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Abstract

Polynomial functors (over Set or other locally cartesian closed categories) are useful in the theory of data
types, where they are often called containers. They are also useful in algebra, combinatorics, topology,
and higher category theory, and in this broader perspective the polynomial aspect is often prominent and
justifies the terminology. For example, Tambara’s theorem states that the category of finite polynomial
functors is the Lawvere theory for commutative semirings [45], [18].
In this talk I will explain how an upgrade of the theory from sets to groupoids (or other locally cartesian
closed 2-categories) is useful to deal with data types with symmetries, and provides a common generalisation
of and a clean unifying framework for quotient containers (in the sense of Abbott et al.), species and analytic
functors (Joyal 1985), as well as the stuff types of Baez and Dolan. The multi-variate setting also includes
relations and spans, multispans, and stuff operators. An attractive feature of this theory is that with
the correct homotopical approach — homotopy slices, homotopy pullbacks, homotopy colimits, etc. — the
groupoid case looks exactly like the set case.
After some standard examples, I will illustrate the notion of data-types-with-symmetries with examples
from perturbative quantum field theory, where the symmetries of complicated tree structures of graphs play
a crucial role, and can be handled elegantly using polynomial functors over groupoids. (These examples,
although beyond species, are purely combinatorial and can be appreciated without background in quantum
field theory.)
Locally cartesian closed 2-categories provide semantics for a 2-truncated version of Martin-Löf intensional
type theory. For a fullfledged type theory, locally cartesian closed ∞-categories seem to be needed. The
theory of these is being developed by David Gepner and the author as a setting for homotopical species,
and several of the results exposed in this talk are just truncations of ∞-results obtained in joint work with
Gepner. Details will appear elsewhere.
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1 Polynomial functors over Set and data types

1.1 Polynomial functors in one variable. In its simplest form, a polynomial
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functor is an endofunctor of Set of the form

X 7→
∑
b∈B

XEb . (1)

Here the sum sign is disjoint union of sets, XEb denotes the hom set Hom(Eb,X),

and (Eb | b ∈ B) is a B-indexed family of sets, encoded conveniently as a single

map of sets

E → B.

Viewed as a data type constructor, E → B is often called a container [1,2,3,4,5,7];

then B is regarded as a set of shapes, and the fibre Eb is the set of positions in

the shape corresponding to b. The data to be inserted into these positions can

be of any type X: the polynomial functor receives a type X (a set) and returns

the new more elaborate type
∑

XEb . Polymorphic functions correspond to natural

transformations of polynomial functors, and these can be handled in terms of the

representing sets E → B alone, cf. [1], [18], and 2.6 below. A fundamental example

is the list functor, X 7→
∑

n∈N Xn, which to a set X associates the set of lists

of elements in X. Here n ∈ N is the shape, and n denotes the n-element set

{0, 1, . . . , n− 1} of positions in a length-n list.

There is another important use of polynomial functors in type theory: one then

regards E → B as a signature generating an algebra, namely the initial algebra

for the polynomial functor. Initial algebras for polynomial functors are inductive

data types, corresponding to W-types in (extensional) Martin-Löf type theory [42],

[40]. Similarly, terminal coalgebras are coinductive data types (sometimes called

M-types), often interpreted as programs or systems (see for example [43], [23]).

1.2 Species and analytic functors. A functor is finitary when it preserves ω-

filtered colimits. For a polynomial functor this is equivalent to E → B having finite

fibres. Let Bω denote the groupoid of finite sets and bijections. A species [26] is a

functor F : Bω → Set, written S 7→ F [S]; the set F [S] is to be thought of as the set

of F -structures that can be put on the set S. The extension of F is the endofunctor

Set −→ Set (2)

X 7−→
∑
n∈N

F [n]×Xn

Aut(n)

which is the left Kan extension of F along the (non-full) inclusion Bω ⊂ Set.

