

Edinburgh Research Explorer

Automating the Synthesis of Decision Procedures in a
Constructive Metatheory

Citation for published version:
Armando, A, Gallagher, J, Smaill, A & Bundy, A 1998, 'Automating the Synthesis of Decision Procedures in
a Constructive Metatheory' Annals of Mathematics and Artificial Intelligence, vol 22, no. 3-4.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Annals of Mathematics and Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/automating-the-synthesis-of-decision-procedures-in-a-constructive-metatheory(46858ba0-d3c2-47da-8edc-5e4bf645d7d0).html

AUTOMATING THE SYNTHESIS OF
DECISION PROCEDURES IN A

CONSTRUCTIVE METATHEORY

ARMANDO,A; GALLAGHER,J; SMAILL,AD;
BUNDY,A

DAI Research Paper No. 934
Nov 1998

Accepted for publication in Annals of Mathematics and Artificial Intelligence

Copyright ©AItMANDO,A; GALLAGHE1t,J; SMAILL,AD; BIJNDY,A 1998

Preprint 0 (1998) ?—?

Automating the synthesis of decision procedures
in a constructive metatheory *

Alessandro Armando I Jason Gallagher" Alan Smaill b Alan Bundy

° Dipartitnento di Informatica, Sistemistica e Telematica - Universitd di Cenova
Viale Causa 18, 16145 Genova, Italy

E-mail: armando@dist.unige.it

Department of Artificial Intelligence - University of Edinburgh
80 South Bridge - Edinburgh EHI IHN, Scotland

E-mail: jasonaisb.ed.ac.uk , smaill@aisb.ed.ac.uk , bundy@aisb.ed.ac.uk

We present an approach to the automatic construction of decision procedures, via
a detailed example in propositional logic. The approach adapts the methods of proof-
planning and the heuristics for induction to a new domain, that of meta-theoretic
procedures. This approach starts by providing an alternative characterisation of
validity; the proofs of the correctness and completeness of this characterisation, and
the existence of a decision procedure, are then amenable to automation in the way we
describe. In this paper we identify a set of principled extensions to the heuristics for
induction needed to tackle the proof obligations arising in the new problem domain
and discuss their integration within the CI$M-Oyster system.

1. Introduction

The task of building automated reasoning systems aims for systems with
some concise and clear underlying logic, yet supporting powerful inference pro-
cedures. Furthermore, we want such procedures to be correct so that we do not
endanger the system's integrity by their use, and efficient so that they can be
useful in practice. Finally, we would like to have automated assistance in the
construction of such procedures, perhaps using the system itself. In this paper,
we concentrate on the final aspect, and describe an approach to the automatic
construction of decision procedures.

We make use of two logical systems: one is the object logic that we reason
about (in this paper, classical propositional logic characterised via truth assign-
ments), and the other is the meta-logic that we reason in (here a constructive
type theory). For the latter, we choose a version of Martin-Löf's Type Theory,

The authors are supported in part by grants EPSRC GR/L/11724, British Council
(ROM/889/95/70) and MURST in collaboration with CRUI under the Programme British-
Italian Collaboration in Research and Higher Education

2 	 A. Armando et al. / Automating the synthesis of decision procedures

as developed in (14]. For present purposes, the meta-logic gives us a restricted
version of a standard sorted predicate calculus (i.e., an intuitionistic calculus),
together with induction principles for inductively defined data-types - e.g., lists,
formula trees. The meta-logic is designed in such a way that functional programs
can be automaticallyderived from-proofs ofstatements of-an-appropriate form;
this allows us to regard the synthesis of meta-theoretic procedures as a theorem
proving task, if we succeed, we obtain a verified procedure for the task at hand,
which assures us of its soundness. In this context, finding a decision procedure
for a property 0 of objects of type r can be achieved by finding a proof in this
meta-theory of the statement

Vx : r.((x) V -'(z)) 	 (1)

(Note that because of the restrictions to this logic, this statement is not trivially
true, as it would be in classical logic; indeed if the property 4 is not decidable,
then the statement has no proof in this logic.) The problem then is to find a
good way of guiding the search for proofs of statements of this form.

Whether logics are defined by proof systems or semantically, the definition is
inviriably inductive (cf. Tarski's truth definition), and procedures for reasoning
about them are often recursive. So the proofs we need to find in constructive
logic involve induction; we follow the promising techniques of proof plans [11],
and particularly that of rippling [9] to guide our proof search.

