47 research outputs found

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Bilateral controllers for teleoperated percutaneous interventions : evaluation and improvements

    Full text link

    Bilateral Control - Operational enhancements

    Get PDF
    A succinct definition of the word bilateral is having two sides [1]. In robotics the term bilateral control is used to define the specific interaction of two systems by means of position and/or force. Bilateral systems are composed of two sides named master and slave side. The aim of such an arrangement is such that position command dictated by master side is followed by a slave side, and at the same time the force sensation of the remote environment experienced by slave is transferred to the mater - human operator. This way bilateral system may be perceived as an “impendanceless” extension of the human operator providing the touch information of the remote (or inaccessible) environment. In a sense bilateral systems are a mechatronics extension of the teleoperated systems. There are many applications of this structure which requires critical manipulations like nuclear material handling, robotic surgery, and micro material handling and assembly. In all these applications a human operator is required to have as close to real as possible contact with object that should be manipulated or in other word the telepresence of the operator is required. In this thesis work various important aspects of bilateral control systems are discussed. These aspects include problems of (i) acquisition of information on master and slave side, (ii) analysis and selection of the proper structure of the control systems to ensure fidelity of the system behavior. The work has been done to enhance the performance of the bilateral control system by: (i) Enhancing position and velocity measurements obtained from incremental encoder having limited number of pulses per revolution. A few algorithms are investigated and their improvements are proposed; (ii) Increasing system robustness by using acceleration controller based on disturbance observer. The robust system design based on disturbance observer is known but its application requires very fast sampling and high bandwidth of the observer. In this work the discrete time realization of the observer is presented in details and selection of the necessary filters and the sampling so to achieve a good trade-off for observer realization is discussed and experimentally confirmed; (iii) Increasing the bandwidth of force sensation by using reaction force observer. For transparent operation of a bilateral system the bandwidth of force sensation is of the major interest. All force sensors do have relatively slow dynamics and observer based structures seems providing better behavior of the overall system. In this work the observer of the interaction force is examined and design procedure is established. In order to verify all of the proposed ideas a versatile bilateral system is designed and built and experimental verification is carried out on this system

    a general framework for shared control in robot teleoperation with force and visual feedback

    Get PDF
    In the last decade, the topic of human robot interaction has received increasing interest from research and industry, as robots must now interface with human users to accomplish complex tasks. In this scenario, robotics engineers are required to take the human component into account in the robot design and control. This is especially true in telerobotics, where interaction with the user plays an important role in the controlled system stability. By means of a thorough analysis and practical experiments, this contribution aims at giving a concrete idea of the aspects that need to be considered in the design of a complete control framework for teleoperated systems, that are able to seamlessly integrate with a human operator through shared control

    Passivity-Based adaptive bilateral teleoperation control for uncertain manipulators without jerk measurements

    Get PDF
    In this work, we consider the bilateral teleoperation problem of cooperative robotic systems in a Single-Master Multi-Slave (SM/MS) configuration, which is able to perform load transportation tasks in the presence of parametric uncertainty in the robot kinematic and dynamic models. The teleoperation architecture is based on the two-layer approach placed in a hierarchical structure, whose top and bottom layers are responsible for ensuring the transparency and stability properties respectively. The load transportation problem is tackled by using the formation control approach wherein the desired translational velocity and interaction force are provided to the master robot by the user, while the object is manipulated with a bounded constant force by the slave robots. Firstly, we develop an adaptive kinematic-based control scheme based on a composite adaptation law to solve the cooperative control problem for robots with uncertain kinematics. Secondly, the dynamic adaptive control for cooperative robots is implemented by means of a cascade control strategy, which does not require the measurement of the time derivative of force (which requires jerk measurements). The combination of the Lyapunov stability theory and the passivity formalism are used to establish the stability and convergence property of the closed-loop control system. Simulations and experimental results illustrate the performance and feasibility of the proposed control scheme.No presente trabalho, considera-se o problema de teleoperação bilateral de um sistema robótico cooperativo do tipo single-master e multiple-slaves (SM/MS) capaz de realizar tarefas de transporte de carga na presença de incertezas paramétricas no modelo cinemático e dinâmico dos robôs. A arquitetura de teleoperação está baseada na abordagem de duas camadas em estrutura hierárquica, onde as camadas superior e inferior são responsáveis por assegurar as propriedades de transparência e estabilidade respectivamente. O problema de transporte de carga é formulado usando a abordagem de controle de formação onde a velocidade de translação desejada e a força de interação são fornecidas ao robô mestre pelo operador, enquanto o objeto é manipulado pelos robôs escravos com uma força constante limitada. Primeiramente, desenvolve-se um esquema de controle adaptativo cinemático baseado em uma lei de adaptação composta para solucionar o problema de controle cooperativo de robôs com cinemática incerta. Em seguida, o controle adaptativo dinâmico de robôs cooperativos é implementado por meio de uma estratégia de controle em cascata, que não requer a medição da derivada da força (o qual requer a derivada da aceleração ou jerk). A teoria de estabilidade de Lyapunov e o formalismo de passividade são usados para estabelecer as propriedades de estabilidade e a convergência do sistema de controle em malha-fechada. Resultados de simulações numéricas ilustram o desempenho e viabilidade da estratégia de controle proposta