A functor of this form is called analytic [27]. Joyal established an equivalence of

categories between species and analytic functors, and characterised analytic functors

as the finitary functors preserving cofiltered limits and weak pullbacks [27], see

also [24] and [6]. Finitary polynomial functors are precisely the analytic functors

which preserve pullbacks strictly. In terms of species they correspond to those for

which the symmetric group actions are free.

Monoids in species (under the operation of substitution, which corresponds to

composition of analytic functors) are precisely operads. Many important polyno-

mial functors have the structure of monad. For example, the list functor has a
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natural monad structure by concatenation of lists. Polynomial monads equipped

with a cartesian monad map to the list monad are the same thing as non-symmetric

operads [37]. More generally, finitary polynomial monads correspond to projective

operads [32] (i.e. such that every epi to it splits).

1.3 Polynomial functors in many variables. Following [18], a polynomial is a

diagram of sets

I
s
←− E

p
−→ B

t
−→ J, (3)

and the associated polynomial functor (or the extension of the polynomial) is given

by the composite

Set/I
∆s−→ Set/E

Πp
−→ Set/B

Σt−→ Set/J , (4)

where ∆s is pullback along s, Πp is the right adjoint to pullback (called dependent

product), and Σt is left adjoint to pullback (called dependent sum). For a map

f : B → A we have the three explicit formulae

∆f (Xa | a ∈ A) = (Xf(b) | b ∈ B) (5)

Σf (Yb | b ∈ B) = (
∑
b∈Ba

Yb | a ∈ A) (6)

Πf (Yb | b ∈ B) = (
∏
b∈Ba

Yb | a ∈ A) , (7)

giving altogether the following formula for (4)

(Xi | i ∈ I) 7−→ (
∑
b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J),

which specialises to (1) when I = J = 1.

The multi-variate polynomial functors correspond to indexed containers [7], and

their initial algebras are sometimes called general tree types [41, Ch. 16].

From the abstract description in terms of adjoints, it follows that the notion of

polynomial functor (and most of the theory) makes sense in any locally cartesian

closed category, and polynomial functors are the most natural class of functors

between slices of such categories. They have been characterised intrinsically [31] as

the local fibred right adjoints.

1.4 Incorporating symmetries. A container is a rigid data structure: it does

not allow for data to be permuted in any way among the positions of a given shape.

In many situations it is desirable to allow for permutation, so that certain posi-

tions within a shape become indistinguishable. In quantum physics, the principle

of indistinguishable particles imposes such symmetry at a fundamental level. A

fundamental example is the multiset data type, whose extension is the functor

X 7→
∑
n∈N

Xn

Aut(n)
, (8)
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which is analytic but not polynomial.

In order to account for such data types with symmetries, Abbott et al. [5] (see

also Gylterud [22]) have extended the container formalism by adding the symmetries

‘by hand’: for each shape (element b in B) there is now associated a group of

symmetries of the fibre Eb, and data inserted into the corresponding positions is

quotiented out by this group action. It is not difficult to see (cf. also [6]) that in

the finitary case, this is precisely the notion of species and analytic functors.

In fact it has been in the air for some time (see for example [14], and more re-

cently [12], [47]) that species should be a good framework for data type theory. It is

the contention of the present contribution that polynomial functors over groupoids

provide a clean unifying framework: in the setting of groupoids, the essential dis-

tinction between ‘analytic’ and ‘polynomial’ evaporates (3.7), and the functors can

be represented by diagrams with combinatorial content (3) just as polynomials over

sets, as we proceed to explain.

From the viewpoint of species, there are other reasons for this upgrade anyway.

In fact, it was soon realised by combinatorists that the 1985 notion of analytic

functors is not optimal for enumerative purposes: taking cardinality simply does not

yield the exponential generating functions central to enumerative combinatorics! (It

does so if the analytic functor is polynomial.) In fact, the Species Book [11] does

not mention analytic functors at all.

The issue was sorted out by Baez and Dolan [9]: the problem is that dividing

out by the group action in (2) is a bad quotient from the viewpoint of homotopy

theory, and does not behave well with respect to cardinality. To get the correct

cardinalities, it is necessary to use homotopy quotients, and the result is then no

longer a set but a groupoid, and the cardinality has to be homotopy cardinality.

So it is necessary to work from the beginning with groupoids instead of sets. Baez

and Dolan introduced species in groupoids (3.6), dubbing them stuff types, showed

that homotopy cardinality gives the correct generating functions, and illustrated

the usefulness of the broader generality by showing how the types needed for a

combinatorial description of the quantum harmonic oscillator are stuff types, not

classical species [9].

Joint work with David Gepner closes the circle by observing that over groupoids,

species/analytic functors are the same thing as discrete finitary polynomial func-

tors (3.7); hence the neat formalism of polynomials provides a natural unifying

framework for (quotient) containers and species.

2 Polynomial functors over groupoids

A groupoid is a category in which all arrows are invertible. A useful intuition for the

present purposes is that groupoids are ‘sets fattened with symmetries’. From the

correct homotopical viewpoint groupoids behave very much like sets. We are inter-

ested in groupoids up to equivalence, and for this reason many familiar 1-categorical

notions, such as pullback and fibre, are not appropriate, as they are not invariant un-

der equivalence. The good notions are the corresponding homotopy notions, which
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we briefly recall. They can all be deduced from the beautiful simplicial machinery

developed by Joyal [28,29] to generalise the theory of categories to quasi-categories

(called ∞-categories by Lurie [38]). Since the 2-category Grpd of groupoids has

only invertible 2-cells, it is an example of a quasi-category. From now on when we

say 2-category we shall mean ‘2-category with only invertible 2-cells’.

2.1 Slices. If I is a groupoid, the homotopy slice Grpd/I is the 2-category of

projective cones with base I (cf. [28]): its objects are maps X → I; its arrows are

triangles with a 2-cell

X //

��
✻✻

✻✻
✻✻

⇒

Y

��✟✟
✟✟
✟✟

I
and 2-arrows are diagrams

X ⇑ 55
))

��
✻✻

✻✻
✻✻

⇒⇒

Y

��✟✟
✟✟
✟✟

I
commuting with the structure triangles. More generally, if d : T → Grpd is any

diagram, there is a 2-category Grpd/d of projective cones with base d.

A homotopy terminal object in a 2-category C is an object t such that for any

other object x, the groupoid C (x, t) is contractible, i.e. equivalent to a point. More

general homotopy limits are defined in the usual way using homotopy slices: the ho-

motopy limit of a functor d : T → Grpd is by definition a homotopy terminal object

in the homotopy slice Grpd/d. Homotopy limits are unique up to equivalence.

2.2 Pullbacks and fibres. Given a diagram of groupoids X,Y, S indicated by the

solid arrows,

X ×S Y
❴
✤

//❴❴❴

��
✤
✤
✤ Y

g

��

X
f

//S

the homotopy pullback is the homotopy limit, i.e. given as a homotopy terminal

object in a a certain slice 2-category of projective cones over the solid diagrams

of the shape in question, and as such it is determined uniquely up to equivalence.

A specific model is the groupoid X ×S Y whose objects are triples (x, y, φ) with

x ∈ X, y ∈ Y and φ : fx → gy an arrow of S, and whose arrows are pairs

(α, β) : (x, y, φ)→ (x′, y′, φ′) consisting of α : x→ x′ an arrow in X and β : y → y′

an arrow in Y such that the following diagram commutes in S

fx
φ

//

f(α)
��

gy

g(β)
��

fx′
φ′

// gy′.

(One should note that if f or g is a fibration then the näıve set-theoretic pullback

is equivalent to the homotopy pullback.)
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The homotopy fibre Eb of a morphism p : E → B over an object b in B is the

homotopy pullback of p along the inclusion map 1 pbq //B :

Eb
❴
✤

//

��

E

p

��

1
pbq

//B.

(Note that the homotopy fibre Eb is not in general a subgroupoid of E, although the

map Eb → E is always faithful. But again, if p is a fibration then the set-theoretic

fibre is equivalent to the homotopy fibre.)

2.3 Homotopy quotients. Whenever a group G acts on a set or a groupoid X,

the homotopy quotient X/G is the groupoid obtained by gluing in a path (i.e. an

arrow) between x and y for each g ∈ G such that gx = y. More formally it is the

total space of the Grothendieck construction of the presheaf G → Grpd that the

action constitutes; it is a special case of a homotopy colimit. (The notation X//G

is often used [9].) If G acts on the point groupoid 1, then 1/G is the groupoid with

one object and vertex group G.

If p : X → B is a morphism of groupoids, for b ∈ B the ‘inclusion’ of the

homotopy fibre Xb → X is faithful but not full in general. But Aut(b) acts on Xb

canonically, and the homotopy quotient Xb/Aut(b) provides exactly the missing

arrows, so as to make the natural map Xb/Aut(b) → X fully faithful. Since every

object x ∈ X must map to some connected component of B, we find the equivalence

X ≃
∑
b∈π0B

Xb/Aut(b) =:

∫ b∈B

Xb, (9)

expressing X as the homotopy sum of the fibres, or equivalently as a family of

groupoids (indexed by π0(B) and with a group action in each). Given morphisms

of groupoids Y
p
→ B

f
→ A, we have the following ‘Fubini formula’:

∫ b∈B

Yb ≃

∫ a∈A ∫ b∈Ba

Yb

which is actually the formula for the ‘dependent-sum’ functor Σf : Grpd/B →

Grpd/A given by postcomposition. In family notation the formula reads

Σf (Yb | b ∈ B) = (
∫ b∈Ba Yb | a ∈ A) ,

just as Formula (6) in the Set case.

Pullback along f : B → A, denoted ∆f , is right adjoint to Σf . This means

of course homotopy adjoint, and amounts to a natural equivalence of mapping

groupoids Grpd/A(ΣfY,X) ≃ Grpd/B(Y,∆fX). The proof relies on the universal

property of the pullback. One may note the following formula for pullback, in family

notation:

∆f (Xa | a ∈ A) = (Xf(b) | b ∈ B),
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again completely analogous to the Set case (Formula (5)).

The 2-category of groupoids is locally cartesian closed. This means that the

pullback functor in turn has a right adjoint Πf : Grpd/B → Grpd/A. The general

formula is an end formula; for Y → B, the fibre of ΠfY over a ∈ A can be described

explicitly as the mapping groupoid

(ΠfY )a = Grpd/B(Ba, Y ).

(A more explicit formula will be derived in the discrete case below.)

2.4 Polynomial functors. A polynomial is a diagram of groupoids

I
s
←− E

p
−→ B

t
−→ J.

The associated polynomial functor (or the extension of the polynomial) is given as

the composite

Grpd/I
∆s−→ Grpd/E

Πp
−→ Grpd/B

Σt−→ Grpd/J .

2.5 Beck–Chevalley, distributivity, and composition. Given a homotopy

pullback square

·
❴
✤
ψ

//

α

��

·

β

��
· ϕ

// ·

there are natural equivalences of functors

Σα ◦∆ψ
∼→ ∆ϕ ◦ Σβ and ∆β ◦ Πϕ

∼→ Πψ ◦∆α,

usually called the Beck–Chevalley conditions. A more subtle feature of the theory

is distributivity, which in this setting is an equivalence saying how to distribute

dependent products over dependent sums (and which can be interpreted as a type-

theoretic form of the axiom of choice [39]). We shall not need the details here.

See [18] for the classical case, and Weber [46] for a deeper treatment. The Beck–

Chevalley conditions and distributivity yield a formula for composing polynomial

functors [18].

2.6 Natural transformations. Just as in the classical case [18], homotopy carte-

sian natural transformations P ′ ⇒ P of polynomial functors (in one variable) cor-

respond precisely to homotopy cartesian diagrams

E′ //

��

❴
✤ B′

��

E //B.
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This is an easy consequence of Beck–Chevalley. Showing more generally that arbi-

trary natural transformations are given essentially uniquely by diagrams

E′ //B′

·

OO

//

��

❴
✤ B′

��

E //B

is a bit more involved and depends on a homotopy version of the Yoneda lemma.

(At the time of this writing, this result is not as precise as in the 1-dimensional case

of [18].)

2.7 Spans and stuff operators. Spans of groupoids are the special case of

groupoid polynomials where the middle map is the identity (or an equivalence).

These constitute a categorification of matrix algebra, and were called stuff opera-

tors by Baez and Dolan [9]; they have been used to give groupoid models for certain

aspects of Hecke algebras and Hall algebras [10].

3 Exactness; combinatorial polynomial functors

The following results from [21] are actually proved in the much richer setting of

∞-groupoids, but the proofs work also for 1-groupoids. We now suppress the clumsy

‘homotopy’ everywhere, although of course all limits and colimits mentioned refer

to the homotopy notions.

Theorem 3.1 (Gepner-Kock [21].) A functor Grpd/I → Grpd/J is polynomial

if and only if it is accessible and preserves conical limits.

By conical limit we mean limit over a diagram with a terminal vertex. Recall that a

functor is accessible [38, Ch. 5] when it preserves κ-filtered colimits for some regular

cardinal κ. The regular cardinal here is explicitly characterised:

Proposition 3.2 ([21]) A polynomial functor given by I ← E
p
→ E → J preserves

κ-filtered colimits if and only if p has κ-compact fibres.

An important case is κ = ω. A groupoid is ω-compact when it has finitely many

components (i.e. π0(X) is a finite set) and all vertex groups are finitely presented.

3.3 Discreteness. For many data types occurring in practice (including species

and all the examples below), although they may have symmetries, the positions in

each shape form a discrete groupoid, i.e. a groupoid equivalent to a set. In the

polynomial formalism this amounts to the middle map p : E → B having discrete

fibres. In this case, the dependent product formula simplifies to

(ΠpY )b =
∏

e∈π0(Eb)

Ye,
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in analogy with (7), and hence all the formulae look exactly like the Set case.

The corresponding exactness condition is preservation of sifted colimits. A κ-

sifted colimit is a colimit over a diagram D whose diagonal D → DS is cofinal for

every set S of cardinality < κ [38, Ch. 5].

Proposition 3.4 ([21]) A polynomial functor given by I ← E
p
→ E → J preserves

κ-sifted colimits if and only if p has κ-compact discrete fibres.

3.5 Combinatorial polynomial functors. We call a polynomial functor I ←

E
p
→ B → J combinatorial if the fibres of p are equivalent to finite sets (i.e. are

ω-compact discrete).

3.6 Species in groupoids (stuff types). A Baez-Dolan stuff type [9] is a map of

groupoids F → Bω. We prefer the name species in groupoids. (A classical species

is when the map has discrete fibres, or equivalently is faithful.) Its extension is the

left homotopy Kan extension of n 7→ Fn along Bω ⊂Grpd:

Grpd −→ Grpd

X 7−→
∑

n∈π0(Bω)=N

Fn ×Xn

Aut(n)
.

(That’s a homotopy quotient of course.)

This functor is polynomial [21]: the representing groupoid map is the top row

in the pullback

E //

��

❴
✤ F

��

B
′
ω

//Bω.

This map has finite discrete fibres since B
′
ω → Bω has. (Here B

′
ω is the groupoid

of finite pointed sets.) Conversely, given a groupoid polynomial E → F with finite

discrete fibres, the ‘classifying map’ F → Bω (obtained since B
′
ω → Bω classifies

finite discrete fibrations) yields a species in groupoids. One can check that the

extension of the polynomial agrees with the extension of the species. In conclusion:

Proposition 3.7 ([21]) Combinatorial polynomial functors Grpd → Grpd are

the same thing as analytic functors (in the sense of Baez-Dolan).

Combining these results we get a ‘Joyal theorem’:

Corollary 3.8 ([21]) A functor Grpd→ Grpd is analytic (in the sense of Baez-

Dolan) if and only if it preserves ω-sifted colimits and conical limits.

3.9 Generalised species. The relationship between polynomial functors and the

generalised species of [15] has been sketched by Gambino and the author (unpub-

lished). A generalised species depends on two categories I and J , and has as ex-

tension a generalised analytic functor PrSh(I) → PrSh(J); this generalises the

1985 notion but not the Baez-Dolan notion. If I and J are groupoids, these gen-

eralised analytic functors correspond to the ‘classical’ extension of combinatorial

polynomials over groupoids, i.e. involving π0 on quotients.
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3.10 Examples. Groupoid polynomials encode data types in groupoids. For ex-

ample, B′
ω → Bω encodes the multiset data type: the groupoid Bω of finite sets

and bijections is the groupoid of shapes — the shape of a multiset is really the set

indexing its elements, not just its size. There are N-many isoclasses; the isomor-

phisms should be interpreted as propositional equality. The fibre over S ∈ Bω is

the discrete groupoid of positions in S, i.e. a uniform prescription of positions in

multisets indexed by S. Indeed, since B′
ω → Bω is a fibration, the fibre is canonically

identified with the set S itself — note its natural Aut(S)-action. The discreteness

of the fibre means that propositional equality between positions can be regarded as

definitional equality. The extension of this quotient container is naturally an endo-

functor Grpd → Grpd. But one obtains an endofunctor Set → Set (in this case

precisely (8)) by precomposing with the natural inclusion Set → Grpd and post-

composing with π0 : Grpd → Set. The first is harmless. The second corresponds

to collapsing all isomorphisms to identity, i.e. interpreting propositional equality as

definitional equality. If the argument is a set, the only collapse is the passage from

homotopy quotient to näıve quotient (of actions on sets).

The data type of cyclic lists is groupoid polynomial, represented by C
′
ω → Cω,

where Cω is the groupoid of finite cyclically ordered sets, and C
′
ω is the groupoid

of pointed cyclically ordered finite sets. From 1.1, the list data type is represented

by N
′ → N, interpreted as the groupoids of linearly ordered finite sets and pointed

ditto. The diagram of groupoids

N
′ //

��

❴
✤ N

��

C
′
ω

//

��

❴
✤ Cω

��

B
′
ω

//Bω

now represents the cartesian natural transformations, or polymorphic functions,

from lists to cyclic lists to multisets.

4 Trees

W-types in Martin-Löf type theory correspond to initial algebras of polynomial

functors (cf. [40] and [17] for the extensional case, and [8] for the fully intensional

case). The initial algebra for 1+P can also be described as the set of operations for

the free monad on P , which in turn is the set of P -trees. P -trees (for P a polynomial

functor over Set or any lccc) are always rigid, i.e. have no symmetries. Abstract

trees, on the other hand, admit symmetries, so they are not P -trees for any Set-

polynomial functor P , and they are neither W-types nor containers in the classical

sense. Instead, according to [32], abstract trees are themselves polynomial functors.

It is convenient to take the following characterisation of trees as a definition:
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4.1 Trees. ([32]) A (finite) tree is a diagram of finite sets

A
s
←−M

p
−→ N

t
−→ A

satisfying the following three conditions:

(1) t is injective

(2) s is injective with singleton complement (called root and denoted 1).

With A = 1 + M , define the walk-to-the-root function σ : A → A by 1 7→ 1 and

e 7→ t(p(e)) for e ∈M .

(3) ∀x ∈ A : ∃k ∈ N : σk(x) = 1.

The elements of A are called edges. The elements of N are called nodes. For

b ∈ N , the edge t(b) is called the output edge of the node. That t is injective is just to

say that each edge is the output edge of at most one node. For b ∈ N , the elements

of the fibre Mb are called input edges of b. Hence the whole set M =
∑

b∈N Mb can

be thought of as the set of nodes-with-a-marked-input-edge, i.e. pairs (b, e) where b

is a node and e is an input edge of b. The map s returns the marked edge. Condition

(2) says that every edge is the input edge of a unique node, except the root edge.

Condition (3) says that if you walk towards the root, in a finite number of steps

you arrive there. The edges not in the image of t are called leaves.

4.2 Decorated trees: P -trees ([32]; see also [33,34,35]) An efficient way of encod-

ing and manipulating decorations of trees is in terms of polynomial endofunctors.

Let P be a polynomial endofunctor given by I
d
← E

q
→ B

c
→ I. A P -tree is a

diagram

A

��

Moo

❴
✤

//

��

N

��

//A

��

I Eoo //B // I ,

(10)

where the top row is a tree. The squares are commutative up to isomorphism, and

it is important that the 2-cells be specified as part of the structure. Unfolding the

definition, we see that a P -tree is a tree whose edges are decorated in I, whose nodes

are decorated in B, and with the additional structure of an equivalence Mn ≃ Eb
for each node n ∈ N with decoration b ∈ B (this is essentially just a bijection, since

the fibres are discrete), an iso in I between the decoration of an edge m ∈Mn and

the corresponding d(e), and finally an iso in I between the decoration of the output

edge of n and c(b).

4.3 Examples of P -trees. Natural numbers are P -trees for the identity monad

P (X) = X, and are also the set of operations of the list monad. Planar finite

trees are P -trees for P the list monad, and are also the set of operations of the

free-non-symmetric-operad monad [37]. These two examples are the first entries

of a canonical sequence of inductive data types underlying several approaches to

higher category theory, the opetopes: opetopes in dimension n are P -trees for P a

Set-polynomial functor whose operations are (n− 1)-opetopes [35]; hence opetopes

are higher-dimensional trees.

Abstract finite trees are P -trees for the multiset functor 1← B
′
ω → Bω → 1, but

J. Kock / Electronic Notes in Theoretical Computer Science 286 (2012) 351–365 361



cannot be realised as P -trees for any Set-polynomial P .

4.4 Trees of Feynman graphs. In the so-called BPHZ renormalisation

of perturbative quantum field theories, one is concerned with nestings of

1-particle irreducible (1PI) Feynman graphs, i.e. graphs [30] for which no single

edge removal disconnects. Kreimer [36] discovered that the BPHZ procedure is

encoded in a Hopf algebra of (non-planar) rooted trees, expressing the nesting of

graphs.

3

3

3 33
3 3

3 3

2

2 :

3 :

In the picture the combinatorial tree in the middle expresses the nesting of 1PI

subgraphs on the left; such trees are sufficient in Kreimer’s Hopf-algebra approach

to BPHZ, but do not capture the symmetries of the graph. To this end, further

decoration is needed in the tree, as partially indicated on the right. First of all,

each node in the tree should be decorated by the 1PI graph it corresponds to in

the nesting, and second, the tree should have leaves (input slots) corresponding to

the vertices of the graph. The decorated tree should be regarded as a recipe for

reconstructing the graph by inserting the decorating graphs into the vertices of the

graphs of parent nodes. The numbers on the edges indicate the type constraint of

each substitution: the outer interface of a graph must match the local interface of

the vertex it is substituted into. But the type constraints on the tree decoration

are not enough to reconstruct the graph, because for example the small graph

decorating the left-hand node could be substituted into various different vertices of

the graph .

The solution found in [34] is to consider P -trees, for P the polynomial endo-

functor given by I
s
← E

p
→ B

t
→ I, where I is the groupoid of interaction labels for

the theory (in this case the one-vertex graphs and ) and B is the groupoid of

connected 1PI graphs of the theory, and E is the groupoid of such 1PI graphs with

a marked vertex. The map s returns the one-vertex subgraph at the mark, p forgets

the mark, and t returns the outer interface of the graph, i.e. the graph obtained by

contracting everything to a point, but keeping the external lines. A P -tree is hence

a diagram like (10) with specified 2-cells. These 2-cells carry much of the structure:

for example the 2-cell on the right says that the 1PI graph decorating a given node

must have the same outline as the decoration of the outgoing edge of the node — or

more precisely, and more realistically: an isomorphism is specified (it’s a bijection

between external lines of one-vertex graphs). Similarly, the left-hand 2-cell specifies

for each node-with-a-marked-incoming-edge x′ ∈ M , an isomorphism between the

one-vertex graph decorating that edge and the marked vertex of the graph decorat-

ing the marked node x′. Hence the structure of a P -tree is a complete recipe not

only for which graphs should be substituted into which vertices, but also how: spe-

J. Kock / Electronic Notes in Theoretical Computer Science 286 (2012) 351–365362



cific bijections prescribe which external lines should be identified with which lines

in the receiving graph. In fact, there is an equivalence of groupoids between nested

graphs and P -trees [34]. This is exploited in [16] to establish algebraic identities

concerning graphs by interpreting them as homotopy cardinalities of equivalences

of groupoids of decorated trees.

Notice that the polynomial functor P is combinatorial, since each graph has a

discrete finite set of vertices. It is not a species in the classical sense though: the

classifying map B → Bω sends a graph to its set of vertices, and since a graph

may have nontrivial automorphisms that fix every vertex, this map does not have

discrete fibres.

5 Outlook

A 2-category is called locally cartesian closed when for every arrow f : B → A, we

have the string of adjoint functors Σf ⊣ ∆f ⊣ Πf . This structure formally implies the

Beck-Chevalley equivalences and distributivity, which are the minimal requirements

for a reasonable theory of polynomial functors. The theory of strength can be copied

almost verbatim from [18], and it seems that the representation theorem of [18] also

carries over.

While locally cartesian closed categories provides semantics for an extensional

version of Martin-Löf type theory [44], [13], and locally cartesian closed 2-categories

capture some 2-truncated version ([25], [19]), recent insight of Homotopy Type

Theory strongly suggests that in the long run, the case of ∞-groupoids and other

locally cartesian closed ∞-categories will be the real meat for type theory. Large

parts of the ∞-theory of polynomial functors, as well as aspects of the theory

of locally cartesian closed ∞-categories geared towards Homotopy Type Theory

have already been worked out in joint work with David Gepner, and will appear

elsewhere [21], [20]. Nevertheless the groupoid case is interesting in its own right,

since it already covers important applications: in particular for many purposes of

combinatorial nature, 1-groupoids are all that is needed in order to handle symmetry

issues. Time will tell whether for purposes of program semantics the groupoid level

is enough too — otherwise it is a good stepping stone into the ∞-world.
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in bialgebras of trees, preprint, ArXiv:1207.6404.

[17] Gambino, N. and M. Hyland, Wellfounded trees and dependent polynomial functors, in: S. Berardi,
M. Coppo and F. Damiani, editors, TYPES 2003, Lecture Notes in Comput. Sci. 3085 (2004), pp. 210–
225.

[18] Gambino, N. and J. Kock, Polynomial functors and polynomial monads, to appear in Math. Proc.
Cambridge Philos. Soc., ArXiv:0906.4931.

[19] Garner, R., Two-dimensional models of type theory, Math. Struct. Comput. Sci. 19 (2009), pp. 687–736.
ArXiv:0808.2122.

[20] Gepner, D. and J. Kock, Univalence in locally cartesian closed ∞-categories, preprint, ArXiv:1208.1749.

[21] Gepner, D. and J. Kock, Polynomial functors over infinity categories, in preparation.

[22] Gylterud, H., Symmetric Containers, Master’s thesis, University of Oslo, 2011. Available from
http://www.duo.uio.no/publ/matematikk/2011/144617/thesisgylterud.pdf.

[23] Hancock, P. and A. Setzer, Interactive programs in dependent type theory, in: Computer science logic
(Fischbachau, 2000), Lecture Notes in Comput. Sci. 1862 (2000), pp. 317–331,

[24] Hasegawa, R., Two applications of analytic functors, Theoret. Comput. Sci. 272 (2002), pp. 113–175.

[25] Hofmann, M. and T. Streicher, The groupoid interpretation of type theory, in: Twenty-five years of
constructive type theory, Oxford Logic Guides 36, Oxford University Press, 1998, pp. 83–111.
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