To reduce the overall synthesis task to a set of proof obligations amenable of
automated assistance, we adopt the following methodology: (I) Conjecture an al-
ternative characterisation of validity (i.e., extend the metatheory with definitions
formalising a property P of the formulas of the object language); (ii) Show that
the characterisation is indeed decidable (i.e., provide a constructive proof of the
decidability statement Vw.(P(w) V -.P(w)fl; (UI) Extract the program from the
decidability proof, and (iv) Show that the new characterisation is indeed equivalent
to validity.

The approach is presented by discussing the synthesis of a decision proce-
dure for the biconditional fragment of propositional logic in the ClAM-Oyster
system. Step (i) clearly requires human intervention, and we provide our con-
jecture manually here. We discuss the automation of points (ii) and (iii) as
carriedmut-in- CIAM-Oyster-and--show-that-a-significant--degree_of-automated__
assistance is achieved. Finally, it is a well known logical result that a program
can be extracted from a constructive proof of its specification, and in our imple-
mentation, step (iv) simply amounts to retrieving this "extract" which is built
up automatically by the prover as the proof is constructed.

The contributions of our work are several fold:

• we apply proof-planning and rippling to a new domain, that of meta-theoretic
procedures;

• we identify a principled extension to the set of heuristics for induction;

A. Armando et al. / Automating the synthesis of decision procedures

• we advance and discuss solutions to the problem of integrating the proposed
extension to the earlier repertoire of heuristics of the CLAM-Oyster system;

• we describe in detail the case study so that it can be used as challenge problem
for automated theorem provers.

It is worth pointing out that most of the effort in extending the set of available
heuristics was confined to the design and implementation of a new proof proce-
dure, and - more importantly - that the proof planning framework allowed us
to easily incorporate the new procedure into the system. Moreover the high level
of automation achieved in the case study witnesses the strength and generallty
of the available heuristics for induction.

The paper is organised as follows. Section 2 introduces the proof-planning
paradigm. Section 2.1 surveys the repertoire of heuristics for inductive domains
available in the ClAM-Oyster system; Section 2.2 presents the extension we have
incorporated to automate the synthesis of meta-theoretic procedures. Section 3
presents the case study in detail. Section 4 discuss the related work, and finally,
in Section 5, we draw some conclusions.

2. Proof planning

The proofs described in this paper have been carried out in Oyster-ClAM,
a theorem planning and proving system for a higher-order, constructive, typed
logic. Oyster is a reimplementation of the Nuprl interactive proof editor [14].
Tactics are Prolog programs which drive Oyster by applying its rules of inference.
Tactics raise the level of interaction with the system from the basic inference
rules provided by the prover to complex inference steps close to the ones used
in informal mathematics. However tactics alone do not provide the degree of
flexibility required in practice.

Proof planning was proposed in [11] as a technique for flexibly combining
tactics tailored to the goal at hand. A proof plan is a tactic together with a
method. A method is a partial specification of the associated tactic. It consists
of five slots (see Figure 1): the name, the input goal1 , the preconditions enabling
the application of the tactic, the effects of applying the tactic, the output sub-
goals obtained by a successful application of the tactic to the input goal, and the
tactic itself specified by the method. The application of a method to a given goal
amounts to matching the actual goal with the input slot, checking the precondi-
tions and finally then determining the output sub-goals by computing the effects,
i.e. it simulates the application of the associated tactic. If a method admits mul-
tiple solutions, the search proceeds on the first one, while the remaining ones are
generated and used in the event of a backtracking. Methods can be hierarchically

1 In this paper we consider goals to be sequents of the form r I- 0 , where # is a formula and I'
is a sequence of formulae.

4 	 A. Armando et al. / Automating the synthesis of decision procedures

method (Name,
F F o, 	% Input Slot
[Prei ,... ,Prti), 	K Preconditions

- - 	[Postj ,... ,Post,,2], 	 K Effects
[F1 F 	F], K OtutSVot - --
Tactic)

Figure 1. The slots of a method

organised by gluing together simpler methods via constructs, e.g. THEN, ORELSE,

and REPEAT, called methodicals. Let M 1 and M1 be methods specifying the tac-

tics T1 and 7'2 respectively. (M1 THEN M2) specifies the sequential composition

of T1 and 12; (M1 ORELSE M2) is equivalent to M1 if M1 is successful on the

input goal, otherwise it is equivalent to M2; (REPEAT Mi) specifies the exhaustive

application of T1.
Theorem proving in Oyster-ClAM is a two-stage activity. First CI4M tries

to build a proof plan for the goal at hand by using plan formation techniques on
the current repertoire of methods. Secondly - if the first step succeeds - the
tactic associated with the proof plan is executed engendering the desired Oyster
proof. It is worth pointing out that a method can promise more than what the
corresponding tactic can actually do. In particular a method can be incorrect,
i.e., it can deliver subgoals whose provability does not imply the provability of
the input goal. However this only means that the planner can build proof-plans
(i.e., tactics) whose execution will eventually fail or generate a theorem different
from the goal proof-planning was applied to. As in every tactic-based theorem
prover, it is impossible for a tactic to engender an unprovable sequent (provided
that the basic inference rules are correctly implemented).

