by experiencing a new failure then the power-grid

becomes vulnerable to extra failures. Also, when the power grid becomes less stable

due to a new failure then it may trigger an extra failure in the communication sys-

tem. The above discussion explains the dynamic behavior of each system in terms

of the last transition in the whole system. As such, we need to capture at least the

last transition in the system to capture the effect of interdependencies. Therefore,

we assume that the minimum memory required to capture the dynamic behavior of

the system is two-step memory, i.e., K = 2 (the history consist of the current state

plus the previous state of the system). Hence, the state space of the interdependent

Markov chain is SI = (SA×SB)
2. However, due to the assumption of a single failure

at a time in the system, many states are not allowed to be the previous state for the

system. This reduces the size of the state space to 4(NA ×NB), where N represent

the cardinality of the state space. As the interleaving approach suggests, we also

need an auxiliary variable to keep track of the transition turns in the system, which

will double the size of the state space to SI = 8(NA × NB). The concept of inter-

leaving Markov chain for the power grid and the communication system is shown in

Fig. 6.3 is depicted in Fig. 6.4.

In summary, we define the state of the new interdependent Markov chain at

discrete time n by Sn = (Xn, In, Yn, Ln,Mn) where, Xn and In are the state variables

of the power grid and Yn is the state of the communication system. We have also

introduced two auxiliary variables Ln and Mn in the definition of the states. Here,

L = 0 and L = 1 indicate that the last failure occurred in the power grid and the

communication system, respectively. As such the first auxiliary variable L captures

the ‘transition turn’ in the interleaving framework. The variable Mn captures the

memory of the dynamics by indicating whether any component failed in the last

transition. In other words, the dynamic memory quantization function g introduced

in Section 6.1.3 maps the history of dynamics to H ={new failure, no new failure}.
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Figure 6.4: The concept of interleaving approach for coupling the Markov chains of the
power grid and the communication system in Fig. 6.3 is depicted by interleaving the com-
munication states among power-grid states.

6.3.3 Transition probabilities of the interdependent Markov

chain

To characterize the interdependencies between the power and communication sys-

tems, we need to define how the behavior of a system affects the behavior of the

other system. Here, we characterize the transition probabilities of the interdepen-

dent Markov chain based on the transition probabilities of the individual Markov

chains and the interdependencies between the two systems. First, we define a func-

tion that captures the dependency of the power grid on the communication system.

We denote such function by d : {0, 1, 2, ..., m1} × {0, 1, 2, ..., m2} → [0, 1], where m1

and m2 denote the number of components in power and communication systems,

respectively. If the failure in the communication system does not affect the power

grid then d(., .) = 1, and when the failure of communication component results in

a failure in the power grid deterministically then d(., .) = 0. The closer the value

of d(., .) to zero the more it reduces the cascade-stop probability of the power grid.
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As such d modifies transition probabilities for the power grid based on the dynamics

of the communication chain. Further, we assume that transition probabilities of the

communication system do not change due to failures in the power grid. However, the

interleaving approach explicitly implies that only failures in the power grid can trigger

an extra failure in the communication system. Thus, we can assume that failures in

the power grid also change the transition probabilities in the communication system.

Based on the above assumptions, we define the transition probability from a ran-

dom state Sn = (Xn, In, Yn, Ln,Mn) to state Sn+1 = (Xn+1, In+1, Yn+1, Ln+1,Mn+1)

at discrete time instance n as follows.

f(Sn+1|Sn)=


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

0 In = 1

0 Ln+1 = Ln

q(Yn+1) In = In+1 = 0,

Ln=0, Xn+1=Xn

Yn+1 = Yn + 1,

1− q(Yn+1) In = In+1 = 0,

Ln=0, Xn+1=Xn

Yn+1 = Yn,

1− p(Xn)d(Xn,Yn)
Mn+d(Xn,Yn)(1−Mn)

In = In+1 = 0,

Ln=1, Yn+1=Yn,

Xn+1 = Xn + 1

p(Xn)d(Xn,Yn)
Mn+d(Xn,Yn)(1−Mn)

In = 0, In+1 = 1

Ln = 1, Yn+1=Yn,

Xn+1=Xn

0 otherwise.

(6.5)

Based on the above discussion we can calculate the strength of interdependency based

on the definition of δ in (6.4) for these two systems as δ = max
xn∈SA,yn∈SB

p(xn)d(xn, yn).

To clarify the interdependent Markov chain model for the power and communi-

cation systems, a portion of the Markov chain with transition probabilities among
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the states is shown in Fig. 6.5. Although the size of the state-space in this example

is in the order of Cartesian product of the individual spaces, which can be large, but

we can analyze this Markov chain using difference equations as presented in the next

section.

Figure 6.5: Portion of the interdependent Markov chain model for the power and commu-
nication system with transition probabilities among the states.

6.3.4 Analysis of the interdependent Markov chain

In this section, we derive a system of difference equations describing stochastic dy-

namics of the interdependent Markov chain presented for the interdependent power

and communication system in Section 6.3. We introduce PI(s) as the asymptotic

probability of reaching to state s ∈ SI from the initial state I ∈ SI . In our analysis,

we are interested in the probability of reaching to stable states in the power grid

in which cascading failures terminate (i.e., s̃ = (x, 1, y, 0, 0)). We denote PI(s̃) by

F(x, y). We also define ŝ = (x, 0, y, 0, 1) and denote PI(ŝ) by G(x, y). In the analysis

presented in this section, we assume that function d depends only on the state of the

communication system. Based on the structure of the interdependent Markov chain

model presented in Section 6.3 and following the steps in Appendix B, we derive a
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system of difference equations for F(x, y) and G(x, y) as stated in Theorem 6.3.1.

Here, we assume that p(.), q(.) and d(.) functions are nonzero at every point to avoid

the undefined expressions.

Theorem 6.3.1.

F(x, y) = α1(x, y)F(x− 1, y) + α2(x, y)F(x− 1, y − 1)

+ α3(x, y)G(x− 1, y − 1),

G(x, y) = α4(x, y)F(x− 1, y) + α5(x, y)G(x− 1, y − 1). (6.6)

The boundary conditions for this set of difference equations are

F(x0, y0) = (1− q(y0))p(x0),

F(x0, y0 + 1) = q(y0)p(x0)d(y0 + 1),

G(x0, y0) = 1.