    Sensorless Haptic Force Feedback for Telemanipulation using two identical Delta Robots

    Get PDF
    Bilateral teleoperation allows users to interact with objects in remote environments by providing the operator with haptic feedback. In this thesis two control scheme have been implemented in order to guarantee stability and transparency to the system: a position-position control scheme with gravity and passivity compensation and a bilateral force sensorless acceleration control implemented with Kalman filters and disturbance observers. Both methods were tested using two identical Delta robot

    A model-based robust control approach for bilateral teleoperation systems

    Get PDF

    Compliant and stable robot control for physical human-robot cooperation

    Get PDF
    The main goal of this thesis is to accomplish a compliant and stable closed-loop physical human-robot cooperation by guaranteeing the safety metrics for all of the agents in a shared-working environment. There is increasing interest in control frameworks capable of moving robots from industrial cages to unstructured environments and coexisting with humans. Initially, having robots capable of safely interacting with humans was of interest for medical applications (e.g., rehabilitation, surgical). Despite significant improvement in some specific applications like medical robotics, there is still the need for a general control framework that improves interaction robustness and motion dynamics. Passive controllers show promising results in this direction; however, they often rely on virtual energy tanks that can guarantee passivity as long as they do not run out of energy. In this thesis, a fractal attractor is proposed to implement a variable impedance controller that can retain passivity without relying on energy tanks. The controller generates a fractal attractor around the desired state using an asymptotic stable potential field, making the controller robust to discretization and numerical integration errors. Thus, the proposed Fractal Impedance Controller (FIC) in this thesis is robust for low-bandwidth applications. I have tested this controller with a torque controlled 7-DoF manipulator. The results prove that it can accurately track both trajectories and end-effector forces during interaction. Furthermore, it can automatically deal with the extra energy introduced by changes in interaction conditions, null-space controller and environment. Therefore, on the one hand these properties make the controller ideal for applications where the dynamic interaction at the end-effector is challenging to be characterized a priori, such as proximate physical human-robot cooperation and unknown dynamics. On the other hand in remote human-robot cooperation, robotic teleoperation provides human-in-the-loop capabilities of complex manipulation tasks in dangerous or remote environments, such as planetary exploration or nuclear decommissioning. This thesis proposes a novel bilateral telemanipulation architecture using the proposed passive FIC, which does not depend upon an active viscous component for guaranteeing stability. Compared to a traditional impedance controller in ideal conditions (no delays and maximum communication bandwidth), the proposed method yields higher transparency in interaction and demonstrates superior dexterity and capability in my telemanipulation test scenarios. I also validate its performance with extreme delays up to 1s and communication bandwidths as low as 10Hz. The results of the carried out experiments validate a consistent stability when using the proposed controller in challenging conditions, regardless of operator expertise. The proposed fractal impedance controller in this thesis exploits its non-linear stiffness to adapt to multiple cooperative scenarios without tuning the controller. Furthermore, the FIC has an intuitive method to adjust the impedance that can be performed online without affecting stability. The experimental results, carried out using 2 torque controlled 7-DoF manipulators and the Sigma.7 haptic device, also show that the proposed method can perform tasks such as drilling, moving objects with unknown dynamics, and interacting with humans without re-tuning the controller's impedance in a tele-cooperative manner consisting of multi-agents in the loop. The FIC also allows identifying the highest impedance profile for a robot experimentally, and it bounds the maximum momentum generated while moving. Thus, it opens new possibilities for developing better adaptive controllers by coupling the proposed method with learning and optimisation algorithms to modulate its behaviour without the risk of incurring instability issues.YOUTUBE links to Chapters 3,4 & 5 below

    Robustness analysis and controller synthesis for bilateral teleoperation systems via IQCs

    Get PDF
    corecore