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Abstract
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1 Introduction.

The Kolmogorov complexity, or algorithmic entropy, was suggested in [14] and
was investigated in numerous papers; see for review [17]. Nowadays this notation
plays important role in the theory of algorithms, information theory, artificial
intelligence and many other fields, and is closely connected with such deep the-
oretical issues as definition of randomness, logical basis of probability theory,
randomness and complexity (see [8, 17, 19, 26, 30, 31, 32, 35]). In this paper
we show that Kolmogorov complexity can be applied to hypotheses testing in
the framework of mathematical statistics. Moreover, we suggest using universal
codes (or methods of data compression), which are estimations of Kolmogorov
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complexity, for testing. In other words, in this approach the purpose is to try
and apply an ostensibly theoretical theory based on the uncomputable notion
of Kolmogorov complexity in the practical domain by replacing the ideal “Kol-
mogorov compressor” by a real-life compressor. It is important to note that
such a replacing was used in [2, 16] and created a new and rapidly growing line
of investigations in clustering and classification.

In this paper we consider a stationary and ergodic source (or process), which
generates elements from a finite set (or alphabet) A and two problems of sta-
tistical testing. The first problem is the identity testing, which is described as
follows: a hypotheses Hid

0 is that the source has a particular distribution π and
the alternative hypothesis Hid

1 that the sequence is generated by a stationary
and ergodic source, which differs from the source under Hid

0 . One particular
case where the source alphabet A = {0, 1} and the main hypothesis Hid

0 is that
a bit sequence is generated by the Bernoulli source with equal probabilities of
0’s and 1’s, is applied to the randomness testing of random number and pseudo-
random number generators. It is worth noting that this particular case is very
close, in spirit, to the problem of randomness definition and the obtained test
looks like the Martin-Löf one. The main difference is as follows: in contrast
to [17, 19, 30, 35] we consider the alternative hypopiesis that the sequence is
generated by a stationary and ergodic source, which, on the one hand, is natural
for mathematical statistics and, on the other hand, gives a possibility to obtain
explicit, non-asymptotical results.

The second problem is a generalization of the problem of nonparametric test-
ing for independence of time series. More precisely, we consider two following
hypotheses: Hind

0 is that the source is Markovian, which memory (or connec-
tivity) is not larger than m, (m ≥ 0), and the alternative hypothesis Hind

1 that
the sequence is generated by a stationary and ergodic source, which differs from
the source under Hind

0 . In particular, if m = 0, this is the problem of testing
for independence of time series. This problem is well known in mathemati-
cal statistics and there is an extensive literature dealing with nonparametric
independence testing.

In both cases the testing should be based on a sample x1 . . . xt generated by
the source.

We suggest statistical tests for identity testing and nonparametric testing of
serial independence for time series, which are based on Kolmogorov complexity
and such estimates of it as universal codes. It is important that practically
used so-called archivers can be used for suggested testing, because they can be
considered as methods for estimation of Kolmogorov complexity.

This paper is intended to show that the results of theory of Kolmogorov com-
plexity can be fruitfully applied to classic problems of mathematical statistics,
which, at first glance, are far from the theory of algorithms. The applications
of this approach to some other problems of mathematical statistics, its exten-
sion to the case where the alphabet is a metric space and additional examples
of applications will be published in statistical literature [27, 28] (see also [29],
where the first such test was described for one particular case).

The outline of the paper is as follows. The next part contains necessary
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definitions and some information about universal codes and their applications.
The parts three and four are devoted to the identity testing and testing of serial
independence, correspondingly. The fifth part contains results of experiments,
where the suggested method of identity testing is applied to pseudorandom
number generators. All proofs are given in Appendix.

2 Definitions and Preliminaries.

First, we define stochastic processes (or sources of information). Consider an
alphabet A = {a1, · · · , an} with n ≥ 2 letters and denote by At and A∗ the set of
all words of length t over A and the set of all finite words over A, correspondingly
(A∗ =

⋃∞
i=1A

i). Let µ be a source which generates letters from A. Formally,
µ is a probability distribution on the set of words of infinite length or, more
simply, µ = (µt)t≥1 is a consistent set of probabilities over the sets At ; t ≥
1. By M∞(A) we denote the set of all stationary and ergodic sources, which
generate letters from A. Let Mk(A) ⊂ M∞(A) be the set of Markov sources
with memory (or connectivity) not greater than k, k ≥ 0. More precisely, by
definition µ ∈Mk(A) if