(6.7)

In addition, F(x, y) and G(x, y) are equal to zero for the cases where x < x0 or

y < y0. Moreover, F(x, y) = 0 when y > x.
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The coefficients in (6.6) are given by for the general case:

α1(x, y) =
p(x)(1 − q(y))(1− p(x− 1))

p(x− 1)
,

α2(x, y) =
p(x)d(y)q(y − 1)(1− p(x− 1)d(y − 1))

p(x− 1)d(y − 1)

α3(x, y) = (1− q(y − 1))p(x)d(y)q(y − 1)

(

(1− p(x− 1))−
(1− p(x− 1)d(y − 1))

d(y − 1)

)

+ q(y − 1)p(x)(1− q(y))(1− d(y))

α4(x, y) =
(1− p(x− 1))

p(x− 1)
,

α5(x, y) = q(y − 1)
(

(1− p(x− 1)d(y))

−
d(y)p(x− 1)(1− p(x− 1))

p(x− 1)

)

. (6.8)

The coefficients are different as following for three special cases:

First–The case where y = 1:

In this case α1 and α4 is same as (6.8) but

α2(x, y) =
p(x)d(y)q(y − 1)(1− p(x− 1))

p(x− 1)

α3(x, y) = q(y − 1)p(x)(1− q(y))(1− d(y))

α5(x, y) = 0. (6.9)

Second–The case where y = x:

In this case all α values are zero except α2, which is:

α2(x, y) =
d(y)p(x)q(y − 1)(1− p(x− 1)d(y − 1))

p(x− 1)d(y − 1)
(6.10)

Third–The case where y = x− 1:
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In this case the coefficients are as following:

α1(x, y) =
p(x)(1 − q(y))(1− p(x− 1)d(y))

p(x− 1)d(y)
,

α2(x, y) =
p(x)d(y)q(y − 1)

p(x− 1)d(y − 1)
,

α3(x, y) = (1−q(y−1))d(y)p(x)q(y−1)×

(

(1−p(x−1))−
1

d(y − 1)

)

,

α4(x, y) =
(1− p(x− 1))

p(x− 1)
,

α5(x, y) = (1− d(y))q(y − 1). (6.11)

For proof see Appendix B.

The system of difference equations in (6.6) can be solved numerically using the

boundary conditions introduced in Theorem 6.3.1 in (6.7). The system of difference

equations in (6.6) enables the direct calculation of the probability of different size of

failures in each system.

We denote the probability of blackout with x failures in the power grid by Rp(x),

which can be written as

Rp(x) =
∑

0≤y≤x

F(x, y). (6.12)

Further, we denote the probability of y failures in the communication system by

Rc(y) as

Rc =
∑

y≤x≤N1

F(x, y). (6.13)

The time complexity of the numerical calculations of (6.6) is in the order of

the number of components in the system, which makes the model to be scalable

to large systems even though the analytical state space of the problem is large.
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This model enables the identification of different stochastic behaviors for the system

based on various state dependent transition probabilities for each system as well as

the introduced interdependency function.

6.4 Numerical results

In this section, we present the numerical results about the distribution of the failure

size in the interdependent power and communication systems based on the numerical

solutions of the system of difference equations in (6.6). We term a system, whose

distribution of the blackout size follows an exponential distribution, a reliable system

as the probability of large blackouts is small compared to the heavy-tail distribution.

We also term a system, whose distribution of the blackout size follows a heavy-

tail distribution, such as the power-law distribution, an unreliable system. Using

the numerical results, we show that the interdependency between two systems can

introduce vulnerabilities in the whole system and increase the probability of large

blackouts. We specifically show that the interdependencies between two individually

reliable systems may lead to an unreliable coupled system.

6.4.1 Impact of interdependency on the distribution of the

blackout size

Here, we consider the IEEE 118 bus system for the power grid, which has 186 trans-

mission lines. Without loss of generality, we assume that there are equal number

of components in the communication system, i.e., 186 communication components.

As described earlier in Chapter 4 when a Markov chain model (whose distribution

described by the difference equations in (4.18)), has constant (i.e., state indepen-

dent) transition probabilities then the blackout size distribution is exponential. We
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Figure 6.6: Probability mass function of the failure size in the power-grid in a log-log
scale for a reliable power system with exponential blackout distribution (the dashed line),
an unreliable power grid with power-law distribution (solid line) and an interdependent
Markov chain with constant p, q, and d in (a doted line).

also asserted that the bowl-shape function for the cascade-stop probability for the

Markov chain lead to a heavy-tail distribution for the blackout size. In particular,

special forms of the bowl-shape function for Pstop result in a power-law distribution of

the blackout size. The results presented in Fig. 6.6 represent the scenarios discusses

above. In summary, in Fig. 6.6, we have presented the PMF of the failure size for a

reliable power system with constant Pstop and exponential blackout distribution (the

dashed line), an unreliable power grid with bowl-shape form for Pstop and power-law

distribution of the failure size (solid line), and an interdependent Markov chain with

constant p, q and d in with exponential distribution for the failure size (a doted line).

Next, we assume that the Markov chain for the power grid has the specific bowl-

shape form for Pstop, that results in the power-law distribution for the blackout size.

This distribution is shown by solid line in a log-log scale in Fig. 6.7. Next, we use

the interdependent Markov chain model presented in Section 6.3 for the power and

communication systems to study how the interdependency between the two systems
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Figure 6.7: Probability mass function of the failure size in the power-grid in a log-log
scale for various scenarios of p(x), q(y), and d(y). The results are obtained based on the
interdependent Markov chain model and using (6.12) and (6.6).

affects the distribution of the blackout size in the power grid. The distribution of

the blackout size in the power grid, Rp is calculated using (6.12) and (6.6). As the

first example, we couple the Markov chain of the power grid with a Markov chain for

the communication system, which has constant transition probabilities. This means

that we have a reliable communication system. The results shown in the doted line

in Fig. 6.7 suggest that the interdependencies between the two systems increase the

probability of large blackouts and also preserve the heavy tail characteristic except at

the end. In other words, the blackout distribution for the power-grid Rp in this case

also follows the power-law distribution, but with a smaller parameter s. This means

that the probability of large blackouts increases as a result of the interdependency

between the two systems. The sharp increase at the end of the distribution represents

the critical behavior of the system, which increases the probability of larger blackouts

even more that other values. As the next example, we couple the Markov chain of

the power grid with a Markov chain for the communication system, which has the

bowl-shape function for the probability of no extra communication failures due to
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power-grid failures, i.e., (1−q(y)). The effect of an unreliable communication system

is more severe on the reliability of the system as is shown in a dashed line in Fig. 6.7.

