1,149 research outputs found

    Every countable model of set theory embeds into its own constructible universe

    Full text link
    The main theorem of this article is that every countable model of set theory M, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding j:M→LMj:M\to L^M that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random Q-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that LML^M contains a submodel that is a universal acyclic digraph of rank OrdMOrd^M. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other. Indeed, they are pre-well-ordered by embedability in order-type exactly ω1+1\omega_1+1. Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory MM is universal for all countable well-founded binary relations of rank at most OrdMOrd^M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if MM is any nonstandard model of PA, then every countable model of set theory---in particular, every model of ZFC---is isomorphic to a submodel of the hereditarily finite sets HFMHF^M of MM. Indeed, HFMHF^M is universal for all countable acyclic binary relations.Comment: 25 pages, 2 figures. Questions and commentary can be made at http://jdh.hamkins.org/every-model-embeds-into-own-constructible-universe. (v2 adds a reference and makes minor corrections) (v3 includes further changes, and removes the previous theorem 15, which was incorrect.

    Countable locally 2-arc-transitive bipartite graphs

    Get PDF
    We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These examples are obtained by gluing together copies of incidence graphs of semilinear spaces, satisfying a certain symmetry property, in a tree-like way. In one case we show how the classification problem for that family relates to the problem of determining a certain family of highly arc-transitive digraphs. Numerous illustrative examples are given.Comment: 29 page

    Sizing the length of complex networks

    Full text link
    Among all characteristics exhibited by natural and man-made networks the small-world phenomenon is surely the most relevant and popular. But despite its significance, a reliable and comparable quantification of the question `how small is a small-world network and how does it compare to others' has remained a difficult challenge to answer. Here we establish a new synoptic representation that allows for a complete and accurate interpretation of the pathlength (and efficiency) of complex networks. We frame every network individually, based on how its length deviates from the shortest and the longest values it could possibly take. For that, we first had to uncover the upper and the lower limits for the pathlength and efficiency, which indeed depend on the specific number of nodes and links. These limits are given by families of singular configurations that we name as ultra-short and ultra-long networks. The representation here introduced frees network comparison from the need to rely on the choice of reference graph models (e.g., random graphs and ring lattices), a common practice that is prone to yield biased interpretations as we show. Application to empirical examples of three categories (neural, social and transportation) evidences that, while most real networks display a pathlength comparable to that of random graphs, when contrasted against the absolute boundaries, only the cortical connectomes prove to be ultra-short

    Hitting minors, subdivisions, and immersions in tournaments

    Full text link
    The Erd\H{o}s-P\'osa property relates parameters of covering and packing of combinatorial structures and has been mostly studied in the setting of undirected graphs. In this note, we use results of Chudnovsky, Fradkin, Kim, and Seymour to show that, for every directed graph HH (resp. strongly-connected directed graph HH), the class of directed graphs that contain HH as a strong minor (resp. butterfly minor, topological minor) has the vertex-Erd\H{o}s-P\'osa property in the class of tournaments. We also prove that if HH is a strongly-connected directed graph, the class of directed graphs containing HH as an immersion has the edge-Erd\H{o}s-P\'osa property in the class of tournaments.Comment: Accepted to Discrete Mathematics & Theoretical Computer Science. Difference with the previous version: use of the DMTCS article class. For a version with hyperlinks see the previous versio
    • …
    corecore