Proof-planning amounts to trying the available methods according to a spe-
cific search strategy keeping track of the successful methods. The proof described
in this paper have been carried out using the standard depth-first planner avail-

able in CLAM.

- - 	2.i._12roof-planningininductivedomainS -

ClAM's methods encode a particularly effective set of heuristics for theorem
proving on inductive domains. The base_case method (Figure 2) encodes the
strategy of exhaustively applying the equal, normalize_term, and casesplit
submethods to the input goal, using the elementary submethod to get rid of
"tautological" goals (i.e., goals provable using propositional and simple equational
reasoning only). equal looks for equalities in hypotheses of the input goal and
uses them to rewrite the goal. normalize_term rewrites the input goal by using
the available definitions as a terminating term rewriting system. (When ClAM

A. Armando et al. / Automating the synthesis of decision procedures 	5

	

base_case 	REPEAT (elementary ORELSE sym_eval)

	

syrn_eval 	REPEAT (equal ORELSE
normalize_term ORELSE
casesplit)

Figure 2. The base_case method

parses the available definitions it looks for a recursive path ordering [17] guaran-
teeing the termination of the rewriting process carried out by normalize_term.)
A complementary set is a set of conditional rewrite rules:

Cn _*LR n

where Cl ,..., C. are the conditions of the rules and (Cl V... V C) is a theorem
of the current theory. (In most cases n = 2 and C2 is the negation of C1.)
Whenever a conditional rewrite in a complementary set is applicable to the input
goal IT F (i.e. there exists a substitution a such that La occurs in the goal)
casesplit performs a case split in the proof specifying C1 a I- 0, ..., Ca F- 0 in
the output slot. (This approach to case splitting is similar to the one advocated
in [5].)

The generalise method replaces all the occurrences of a term in the goal
by a new variable (provided that certain heuristic criteria are met). It is not
unusual in inductive proofs [6] that more general goals turn out to be easier to
prove.

The ind_strat method first selects the most promising form of induction
via a process called ripple analysis [10], then it applies the base_case and the
step_case submethods to the base and step cases respectively. The main activ-

	

step_case 	REPEAT (wave ORELSE casesplit)
THEN fertilise

Figure 3. The step_case method

ity of step_case is a rewrite process called rippling [9] aiming at enabling the
application of the induction hypothesis. To illustrate consider the proof of the
associativity of + by structural induction on x. The induction hypothesis and
conclusion are

x+(y+z)=(z+y)+z 	 (2)

A. Arrnando et at. / Automating the synthesis of decision procedures

so 	 s(x) +y)+z 	 (3)

The annotations on the conclusion mark the difference between the conclusion
introduced and used by -

	

ClAM to guide proof search. The sub-expressions which appear in the induction 	-- - - - -

conclusion, but not in the induction hypothesis, are called wave-fronts. The rest
of the induction conclusion, i.e. the expression occurring also in the induction
hypothesis, is called skeleton. As illustrated in Figure 3, the step_case method
amounts to a repeated application of the wave and casesplit submethods fol-
lowed by an invocation to the fertilise submethod. The wave submethod
aims at moving the wave-fronts outwards in the expression tree by using a set of
wave-rules. Wave-rules are rewrite rules on annotated terms which preserve the
skeleton term structure and are guaranteed to make progress towards applying
the induction hypothesis. Wave-rules are built automatically by ClAM from re-
cursive definitions and from lemmas. For instance, the wave-rule generated from
the definition of + is:

sO)_iH_s(x+y) 	 (4)

Repeated application of wave-rule (4) rewrites (3) as follows:

1 	 1
s(x+(y+z)) = s(x+y) +z

(5)

if a wave-front is moved to dominate the left- or right-hand term of the induction
conclusion then we say the induction conclusion is beached. In equation (5) both
wave-fronts are beached. if a wave-front is not beached, but no wave-rule applies
to it, then we say the wave-front is blocked. For more details, consult [91.

fertilise is applied when no further rippling is possible. At this stage in
fact it is often possible to use the induction hypothesis to rewrite the conclusion
into an identity or a simplified formula. In our example, rewriting (5) by means
of (2) we olitlin an idehtitythebyfinishiffg - the-proOf.