In both of the interdependent examples presented here, the function d is assumed to

be constant and equal to 0.4.
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Figure 6.8: Probability mass function of the failure size in the communication system in a
log-log scale for various scenarios of p(x), q(y), and d(y). The results are obtained based
on the interdependent Markov chain model and using (6.13) and (6.6).

The distribution of the failure size in the communication system Rc, is calculated

using (6.13) and (6.6) and is presented in Fig. 6.8. In Fig. 6.8, we have presented

the distribution of failures in the communication system for various scenarios of

interdependencies with different p(x) and q(y). In these scenarios, the function d is

assumed to be constant and equal to 0.4. Similarly to the results in Fig. 6.7, the

results in Fig. 6.8 also suggest that the interdependencies increase the probability of

large failures. Specifically, when one of the systems are unreliable.

Figure 6.9 showsRp when Pstop for the power grid follows the bowl-shape obtained

from the simulation results presented in Fig. 4.6. As discussed in Chapter 4, this

bowl-shape function for Pstop results in another heavy-tail distribution with a hump

near the tail of the distribution for the blackout size as shown in Fig. 6.9. The results
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presented in Fig. 6.9 indicate that the interdependencies between the communication

system and the power grid with constant q and d parameters increase the size of the

hump.
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Figure 6.9: Probability mass function of the failure size in the power grid when Pstop

has the bowl-shape form obtained from power-system simulations. The interdependencies
between the power and communication system increase the size of the hump.

6.4.2 Individually reliable systems can behave unreliably when

coupled

In the next study, we assume that we have two reliable systems with constant p(x)

and q(y). We couple the two reliable systems using the interdependent Markov

chain framework. In this study, we want to answer the following critical question:

can two coupled reliable systems form a single unreliable system? To answer this

question, we use the system of difference equations in (6.6) and assume that p and

q are constant. We want to find function d(y) such that the two reliable power and

communication systems, result in the power-law distribution for the blackout size.

To find such d(y), we input the probability of the blackout size in the power grid
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Figure 6.10: Probability mass function of the failure size in the power grid in an interdepen-
dent Markov chain model, when two reliable systems are coupled with interdependencies
that lead to unreliable behavior.
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Figure 6.11: The d(y) values that result in an unreliable behavior (power-law distribution)
for the two coupled reliable systems.

in (6.12) based on the power-law distribution introduced in (4.19), i.e., Rp(x) =

P (x, 1.1, m1) introduced in (4.19). This implies that we have a system of m1 non-

linear equations for d(y). We have solved this system of non-linear equations using

an optimization approach, which minimizes the distance between Rp(x) and the
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blackout size resulted from the system of difference equations, with the constraint

0 ≤ d(·) ≤ 1. In Fig. 6.10, we have shown the result of the distribution of the blackout

size in a system with 20 components when the individual systems are reliable but the

distribution of the failure size in the coupled power grid (dashed line) approximates

the power-law distribution. We have also represented the distribution of the failure

size when function d is constant (i.e., state independent) in the dark solid line,

which results in exponential distribution. The d(y) values that result in unreliable

behavior for the two reliable systems is presented in Fig. 6.11. The results in Fig. 6.11

suggest the d values, which result in the power-law distribution also exhibit the three

phase phenomenon observed in cascading failures, as described in Chapter 4. At the

beginning, one failure in the communication system does not alter the cascade-stop

probability but as the number of failures in the communication system increases

their impact on the cascade-stop probability increases and thus d becomes smaller.

The values of d rise again as the number of failures increases in the communication

system as well as the power grid and cascading failures phase out. Using the results

in Fig. 6.10, we showed that two individually reliable systems may behave unreliably

when coupled as a result of interdependency between the individual systems. This

important result confirms the importance of considering the interdependent systems

as a single system for reliability analysis.

6.5 Summary and conclusions

In this chapter, we presented a novel interdependent Markov chain framework for

modeling cascading failures in interdependent infrastructures. In this framework, we

start from individual Markov chains that approximate the stochastic dynamics of

each of the physical systems and developed a minimal Markov chain that encom-

passes the individual chains and approximates the stochastic dynamics of the entire
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collection of systems as a single system while capturing the interdependencies among

the systems. We presented the interdependent Markov chain framework in a gen-

eral setting and then, as a specific example, derived an interdependent Markov chain

model for cascading failures in electric-cyber infrastructures. We studied various sce-

narios of reliable and unreliable systems to characterize the distribution of the failure

size in coupled systems. A key insight obtained from the interdependent Markov-

chain model is that interdependencies between two systems can make two reliable

systems behave unreliably when put together. For instance, we specifically showed

that certain interactions among the systems can result in the power-law distribution

for the size of failures in the coupled system when the two individual systems have

exponential distributions for the failure size.

There are a wide range of interesting problems that can be studied based on the

interdependent Markov chain framework. Examples of such problems are the ana-

lytical characterization of asymptotics of the interdependent Markov chain based on

asymptotics of the individual chains and analytical characterization of the interde-

pendencies that lead to critical behaviors. The problems addressed in this chapter

are the ones that are relevant to the interdependent power and communication sys-

tems. Further analysis of the interdependent Markov chains and other examples are

extensions of this work and are out of scope of this dissertation.
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Chapter 7

Fundamental bounds on the

information rate in

information-centric power grids

In this chapter, we look at another aspect of smart grids, namely the information

exchange in the communication system of the power grid, which enables efficient

monitoring and control of the power grid. We develop an information-theoretic

framework for characterization of the exchange of information in the sensor network

that enables the monitoring of the power grid. Control rooms of power grids rely

heavily on accurate estimate of the state of the system. As such, large number

of sensors are employed in the power systems. The sensors collect samples of the

state of power-system components with high frequency. Nonetheless, exchange of

such state information from large number of sensors incurs a large communication

cost on the communication network of the power grid. The framework presented in

this chapter enables the characterization of the minimum required communication

capacity for the sensor network in smart grids by compressing the data by exploiting

the correlation among the data sources. In other words, the presented framework
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captures the interplay between the information rate and the correlation among the

state information of various components in the system.

