
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/143633

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/43589455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/143633

Submitted to:
Foo

c© H. Basold
This work is licensed under the
Creative Commons Attribution License.

Dependent Inductive and Coinductive Types are

Fibrational Dialgebras

Henning Basold
Radboud University, iCIS, Intelligent Systems

CWI, Amsterdam, The Netherlands

h.basold@cs.ru.nl

In this paper, I establish the categorical structure necessary to interpret dependent inductive
and coinductive types. It is well-known that dependent type theories à la Martin-Löf can be
interpreted using fibrations. Modern theorem provers, however, are based on more sophisti-
cated type systems that allow the definition of powerful inductive dependent types (known
as inductive families) and, somewhat limited, coinductive dependent types. I define a class
of functors on fibrations and show how data type definitions correspond to initial and final
dialgebras for these functors. This description is also a proposal of how coinductive types
should be treated in type theories, as they appear here simply as dual of inductive types.
Finally, I show how dependent data types correspond to algebras and coalgebras, and give a
prospect on the correspondence to dependent polynomial functors.

1 Introduction

It is a well-established fact that the semantics of inductive data types without term dependencies
can be given by initial algebras, whereas the semantics of coinductive types can be given by final
coalgebras. However, for types that depend on terms, the situation is not as clear-cut.

Partial answers for inductive types can be found in [3, 8, 11, 16], where semantics have been
given for inductive types through polynomial functors in the category of set families or in locally
Cartesian closed categories. Similarly, semantics for non-dependent coinductive types have been
given in [1, 2, 5] by using polynomial functors on locally Cartesian closed categories. Finally,
an interpretation for Martin-Löf type theory (without recursive type definitions) has been given
in [17] and corrected in [13].

So far, we are, however, lacking a full picture of dependent coinductive types that arise as
duals of dependent inductive types. To actually get such a picture, I extend in the present
work Hagino’s idea [10], of using dialgebras to describe data types, to dependent types. This
emphasises the actual structure behind (co)inductive types as their are used in systems like
Agda.1 Moreover, dialgebras allow for a direct interpretation of types in this categorical setup,
without going through translations into, for example, polynomial functors.

Having defined the structures we need to interpret dependent data types, it is natural to ask
whether this structure is actually sensible. The idea, pursued here, is that we want to obtain
initial and final dialgebras from initial algebras and final coalgebras for polynomial functors. This
is achieved by showing that the dialgebras in this work correspond to algebras and coalgebras,
and that their fixed points can be constructed from fixed points of polynomial functors (in the

1It should be noted that, for example, Coq treats coinductive types differently. In fact, the route taken in
Agda with copatterns and in this work is much better behaved.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Dependent Dialgebras

sense of [9]). The reduction to polynomial functors does not work for all types for for now, but
rather only for those that have an arbitrary nesting of non-dependent coinductive and dependent
inductive types, and a dependent coinductive type on the top-level.

To summarise, this paper makes the following contributions. First, we get a precise descrip-
tion of the categorical structure necessary to interpret inductive and coinductive data types,
which can be seen as categorical semantics for an extension of the inductive and (copattern-
based) coinductive types of Agda. The second contribution is a reduction to fixed points of
polynomial functors with restriction mentioned above.

What has been left out, because of space constraints, is an analysis of the structures needed to
obtain induction and coinduction principles. Moreover, to be able to get a sound interpretation,
with respect to type equality of dependent types, we need to require a Beck-Chevalley condition.
This condition can be formulated for general (co)inductive types, but is also not given here.

Related work As already mentioned, there is an enormous body of work on obtaining seman-
tics for (dependent) inductive, and to some extent, coinductive types, see [3, 8, 11, 16].
The the present work, we will mostly draw from [2] and [9]. Categorical semantics for
basic Martin-Löf type theory have been developed, for example, in [13]. An interpreta-
tion, closer to the present work, is given in terms of fibrations by Jacobs [14]. In the
first part of the paper, we develop everything on rather arbitrary fibrations, which makes
the used structure more visible. Only for the second part, the reduction to polynomial
functors, we will work with slice categories, since most of the work on polynomial functors
resides in that setting. Last, but not least, the starting idea of this paper is of course
inspired by the dialgebras of Hagino [10]. These have also been applied to give semantics
to induction-induction [4] schemes.

Outline The rest of the paper is structured as follows. In Section 2, we analyse a typical example
of a dependent inductive type, namely vectors, that is, lists indexed by their length. We
develop from this example a description of inductive and coinductive dependent data types
in terms of dialgebras in fibrations. This leads to the requirements on a fibration, given in
Section 3, that allow the interpretation of data types. In the same section, we show how
dependent and fibre-wise (co)products arise canonically in such a structure, and we give an
example of a coinductive type (partial streams) that can only be treated in Agda through
an annoying encoding. The reduction of dependent data types to polynomial functors is
carried out in Section 4. We finish with some concluding remarks in Section 5.

2 Fibrations and Dependent Data Types

In this section we introduce dependent data types as initial and final dialgebras of certain functors
on fibres of fibrations. We go through this setup step by step.

Let us start with dialgebras and their homomorphisms.

Definition 2.1. Let C and D be categories and F,G : C Ñ D functors. An pF,Gq-dialgebra
is a morphism c : FA Ñ GA in D, where A is in C. Given dialgebras c : FA Ñ GA and
d : FB Ñ GB, we say that a morphism h : AÑ B is a (dialgebra) homomorphism from c to d,
if Gh ˝ c “ d ˝ Fh. This allows us to form a category DiAlg pF,Gq, in which objects are pairs
pA, cq with A P C and c : FAÑ GA, and morphisms are dialgebra homomorphisms.

The following example shows that dialgebras arise naturally from data types.

H. Basold 3

Example 2.2. Let A be a set, we denote by An the n-fold product of A, that is, lists of length n.
Vectors over A are given by the set family VecA “ tAnunPN, which is an object in the category
SetN of families indexed by N. In general, this category is given for a set I by

SetI “

#

objects X “ tXiuiPI

arrows f “ tfi : Xi Ñ YiuiPI
.

Vectors come with two constructors: nil : 1 Ñ A0 for the empty vector and prefixing
consn : A ˆ An Ñ An`1 of vectors with elements of A. We note that nil : t1u Ñ tA0u is
an arrow in the category Set1 of families indexed by the one-element set 1, whereas cons “
tconsnu : tAˆAnunPN Ñ tAn`1unPN is an arrow in SetN.

Let F,G : SetN Ñ Set1 ˆ SetN be the functors into the product of Set1 and SetN with

F pXq “ pt1u, tAˆXnunPNq GpXq “ ptX0u, tXn`1unPNq.

Using these, we find that pnil, consq : F pVecAq Ñ GpVecAq is an pF,Gq-dialgebra, in fact, it is
the initial pF,Gq-dialgebra.

Definition 2.3. We say that an pF,Gq-dialgebra c : FA Ñ GA is initial, if for every pF,Gq-
dialgebra d : FB Ñ GB there is a unique homomorphism h from c to d. We call h the inductive
extension of d. Dually, pA, cq is final, provided there is a unique homomorphism h from any
other dialgebra pB, dq into c. Here, h is the coinductive extension of d.

Having found the algebraic structure underlying vectors, we continue by exploring how we
can handle the change of indices in the constructors. In turns out that this is most conveniently
done by using fibrations.

Definition 2.4. Let P : E Ñ B be a functor, where the E is called the total category and B the
base category. We say that a morphism f : A Ñ B in E is cartesian over u : I Ñ J , provided
that i) Pf “ u, and ii) for all g : C Ñ B in E and v : PC Ñ I with Pg “ u ˝ v there is a unique
h : C Ñ A such that f ˝ h “ g. For P to be a fibration, we require that for every B P E and
u : I Ñ PB in B, there is a cartesian morphism f : AÑ B over u. Finally, a fibration is cloven,
if it comes with a unique choice for A and f , in which case we denote A by u˚B and f by uB,
as displayed in the diagram on the right.

C

u˚B B E

PC

I PB B

g

!h
uB

PPg

v
u

At first sight, this definition is arguably intimidating to
someone who has never been exposed to fibrations. The idea
is that the base category B contains as objects the indices of
objects in E, and as morphisms substitutions. The result of car-
rying out a substitution on indices, is captured by the Cartesian
lifting property. Let us illustrate this on set families. We define
FampSetq to be the category

FampSetq “

#

objects: pI,X : I Ñ Setq, I a set

arrows: pu, fq : pI,Xq Ñ pJ, Y q with u : I Ñ J and tfi : Xi Ñ YupiquiPI

in which composition is defined by

pv, gq ˝ pu, fq “
´

v ˝ u, tXi
fi
ÝÑ Yupiq

gupiq
ÝÝÝÑ ZvpupiqquiPI

¯

.

4 Dependent Dialgebras

A concrete object is the pair pN,VecAq, where VecA is the family of vectors from Ex. 2.2.
We define a cloven fibration on set families. Let P : FampSetq Ñ Set be the projection

on the first component, that is, P pI,Xq “ I and P pu, fq “ u. For a family pJ, Y q and a
function u : I Ñ J , we define u˚ Y “ tYupiquiPI and uY “

`

u, tid : Yupiq Ñ YupiquiPI
˘

. Then,
for each pw, gq : pK,Zq Ñ pJ, Y q and v : K Ñ I with w “ u ˝ v, we can define the morphism
pK,Zq Ñ pI, u˚ Y q to be pv, hq with hk : Zk Ñ Yupvpkqq and hk “ gk, since upvpkqq “ wpkq.

An important concept is the fibre above an object I P B, given by the category

PI “

#

objects A P E with P pAq “ I

arrows f : AÑ B with P pfq “ idI
.

In a cloven fibration, we can use the Cartesian lifting to define for each u : I Ñ J in B a functor
u˚ : PJ Ñ PI , together with natural isomorphisms IdPI

– id˚I and u˚ ˝ v˚ – pv ˝ uq˚, see [14,
Sec. 1.4]. The functor u˚ is called reindexing along u.

Assumption 2.5. We assume all fibrations to be cloven in this work.

We are now in the position to take a more abstract look at our initial example.

Example 2.6. First, we note that the fibre of FampSetq above I is isomorphic to SetI . Let
then z : 1 Ñ N and s : N Ñ N be zp˚q “ 0 and spnq “ n ` 1, giving us reindexing functors
z˚ : SetN Ñ Set1 and s˚ : SetN Ñ SetN. By their definition, z˚pXq “ tX0u and s˚pXq “
tXn`1unPN, hence the functor G, we used to describe vectors as dialgebra, is G “ xz˚, s˚y. In
Sec. 3, we address the structure of F .

We generalise this situation to account for arbitrary data types.

Definition 2.7. Let P : E Ñ B be a fibration, C a category, D “
śn
k“1 PJk for some n P N,

and Jk, I P B. A (dependent) data type signature is a pair pF, uq, where

• F : CˆPI Ñ D is a functor and

• u is a family of n morphisms in B with uk : Jk Ñ I for k “ 1, . . . , n.

A family u as above induces a functor xu˚1 , . . . , u
˚
ny : PI Ñ D, which we will often denote by

Gu. This allows us to speak about pF,Guq- and pGu, F q-dialgebras.
The next step is to define data types for such signatures, but let us first look at an example

for the case C “ 1, that is, if F : PI Ñ D.

Example 2.8. A fibration P : E Ñ B is said to have dependent coproducts and products, if
for each f : I Ñ J in B there are functors

š

f and
ś

f from PI to PJ that are respectively
left and right adjoint to f˚. For each X P PI , we can define a signature, such that

š

f pXq and
ś

f pXq arise as data types for these signatures, as follows. Define the constant functor

KX : PJ Ñ PI KXpY q “ X KXpgq “ idX .

Then pKX , fq is the signature for coproducts and products. For example, the unit η of the
adjunction

š

f % f˚ will be the initial pKX , f
˚q-dialgebra ηX : KXp

š

f pXqq Ñ f˚p
š

f pXqq,
using that KXp

š

f pXqq “ X. We come back to this is in Ex. 2.10.

To define data types in general, we allow them to have additional parameters, that is, we
allow signatures pF, uq, where F : CˆPI Ñ D and C is a non-trivial category. Let us first fix
some notation. We put F pV,´qpXq “ F pV,Xq for V P C, which is a functor PI Ñ D. Assume

H. Basold 5

that the initial pF pV,´q, Guq-dialgebra αV : F pV,ΦV q Ñ GupΦV q and final pGu, F pV,´qq-

dialgebra ξV : GupΩV q Ñ F pV,ΩV q exist. Then we can define functors µp pF , xGuq : C Ñ PI and

νpxGu, pF q : C Ñ PI , analogous to [15], by

µp pF , xGuqpV q “ ΦV µp pF , xGuqpf : V ÑW q “ pαW ˝ F pf, idΦW
qq

νpxGu, pF qpV q “ ΩV νpxGu, pF qpf : V ÑW q “ pF pf, idΩV
q ˝ ξV q

„ ,

where the bar and tilde superscripts denote the inductive and coinductive extensions, that is, the
unique homomorphism given by initiality and finality, respectively. The reason for the notation
µp pF , xGuq and νpxGu, pF q is that these are initial and final dialgebras for the functors

pF , xGu : rC,PIs Ñ rC,Ds pF pHq “ F ˝ xIdC, Hy xGupHq “ Gu ˝H

on functor categories. That the families αV and ξV are natural in V follows directly from the
definition of the functorial action as (co)inductive extensions. Hence, they give rise to dialgebras

α : pF pµp pF , xGuqq ñ xGupµp pF , xGuqq and ξ : xGupνpxGu, pF qq ñ pF pνpxGu, pF qq.

Definition 2.9. Let pF, uq be a data type signature. An inductive data type (IDT) for pF, uq

is an initial p pF , xGuq-dialgebra with carrier µp pF , xGuq. Dually, a coinductive data type (CDT) for

pF, uq is a final pxGu, pF q-dialgebra, note the order, with the carrier being denoted by νpxGu, pF q.
If C “ 1, we denote the carriers by µpF,Guq and νpGu, F q.

Example 2.10. We turn the definition of the product and coproduct from Ex. 2.8 into actual
functors. The observation we use is that the projection functor π1 : PI ˆ PJ Ñ PI gives us a
“parameterised” constant functor: KJ

A “ π1pA,´q. If we are given f : I Ñ J in B, then we use

the signature pπ1, f
˚q, and define

š

f “ µpxπ1,xf˚q and
ś

f “ νpxf˚,xπ1q. We check the details of
this definition in Thm. 3.2.

3 Data Type Completeness

We now define a class of functors that we use as first component of a data type signature.
Moreover, we establish the necessary structure on fibrations to interpret type systems.

Let us first introduce some notation. Given a fibration P : E Ñ B and an object A P PJ ,
we denote by KI

A : PI Ñ PJ the functor mapping constantly to A. The projections on product
categories are denoted, as usual, by πk : C1 ˆC2 Ñ Ck. Using these notations, we can define
what we understand to be a data type.

Definition 3.1. A fibration P : E Ñ B is data type complete, if terms of the following grammar

F ::“ KI
A | πk | f

˚ | F2 ˝ F1 | xF1, F2y | µp pF , xGuq | νpxGu, pF q,

where pF, uq is a signature and F is given again by the grammar, give rise to functors. This
means that the involved initial and final dialgebras must all exist. In particular, all IDTs and
CDTs for signatures pF, uq, with F as above, exist in P .

As a first sanity check, we show that a data type complete fibration has, both, fibrewise and
dependent (co)products. These are instances of the following, more general, result.

6 Dependent Dialgebras

Theorem 3.2. Suppose P : E Ñ B is a data type complete fibration. Let C “
śm
i“1 PKi and

π1 : CˆPI Ñ C be the first projection. If Gu : PI Ñ C is such that pπ1, uq is a signature, then
we have the following adjoint situation:

µpxπ1, xGuq % Gu % νpxGu,xπ1q.

Proof. We only show how the adjoint transposes are obtained in the case of inductive types.
Concretely, for a tuple V P C and an object A P PI , we need to prove the correspondence

f : µpxπ1, xGuqpV q ÝÑ A in PI

g : V ÝÑ GuA in C

Let us use the notation H “ µpxπ1, xGuq, then the choice of π1 implies that the initial pxπ1, xGuq-

dialgebra is of type α : IdC ñ Gu ˝H, since xπ1pHq “ π1 ˝ xIdC, Hy “ IdC and xGupHq “ Gu ˝H.

This allows us to use as transpose of f the morphism V
αV
ÝÝÑ GupHpV qq

Guf
ÝÝÝÑ GuA. As transpose

of g, we use the inductive extension of xπ1pK
C
A qpV q “ V

g
ÝÑ GuA “ xGupK

C
A qpV q.

This gives fibrewise coproducts by `I “ µpxπ1, xGuq and products by ˆI “ νpxGu,xπ1q, using
u “ pidI , idIq. Dependent (co)products along f : I Ñ J use Gu “ f˚, see Ex. 2.10.

There are many more examples of data types that exist in a data type complete fibration.
We describe three fundamental ones.

Example 3.3. 1. The first example are initial and final objects inside the fibres PI . Since
an initial object is characterised by having a unique morphism to every other object, we
define it as an initial dialgebra, namely 0I “ µpId, id˚I q. Then there is, for each A P PI ,
a unique morphism !A : 0I Ñ A given as inductive extension of idA. Dually, we define
the terminal object 1I in PI to be νpid˚I , Idq and for each A the corresponding unique
morphism !A : AÑ 1I as the coinductive extension of idA.

2. There are several definable notions of equality, provided that B has binary products. A
generic one is propositional equality Eq : PI Ñ PIˆI , the left adjoint to the contraction
functor δ˚ : PIˆI Ñ PI , which is induced by the diagonal δ : I Ñ I ˆ I. Thus it is given
by the dependent coproduct Eq “

š

δ and the constructor reflX : X Ñ δ˚pEqXq.

3. Assume that there is an object Aω in B of streams over A, together with projections to
head and tail. Then we can define bisimilarity between streams as CDT for the signature

F,G : PpAωq2 Ñ PpAωq2 ˆPpAωq2

F “
@

phdˆhdq˚ ˝KEqpAq, ptlˆ tlq˚
D

and u “ pidAωˆAω , idAωˆAωq.

Note that there is a category RelpEq of binary relations in E by forming the pullback of
P along ∆ : B Ñ B with ∆pIq “ I ˆ I, see [12]. Then we can reinterpret F and Gu by

F,Gu : RelpEqAω Ñ RelpEqAω ˆ RelpEqAω

F “ xhd# ˝KEqpAq, tl
#y and Gu “ xid

#
Aω , id

#
Aωy,

where p´q# is reindexing in RelpEq. The final pG,F q-dialgebra is a pair of morphisms

phd„A : BisimA Ñ hd#pEqpAqq, tl„A : BisimA Ñ tl#pBisimAqq.

H. Basold 7

BisimA should be thought of to consist of all bisimilarity proofs. Coinductive extensions
yield the usual coinduction proof principle, allowing us to proof bisimilarity by establishing
a bisimulation relation R P RelpPqAω together with h : R Ñ hd#pEqpAqq and t : R Ñ

tl#pRq, saying that the heads of related streams are equal and that the tails of related
streams are again related.

We finish the list of examples by one that illustrates the additional capabilities of coinductive
types, in the present setup, over those currently available in Agda. However, one should note
that coinductive types in Agda provide extra power in the sense that destructors can refer to
each other. This leads immediately to the existence of dependent elimination, which structures
described here do not necessarily have.

Example 3.4. A partial stream is a stream together with a, possibly infinite, depth up to which
it is defined. Assume that there is an object N8 of natural numbers extended with infinity and
a successor map s8 : N8 Ñ N8 in B, we will see how these can be defined below. Then partial
streams correspond to the following type declaration.

codata PStr (A : Set) : N8 Ñ Set where
hd : (n : N8) Ñ PStr (s8 n) Ñ A
tl : (n : N8) Ñ PStr (s8 n) Ñ PStr n

In an explicit, set-theoretic notation, we can define them as a family indexed by n P N8:

PStrpAqn “ ts : Ná A | @k ă n. k P dom s^ @k ě n. k R dom su,

where we assume that k ă 8 for all k P N in the used order.
The interpretation of PStrpAq for A P PN8 in a data type complete fibration is given as the

carrier of the final pGu, F q-dialgebra, where

Gu, F : PN8 Ñ PN8 ˆPN8 Gu “ xs˚8, s
˚
8y F “

@

KN8
A , Id

D

,

similarly to the vector example. The idea of this signature is that the head and tail of partial
streams are defined only on those partial streams that are defined in, at least, the first position.
On set families, partial streams come with the dialgebra ξ “ phd, tlq, such that for every n P N8,
we have hdn : PStrpAqps8 nq Ñ A and tln : PStrpAqps8 nq Ñ PStrpAqn.

We can make this construction functorial in A, using the same “trick” as for sums and
products. To this end, we define a new functor H : P2

N8 Ñ PN8 ˆ PN8 with H “ xπ1, Idy,
where π1 : P2

N8 Ñ PN8 is the first projection, so that HpA,Xq “ F pXq. This gives, by data

type completeness, rise to a functor νpxGu, pF q : PN8 Ñ PN8 , which we denote by PStr, together
with a pair phd, tlq of natural transformations.

We have seen in the examples above that we often would like to use a data type again as
index. This means that we need a mechanism to turn a data type in E into an index in B,
which is provided by, so called, comprehension.

Definition 3.5 (See [14, Def. 10.4.7] and [7]). Let P : E Ñ B be a fibration. If each fibre PI

has a final object 1I and these are preserved by reindexing, then there is a fibred final object
functor 1

p´q
: B Ñ E. We call P a comprehension category with unit (CCU), if 1

p´q
has a right

adjoint t´u : E Ñ B, the comprehension. This gives rise to a functor P : E Ñ BÑ into the
arrow category over B, by mapping A ÞÑ P pεAq : tAu Ñ P pAq, where ε : 1

t´u
ñ Id is the counit

of 1
p´q
% t´u. We often denote PpAq by πA and call it the projection of A. Finally, we say that

P is a full CCU, if P is full.

8 Dependent Dialgebras

Note that, in a data type complete category, we can define final objects in each fibre, the
preservation of them needs to be required separately.

Example 3.6. In FampSetq, the final object functor is given by 1I “ pI, t1uiPIq, where 1 is the
singleton set. Comprehension is defined to be tpI,Xqu “

š

iPI Xi.

Using comprehension, we can give a general account to dependent data types.

Definition 3.7. We say that a fibration P : E Ñ B is a data type closed category (DTCC), if
it is a CCU, has a terminal object in B and is data type complete.

As already mentioned, the purpose of introducing comprehension is that it allows us to use
data types defined in E again as index. The terminal object in B is used to introduce data types
without dependencies, like the natural numbers. Let us reiterate on Ex. 3.4.

Example 3.8. Recall that we assumed the existence of extended naturals N8 and the successor
map s8 on them to define partial streams. We are now in the position to define, in a data type
closed category, everything from scratch as follows.

Having defined ` : P1 ˆ P1 Ñ P1, see Thm. 3.2, we put N8 “ νpId,1 ` Idq and find
the predecessor pred as the final dialgebra on N8. The successor s8 arises as the coinductive
extension of pN8, κ2q Ñ pN8,predq, where κ2 is the coproduct inclusion. Partial streams PStr :
PtN8u Ñ PtN8u are then given as the final p pG, pF q-dialgebra with G “

@

ts8u
˚, ts8u

˚
D

and
F “ xπ1, Idy, where π1 : P2

tN8u Ñ PtN8u is the first projection, just like in Ex. 3.4.

4 Constructing Data Types

In this section, we show how some data types can be constructed through polynomial functors,
where I draw from the vast amount of work that has been done on polynomial functors, see [2, 9].
This result is only complete for data types that, if at all, only use dependent coinductive types
at the top-level. Nesting of dependent inductive and non-dependent coinductive types works,
however, in full generality.

Before we come to polynomial functors and their fixed points, we show that (co)inductive
data types actually correspond to initial algebras and final coalgebras, respectively.

Theorem 4.1. Let P : E Ñ B be a fibration with fibrewise coproducts and dependent sums. If
pF, uq with F : PI Ñ PJ1 ˆ ¨ ¨ ¨ ˆPJn is a signature, then there is an isomorphism

DiAlg pF,Gq – Alg

˜

ž

u1

˝F1 `I ¨ ¨ ¨ `I

ž

un

˝Fn

¸

where Fk “ πk ˝ F is the kth component of F . In particular, existence of inductive data types
and initial algebras coincide. Dually, if P has fibrewise and dependent products, then

DiAlg pG,F q – CoAlg

˜

ź

u1

˝F1 ˆI ¨ ¨ ¨ ˆI

ź

un

˝Fn

¸

.

In particular, existence of coinductive data types and final coalgebras coincide.

H. Basold 9

Proof. The first result is given by a simple application of the adjunctions
šn
k“1 % ∆n between

the (fibrewise) coproduct and the diagonal, and
š

uk
% u˚k:

FX ÝÑ GX (in PJ1 ˆ ¨ ¨ ¨ ˆPJn)

p
š

u1
pF1Xq, . . . ,

š

un
pFnXqq ÝÑ ∆nX (in Pn

I)

šn
k“1

š

uk
pFkXq ÝÑ X (in PI)

That (di)algebra homomorphisms are preserved follows at once from naturality of the used
Hom-set isomorphisms. The correspondence for coinductive types follows by duality.

To be able to reuse existing work, we work in the following with the codomain fibration
cod : BÑ Ñ B for a category B with pullbacks. Moreover, we assume that B is locally Cartesian
closed, which is equivalent to say that cod : BÑ Ñ B is a closed comprehension category, that
is, it is a full CCU with products and coproducts, and B has a final object, see [14, Thm 10.5.5].
Finally, we need disjoint coproducts in B, which gives us an equivalence B{I`J » B{I ˆ B{J,
see [14, Prop. 1.5.4].

Definition 4.2. A dependent polynomial P indexed by I on variables indexed by J is given by
a triple of morphisms

B A

J I
s

f

t

If J “ I “ 1, we say that f is a (non-dependent) polynomial. The extension of P is given by
the composite

JP K “ B{J
s˚
ÝÑ B{B

ś

f
ÝÝÑ B{A

š

t
ÝÝÑ B{I,

which we denote by JfK if f is non-dependent. A functor F : B{J Ñ B{I is a dependent
polynomial functor, if there is a dependent polynomial P such that F – JP K.

Remark 4.3. Note that polynomials are called containers by Abbott et al. [2, 1], and a polynomial

P “ 1
!
ÐÝ B

f
ÝÑ A

!
ÝÑ 1 would be written as AŹ f . The corresponding extension is given then by

X ÞÑ
ž

a:A

XBa ,

where Ba is the fibre of f above a.

Because of this relation, we will freely apply all results for containers to polynomials. In
particular, [2, Prop. 4.1] gives us that we can construct final coalgebras for polynomial functors
from initial algebras for polynomial functors. The former are called W-types and are denoted
by Wf for f : AÑ B, whereas the latter are M-types and we denote them by Mf .

Assumption 4.4. We assume that B is closed under the formation of W-types, thus is a
Martin-Löf category in the terminology of [2].

By the above remark, B then also has all M-types.
Analogously to how [8, Thm. 12] extends [16, Prop. 3.8], we extend here [5, Thm 3.3].

Theorem 4.5. If B has finite limits, then every dependent polynomial functor has a final
coalgebra in B{I.

10 Dependent Dialgebras

Proof. Let P “ I
s
ÐÝ B

f
ÝÑ A

t
ÝÑ I be a dependent polynomial, we construct, analogously to [8]

the final coalgebra V of JP K as an equaliser as in the following diagram.

V Mf MfˆI
g u1

u2

Here, MfˆI is the final coalgebra for Jf ˆ IK, where f ˆ I is a shorthand for Bˆ I
fˆidI
ÝÝÝÝÑ Aˆ I.

First, we give u1 and u2, whose definition is summarised in the following diagram.

Mf MfˆI

JfKpMf q

Jf ˆ IKpMf q Jf ˆ IKpMfˆIq

u1

ξf

ξfˆI

pMf

JfˆIKpu1q

Mf MfˆI MfˆI

Jf ˆ IKpMfˆIq

Jf ˆ IKpMfˆI ˆBq Jf ˆ IKpMfˆIq

u1

u2

ξfˆI

ψ

ξfˆI

ΣAˆIK

JfˆIKpφq

These diagrams shall indicate that u1 is given as coinductive extensions and ψ as one-step
extension (see Appendix A), using that MfˆI is a final coalgebra. The maps involved in the
diagram are given, in the internal language of BÑ, as follows.

• p : ΣAΠf ñ ΣAˆIΠfˆI is the natural transformation that maps pa, vq to pa, tpaq, vq.
It is given by the extension Jα, βK : JfK ñ Jf ˆ IK of the container morphism, see [2],
pα, βq : f Ñ f ˆ I, where α : AÑ Aˆ I and β : α˚pf ˆ Iq Ñ f are defined by α “ xid, ty
and β is given as in the following diagram.

X B ˆX B

A Aˆ I A

α pfˆIq

β

α˚pfˆIq

π1

fˆI f

α π1

• The map K : ΠfˆIpMfˆIq Ñ ΠfˆIpMfˆI ˆBq is given by K v “ λb.pvb, bq.

• φ : MfˆI ˆB ÑMfˆI is constructed as coinductive extension as in the following diagram

MfˆI ˆB MfˆI

Jf ˆ IKpMfˆIq ˆB

Jf ˆ IKpMfˆI ˆBq Jf ˆ IKpMfˆIq

xξfˆI ˝π1,π2y

φ

ξfˆI

e

JfˆIKpφq

Here e is given by eppa, i, vq, bq “ pa, spbq, λb1.pvb, b
1qq.

H. Basold 11

By Lemma A.5.4, we immediately have that ξf : Mf Ñ JfKpMf q restricts to ξ1 : V Ñ JP KpV q.
To prove that ξ1 is also final we need another ingredient. We define a natural transformation
ι : ΣIJP K ñ JfKΣI (where ΣI : B{I Ñ B) for each q : X Ñ I by ιq pi : I, a : A, v : Πf ps

˚ qqq “
pa, λb.ps b, vbqq where tpaq “ i.

Now, let k : X Ñ I be in B{I and c : k Ñ JP Kpkq be a coalgebra on k. Using ι, we can define
a morphism h as in the following diagram.

ΣIk Mf

JfKpΣIkq JfKpMf q

ιk˝ΣIc

h

ξf

JfKphq

Thus for i : I and x : X with kpxq “ i, and cpxq “ pa, vq, we have

ξf phpi, xqq “ JfKphqpιkpi, a, vqq “ pa, λb.hps b, vbqq. (1)

Using (1), we can now show that hpk x, xq : Vk x for x : X. For brevity, we put k x “ i. By
Lemma A.5.3, we need to show that for ξf phpi, xqq “ pa, λb.hps b, vbqq with c x “ pa, vq we have
t a “ i and hps b, vbq : Vs b. The first is immediate, since pa, vq : JP Kpkq, thus t a “ i by definition
of the extension JP K of P . The second follows by coinduction, as k vb “ s b.

This allows us to define the coinductive extension rc : X Ñ V of c by rc x “ hpk x, xq as a
morphism k Ñ q in B{I. That rc is a homomorphism cÑ ξ1 is easily checked as follows.

ξ1prc xq “ ξ1phpq x, xqq

“ ξf phpq x, xqq

“ pa, λb.hps b, vbqq pa, vq “ c x

“ pa, λb.hpq vb, vbqq q vb “ s b

“ pa, λb.rc vbq

“ JP Krcpc xq

Uniqueness follows from uniqueness of h.
Hence V , given as a subobject of Mf , is indeed the final JP K-coalgebra in B{I.

Combining this with [2, Prop. 4.1], we have that the existence of final coalgebras for de-
pendent polynomial functors follows from the existence of initial algebras of (non-dependent)
polynomial functors. This gives us the possibility of interpreting non-nested fixed points in any
Martin-Löf category as follows.

First, we observe that the equivalence B{I`J » B{I ˆB{J allows us to rewrite the functors
from Thm. 4.1 to a form that is closer to polynomial functors:

ž

u1

˝F1 `I ¨ ¨ ¨ `I

ž

un

˝Fn –
ž

u

F 1

ź

u1

˝F1 ˆI ¨ ¨ ¨ ˆI

ź

un

˝Fn –
ź

u

F 1,

where J “ J1 ` ¨ ¨ ¨ ` Jn, u : J Ñ I is given by the cotupling ru1, . . . , uns and F 1 : B{I Ñ B{J
is given by F 1 “ xF1, . . . , Fny : B{I Ñ

śn
i“1 B{Ji » B{J. Thus, if we establish that F 1 is a

12 Dependent Dialgebras

polynomial functor, we get that
š

u F
1 and

ś

u F
1 are polynomial functors, see [1]. For non-

nested fixed points, that is, Fk is either a constant functor, given by composition or reindexing,
this is immediate, as dependent polynomials can be composed and are closed under constant
functors and reindexing, see [9].

We say that a dependent polynomial is parameterised, if it is of the following form.

K ` I A B Is f t

Such polynomials represent polynomial functors B{K ˆ B{I Ñ B{I and allow us speak about
nested fixed points just as we have done in Sec. 2. What thus remains is that fixed points
of parameterised dependent polynomial functors, in the sense of Sec. 2, are again dependent
polynomial functors. For initial algebras, this is an instance of [9, Thm. 4.5], where Gambino
and Kock have proved that the free monad for a polynomial is again given by a polynomial.
Unfortunately, the proof given in loc. cit. cannot be adapted easily, as the reindexing map of
the dependent polynomial constructed for the fixed point is given by recursion, which we cannot
do in the coinductive case. It remains open for now whether final coalgebras for parameterised
polynomials are polynomial functors themselves. It should be noted however that container are
closed under taking final coalgebras, see [2, Prop. 5.4].

Summing up, we are left with the following result.

Corollary 4.6. Data types that only have dependent coinductive types at the top level, that is,
are of the form νpxGu, pF q for some F : B{K ˆ B{I Ñ B{J that is given as in Def. 3.1 but only
uses non-dependent coinductive data types.

Let us see, by means of an example, how the constructions given above work intuitively.

Example 4.7. Recall from Ex. 3.4 that partial streams are given by the declaration

codata PStr (A : Set) : N8 Ñ Set where
hd : (n : N8) Ñ PStr (s8 n) Ñ A
tl : (n : N8) Ñ PStr (s8 n) Ñ PStr n

By Thm. 4.1, we can construct PStr as the final coalgebra of F : B{1 ˆ B{N8 Ñ B{N8 with

F pA,Xq “
ś

s8
!˚Aˆ

ś

s8
X. Note that F is isomorphic to B{1ˆB{N8 » B{1`N8

JP K
ÝÝÑ B{N8,

where P is the polynomial

P “ 1` N8 g
ÐÝ 2ˆ N8 f

ÝÑ N8 id
ÝÑ N8 gpi, kq “

#

κ1˚, i “ 1

κ2k, i “ 2
fpi, kq “ s8 k.

If we now fix an object A P B{1, then F pA,´q – JP 1K for the polynomial P 1 given by

P 1 “ N8 π
ÐÝ

ÿ

N8

ÿ

s8

ź

s8

!˚A
f 1
ÝÑ

ÿ

N8

ź

s8

!˚A
π
ÝÑ N8,

where π is the projection on the index of a dependent sum and f 1pn, ps8 n, vqq “ ps8 n, vq.

Recall that we construct in Thm. 4.5 the final coalgebra of JP 1K as a subobject of Mf 1 . Below,
we present three trees that are elements of Mf 1 , where only the second and third are actually
selected by the equaliser taken in Thm. 4.5.

H. Basold 13

p3, a0q

p8, a1q

p15, a2q

...

p2, 3, a0q

p8,8, a1q

p14, 15, a2q

f 1 p3, b0q

p2, b1q

p1, b2q

p0,Kq

p2, 3, b0q

p1, 2, b1q

p0, 1, b2q

3 π

2

π

π

1

0

p8, c0q

p8, c1q

p8, c2q

...

p8,8, c0q

p8,8, c1q

p8,8, c2q

Here we denote a pair pk, vq :
ř

N8
ś

s8
!˚A with k “ s8 n and v n “ a by pk, aq, or if k “ 0

by p0,Kq. Moreover, we indicate the matching of indices in the second tree, which is used to
form the equaliser. Note that the second tree is an element of PStrpAq 3, whereas the third is
in PStrpAq8.

5 Conclusion and Future Work

We have seen how dependent inductive and coinductive types with type constructors, in the
style of Agda, can be given semantics in terms of data type closed categories (DTCC), with the
restriction that destructors of coinductive types are not allowed to refer to each other. This
situation is summed up in the following table.

Condition Use/Implications

Cloven fibration Definition of signatures and data types
Data type completeness Construction of types indexed by objects in base (e.g., vectors

for N P B) and types agnostic of indices (e.g., initial and final
objects, sums and products)

Data type closedness Constructed types as index; Full interpretation of data types

Moreover, we have shown that a large part of these data types can be constructed as fixed points
of polynomial functors.

Let us finish by discussing directions for future work. First, the question of whether all
data types can be constructed through polynomials remains open, which is, however, likely to
hold. Moreover, a full interpretation of syntactic data types has also still to be carried out.
Here one has to be careful with type equality, which is usually dealt with using split fibrations
and a Beck-Chevalley condition. The latter can be defined generally for the data types of this
work, in needs to be checked, however, whether this condition is sufficient for giving a sound
interpretation. Finally, the idea of using dialgebras has found its way into the syntax of higher
inductive types [6], though in that work the used format of dialgebras is likely to be too liberal
to guarantee the existence of semantics. The reason is that the shape of dialgebras used in the
present work ensures that we can construct data types from (co)coalgebras, whereas this is not
the case in [6]. Thus is is to be investigated what the right notion of dialgebras is for capturing
higher (co)inductive types, such that their semantics in terms of trees can always be constructed.

14 Dependent Dialgebras

References

[1] Michael Abbott (2003): Categories of Containers. Ph.D. thesis, Leicester.

[2] Michael Abbott, Thorsten Altenkirch & Neil Ghani (2005): Containers: Constructing strictly posi-
tive types. Theoretical Computer Science 342(1), pp. 3–27, doi:10.1016/j.tcs.2005.06.002. Available
at http://www.sciencedirect.com/science/article/pii/S0304397505003373.

[3] Thorsten Altenkirch & Peter Morris (2009): Indexed containers. In: Logic In Computer Sci-
ence, 2009. LICS’09. 24th Annual IEEE Symposium on, IEEE, pp. 277–285. Available at http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230571.

[4] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg & Anton Setzer (2011): A Categor-
ical Semantics for Inductive-Inductive Definitions. In Andrea Corradini, Bartek Klin & Corina
Ĉırstea, editors: Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science
6859, Springer Berlin Heidelberg, pp. 70–84. Available at http://link.springer.com/chapter/

10.1007/978-3-642-22944-2_6.

[5] Benno van den Berg & Federico de Marchi (2004): Non-well-founded trees in categories.
arXiv:math/0409158. Available at http://arxiv.org/abs/math/0409158.

[6] Paolo Capriotti (2014): Mutual and Higher Inductive Types in Homotopy Type Theory. Available at
http://www.cs.nott.ac.uk/~pvc/away-day-2014/mhit.pdf.

[7] Clément Fumex, Neil Ghani & Patricia Johann (2011): Indexed Induction and Coinduction, Fibra-
tionally. In Andrea Corradini, Bartek Klin & Corina Ĉırstea, editors: Algebra and Coalgebra in
Computer Science, LNCS 6859, Springer, pp. 176–191. Available at http://link.springer.com/

chapter/10.1007/978-3-642-22944-2_13.

[8] Nicola Gambino & Martin Hyland (2004): Wellfounded Trees and Dependent Polynomial Functors.
In: Types for Proofs and Programs, LNCS 3085, Springer, pp. 210–225.

[9] Nicola Gambino & Joachim Kock (2013): Polynomial functors and polynomial monads. Math.
Proc. Camb. Philos. Soc. 154(01), pp. 153–192, doi:10.1017/S0305004112000394. Available at http:
//arxiv.org/abs/0906.4931.

[10] Tatsuya Hagino (1987): A typed lambda calculus with categorical type constructors. In: Category
Theory in Computer Science, pp. 140–157.

[11] Makoto Hamana & Marcelo Fiore (2011): A Foundation for GADTs and Inductive Families: Depen-
dent Polynomial Functor Approach. In: Proceedings of the Seventh Workshop on Generic Program-
ming, WGP ’11, ACM, New York, NY, USA, pp. 59–70, doi:10.1145/2036918.2036927. Available at
http://doi.acm.org/10.1145/2036918.2036927.

[12] Claudio Hermida & Bart Jacobs (1997): Structural Induction and Coinduction in a Fibrational
Setting. Inf. Comput. 145, pp. 107–152.

[13] Martin Hofmann (1994): On the Interpretation of Type Theory in Locally Cartesian Closed Cate-
gories. In: Proceedings of Computer Science Logic, LNCS, Springer, pp. 427–441.

[14] B. Jacobs (1999): Categorical Logic and Type Theory. Studies in Logic and the Foundations of
Mathematics 141, North Holland, Amsterdam.

[15] Jiho Kim (2010): Higher-order Algebras and Coalgebras from Parameterized Endofunctors. Elec-
tronic Notes in Theoretical Computer Science 264(2), pp. 141–154, doi:10.1016/j.entcs.2010.07.018.
Available at http://www.sciencedirect.com/science/article/pii/S1571066110000770.

[16] Ieke Moerdijk & Erik Palmgren (2000): Wellfounded trees in categories. Annals of Pure and
Applied Logic 104(1–3), pp. 189–218, doi:10.1016/S0168-0072(00)00012-9. Available at http:

//www.sciencedirect.com/science/article/pii/S0168007200000129.

[17] R. A. G. Seely (1984): Locally cartesian closed categories and type theory. Math. Proc. Camb.
Philos. Soc. 95(01), pp. 33–48, doi:10.1017/S0305004100061284. Available at http://journals.

cambridge.org/article_S0305004100061284.

http://dx.doi.org/10.1016/j.tcs.2005.06.002
http://www.sciencedirect.com/science/article/pii/S0304397505003373
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230571
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230571
http://link.springer.com/chapter/10.1007/978-3-642-22944-2_6
http://link.springer.com/chapter/10.1007/978-3-642-22944-2_6
http://arxiv.org/abs/math/0409158
http://www.cs.nott.ac.uk/~pvc/away-day-2014/mhit.pdf
http://link.springer.com/chapter/10.1007/978-3-642-22944-2_13
http://link.springer.com/chapter/10.1007/978-3-642-22944-2_13
http://dx.doi.org/10.1017/S0305004112000394
http://arxiv.org/abs/0906.4931
http://arxiv.org/abs/0906.4931
http://dx.doi.org/10.1145/2036918.2036927
http://doi.acm.org/10.1145/2036918.2036927
http://dx.doi.org/10.1016/j.entcs.2010.07.018
http://www.sciencedirect.com/science/article/pii/S1571066110000770
http://dx.doi.org/10.1016/S0168-0072(00)00012-9
http://www.sciencedirect.com/science/article/pii/S0168007200000129
http://www.sciencedirect.com/science/article/pii/S0168007200000129
http://dx.doi.org/10.1017/S0305004100061284
http://journals.cambridge.org/article_S0305004100061284
http://journals.cambridge.org/article_S0305004100061284

H. Basold 15

A Proofs Section 4

We need the following technical tool.

Lemma A.1 (Primitive corecursion). Let C be a category with binary coproducts and F : C Ñ C
an endofunctor on C with a final coalgebra pM, ξ : M Ñ FMq. For every morphism c : X Ñ

F pX `Mq in C, there is a unique map h : X `M Ñ M , such that h ˝ κ2 “ idM and the
following diagram commutes.

X M

F pX `Mq FM

c

h ˝κ1

ξ

Fh

Proof. We define h as the coinductive extension as in the following diagram.

X X `M M

F pX `Mq F pX `Mq FM

c

κ1 h

rc,Fκ2˝ξs ξ

Fh

It is easily checked that the rectangle on the right commutes if and only if the above identities
hold. Thus uniqueness of h follows from uniqueness of coinductive extensions.

Primitive corecursion allows us to define one-step behaviour as follows.

Lemma A.2 (One-step extension). Let F and pM, ξq as above, and let f : M Ñ FM be a
morphism. Then there exists a unique g : M ÑM , such that ξ ˝ g “ f .

Proof. We define g “ h ˝ κ1, where h arises by primitive corecursion of Fκ2 ˝ f . It is then
straightforward to show that ξ ˝ g “ f if and only the identities of primitive corecursion hold.
Thus g is the unique morphism for which this identity holds.

Using the definition of V as equaliser of u1 and u2, we can characterise elements of V as

follows. First we note that V is indexed over I by q “ V
g
ÝÑ Mf

ρ
ÝÑ A

t
ÝÑ I, where ρ is the root

map given by composing ξf with projection for coproducts. Abusing notation, we will use V
instead of q, and write x : Vi if x : V and q x “ i.

Let X be an object in B. An object R P B{X2 is called a relation, and we say that elements
x, y : X are related by are, denoted px, yq : R, if there is a z : R, such that π1pRzq “ x and
π2pRzq “ y.

Lemma A.3 (Internal bisimulations). Let f : B Ñ A be a polynomial and R P B{M2
f a relation

over Mf such that

@px1, x2q : R. if ξf pxkq “ pak, vkq

then a1 “ a2 “ a

and p@b : B.fb “ añ pv1 b, v2 bq : Rq.

Then for all px1, x2q : R, we have that x1 “ x2.

16 Dependent Dialgebras

Proof. It is easy to see that this allows us to define a coalgebra structure on R : U ÑM2
f such

that πk ˝ R : U Ñ M2 are homomorphism for k “ 1, 2, which implies by finality of Mf that
π1 ˝R “ π2 ˝R.

In the following lemmas we use the notation introduced in the proof of Thm. 4.5.

Lemma A.4. If y : Mf and b : B such that φpu1 y, bq “ u1 y, then q y “ s b and u1 y “ u2 y.

Proof. We let ξf y “ pa, vq and then find that

ξfˆI pφpu1 y, bqq “ pa, s b, λb
1.φpu1 pv b

1q, b1qq

“ pa, t a, λb1.u1 pv b
1qq by assumption

“ ξfˆI pu1 yq.

Thus s b “ t a “ q y and φpu1 pv b
1q, b1q “ u1 pv b

1q for all b1 : B with f b “ a. This gives us

ξfˆI pu1 yq “ pa, t a, λb
1.u1 pv b

1qq

“ pa, t a, λb1.φpu1 pv b
1q, b1qq see above

“ ξfˆI pu2 yq

as required.

Lemma A.5. Let i : I and x : Mf , then the following are equivalent

1. x : Vi

2. u1 x “ u2 x and q x “ i

3. ξf x “ pa : A, v : ΠfMf q, t a “ i and p@b : B.f b “ añ v b : Vs bq

4. ξf x “ pa : A, v : ΠfMf q, t a “ i and v : Πf ps
˚ V q

Proof. The equivalences 1 ðñ 2 and 3 ðñ 4 are the definitions, so let us prove 2 ðñ 3.

We begin by proving 2 ñ 3. Let x : Mf with u1 x “ u2 x and q x “ i. Then we have for
xf x “ pa, vq that t a “ q x “ i,

ξfˆI pu1 xq “ Jf ˆ IKpu1q ppMf
pξf xqq “ pa, t a, λb.u1pv bqq

and

ξfˆI pu2 q “ Jf ˆ IKpφq pΣAˆIK pξfˆI pu1 xqqq

“ Jf ˆ IKpφq pΣAˆIK pa, t a, λb.u1 pv bqq

“ pa, t a, λb.φpu1 pv bq, bqq.

By these calculations and Since u1 x “ u2 x, we also have for all b : B with f b “ a that u1pv bq “
φpu1 pv bq, bq. Applying Lem. A.4 to y “ v b we get that q pv bq “ s b and u1 pv bq “ u2 pv bq, thus
v b : Vs b and 3 holds.

H. Basold 17

For the other direction, assume that ξf x “ pa : A, v : ΠfMf q, t a “ i and p@b : B.f b “ añ
v b : Vs bq. We show that u1 x “ u2 x by giving a bisimulation R that relates u1 x and u2 x. We
put

X “ 1` ΣB. s
˚ V

R : X ÑMf ˆMf

Rp˚q “ pu1 x, u2 xq

Rpb, yq “ pu1 y, φpy, bqq

which is a relation over Mf . To prove that R is a bisimulation, there are two cases to consider.
First, we have pu1 x, u2 xq : R. Note that

ξfˆI pu1 xq “ pa, t a, λb.u1 pv bqq

and

ξfˆI pu2 xq “ pa, t a, λb.φpu1 pv bq, bqq

so that ρfˆI pu1 xq “ pa, t aq “ ρfˆIpu1 xq. Moreover, we have for all b : B that u1 pv bq and
φpu1 pv bq, bq are related by R. For the second case, let b : B and y : Vs b. Then for xfy “ pa

1, v1q
we have

ξfˆI pu1 yq “ pa
1, t a1, λb1.u1 pv

1 b1qq

and

ξfˆI φpy, bq “ pa
1, s b, λb1.φpu1 pv

1 b1q, b1qq.

Since y : Vs b, we have, by definition, that s b “ q y “ t a1, thus pa1, t a1q “ pa1, s bq. Moreover,
u1 pv

1 b1q and u1pv
1 b1, b1q are again related by R. Hence, we can conclude that R is a bisimulation,

and so u1 x “ u2 x.

	Introduction
	Fibrations and Dependent Data Types
	Data Type Completeness
	Constructing Data Types
	Conclusion and Future Work
	Proofs Section 4