µ(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , ... , xt−k+1 = aik+1 , ...)
= µ(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , ... , xt−k+1 = aik+1) (1)

for all t ≥ k and ai1 , ai2 , . . . ∈ A. By definition, M0(A) is the set of all Bernoulli
(or i.i.d.) sources over A and M∗(A) =

⋃∞
i=0Mi(A) is the set of all finite-

memory sources.
Now we define codes and Kolmogorov complexity. Let A∞ be the set of all

infinite words x1x2 . . . over the alphabet A. A data compression method (or
code) ϕ is defined as a set of mappings ϕn such that ϕn : An → {0, 1}∗, n =
1, 2, . . . and for each pair of different words x, y ∈ An ϕn(x) 6= ϕn(y). Informally,
it means that the code ϕ can be applied for compression of each message of any
length n over alphabet A and the message can be decoded if its code is known.
It is also required that each sequence ϕn(u1)ϕn(u2)...ϕn(ur), r ≥ 1, of encoded
words from the set An, n ≥ 1, can be uniquely decoded into u1u2...ur. Such
codes are called uniquely decodable. For example, let A = {a, b}, the code
ψ1(a) = 0, ψ1(b) = 00, obviously, is not uniquely decodable. It is well known
that if a code ϕ is uniquely decodable then the lengths of the codewords satisfy
the following inequality (Kraft inequality): Σu∈An 2−|ϕn(u)| ≤ 1 , see, for ex.,
[6]. (Here and below |v| is the length of v, if v is a word and the number of
elements of v if v is a set.) It will be convenient to reformulate this property as
follows:

Claim 1. Let ϕ be a uniquely decodable code over an alphabet A. Then
for any integer n there exists a measure µϕ on An such that

|ϕ(u)| ≥ − logµϕ(u) (2)

for any u from An . (Here and below log ≡ log2 .)
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(Obviously, the claim is true for the measure

µϕ(u) = 2−|ϕ(u)|/Σu∈An 2−|ϕ(u)|).

In this paper we will use the so-called prefix Kolmogorov complexity, whose
precise definition can be found in [8, 17]. Its main properties can be described
as follows. There exists a uniquely decodable code κ such that i) there is an
algorithm of decoding (i.e. there is a Turing machine, which maps κ(u) to u
for any u ∈ A∗) and ii) for any uniquely decodable code ψ, whose decoding is
algorithmically realizable, there exists a constant Cψ that

|κ(u)| − |ψ(u)| < Cψ (3)

for any u ∈ A∗. The prefix Kolmogorov complexity K(u) is defined as the length
of κ(u): K(u) = |κ(u)|. The code κ is not unique, but the second property means
that codelengths of two codes κ1 and κ2, for which i) and ii) is true, are equal
up to a constant: | |κ1(u)| − |κ2(u)| | < C1,2 for any word u (and the constant
C1,2 does not depend on u, see (3).) So, K(u) is defined up to a constant.

In what follows we call this value ”Kolmogorov complexity” and uniquely
decodable codes just ”codes”.

We can see from ii) that the code κ is asymptotically (up to the constant)
the best method of data compression, but it turns out that there is no algo-
rithm that can calculate the codeword κ(u) (and even K(u)). That is why
the code κ (and Kolmogorov complexity) cannot be used for practical data
compression directly. On the other hand, so-called universal codes can be re-
alized and, in a certain sense, can be used instead of the optimal code κ, if
they are applied for compression of sequences generated by any stationary and
ergodic source. For their description we recall that (as it is known in Informa-
tion Theory) sequences x1...xt, generated by a source p, can be ”compressed”
till the length − log p(x1...xt) bits and, on the other hand, there is no code
ψ for which the average codeword length (Σx1...xt∈At p(x1...xt)|ψ(x1...xt)| ) is
less than −Σx1...xt∈At p(x1...xt) log p(x1...xt). The universal codes can reach
the lower bound − log p(x1...xt) asymptotically for any stationary and ergodic
source p with probability 1. The formal definition is as follows: A code ϕ is
universal if for any stationary and ergodic source p

lim
t→∞

t−1(− log p(x1...xt)− |ϕ(x1...xt)|) = 0 (4)

with probability 1. So, informally speaking, universal codes estimate the prob-
ability characteristics of the source p and use them for efficient ”compression”.

It will be seen that the universal codes play an important role in the sug-
gested tests, that is why we briefly mention a history of their discovery and
applications to mathematical statistics.