In this chapter, we consider the sensor network that enables accurate state es-

timation of the power grid for monitoring and control purposes. In particular, we

assume that sensors are located on transmission lines and measure the temperature

and the power flow of the lines and update these information to the control center of

the system. Note that this is a specific example of the application of sensors in power

grids. Sensors can be employed to measure a wide range of attributes such as voltage,

frequency and phase at different points of the system. In this chapter, we characterize

the minimum information rate that the sensors need to update their information to

the control center in order to track the thermal state of the components accurately. In

other words, this study characterizes the minimum required communication capacity

for this specific application of sensor networks in power grids.

The presented framework in this chapter is based on a lossless distributed source-

coding framework. While distributed source coding theory has been widely used

in sensor networks in the last decade, its utility has been limited to the context of

distributed sensing, which the signal of the interest is an environmental signal that is

independent of the system attributes [86]. Although tracking the state of components

in a system can be viewed as a distributed-sensing problem, the signal of interest

here is tied to the system characteristics, for example, power-flow distribution and

customer demands in the power grid. For instance, the temperature of the lines is

correlated with the power flow through the lines controlled and monitored by the

control center. In other words, the temperature of the lines depends on the power

distribution mechanism in the system and vice versa. In addition, the information

about the power-flow through the line is available both at the line and the control

center.

Here, the distributed source coding model may warrant extension or modifications
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to capture the information characteristics and their availability in various parts of

the system. In this research, we use the generality of distributed source coding

theory to characterize the minimum information rate required by the sensor nodes

communicating over the communication network to support accurate and real time

state information of transmission lines by exploiting the correlation among state

information of various lines. The model presented in this chapter provides a general

framework for characterization of the minimum required information rate in sensors

networks that sense correlated signals for which certain side information is available

at the source and the destination of the information exchange. In particular, we

have also applied this framework in the context of sensor networks with distributed

sensing and computing purposes [87].

7.1 Related work

Recently, information theory has been adopted for characterizing the control over-

head (rate of information exchange for monitoring and control purposes) in dis-

tributed systems. The pioneering work presented by Gallager [88] is one of the

earliest contributions that used information theory in characterizing the network

overhead for tracking source and receiver addresses. In [89] and [90] the minimum

overhead of maintaining state information (link state and motion state, respectively)

to be used in routing protocols across a mobile ad hoc network is formulated as

a rate-distortion problem. The assumption in [89] and [90] is that the state infor-

mation associated with various nodes/links are mutually independent; hence, the

rate-distortion formulation is considered for a single component. The authors of [91]

use rate-distortion theory to investigate the optimal timing for updating the band-

width information of the links. In [92], the relation between network performance

and information rate is captured by extending the definition of distortion measure to
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capture network performance. All the models that are based on the rate distortion

theory are based on the assumption that certain amount of error in the estimation

of the state of components is acceptable.

All the aforementioned works consider point-to-point information theory in char-

acterizing the interplay between the rate of information and distortion. Network

information theory [93], on the other hand, provides a strong tool for characterizing

the information exchange in a distributed fashion when there is correlation among

the state information of different sources. As mentioned in the previous section,

distributed source coding theory [86] has been widely used in sensor networks in

the last decade but its application has been limited to standard distributed sensing

problem. To the best of our knowledge, distributed source coding theory has not

been employed in studying the information rate in distributed systems for control

purposes, which the signal to be sensed is tied to the system attributes and the side

information is available at different points of the system.

7.2 Sensor model

Recall that we assume sensors collect information about the thermal state of power-

system transmission lines and update the information to the control center. We

assume that sensors form clusters consisting of a cluster head (CH) and a set of

geographically adjacent sensors. The sensors of each cluster update their temperature

data to CH. We further assume that the clusters communicate together and to the

control center over a communication network with lossless channels. We refer to the

sensor nodes located on transmission lines simply by the nodes.

Here, the problem of investigating the information rate of the sensor network is

broken down to the same problem for individual clusters of sensor nodes. Hence, we

will focus on one cluster hereafter with the understanding that the same procedure
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will be applied to all clusters of the sensor network.

We represent the n samples of the changes in the temperature of the transmission

lines by Xn
i = (Xi1, Xi2, . . . , Xin). The reason to consider the changes in the tem-

perature of transmission lines is to have independent samples in time. The changes

in the temperature of a transmission line is a function of the power flow through

the line and the environmental factors. If we assume that power flow changes due to

random changes in the customer demands and also environmental factors are random

and independent in time then the samples of temperature changes will be indepen-

dent in time. However, the Xij values are correlated among different sensor nodes

of a cluster both due to the geographical proximity (the same environmental effects)

and correlation in the power flow data due to local changes in the customer demand

and the physics of the power flow in a region. We can write the dynamics of line

temperature changes as Xi = Yi + Ti where, Yi is the random thermal change due to

the power flow through the line and the Ti is the random thermal change due to the

environmental factors that affect the temperature. Thus dynamics of the tempera-

ture of a line is governed by the random variables associated with the environmental

factors and the power flow in the line.

We assume that sensors sample the state of the components at discrete time

instants called sampling instant. We further assume that at the update instant sensor

nodes send the state information to CH. We call the interval between two consecutive

update instants an update interval. We further assume that an update interval

consists of n sampling instants. Besides the temperature of the lines, we assume

that the power flow through the line is also measured at the n sampling instances.

The information about the power-flow through the line is also available at the control

center of the system. In the next section, based on the introduced assumptions we

develop a distributed source coding framework for exchanging information in which

the information about the power flow through the lines serves as the side information.
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7.3 Distributed source coding model

Assume that at each update instant node i uses its encoder to encode the samples of

the states i.e., Xn
i = (Xi1, Xi2, ..., Xin) separately from other nodes and then sends

it to the CH. We call the information about the power flow, Yis, the side infor-

mation. We assume that the statistical characteristics of Xi and Yi are available.

The CH uses its decoder to decode and reconstruct the state of nodes using the

correlation among Xis and the side information Yis. Specifically, the reconstructed

state of node i is denoted by X̂n
i = (X̂i1, X̂i2, . . . , X̂in) and the probability of error

is P
(n)
e , P

{

(X̂n
1 , . . . , X̂

n
N) 6= (Xn

1 , . . . , X
n
N)

}

. Figure 7.1-a illustrates this formula-

tion schematically for a cluster with N nodes. Our formulation is an extension of

Slepian-Wolf Theorem [94] to distributed lossless source coding with multiple side

information.

An N -tuple (R1, . . . , RN) is said to be achievable for distributed lossless source

coding if there exists a sequence of codes with these rates such that lim
n→∞

P
(n)
e = 0.

