30 research outputs found

    Inductive types in homotopy type theory

    Full text link
    Homotopy type theory is an interpretation of Martin-L\"of's constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof scripts for this verification form an essential component of this research.Comment: 19 pages; v2: added references and acknowledgements, removed appendix with Coq README file, updated URL for Coq files. To appear in the proceedings of LICS 201

    Path spaces of higher inductive types in homotopy type theory

    Get PDF
    The study of equality types is central to homotopy type theory. Characterizing these types is often tricky, and various strategies, such as the encode-decode method, have been developed. We prove a theorem about equality types of coequalizers and pushouts, reminiscent of an induction principle and without any restrictions on the truncation levels. This result makes it possible to reason directly about certain equality types and to streamline existing proofs by eliminating the necessity of auxiliary constructions. To demonstrate this, we give a very short argument for the calculation of the fundamental group of the circle (Licata and Shulman '13), and for the fact that pushouts preserve embeddings. Further, our development suggests a higher version of the Seifert-van Kampen theorem, and the set-truncation operator maps it to the standard Seifert-van Kampen theorem (due to Favonia and Shulman '16). We provide a formalization of the main technical results in the proof assistant Lean.Comment: v1: 23 pages; v2: 24 pages, small reformulations and reorganization

    The real projective spaces in homotopy type theory

    Full text link
    Homotopy type theory is a version of Martin-L\"of type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of RP(n), as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define RP(n) by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take RP(-1) to be the empty type. In the inductive step, we take RP(n+1) to be the mapping cone of the projection map of the tautological bundle of RP(n), and we use its universal property and the univalence axiom to define the tautological bundle on RP(n+1). By showing that the total space of the tautological bundle of RP(n) is the n-sphere, we retrieve the classical description of RP(n+1) as RP(n) with an (n+1)-cell attached to it. The infinite dimensional real projective space, defined as the sequential colimit of the RP(n) with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(Z/2Z,1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.Comment: 8 pages, to appear in proceedings of LICS 201

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    Data types with symmetries and polynomial functors over groupoids

    Get PDF
    Polynomial functors are useful in the theory of data types, where they are often called containers. They are also useful in algebra, combinatorics, topology, and higher category theory, and in this broader perspective the polynomial aspect is often prominent and justifies the terminology. For example, Tambara's theorem states that the category of finite polynomial functors is the Lawvere theory for commutative semirings. In this talk I will explain how an upgrade of the theory from sets to groupoids is useful to deal with data types with symmetries, and provides a common generalisation of and a clean unifying framework for quotient containers (cf. Abbott et al.), species and analytic functors (Joyal 1985), as well as the stuff types of Baez-Dolan. The multi-variate setting also includes relations and spans, multispans, and stuff operators. An attractive feature of this theory is that with the correct homotopical approach - homotopy slices, homotopy pullbacks, homotopy colimits, etc. - the groupoid case looks exactly like the set case. After some standard examples, I will illustrate the notion of data-types-with-symmetries with examples from quantum field theory, where the symmetries of complicated tree structures of graphs play a crucial role, and can be handled elegantly using polynomial functors over groupoids. (These examples, although beyond species, are purely combinatorial and can be appreciated without background in quantum field theory.) Locally cartesian closed 2-categories provide semantics for 2-truncated intensional type theory. For a fullfledged type theory, locally cartesian closed \infty-categories seem to be needed. The theory of these is being developed by D.Gepner and the author as a setting for homotopical species, and several of the results exposed in this talk are just truncations of \infty-results obtained in joint work with Gepner. Details will appear elsewhere.Comment: This is the final version of my conference paper presented at the 28th Conference on the Mathematical Foundations of Programming Semantics (Bath, June 2012); to appear in the Electronic Notes in Theoretical Computer Science. 16p

    Dependent Inductive and Coinductive Types are Fibrational Dialgebras

    Get PDF
    In this paper, I establish the categorical structure necessary to interpret dependent inductive and coinductive types. It is well-known that dependent type theories \`a la Martin-L\"of can be interpreted using fibrations. Modern theorem provers, however, are based on more sophisticated type systems that allow the definition of powerful inductive dependent types (known as inductive families) and, somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show how data type definitions correspond to initial and final dialgebras for these functors. This description is also a proposal of how coinductive types should be treated in type theories, as they appear here simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras and coalgebras, and give the correspondence to dependent polynomial functors.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Impredicative Encodings of (Higher) Inductive Types

    Full text link
    Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant {\eta}-equalities and consequently do not admit dependent eliminators. To recover {\eta} and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1

    Constructing Higher Inductive Types as Groupoid Quotients

    Get PDF
    In this paper, we study finitary 1-truncated higher inductive types (HITs) in homotopy type theory. We start by showing that all these types can be constructed from the groupoid quotient. We define an internal notion of signatures for HITs, and for each signature, we construct a bicategory of algebras in 1-types and in groupoids. We continue by proving initial algebra semantics for our signatures. After that, we show that the groupoid quotient induces a biadjunction between the bicategories of algebras in 1-types and in groupoids. Then we construct a biinitial object in the bicategory of algebras in groupoids, which gives the desired algebra. From all this, we conclude that all finitary 1-truncated HITs can be constructed from the groupoid quotient. We present several examples of HITs which are definable using our notion of signature. In particular, we show that each signature gives rise to a HIT corresponding to the freely generated algebraic structure over it. We also start the development of universal algebra in 1-types. We show that the bicategory of algebras has PIE limits, i.e. products, inserters and equifiers, and we prove a version of the first isomorphism theorem for 1-types. Finally, we give an alternative characterization of the foundamental groups of some HITs, exploiting our construction of HITs via the groupoid quotient. All the results are formalized over the UniMath library of univalent mathematics in Coq

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the \infty-category of weak \infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak \infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak \infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' \infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an \infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets
    corecore