It is interesting that the first universal code (for the set of Bernoulli sources)
was briefly described by Kolmogorov in the same paper, where he defined the
algorithmic complexity [14] (the same code was independently suggested and
investigated by Fitingof in [5]). Then the theory of universal codes was devel-
oped in numerous papers [4, 12, 23, 24] (see also review in [15]) and now there
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are many efficient algorithms of data compression which are based on universal
codes. As a matter of fact, the theory of universal coding belongs to Informa-
tion Theory and, at the same time, mathematical statistics, that is why it is not
surprising that results of theory of universal coding have been efficiently applied
to problems of prediction [9, 11, 22, 23, 26], classification [7, 33], estimation of
the number of states of a finite-state source [34], estimation of the order of a
Markov chain [3, 20] and some other problems of mathematical statistics.

We would like to emphasize that, in contrast to all mentioned approaches,
we consider the main model of the hypothesis testing where there are two hy-
potheses and the Type I error is upper bounded (by a small number), see for
definition [10] or any other textbook in mathematical statistics. Our approach
gives a possibility to use a length of codeword of a real-life compressor as a sta-
tistical test in a framework of this main model of the mathematical statistics. In
contrast to our approach, the papers [7, 33] develop asymptotical estimations of
the statistical errors using different models of hypothesis testing. To our knowl-
edge, the approach, developed in this paper, was not known before the paper
[29] was published.

3 Identity Testing.

Now we consider the problem of testing Hid
0 against Hid

1 . Let the required level
of significance (or a Type I error) be α, α ∈ (0, 1). (By definition, the Type I
error occurs if H0 is true, but the test rejects H0, and, vice versa, the Type II
error occurs if H1 is true, but the test rejects it.) We describe a statistical test
which can be constructed based on any code ϕ.

The main idea of the suggested test is quite natural: compress a sample
sequence x1...xn by a code ϕ. If the length of codeword (|ϕ(x1...xn)|) is signif-
icantly less than the value − log π(x1...xn), then Hid

0 should be rejected. The
main observation is that the probability of all rejected sequences is quite small
for any ϕ, that is why the Type I error can be made small. The precise descrip-
tion of the test is as follows: The hypothesis Hid

0 is accepted if

− log π(x1...xn)− |ϕ(x1...xn)| ≤ − logα. (5)

Otherwise, Hid
0 is rejected. We denote this test by Γ(n)

π,α,ϕ.
Theorem 1.
i) For each distribution π, α ∈ (0, 1) and a code ϕ, the Type I error of the

described test Γ(n)
π,α,ϕ is not larger than α.

ii) If, in addition, π is a finite-memory stationary and ergodic process over
A∞ (i.e. π ∈ M∗(A)) and ϕ is a universal code, then the Type II error of the
test Γ(n)

π,α,ϕ goes to 0, when n tends to infinity.
Remarks. The suggested tests is deeply connected with theory of Kol-

mogorov complexity and its applications.
First, in fact, the described test (5) coincides with the Martin-Löf one. In-

deed, the universal π-Martin-Löf test, in a computable approximation based
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on the compressor ϕ inducing a probability mass function πϕ(x1 . . . xn) =
2−|ϕ(x1...xn)|, is as follows: if

log(πϕ(x1 . . . xn)/π(x1 . . . xn)) ≤ − logα,

then H0, else H1; see [17, 19]. Obviously, it is the same inequality as (5).
Second, the Kolmogorov complexity can be used instead of the length of

a code in the described test (5). Namely, let K(n)
π,α be the following test: the

hypothesis Hid
0 is accepted if − log π(x1...xn)−K(x1...xn) ≤ − logα, otherwise,

Hid
0 is rejected. Theorem 1 is valid for this test, too.

4 Testing of Serial Independence

First, we give some additional definitions. Let v be a word v = v1...vk, k ≤
t, vi ∈ A. Denote the rate of a word v occurring in the sequence x1x2 . . . xk ,
x2x3 . . . xk+1, x3x4 . . . xk+2, . . ., xt−k+1 . . . xt as νt(v). For example, if x1...xt =
000100 and v = 00, then ν6(00) = 3. Now we define for any k ≥ 0 a so-called
empirical Shannon entropy of order k as follows:

h∗k(x1 . . . xt) = − 1
(t− k)

∑
v∈Ak

ν̄t(v)
∑
a∈A

(νt(va)/ν̄t(v)) log(νt(va)/ν̄t(v)) , (6)

where k < t and ν̄t(v) =
∑
a∈A ν

t(va). In particular, if k = 0, we obtain
h∗0(x1 . . . xt) = − 1

t

∑
a∈A ν

t(a) log(νt(a)/t) ,
Let, as before, Hind

0 be that the source π is Markovian with memory (or
connectivity) not grater than m, (m ≥ 0), and the alternative hypothesis Hind

1

be that the sequence is generated by a stationary and ergodic source, which
differs from the source under Hind

0 . The suggested test is as follows.
Let ψ be any code. By definition, the hypothesis Hind

0 is accepted if

(t−m)h∗m(x1...xt)− |ψ(x1...xt)| ≤ log(1/α) , (7)

where α ∈ (0, 1). Otherwise, Hind
0 is rejected. We denote this test by Υt

α, ψ,m.
Theorem 2. i) For any distribution π and any code ψ the Type I error of

the test Υt
α, ψ,m is less than or equal to α, α ∈ (0, 1).

ii) If, in addition, π is a stationary and ergodic process over A∞ and ψ is a
universal code, then the Type II error of the test Υt

α, ψ,m goes to 0, when t tends
to infinity.

Comment. If we use Kolmogorov complexity K(x1...xn) instead of the
length of the code |ψ(x1...xt)|, the obtained test will have the same properties.

5 Experiments

We applied the described method of identity testing to pseudorandom number
generators. More precisely, we denote by U a source, which generates equiprob-
able and independent symbols from the alphabet {0, 1} and consider the hy-
pothesis Hid

0 that a sequence is generated by U .
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We have taken linear congruent generators (LCG), which are defined by the
following equality

Xn+1 = (A ∗Xn + C)modM,

where Xn is the n-th generated number [13]. Each such generator we will
denote by LCG(M,A,C,X0), where X0 is the initial value of the generator. We
considered the four following LCG: L1 = LCG(108 + 1, 23, 0, 47594118), L2 =
LCG(231, 216 + 3, 0, 1), L3 = LCG(232, 134775813, 1, 0) and L4 = LCG(232,
69069, 0, 1).

In our experiments we extracted an eight-bit word from each generated Xi

using the following algorithm. Firstly, the number µ = bM/256c was calculated
and then each Xi was transformed into an 8-bit word X̂i as follows:

X̂i = bXi/256c ifXi < 256µ
X̂i = empty word ifXi ≥ 256µ

}
(8)

Then a sequence was compressed by the archiver ACE v 1.2b (see
http://www.winace.com/). Experimental data about testing of four linear con-
gruent generators is given in the table.

Table 1: Results of experiments
generator / length (bits) 400 000 8 000 000

L1 390 240 7635936
L2 extended 7797984
L3 extended extended
L4 extended extended

So, we can see from the first line of the table that the 400000−bit se-
quence generated by L1 and transformed according to (8), was compressed to
a 390240−bit sequence. (Here 400000 is the length of the sequence after trans-
formation.) If we take the level of significance, say, 0.001 (α = 0.001) and take
into account that 0.001 ≥ 2−9760 and apply the test Γ(400000)

U,α,ϕ ,(ϕ = ACE v 1.2b),
the hypothesis H0 should be rejected, see Theorem 1 and (5). Analogously, the
second line of the table shows that the 8000000−bit sequence generated by L2

cannot be considered as random. (Indeed, Hid
0 should be rejected because the

level of significance 0.001 is greater than 2−202016.) On the other hand, the sug-
gested test accepts Hid

0 for the sequences generated by the two latter generators,
because the lengths of the “compressed” sequences increased.

The obtained information corresponds to the known data about the genera-
tors mentioned above. Thus, it is shown in [13] that L1 and L2 are bad, whereas
L3 and L4 were investigated in [21] and [18], correspondingly, and are regarded
as good. So, we can see that the suggested testing is quite efficient.

Some other examples of application of the identity testing and serial inde-
pendence testing are described in [28, 29] and show that the suggested method
can be useful in practice.
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6 Appendix.

The following well known inequality, whose proof can be found in [6], will be
used in proofs of both theorems.

Lemma. Let p and q be two probability distributions over some alphabet
B. Then

∑
b∈B p(b) log(p(b)/q(b)) ≥ 0 with equality if and only if p = q.

Proof of Theorem 1. Let Cα be a critical set of the test Γ(n)
π,α,ϕ, i.e., by

definition, Cα = {u : u ∈ At & − log π(u) − |ϕ(u)| > − logα}. Let µϕ be a
measure for which the claim 1 is true. We define an axillary set

Ĉα = {u : − log π(u)− (− logµϕ(u)) > − logα}.

We have
1 ≥

∑
u∈Ĉα

µϕ(u) ≥
∑
u∈Ĉα

π(u)/α = (1/α)π(Ĉα).

(Here the second inequality follows from the definition of Ĉα, whereas all others
are obvious.) So, we obtain that π(Ĉα) ≤ α. From definitions of Cα, Ĉα and (2)
we immediately obtain that Ĉα ⊃ Cα. Thus, π(Cα) ≤ α. By definition, π(Cα)
is the value of the Type I error. The first statement of the theorem 1 is proven.

Let us prove the second statement of the theorem. Suppose that the hypoth-
esis Hid

1 is true. That is, the sequence x1 . . . xt is generated by some stationary
and ergodic source τ and τ 6= π. Our strategy is to show that

lim
t→∞

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| = ∞ (9)

with probability 1 (according to the measure τ). First we represent (9) as

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)|

= t(
1
t

log
τ(x1 . . . xt)
π(x1 . . . xt)

+
1
t
(− log τ(x1 . . . xt)− |ϕ(x1 . . . xt)|)).

From this equality and the property of a universal code (4) we obtain

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| = t (
1
t

log
τ(x1 . . . xt)
π(x1 . . . xt)

+ o(1)). (10)

Now we use some results of the ergodic theory and the information theory,
which can be found, for ex., in [1]. First, according to the Shannon-MacMillan-
Breiman theorem, there exists the limit limt→∞− log τ(x1 . . . xt)/t (with prob-
ability 1) and this limit is equal to so-called limit Shannon entropy, which we
denote as h∞(τ). Second, it is known that for any integer k the following
inequality is true: h∞(τ) ≤ −

∑
v∈Ak τ(v)

∑
a∈A τ(a/v) log τ(a/v). (Here the

right hand value is called m− order conditional entropy). It will be convenient
to represent both statements as follows:

lim
t→∞

− log τ(x1 . . . xt)/t ≤ −
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log τ(a/v) (11)
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for any k ≥ 0 (with probability 1). It is supposed that the process π has a
finite memory, i.e. belongs to Ms(A) for some s. Having taken into account the
definition of Ms(A) (1), we obtain the following representation:

− log π(x1 . . . xt)/t = −t−1
t∑
i=1

log π(xi/x1 . . . xi−1)

= −t−1(
k∑
i=1

log π(xi/x1 . . . xi−1) +
t∑

i=k+1

log π(xi/xi−k . . . xi−1))

for any k ≥ s. According to the ergodic theorem there exists a limit

lim
t→∞

t−1
t∑

i=k+1

log π(xi/xi−k . . . xi−1),

which is equal to −
∑
v∈Ak τ(v)

∑
a∈A τ(a/v) log π(a/v), see [1, 6]. So, from the

two latter equalities we can see that

lim
t→∞

(− log π(x1 . . . xt))/t = −
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log π(a/v).

Taking into account this equality, (11) and (10), we can see that

− log π(x1 . . . xt)−|ϕ(x1 . . . xt)| ≥ t (
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log(τ(a/v)/π(a/v)))+o(t)

for any k ≥ s. From this inequality and the Lemma we can obtain that
− log π(x1 . . . xt) − |ϕ(x1 . . . xt)| ≥ c t + o(t), where c is a positive constant,
t→∞. Hence, (9) is true and the theorem is proven.

Proof of Theorem 2. First we show that for any source θ∗ ∈M0(A) and any
word x1 . . . xt ∈ At, t > 1, the following inequality is valid:

θ∗(x1 . . . xt) =
∏
a∈A

(θ∗(a))ν
t(a) ≤

∏
a∈A

(νt(a)/t)ν
t(a) (12)

Here the equality holds, because θ∗ ∈M0(A) . The inequality follows from the
Lemma. Indeed, if p(a) = νt(a)/t and q(a) = θ∗(a), then

∑
a∈A

νt(a)
t log (νt(a)/t)

θ∗(a)

≥ 0. From the latter inequality we obtain (12).
Let now θ belong to Mm(A),m > 0. We will prove that for any x1 . . . xt

θ(x1 . . . xt) ≤
∏
u∈Am

∏
a∈A

(νt(ua)/ν̄t(u))ν
t(ua) . (13)