For the ease of reference and discussion of the theory, we define:

Formulation 1. A distributed source coding problem that does not use Yis

and nor does it use the correlation among Xis. This formulation is equivalent to N

separate Shannon’s lossless source coding problems.

Formulation 2. A distributed source coding problem that uses Yis but it does

not use the correlation among Xis. This formulation is equivalent to N conditional

lossless source coding problems (single source coding problem with side information

at the encoder and the decoder [93]).

Formulation 3. A distributed source coding problem that uses the correlation

among Xis but it does not use Yis. This formulation is a Slepian-Wolf problem.

Formulation 4. A distributed source coding problem that uses both Yis and the
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(a)

(b)

Figure 7.1: (a) The proposed distributed source coding model with side information to
characterize the information rate in the sensor network of a power grid. (b) The achievable
rate region of the four formulations.

correlation among Xis. This is our formulation in this research.

Note that Formulations 1 and 2 fall in the area of point-to-point information

theory.
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7.4 Characterizing the rate region

We begin the characterization of the rate region of Formulation 4 by considering

the distributed source coding model for a cluster with two nodes. The achievable

rate region of the formulations mentioned in the last section has been depicted in

Fig. 7.1-b. Note that in Fig. 7.1-b, we have shown the rate region of Formulations 2

and 3 in the special case when H(X1|X2) < H(X1|Y1) and H(X2|X1) < H(X2|Y2),

where H(.|.) represents the conditional entropy. Characterization of the achievable

rate region of Formulation 3 has been presented by Slepian and Wolf in [94]. The

achievable rate region of Formulation 2 is also known [93].

Characterizing the achievable rate region of the Formulation 4 is straight forward

and can be explained as follows. Consider a special case in which there is only one

encoder that jointly encodes the state information of the two nodes while the CH

decodes the code for both sources using side information. In this case the outer

bound of the sum-rate, defined as R1 + R2, for Formulation 4 can be written as

R1 +R2 ≥ H(X1, X2|Y1, Y2). In general, however, this bound may not be achievable

since nodes are encoding the sources separately (this is why it is termed outer bound).

Now consider the case when nodes encode the sources separately while each node

having access to the other node’s state information. In this case, the rate of a node

should satisfy R1 ≥ H(X1|X2, Y1, Y2) based on Formulation 2. Combining these

bounds results in the outer bound for the optimal rate region of Formulation 4,

which can easily be shown to be achievable and tight (with a proof similar to that

of the Slepian Wolf Theorem [95]) and therefore improves the lower bound on the

minimum information rates. Based on the above discussions, we present the rate

region of this framework for two nodes in Theorem 7.4.1 and for the general N nodes

in Theorem 7.4.2.
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Theorem 7.4.1. The optimal rate region for Formulation 4 with two nodes is

R1 ≥ H(X1|X2, Y1, Y2), (7.1)

R2 ≥ H(X2|X1, Y1, Y2) and

R1 +R2 ≥ H(X1, X2|Y1, Y2).

For proof see Appendix C. Theorem 7.4.1 can be extended to an arbitrary number

of nodes in the cluster as follows.

Theorem 7.4.2. Let S ⊂ {1, 2, ..., N}. The optimal rate region for the problem in

Formulation 4 with N nodes is

∑

j∈S

Rj ≥ H
(

X(S)|X(Sc), Y (S ∪ Sc))
)

,

where Sc represents the complement of the set S and X(S) is the set of Xis for i ∈ S

and X(Sc) and Y (S ∪ Sc) are defined likewise.

We omit the proof of Theorem 7.4.2 since it is similar to that of Theorem 7.4.1.

Note that in this special case of the distributed source coding problem the rate

region of the framework depicted in Fig. 7.1-a would be the same as the one stated

by Theorems 7.4.1 and 7.4.2 even if the side information Yis were only available at

the decoder. However, in lossy distributed source-coding problems these two cases

would result in different rate regions. The next point to note here is that the lower

bounds derived based on these approaches, are asymptotically achievable (as the

number of samples in an update interval goes to infinity, i.e., n → ∞); hence, they

provide bounds on the information rate of the sensor network [89–92].
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7.5 Numerical evaluation

Theorems 7.4.1 and 7.4.2 provide analytical expressions of the lower bound for the

minimum state information rate of nodes in a cluster. In this section, we consider a

specific example of a sensor network and provide the numerical results calculated for

the minimum information rate of the state estimation. For simplicity, we consider a

cluster with two nodes.

We discussed that the Yis of different lines may be correlated due to the physics

of the power flow and customer demands. To model the dependency between Y1

and Y2 in our example we simply use Y1 = Y2 + ∆Y . In this model ∆Y affects the

correlation between Y1 and Y2 (and consequently the correlation between X1 and

X2). In a similar way, the correlation between Tis can be modeled by T1 = T2+∆T .

Note that the correlation among Tis also affect the correlation among Xis. In our

example, we assume independent Poisson distributions for random variables with

random-variable-specific Poisson parameters.
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Figure 7.2: (a) State information rate of node 1, and (b) total control overhead (sum of
the rates of nodes) as a function of the dependency between X1 and Y1.
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In our calculations, we have assumed λY2
= 4, λT2

= 3, and λ∆L = λ∆T = 1. Since

all the random variables have Poisson distributions, we can numerically calculate

the entropy, joint entropy and conditional entropy for different combination of the

presented random variables.

Figure 7.2-a depicts the minimum state-information rate of node 1 as a function of

λT1
, for Formulations 1, 2, and 4 calculated at points A, B, and D shown in Fig. 7.1-

b, respectively. In our calculations, we have only changed λT1
. From Fig. 7.2-a,

we observe that as the dependency between X1 and Y1 decreases the rate of node 1

increases. The sum of the rates of nodes (total control overhead) for the formulations

are calculated based on the sum-rate constraint in Theorem 4.1 and shown in Fig. 7.2-

b. Figure 7.2-b also shows that the sum of the pair of rates shown in Fig. 7.2-a equals

to the sum-rate constraint value calculated based on Theorem 4.1. This is due to

the special position of the selected pair of rates (in Fig. 7.1-b).

We next investigate the effect of correlation between X1 and X2 on the control

overhead. To see this effect in our example, we changed λ∆Y and λ∆T (we assume

λ∆Y = λ∆T ). The minimum state-information rate of node 1 for Formulation 3

(calculated at point C in Fig. 7.1-b) and Formulation 4 are represented in Fig. 7.3-a.

The minimum total control overhead for Formulation 3 and 4 are shown in Fig. 7.3-b.

