1,330 research outputs found

    Almost-perfect secret sharing

    Full text link
    Splitting a secret s between several participants, we generate (for each value of s) shares for all participants. The goal: authorized groups of participants should be able to reconstruct the secret but forbidden ones get no information about it. In this paper we introduce several notions of non- perfect secret sharing, where some small information leak is permitted. We study its relation to the Kolmogorov complexity version of secret sharing (establishing some connection in both directions) and the effects of changing the secret size (showing that we can decrease the size of the secret and the information leak at the same time).Comment: Acknowledgments adde

    Shannon Information and Kolmogorov Complexity

    Full text link
    We compare the elementary theories of Shannon information and Kolmogorov complexity, the extent to which they have a common purpose, and where they are fundamentally different. We discuss and relate the basic notions of both theories: Shannon entropy versus Kolmogorov complexity, the relation of both to universal coding, Shannon mutual information versus Kolmogorov (`algorithmic') mutual information, probabilistic sufficient statistic versus algorithmic sufficient statistic (related to lossy compression in the Shannon theory versus meaningful information in the Kolmogorov theory), and rate distortion theory versus Kolmogorov's structure function. Part of the material has appeared in print before, scattered through various publications, but this is the first comprehensive systematic comparison. The last mentioned relations are new.Comment: Survey, LaTeX 54 pages, 3 figures, Submitted to IEEE Trans Information Theor

    Application of Kolmogorov complexity and universal codes to identity testing and nonparametric testing of serial independence for time series

    Get PDF
    We show that Kolmogorov complexity and such its estimators as universal codes (or data compression methods) can be applied for hypotheses testing in a framework of classical mathematical statistics. The methods for identity testing and nonparametric testing of serial independence for time series are suggested.Comment: submitte

    Quantum Kolmogorov Complexity

    Get PDF
    In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that can produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of Vitanyi (Proceedings of the 15th IEEE Annual Conference on Computational Complexity, 2000) measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is natural and is an accurate representation of the amount of quantum information contained in a quantum state.Comment: 14 pages, LaTeX2e, no figures, \usepackage{amssymb,a4wide}. To appear in the Proceedings of the 15th IEEE Annual Conference on Computational Complexit

    Quantum Kolmogorov Complexity Based on Classical Descriptions

    Get PDF
    We develop a theory of the algorithmic information in bits contained in an individual pure quantum state. This extends classical Kolmogorov complexity to the quantum domain retaining classical descriptions. Quantum Kolmogorov complexity coincides with the classical Kolmogorov complexity on the classical domain. Quantum Kolmogorov complexity is upper bounded and can be effectively approximated from above under certain conditions. With high probability a quantum object is incompressible. Upper- and lower bounds of the quantum complexity of multiple copies of individual pure quantum states are derived and may shed some light on the no-cloning properties of quantum states. In the quantum situation complexity is not sub-additive. We discuss some relations with ``no-cloning'' and ``approximate cloning'' properties.Comment: 17 pages, LaTeX, final and extended version of quant-ph/9907035, with corrections to the published journal version (the two displayed equations in the right-hand column on page 2466 had the left-hand sides of the displayed formulas erroneously interchanged

    Communication Complexity of the Secret Key Agreement in Algorithmic Information Theory

    Full text link
    It is known that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal to the length of the longest shared secret key that two parties can establish via a probabilistic protocol with interaction on a public channel, assuming that the parties hold as their inputs x and y respectively. We determine the worst-case communication complexity of this problem for the setting where the parties can use private sources of random bits. We show that for some x, y the communication complexity of the secret key agreement does not decrease even if the parties have to agree on a secret key whose size is much smaller than the mutual information between x and y. On the other hand, we discuss examples of x, y such that the communication complexity of the protocol declines gradually with the size of the derived secret key. The proof of the main result uses spectral properties of appropriate graphs and the expander mixing lemma, as well as information theoretic techniques.Comment: 33 pages, 6 figures. v3: the full version of the MFCS 2020 pape
    • …
    corecore