946 research outputs found

    Hipster: Integrating Theory Exploration in a Proof Assistant

    Full text link
    This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes

    Anti-unification and Generalization: A Survey

    Full text link
    Anti-unification (AU), also known as generalization, is a fundamental operation used for inductive inference and is the dual operation to unification, an operation at the foundation of theorem proving. Interest in AU from the AI and related communities is growing, but without a systematic study of the concept, nor surveys of existing work, investigations7 often resort to developing application-specific methods that may be covered by existing approaches. We provide the first survey of AU research and its applications, together with a general framework for categorizing existing and future developments.Comment: Accepted at IJCAI 2023 - Survey Trac

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it
    corecore