8,410 research outputs found
Frequency support characteristics of grid-interactive power converters based on the synchronous power controller
Grid-interactive converters with primary frequency control and inertia emulation have emerged and are promising for future renewable generation plants because of the contribution in power system stabilization. This paper gives a synchronous active power control solution for gridinteractive converters , as a way to emulate synchronous generators for inerita characteristics and load sharing. As design considerations, the virtual angle stability and transient response are both analyzed, and the detailed implementation structure is also given without entailing any difficulty in practice. The analytical and experimental validation of frequency support characteristics differentiates the work from other publications on generator emulation control. The 10 kW simulation and experimental frequency sweep tests on a regenerative source test bed present good performance of the proposed control in showing inertia and droop characteristics, as well as the controllable transient response.Peer ReviewedPostprint (author's final draft
Contribution of wind farms to the stability of power systems with high penetration of renewables
This article belongs to the Special Issue Modeling and Control of Wind Energy Conversion Systems.Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation.This research was funded by the Spanish Ministry of Science, Innovation and Universities grant number PID2019-106028RB-I0
Inertia emulation control of VSC-HVDC transmission system
The increasing penetration of power electronics interfaced renewable generation (e.g. offshore wind) has been leading to a reduction in conventional synchronous-machine based generation. Most converter-interfaced energy sources do not contribute to the overall power system inertia; and therefore cannot support the system during system transients and disturbances. It is therefore desirable that voltage-source-converter (VSC) based high voltage direct current (HVDC) interfaces, which play an important role in delivery of renewable power to AC systems, could contribute a virtual inertia and provide AC grid frequency support. In this paper, an inertia emulation control (IEC) system is proposed that allows VSC-HVDC system to perform an inertial response in a similar fashion to synchronous machines (SM), by exercising the electro-static energy stored in DC shunt capacitors of the HVDC system. The proposed IEC scheme has been implemented in simulations and its performance is evaluated using Matlab/Simulink
Adaptive inertia emulation control for high-speed flywheel energy storage systems
Low-inertia power systems suffer from a high rate of change of frequency (ROCOF) during a sudden imbalance in supply and demand. Inertia emulation techniques using storage systems, such as flywheel energy storage systems (FESSs), can elp to reduce the ROCOF by rapidly providing the needed power to balance the grid. In this work, a new adaptive ontroller for inertia emulation using high-speed FESS is proposed. The controller inertia and damping coefficients vary using a combination of bangâbang control approaches and self-adaptive ones, to simultaneously improve both the ROCOF and the frequency nadir. The performance of the proposed adaptive controller has been initially validated and compared with several existing adaptive controllers by means of offline simulations, and then validated with experimental results. The proposed controller has been implemented on a real 60 kW high-speed FESS, and its performance has been evaluated by means of power hardware-in-the-loop (PHIL) testing of the FESS in realistic grid conditions. Both Simulations and PHIL testing results confirm that the proposed inertia emulation control for the FESS outperforms several previously reported controllers, in terms of reducing the maximum ROCOF and improving the frequency nadir during large disturbances
Performance Guaranteed Inertia Emulation for Diesel-Wind System Feed Microgrid via Model Reference Control
In this paper, a model reference control based inertia emulation strategy is
proposed. Desired inertia can be precisely emulated through this control
strategy so that guaranteed performance is ensured. A typical frequency
response model with parametrical inertia is set to be the reference model. A
measurement at a specific location delivers the information of disturbance
acting on the diesel-wind system to the reference model. The objective is for
the speed of the diesel-wind system to track the reference model. Since active
power variation is dominantly governed by mechanical dynamics and modes, only
mechanical dynamics and states, i.e., a swing-engine-governor system plus a
reduced-order wind turbine generator, are involved in the feedback control
design. The controller is implemented in a three-phase diesel-wind system feed
microgrid. The results show exact synthetic inertia is emulated, leading to
guaranteed performance and safety bounds.Comment: 2017 IEEE PES Innovative Smart Grid Technologies Conferenc
Inertia emulation control strategy for VSC-HVDC transmission systems
There is concern that the levels of inertia in power systems may decrease in the future, due to increased levels of energy being provided from renewable sources, which typically have little or no inertia. Voltage source converters (VSC) used in high voltage direct current (HVDC) transmission applications are often deliberately controlled in order to de-couple transients to prevent propagation of instability between interconnected systems. However, this can deny much needed support during transients that would otherwise be available from system inertia provided by rotating plant
Synchronous frequency support of photovoltaic power plants with inertia emulation
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Grid stability is one of the main concerns in renewable energies. The lack of inertia and their low capability to provide frequency support has created the need for implementing new control strategies to solve this problem. In current networks, frequency and voltage support are performed through synchronous generators, which provide an inherent grid support due to the inertia presented in their mechanical rotors. Based on the same concept, renewable energies based on power converters have introduced synchronous controllers to emulate the dynamic behavior of synchronous generators and provide voltage and frequency support. However, most synchronous control strategies integrate their controllers as an add-on firmware embedded in each power converter, without presenting a coordinated synchronous performance when several converters operate in a PV power plant. The aggregation of several power converters operating with a coordinated synchronous response would be advantageous in these cases, since they can provide a harmonic response with an automatic power distribution when grid support is required. This paper presents a synchronous control strategy for photovoltaic power plants, which manages several power converters as an aggregated synchronous system.Peer ReviewedPostprint (author's final draft
Control of VSC-HVDC with electromechanical characteristics and unified primary strategy
High voltage dc (HVDC) systems act as the prevailed solution for transmitting offshore wind energy to onshore main grids. Control of the voltage source converters (VSC) in HVDC systems is decisive for the performance. This paper proposes the control of VSC-HVDC with electromechanical characteristics and unified primary strategy, as a reaction to the updated requirements of the ac grid transmission system operators. As two important aspects of VSC-HVDC control, converter control and primary control are both designed in detail. Electromechanical characteristics make the VSC capable of providing inertia to the ac networks as well as simplicity in island operation. Besides, unified primary control is given as a universal primary strategy for VSC stations, and especially takes into account frequency support and control mode transition. The proposed converter control is validated in scaled-down 10 kW laboratory setups, while the proposed primary control is endorsed by the simulation tests on a CIGRE multi-terminal HVDC model.Peer ReviewedPostprint (author's final draft
- âŠ