851 research outputs found

    Coherent fibre-optic link: applications in Time and Frequency metrology, Geodesy, Radio Astronomy and Seismology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Highly-sensitive measurements with chirped- pulse phasesensitive OTDR

    Get PDF
    Distributed optical fiber sensing is currently a very predominant research field, which perceives optical fibers as the potential nervous system of the Earth. Optical fibers are understood as continuous densely-packed sensing arrays, able of retrieving physical quantities from the environment of the fiber. Some of the most prominent distributed sensing implementations nowadays rely on performing interferometric measurements using the Rayleigh backscattered light, resorting to a technique called Phase-sensitive Optical Time-Domain Reflectometry (CP-ϕOTDR). A variant to this technique has been recently proposed in 2016, known as Chirped-Pulse Phase-Sensitive OTDR, which allowed to overcome most of the limitations of traditional ϕOTDR implementations while retaining a simple setup, yielding remarkably high sensitivities. In this thesis, we aim to optimize the stability and performance of chirped-pulse ϕOTDR systems over long-term measurements, and develop novel paradigm changing applications benefiting from the high sensitivity provided by the technique. We reach a mK-scale long-term stability in ϕOTDR systems, and perform highly sensitive strain, temperature, and refractive index measurements, demonstrating new photonic applications such as distributed bolometry, electro-optical reflectometry, or distributed underwater seismology. We discuss how these applications might be able of increasing the efficiency in the energy field, paving the way towards the development of self-diagnosable grids (smart-grids), and also of revolutionizing next-generation seismological networks, allowing to overcome some of the greatest limitations faced in modern seismology today.Distributed optical fiber sensing is currently a very predominant research field, which perceives optical fibers as the potential nervous system of the Earth. Optical fibers are understood as continuous densely-packed sensing arrays, able of retrieving physical quantities from the environment of the fiber. Some of the most prominent distributed sensing implementations nowadays rely on performing interferometric measurements using the Rayleigh backscattered light, resorting to a technique called Phase-sensitive Optical Time-Domain Reflectometry (φOTDR). A variant to this technique has been recently proposed in 2016, known as Chirped-Pulse Phase-Sensitive OTDR, which allowed to overcome most of the limitations of traditional φOTDR implementations while retaining a simple setup, yielding remarkably high sensitivities. In this thesis, we aim to optimize the stability and performance of chirped-pulse φOTDR systems over long-term measurements, and develop novel paradigm changing applications benefiting from the high sensitivity provided by the technique. We reach a mK-scale long-term stability in φOTDR systems, and perform highly sensitive strain, temperature and refractive index measurements, demonstrating new photonic applications such as distributed bolometry, electro-optical reflectometry, or distributed underwater seismology. We discuss how these applications might be able of increasing the efficiency in the energy field, paving the way towards the development of self-diagnosable grids (smart-grids), and also of revolutionizing nextgeneration seismological networks, allowing to overcome some of the greatest limitations faced in modern seismology today. We finally conclude and summarize the objectives achieved in this thesis, commenting on the potential of the novel applications shown, and proposing future lines of research based on the results

    Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S ‐Velocity Structure on Rutford Ice Stream, Antarctica

    Get PDF
    Firn densification profiles are an important parameter for ice-sheet mass balance and palaeoclimate studies. One conventional method of investigating firn profiles is using seismic refraction surveys, but these are difficult to upscale to large-area measurements. Distributed acoustic sensing (DAS) presents an opportunity for large-scale seismic measurements of firn with dense spatial sampling and easy deployment, especially when seismic noise is used. We study the feasibility of seismic noise interferometry (SI) on DAS data for characterizing the firn layer at the Rutford Ice Stream, West Antarctica. Dominant seismic energy appears to come from anthropogenic noise and shear-margin crevasses. The DAS cross-correlation interferometry yields noisy Rayleigh wave signals. To overcome this, we present two strategies for cross-correlations: (a) hybrid instruments—correlating a geophone with DAS, and (b) stacking of selected cross-correlation panels picked in the tau-p domain. These approaches are validated with results derived from an active survey. Using the retrieved Rayleigh wave dispersion curve, we inverted for a high-resolution 1D S-wave velocity profile down to a depth of 100 m. The profile shows a “kink” (velocity gradient inflection) at ∼12 m depth, resulting from a change of compaction mechanism. A triangular DAS array is used to investigate directional variation in velocity, which shows no evident variations thus suggesting a lack of azimuthal anisotropy in the firn. Our results demonstrate the potential of using DAS and SI to image the near-surface and present a new approach to derive S-velocity profiles from surface wave inversion in firn studies

    Fiber Optic Sensors in Chemical and Biological Applications

    Get PDF
    The Special Issue "Fiber Optic Sensors in Chemical and Biological Applications” gathers recent original papers. The subjects of the papers cover a broad range of optical fiber chemical sensors and biosensors applied for regulation in bioreactors, to novel concepts of intrinsic optical fiber sensors

    The veto system of the DarkSide-50 experiment

    Get PDF
    Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detecto

    NASA Thesaurus. Volume 2: Access vocabulary

    Get PDF
    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus

    The Ocean Observatories Initiative

    Get PDF
    The Ocean Observatories Initiative (OOI) is an integrated network that enables scientific investigation of interlinked physical, chemical, biological and geological processes throughout the global ocean. With near real-time data delivery via a common Cyberinfrastructure, the OOI instruments two contrasting ocean systems at three scales. The Regional Cabled Array instruments a tectonic plate and overlying ocean in the northeast Pacific, providing a permanent electro-optical cable connecting multiple seafloor nodes that provide high power and bandwidth to seafloor sensors and moorings with instrumented wire crawlers, all with speed-of-light interactive capabilities. Coastal arrays include the Pioneer Array, a relocatable system currently quantifying the New England shelf-break front, and the Endurance Array, a fixed system off Washington and Oregon with connections to the Regional Cabled Array. The Global Arrays host deep-ocean moorings and gliders to provide interdisciplinary measurements of the water column, mesoscale variability, and air-sea fluxes at critical high latitude locations. The OOI has unique aspects relevant to the international ocean observing community. The OOI uses common sensor types, verification protocols, and data formats across multiple platform types in diverse oceanographic regimes. OOI observing is sustained, with initial deployment in 2013 and 25 years of operation planned. The OOI is distributed among sites selected for scientific relevance based on community input and linked by important oceanographic processes. Scientific highlights include real-time observations of a submarine volcanic eruption, time-series observations of methane bubble plumes from Southern Hydrate Ridge off Oregon, observations of anomalous low-salinity pulses off Oregon, discovery of new mechanisms for intrusions of the Gulf Stream onto the shelf in the Middle Atlantic Bight, documentation of deep winter convection in the Irminger Sea, and observations of extreme surface forcing at the most southerly surface mooring in the world ocean

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore