5,057 research outputs found

    Inductive types in homotopy type theory

    Full text link
    Homotopy type theory is an interpretation of Martin-L\"of's constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof scripts for this verification form an essential component of this research.Comment: 19 pages; v2: added references and acknowledgements, removed appendix with Coq README file, updated URL for Coq files. To appear in the proceedings of LICS 201

    The real projective spaces in homotopy type theory

    Full text link
    Homotopy type theory is a version of Martin-L\"of type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of RP(n), as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define RP(n) by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take RP(-1) to be the empty type. In the inductive step, we take RP(n+1) to be the mapping cone of the projection map of the tautological bundle of RP(n), and we use its universal property and the univalence axiom to define the tautological bundle on RP(n+1). By showing that the total space of the tautological bundle of RP(n) is the n-sphere, we retrieve the classical description of RP(n+1) as RP(n) with an (n+1)-cell attached to it. The infinite dimensional real projective space, defined as the sequential colimit of the RP(n) with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(Z/2Z,1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.Comment: 8 pages, to appear in proceedings of LICS 201

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    Homotopy Type Theory in Lean

    Full text link
    We discuss the homotopy type theory library in the Lean proof assistant. The library is especially geared toward synthetic homotopy theory. Of particular interest is the use of just a few primitive notions of higher inductive types, namely quotients and truncations, and the use of cubical methods.Comment: 17 pages, accepted for ITP 201

    Impredicative Encodings of (Higher) Inductive Types

    Full text link
    Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant {\eta}-equalities and consequently do not admit dependent eliminators. To recover {\eta} and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1

    Semantics for Homotopy Type Theory

    Get PDF
    The main aim of my PhD thesis is to define a semantics for Homotopy type theory based on elementary categorical tools. This led us to extend the study of this system in other directions: we proved a Normalisation theorem, and defined a generic syntax. All those results are obtained for a subset of the whole Homotopy type theory, which we called 1-HoTT theories. A 1-HoTT theory is composed by Martin-L\uf6f type theory with generic inductive types, the axioms of function extensionality and univalence, truncation and generic 1-higher inductive types, which are a subset of the higher inductive types in which the higher constructor of a type T is limited to the type =T . For those theories we obtained some proof theoretic results; the main one is a Normalisation theorem, following Girard's reducibility candidates technique. The semantics is sound and complete, with the completeness result following from the existence of a canonical model, which is also classifying. Our conjecture is that our proof theory and semantics can be extended to every single higher inductive type. The dissertation shows that a very large amount of higher inductive types can be analysed inside our framework: what prevents to extend the results is the lack of a systematic treatment of the syntax of the higher inductive types, which is still an open issue in Homotopy type theory
    • …
    corecore