Notably Formulation 4 provides the smallest lower bound among other formulations

for the minimum information rate of the nodes.

7.6 Summary and conclusions

In this chapter, we developed an information-theoretic framework for characteriza-

tion of the minimum rate of information for the sensor network that enables the

monitoring of the power grid. This framework is based on distributed source coding

model that enables the characterization of the minimum rate of information exchange
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Figure 7.3: (a) State information rate of node 1, and (b) total control overhead (sum of
the rates of nodes) as a function of the dependency between X1 and X2.

(minimum required capacity) in the communication network. The framework cap-

tures the interplay between the information rate and the correlation among the state

information of various components. Moreover, using the proposed framework we

presented an improved estimate of the lower bound for the minimum information

rate necessary to accurately describe the state of components in the system. This

improvement is achieved by exploiting the correlation among the state information

of components as well as the available side information in the system. The model

presented in this chapter provides a general framework for characterization of the

minimum required information rate in sensors networks, that sense signals for which

certain side information is available at the source and the destination of the infor-

mation exchange.
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Future work

Understanding complex cascading phenomena in critical infrastructures is crucial in

designing cascade-aware control mechanisms to ensure the resilience of infrastruc-

tures to large failures. The probabilistic frameworks presented in this dissertation

for modeling cascading failures in power grids and interdependent infrastructures

provide critical insight about the risk of blackouts and the factors affecting such

risk. These probabilistic models can provide predictive capabilities to infrastructure

operators to examine and analyze the risk of cascading failures as well as the critical

system settings that may severely affect the risk of large failures. In this disserta-

tion, we tackled multiple challenging problems regarding modeling, predicting and

analyzing the risk of cascading failures and a number of interesting problems remain

for future work. In this chapter, we present an overview of future research problem

in this area.

Our simulation results presented in this dissertation suggest that the topological

and spatial distribution of failures affect cascading failures. Understanding how fail-

ures propagate in infrastructures and how the spatial distribution of failures and the

structure of the infrastructure affect the risk of failures is a future research problem.
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Capturing the effects of the distribution of failures and the structure of the system in

stochastic dynamics of cascading failures is also an extension of the work presented

here. Our research group at the University of New Mexico is currently working on

this problem. Also, we described that based on historical data human error plays

a key role in the cascading behavior of the system. Capturing the effects of human

error in characterization of the risk of large blackouts is another future work. Our

research group at the University of New Mexico in collaborations with Fraunhofer

USA Center for Sustainable Energy Systems is currently working on this problem as

an extension of the work presented in this dissertation. In general, there are a large

number of key factors in operating critical infrastructures that affect cascading fail-

ures. For instance, the available resources and use of microgrids in the distribution

network of power grids can largely affect the cascading behavior in smart grids of

the future by helping the system in mitigating the effects of contingencies. Although

the stochastic nature of the introduced models in this dissertation enables capturing

the effects of factors affecting cascading failures indirectly into the predictions of the

risk of large failures, embedding such information directly in the model can improve

the predictive capability of the model.

In addition, a key outcome of the presented probabilistic models in this disserta-

tion is a roadmap for the identification of critical sub-regions of the parameter space

of the system, corresponding to various severity levels of cascading behavior. Theo-

retical characterization of such critical regions allow for separation of the cascading

behavior from non-cascading behavior in critical infrastructures. For instance, in this

dissertation, we identified the bowl-shape function for the probability that cascading

failures terminate, which leads to heavy tail in the distribution of the failure size.

Studying the conditions that lead to high probability of failures in complex systems

such as critical infrastructures using analytical approaches is another area of future

work.
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Further, as a future work, the theory developed in this dissertation, specifically

the interdependent Markov chain model, can be extended for modeling cascading fail-

ures in other complex interdependent systems. Also, further analysis of the asymp-

totics of the interdependent Markov chain based on asymptotics of the individual

chains and analytical characterization of the interdependencies that lead to critical

behaviors are interesting problems to be investigated. Specifically, the interdepen-

dent Markov chain framework can be used to analytically characterize conditions

that individually reliable systems may behave unreliably due to interdependencies

with other systems. Additionally, as a future work, the introduced regeneration-

based framework for modeling cascading failures can be used to derive the dynamics

of complex systems with non-Markovian characteristics.

The information-theoretic model presented in this dissertation for characterizing

the minimum information rate in sensor networks provides a general framework. It

can be customized for various applications in which the rate of information exchange

needs to be characterized in scenarios with correlated sources of information and

available side information that are tied to the performance metrics of the system.

Furthermore, this general framework can be extended using distributed lossy source

coding framework to appropriate cases in which certain amount of error in the data

to be tracked is acceptable.
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Appendix A

Derivation of equation (4.5)

We start by defining the following events: (1) Estop, which is the event that cascade-

stop transition occurs, (2) EFi
, which is the event that the power grid has Fi failures,

and (3) ECmax
i

, which is the event that the maximum capacity of the failed lines in the

power grid is Cmax
i . Note that Pstop(Si) is the conditional probability P{Estop|EFi

∩

ECmax
i

}. Next, we use the simple approach used in [82], in conjunction with certain

reasonable assumptions to approximately represent P{Estop|EFi
∩ECmax

i
} in terms of

a weighted superposition of P{Estop|EFi
} and P{Estop|ECmax

i
}. We begin by noting

that multiple application of Bayes rule yields

P{Estop|EFi
∩ ECmax

i
}=

P{Estop ∩ EFi
}P{ECmax

i
|Estop ∩ EFi

}

P{EFi
∩ ECmax

i
}

. (A.1)

Using the representation in (A.1) we can write

P{Estop|EFi
∩ ECmax

i
} = P{Estop|EFi

}
P{ECmax

i
|Estop ∩ EFi

}

P{ECmax
i

|EFi
)

. (A.2)

With a similar approach, we can also write

P{Estop|EFi
∩ ECmax

i
} = P{Estop|ECmax

i
}
P{EFi

|Estop ∩ ECmax
i

}

P (EFi
|ECmax

i
}

. (A.3)
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Appendix A. Derivation of equation (4.5)

Now using (A.2) and (A.3), we can write

P{Estop|EFi
∩ ECmax

i
} = wP{Estop|EFi

}
P{ECmax

i
|Estop ∩ EFi

}

P{ECmax
i

|EFi
}

+(1− w)P{Estop|ECmax
i

}
P{EFi

|Estop ∩ ECmax
i

}

P (EFi
|ECmax

i
}

, (A.4)

where w ∈ [0, 1]. In this dissertation, P{Estop|EFi
} and P{Estop|ECmax

i
} are denoted

by P
(1)
stop(Fi) and P

(2)
stop(C

max
i ), respectively.