Indeed, we can present θ(x1 . . . xt) as

θ(x1 . . . xt) = θ(x1 . . . xm)
∏
u∈Am

∏
a∈A

θ(a/u)ν
t(ua) ,
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where θ(x1 . . . xm) is the limit probability of the word x1 . . . xm.Hence, θ(x1 . . . xt)
≤

∏
u∈Am

∏
a∈A θ(a/u)

νt(ua) . Taking into account the inequality (12), we obtain∏
a∈A

θ(a/u)ν
t(ua) ≤

∏
a∈A

(νt(ua)/ν̄t(u))ν
t(ua)

for any word u. So, from the last two inequalities we obtain (13).
It will be convenient to define two auxiliary measures on At as follows:

πm(x1...xt) = ∆ 2−t h
∗
m(x1...xt) , σ(x1...xt) = 2−|ψ(x1...xt)| (14)

where x1...xt ∈ At and ∆ = (
∑
x1...xt∈At 2−t h

∗
m(x1...xt) )−1 . If we take into

account that 2−(t−m)h∗m(x1...xt) =
∏
u∈Am

∏
a∈A(νt(ua)/ν̄t(u))ν

t(ua) , we can
see from (13) and (14) that, for any measure θ ∈Mm(A) and any x1 . . . xt ∈ At,

θ(x1 . . . xt) ≤ πm(x1...xt)/∆ . (15)

Let us denote the critical set of the test Υt
α, σ,m as Cα, i.e., by definition, Cα =

{x1 . . . xt : (t−m)h∗m(x1 . . . xt)−|ψ(x1...xt)|) > log(1/α)}. From (14) we obtain

Cα = {x1 . . . xt : (t−m) h∗m(x1 . . . xt)− (− log σ(x1...xt)) ) > log(1/α)}. (16)

From (15) and (16) we can see that for any measure θ ∈Mm(A)

θ(Cα) ≤ πm(Cα)/∆ . (17)

From (16) and (14) we obtain

Cα = {x1 . . . xt : 2 (t−m) h∗m(x1...xt) > (α σ(x1 . . . xt))−1}
= {x1 . . . xt : (πm(x1 . . . xt)/∆)−1 > (α σ(x1 . . . xt))−1} .

Finally,
Cα = {x1 . . . xt : σ(x1 . . . xt) > πm(x1 . . . xt)/(α∆)}. (18)

The following chain of inequalities and equalities is valid:

1 ≥
∑

x1...xt∈Cα

σ(x1 . . . xt) ≥
∑

x1...xt∈Cα

πm(x1 . . . xt)/(α∆)

= πm(Cα)/(α∆) ≥ θ(Cα)∆/(α∆) = θ(Cα)/α.

(Here both equalities and the first inequality are obvious, the second and the
third inequalities follow from (18) and (17), correspondingly.) So, we obtain
that θ(Cα) ≤ α for any measure θ ∈ Mm(A). Taking into account that Cα is
the critical set of the test, we can see that the probability of the Type I error is
not greater than α. The first claim of the theorem is proven.

The proof of the second statement of the theorem will be based on some
results of Information Theory. The t− order conditional Shannon entropy is
defined as follows:

ht(p) = −
∑

x1...xt∈At

p(x1...xt)
∑
a∈A

p(a/x1...xt) log p(a/x1...xt), (19)
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where p ∈ M∞(A). It is known that for any p ∈ M∞(A) firstly, log |A| ≥
h0(p) ≥ h1(p) ≥ ..., secondly, there exists limit Shannon entropy h∞(p) =
limt→∞ ht(p), thirdly, limt→∞−t−1 log p(x1...xt) = h∞(p) with probability 1
and, finally, hm(p) is strictly greater than h∞(p), if the memory of p is grater
than m, (i.e. p ∈M∞(A) \Mm(A)), see, for example, [1, 6].

Taking into account the definition of the universal code (4), we obtain from
the above described properties of the entropy that

lim
t→∞

t−1|ψ(x1...xt)| = h∞(p) (20)

with probability 1. It can be seen from (6) that h∗m is an estimate for the
m−order Shannon entropy (19). Applying the ergodic theorem we obtain
limt→∞ h∗m(x1 . . . xt) = hm(p) with probability 1; see [1, 6]. Having taken
into account that hm(p) > h∞(p) and (20) we obtain from the last equality
that limt→∞((t −m)h∗m(x1 . . . xt) − |ψ(x1...xt)|) = ∞. This proves the second
statement of the theorem.
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