79 research outputs found

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Finite-time stabilization of discontinuous fuzzy inertial Cohen–Grossberg neural networks with mixed time-varying delays

    Get PDF
    This article aims to study a class of discontinuous fuzzy inertial Cohen–Grossberg neural networks (DFICGNNs) with discrete and distributed time-delays. First of all, in order to deal with the discontinuities by the differential inclusion theory, based on a generalized variable transformation including two tunable variables, the mixed time-varying delayed DFICGNN is transformed into a first-order differential system. Then, by constructing a modified Lyapunov–Krasovskii functional concerning with the mixed time-varying delays and designing a delayed feedback control law, delay-dependent criteria formulated by algebraic inequalities are derived for guaranteeing the finite-time stabilization (FTS) for the addressed system. Moreover, the settling time is estimated. Some related stability results on inertial neural networks is extended. Finally, two numerical examples are carried out to verify the effectiveness of the established results

    Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay

    Get PDF
    This paper deals with the global Mittag-Leffler stability (GMLS) of Caputo fractional-order fuzzy inertial neural networks with time delay (CFOFINND). Based on Lyapunov stability theory and global fractional Halanay inequalities, the existence of unique equilibrium point and GMLS of CFOFINND have been established. A numerical example is given to illustrate the effectiveness of our results

    Hopf Bifurcation and Chaos in a Single Inertial Neuron Model with Time Delay

    Full text link
    A delayed differential equation modelling a single neuron with inertial term is considered in this paper. Hopf bifurcation is studied by using the normal form theory of retarded functional differential equations. When adopting a nonmonotonic activation function, chaotic behavior is observed. Phase plots, waveform plots, and power spectra are presented to confirm the chaoticity.Comment: 12 pages, 7 figure

    Predefined-time synchronization of 5D Hindmarsh–Rose neuron networks via backstepping design and application in secure communication

    Get PDF
    In this paper, the fast synchronization problem of 5D Hindmarsh–Rose neuron networks is studied. Firstly, the global predefined-time stability of a class of nonlinear dynamical systems is investigated under the complete beta function. Then an active controller via backstepping design is proposed to achieve predefined-time synchronization of two 5D Hindmarsh–Rose neuron networks in which the synchronization time of each state variable of the master-slave 5D Hindmarsh–Rose neuron networks is different and can be defined in advance, respectively. To show the applicability of the obtained theoretical results, the designed predefined-time backstepping controller is applied to secure communication to realize asynchronous communication of multiple different messages. Three numerical simulations are provided to validate the theoretical results

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes
    corecore