Next, we assume that the dependence of the event ECmax
i

on the event Estop is

weaker than the dependence of the event ECmax
i

on the event EFi
, which implies that

P{ECmax
i

|Estop ∩EFi
} ≈ P{ECmax

i
|EFi

}. This simplifying assumption can be justified

from the physical characteristics of power grids. Based on our simulation results, we

know that given that Fi is large, there is a high probability that Cmax
i is also large; on

the other hand, when Fi is small then the probability of having large Cmax
i is small.

For example, when Fi is large the probability of high capacity line failures increases

due to high stress on the system and the large ratio of the number of high capacity

lines to the total number of lines in the system. Therefore, although the knowledge

of event Estop adds information about the occurrence of the event ECmax
i

we assume

that it does not significantly alter the probability distribution of the event ECmax
i

given EFi
. Similarly to the previous assumption, we assume that the dependence of

the event EFi
on the event Estop is weaker than the dependence of the event EFi

on

the event ECmax
i

. Hence, when Cmax
i is small then the probability of Fi being large

is small and Estop does not alter this probability significantly. These assumptions

enable us to approximate (A.4) by (4.5).
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Proof of Theorem 6.3.1

For simplicity of notation, we denote the asymptotic probability of reaching a state,

say s = (x, i, y,m, ℓ), from the initial state I by P(x, i, y,m, ℓ).

Based on the structure of the interdependent Markov chain model introduced in

Section 6.3, which is partially shown in Fig. 6.5, as well as the transition probabilities

introduced in (6.5), we write P(x, 1, y, 0, 0) based on the asymptotic probabilities of

reaching to its previous states as

P(x, 1, y, 0, 0) = p(x)PI(x, 0, y, 1, 0) + p(x)d(y)P(x, 0, y, 1, 1),

= p(x)(1− q(y))P(x, 0, y, 0, 1) + p(x)d(y)q(y)P(x, 0, y − 1, 0, 1)

= p(x)(1− q(y))
(

(1− p(x− 1))P(x− 1, 0, y, 1, 0)

+ (1− p(x− 1)d(y)P(x− 1, 0, y, 1, 1))
)

+ p(x)d(y)q(y)
(

(1− p(x− 1))P(x− 1, 0, y − 1, 1, 0)

+ (1− p(x− 1)d(y − 1))P(x− 1, 0, y − 1, 1, 1)
)

, (B.1)

where in the first line P(x, 1, y, 0, 0) has been written based on the probability of

reaching to its two possible previous states and the second line is derived by writing

the probabilities in the first line based on their possible previous states and similarly
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for the next step. This means that we have written P(x, 1, y, 0, 0) based on the

asymptotic probabilities of reaching to its three-step past states. We also know that

P(x− 1, 1, y, 0, 0) = p(x− 1)P(x− 1, 0, y, 1, 0) + p(x− 1)d(y)P(x− 1, 0, y, 1, 1),

(B.2)

and similarly,

P(x− 1, 1, y − 1, 0, 0) = p(x− 1)P(x− 1, 0, y − 1, 1, 0)

+ p(x− 1)d(y − 1)P(x− 1, 0, y − 1, 1, 1). (B.3)

Now, if we substitute (B.2) and (B.3) in (B.1) then we have

P(x, 1, y, 0, 0) = p(x)(1− q(y))
(

(1− p(x− 1))
(

P(x− 1, 1, y, 0, 1)

− p(x− 1)d(y)P(x− 1, 0, y, 1, 1)
)

/p(x)

+ (1− p(x− 1)d(y)P(x− 1, 0, y, 1, 1))
)

+ p(x)d(y)q(y)
(

(1− p(x− 1))P(x− 1, 0, y − 1, 1, 0)

+ (1− p(x− 1)d(y − 1))
(

P(x− 1, 1, y − 1, 0, 1)

− p(x− 1)P(x− 1, 0, y − 1, 1, 0)
)

/(p(x)d(y − 1))
)

. (B.4)

Next, we simplify (B.4) and substitute the definition of P(x − 1, 0, y − 1, 1, 0) and

P(x− 1, 0, y, 1, 1) based on P(x− 1, 0, y− 1, 0, 1) in (B.4). As mentioned in Chapter

6, we denote P(x, 1, y, 0, 0) by F(x, y) and P(x, 0, y, 0, 1) by G(x, y). As such, after

the simplifications of (B.4) we can write

F(x, y) = α1(x, y)F(x− 1, y) + α2(x, y)F(x− 1, y − 1)

+ α3(x, y)G(x− 1, y − 1),

G(x, y) = α4(x, y)F(x− 1, y) + α5(x, y)G(x− 1, y − 1), (B.5)

where its coefficients are functions of p(.), q(.) and d(.). This proves the general case

in Theorem 6.3.1. Based on the structure of the presented interdependent Markov
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chain model, there are three special cases that the coefficients do not follow the

general case presented in (6.8). This is because certain states do not have all the

previous states that we used in the derivation of the above difference equations. For

instance, when y = 1 the state s = (x− 1, 0, y − 1, 1, 1) in the above equations does

not have any previous state. Similarly, the cases where y = x and y = x− 1 need to

be considered as special cases due to the assumption that communication failures are

triggered by power failures and thus certain states are not possible as previous states.

This is because we cannot have more communication failures than power failures in

the system based on the assumptions of the model. The derivation of the difference

equations for special cases is similar to the general case and thus have been omitted

here.
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Proof of Theorem 7.4.1

Theorem 7.4.1 is an extension of Slepian-Wolf Theorem to the case with four sources

that two of them are co-located with the decoder and the other two are remote.

Similarly to [95], the proof of Theorem 7.4.1 consists of two parts. First, we show

that for the pair of rates in the region described in Theorem 7.4.1, there exists a

sequence of codes with lim
n→∞

P
(n)
e = 0 (the achievability proof). Next, we will show

that for every sequence of codes with lim
n→∞

P
(n)
e = 0 the rates satisfy the constraints

in Theorem 7.4.1 (the converse proof).

