39,700 research outputs found

    Aperiodic pseudorandom number generators based on infinite words

    No full text
    In this paper we study how certain families of aperiodic infinite words can be used to produce aperiodic pseudorandom number generators (PRNGs) with good statistical behavior. We introduce the well distributed occurrences (WELLDOC) combinatorial property for infinite words, which guarantees absence of the lattice structure defect in related pseudorandom number generators. An infinite word u on a d-ary alphabet has the WELLDOC property if, for each factor w of u, positive integer m, and vector v in (Z_d)^m, there is an occurrence of w such that the Parikh vector of the prefix of u preceding such occurrence is congruent to v modulo m. (The Parikh vector of a finite word v over an alphabet A has its i-th component equal to the number of occurrences of the i-th letter of A in v.) We prove that Sturmian words, and more generally Arnoux–Rauzy words and some morphic images of them, have the WELLDOC property. Using the TestU01 and PractRand statistical tests, we moreover show that not only the lattice structure is absent, but also other important properties of PRNGs are improved when linear congruential generators are combined using infinite words having the WELLDOC property

    Local limit of labeled trees and expected volume growth in a random quadrangulation

    Full text link
    Exploiting a bijective correspondence between planar quadrangulations and well-labeled trees, we define an ensemble of infinite surfaces as a limit of uniformly distributed ensembles of quadrangulations of fixed finite volume. The limit random surface can be described in terms of a birth and death process and a sequence of multitype Galton--Watson trees. As a consequence, we find that the expected volume of the ball of radius rr around a marked point in the limit random surface is Θ(r4)\Theta(r^4).Comment: Published at http://dx.doi.org/10.1214/009117905000000774 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variable length Markov chains and dynamical sources

    Full text link
    Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the ``comb'' and the ``bamboo blossom'', we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the generating functions of word occurrences.Comment: 45 pages, 15 figure

    Counter Machines and Distributed Automata: A Story about Exchanging Space and Time

    Full text link
    We prove the equivalence of two classes of counter machines and one class of distributed automata. Our counter machines operate on finite words, which they read from left to right while incrementing or decrementing a fixed number of counters. The two classes differ in the extra features they offer: one allows to copy counter values, whereas the other allows to compute copyless sums of counters. Our distributed automata, on the other hand, operate on directed path graphs that represent words. All nodes of a path synchronously execute the same finite-state machine, whose state diagram must be acyclic except for self-loops, and each node receives as input the state of its direct predecessor. These devices form a subclass of linear-time one-way cellular automata.Comment: 15 pages (+ 13 pages of appendices), 5 figures; To appear in the proceedings of AUTOMATA 2018

    Well Structured Transition Systems with History

    Get PDF
    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Breaking Sticks and Ambiguities with Adaptive Skip-gram

    Full text link
    Recently proposed Skip-gram model is a powerful method for learning high-dimensional word representations that capture rich semantic relationships between words. However, Skip-gram as well as most prior work on learning word representations does not take into account word ambiguity and maintain only single representation per word. Although a number of Skip-gram modifications were proposed to overcome this limitation and learn multi-prototype word representations, they either require a known number of word meanings or learn them using greedy heuristic approaches. In this paper we propose the Adaptive Skip-gram model which is a nonparametric Bayesian extension of Skip-gram capable to automatically learn the required number of representations for all words at desired semantic resolution. We derive efficient online variational learning algorithm for the model and empirically demonstrate its efficiency on word-sense induction task

    Canonical Representatives of Morphic Permutations

    Get PDF
    An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over {0,,q1}\{0,\ldots,q-1\} as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on Words: 10th International Conference. arXiv admin note: text overlap with arXiv:1503.0618
    corecore