Achievability proof of Theorem 1: Here, we use random binning technique

[95], and the notion of typical sequences [93]. For X with a pmf pX(x) and ε ∈ (0, 1),

define the set of ε-typical n-sequences xn as

T n
ε (X) = { xn : |π(x|xn)− pX(x)| ≤ εp(x) for all x ∈ X },

where, π(x|xn) = |{i : xi = x}|/n for x ∈ X , which X is the corresponding alphabet

of Xi’s. The notion of typicality can be extended to multiple random variables. To

review of the properties of ε-typical sets see [93].
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Codebook generation. Randomly and independently assign an index m1(x
n
1 )

to each sequence xn
1 ∈ X n

1 according to a uniform pmf over [1 : 2nR1 ]. Sequences

with the same index mi form a bin B1(mi). We do the same for the second source.

The bin assignments are revealed to nodes and the CN.

Encoding. Upon observing xn
1 ∈ B1(m1), encoder 1 sends m1. Similarly, for

xn
2 ∈ B1(m2), encoder 2 sends m2.

Decoding. Given the received index pair (m1, m2), the decoder declares (x̂
n
1 , x̂

n
2 )

to be the estimate of the sources if it is the unique pair in the product bin B1(m1)×

B2(m2) such that (xn
1 , x

n
2 , y

n
1 , y

n
2 ) is jointly typical; otherwise it declares an error.

Analysis of the probability of error. We bound the probability of error

averaged over bin assignments. Let M1 and M2 denote the random bin indices for

Xn
1 and Xn

2 , respectively. The decoder makes an error if and only if one or more of

the following events occur:

E1 = {(Xn
1 , X

n
2 , Y

n
1 , Y

n
2 ) /∈ T n

ε },

E2 = {x̃n
1 ∈ B1(M1)for some x̃n

1 6= Xn
1 , (x̃

n
1 , X

n
2 , Y

n
1 , Y

n
2 ) ∈ T n

ε },

E3 = {x̃n
2 ∈ B2(M2)for some x̃n

2 6= Xn
2 , (x̃

n
2 , X

n
1 , Y

n
1 , Y

n
2 ) ∈ T n

ε },

E4 = {x̃n
1 ∈ B1(M1), x̃

n
2 ∈ B2(M2)

for some x̃n
1 6= Xn

1 , x̃
n
2 6= Xn

2 , (x̃
n
1 , x̃

n
2 , Y

n
1 , Y

n
2 ) ∈ T n

ε }.

Then by the union of events bound, the average probability of error is upper bounded

as

P{E} ≤ P{E1}+ P{E2}+ P{E3}+ P{E4}. (C.1)

Now, we bound each probability of error term. By the law of large numbers and

definition of ε-typical sets, P{E1} tends to zero as n → ∞. For the second term,
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using symmetry of the codebook construction, we have

P{E2|X
n
1 ∈ B1(1)}

=
∑

(xn
1
,xn

2
,yn

1
,yn

2
)

(

p(Xn
1
,Xn

2
,Y n

1
,Y n

2
)((x

n
1 , x

n
2 , y

n
1 , y

n
2 )|X

n
1 ∈ B1(1))×

P{x̃n
1 ∈ B1(M1) for some x̃n

1 6= Xn
1 , (x̃

n
1 , X

n
2 , Y

n
1 , Y

n
2 ) ∈ T n

ε |

xn
1 ∈ B1(M1), (X

n
1 , X

n
2 , Y

n
1 , Y

n
2 ) = (xn

1 , x
n
2 , y

n
1 , y

n
2 )}

)

=
∑

(xn
1
,xn

2
,yn

1
,yn

2
)

(

p(Xn
1
,Xn

2
,Y n

1
,Y n

2
)(x

n
1 , x

n
2 , y

n
1 , y

n
2 )×

∑

x̃n
1
∈T n

ε (X1|xn
2
,yn

1
,yn

2
)

P{x̃n
1 ∈ B1(1)}

)

≤ 2n(H(X1|X2,Y1,Y2)+δ(ε))2−nR1 , (C.2)

which tends to zero as n → ∞ if R1 > H(X1|X2, Y1, Y2) + δ(ε). Similarly, P{E3}

and P{E4} tend to zero as n → ∞ if R2 > H(X2|X1, Y1, Y2) + δ(ε) and R1 + R2 >

H(X1, X2|Y1, Y2) + δ(ε). Therefore, there exists a sequence of bin assignments with

lim
n→∞

P
(n)
e = 0. This completes the achievability proof of the theorem.

Converse proof of Theorem 1: Given a sequence of codes with lim
n→∞

P
(n)
e = 0,

let K1 and K2 denote the indices from encoders 1 and 2, respectively. By Fano’s

inequality [93], we have

H(Xn
1 |K1, K2, Y

n
1 , Y

n
2 ) ≤ H(Xn

1 |X̂
n
1 ) (C.3)

≤ 1 + nP (n)
e log |X | = nεn,
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where εn tends to zero as n → ∞ by the assumption that lim
n→∞

P
(n)
e = 0. Now

consider

nR1 ≥ H(K1) (C.4)

≥ H(K1|K2, Y
n
1 , Y

n
2 )

= H(K1|K2, Y
n
1 , Y

n
2 ) +H(Xn

1 |K1, K2, Y
n
1 , Y

n
2 )

−H(Xn
1 |K1, K2, Y

n
1 , Y

n
2 )

= H(Xn
1 , K1|K2, Y

n
1 , Y

n
2 )−H(Xn

1 |K1, K2, Y
n
1 , Y

n
2 )

≥ H(Xn
1 , K1|K2, Y

n
1 , Y

n
2 )− nεn

= H(Xn
1 |K2, Y

n
1 , Y

n
2 )− nεn

≥ H(Xn
1 |X

n
2 , K2, Y

n
1 , Y

n
2 )− nεn

= H(Xn
1 , K2|X

n
2 , Y

n
1 , Y

n
2 )−H(K2|X

n
2 , Y

n
1 , Y

n
2 )− nεn

= H(Xn
1 |X

n
2 , Y

n
1 , Y

n
2 ) +H(K2|X

n
1 , X

n
2 , Y

n
1 , Y

n
2 )− nεn

= nH(X1|X2, Y1, Y2)− nεn.

Here, we have used H(A1, A2|A3) = H(A1|A3) + H(A2|A1, A3), a property of the

conditional entropy, multiple times, where Ai’s are arbitrary random variables. Now,

by taking n → ∞, we can conclude that R1 ≥ H(X1|X2, Y1, Y2). This completes the

converse proof of Theorem 7.4.1.
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