Proof-planning has been proved successful on a large set of (mainly equa-
tionally presented) verification problems on inductive domains [131. However the
task of synthesising meta-theoretic procedures poses new problems and paves the
way for challenge extensions.

2.2. Propositional and quantificational reasoning

Since both propositional connectives and quantifiers are systematically used
to specify proof procedures (cf. Section 3 and [151), strategies for propositional

A. Armando et al. / Automating the synthesis of decision procedures

AX (ax) if7EForLEF 	 FhAX7
(ax-hyp)

FE-7

(A:left) 	
FF0 	FF(A:right)

F,4A'F7 	 FF0A

FF0
(V:rightj)

V
FFOV0 F,F-y 	F)F7(Vlfl)

F,0VF? 	 FF
FFOV0 (V:righç)

FFAXO
F,4— o F

F,Ol --4 (Ø- ib)F 7 (—:le)
F,0F 	(—:ght)

—

F,0i—F7
17,(01 v02)- 0 F If

7 	r,2—F1-02 	
left4)

F, (Oi — 02) -4 0 F

Figure 4. fol method: inference rules for propositional reasoning

and quantificational reasoning are to be added to the repertoire of methods pre-
sented in Section 21 in order to automate the sort of reasoning involved in the
synthesis of meta-theoretic procedures. To this end we have designed and im-
plemented a new method, fol, encoding a complete procedure for intuitionistic
propositional logic (borrowed from [181) augmented with inference rules for quan-
tificational and equational reasoning.

The propositional component of the fol method amounts to a backward
application of the inference rules in Figure 4 using a depth-first strategy. With
the exception of (ax) and (ax-hyp), the rules in the left (right) column manipulate
formulae of the hypothesis list (conclusion) of the sequent they apply to and
we refer collectively to them as "left rules" ("right rules" resp.). While the
application of right rules is determined by the main connective of the conclusion,
in order to apply a left rule we have to choose the hypothesis which the rule has
to be applied to. This introduces a first form of indeterminism. A further form
of indeterminism is given by (V:right,) and (V:right,.) as both of them can be
applied to any sequent having a disjunction as conclusion. Therefore, with the

A. Armando a &. / Automating the synthesis of decision procedures

only exception of (V:rightj) and (V:right), right rules are given precedence w.r.t.
left rules. This has the effect of delaying the indeterminism introduced by the
left rules.

Reasoning about equality is carried out by the rules in Figure 5. (syrn..eval)
reduces the input goal to-a set of subgoals-by invoking-the sym_eval method- - -- --
introduced in Section 2.1. Notice that the sequent in the conclusion of (ax) and
(refl), and in the premises of (ax-hyp) and (—* :left1) is subscripted by "Ax";

this means that only (ax) and (refi) will be used to relieve the left premise of

(-. :left1) and the premise of (ax-hyp).

(refi) 	F 1 I- ii - f, F 	
(syr&eval) = 	FFAX t=t 	 FE7

* I' F y',..., F,, F- ya (ii > 1) are the result of applying the
syui..eval method to F F 7 .

Figure 5. fol method: equality rules

Quantificational reasoning is carried out by backward application of the
rules in Figure 6. (V:lefl) and (a:right) introduce in the premise the matrix of

1',[X/x] F 	
' (V:left) 	

1'
(V: right')*

F,Vx.F 	 FFVx4

1,44a/x} I- tfr 	F F 	[X/x]
(3:left) 	 (2:righi)

F, 3z4 F 	 I-

Proviso: a must not appear in the conclusion.

Figure 6. fol method: inference rules for quantification

the selected quantified formula with a fresh metavariable, X, substituted for the
quantified variable, x. Metavariables play the role of unspecified terms which
are to be determined subsequently. The metavariables introduced by the appli-
cation of (V:left) and (R:right) must be properly dealt and instantiated by other
methods, e.g. syrn_eval, or by other inference rules, e.g. (refi). Notice that the
instantiations of the metavariables must be propagated on the different branches
of the proof tree in a consistent way. For instance, let us consider the following

Armando et at. / Automating the synthesis of decision procedures

proof attempt:

P(X)I-
F(a) (ax) ifX = a 	

(b) R(X) 	
(ax) jfx = b

F_11

P(X) F P(a) v 11(b)
(v:rightj)

 11(X) F P(a) V
11(b) (V:rightr)

P(X) V 11(X) F P(a) V 11(b) 	
(V:left)

Vx.(P(x) V 11(x)) F P(a) V
11(b) (V:left)

Clearly the instantiations generated by the two branches of the derivation are
inconsistent since they require X to be a and b at the same time. The fact
that ClAM is implemented in Prolog simplifies the implementation of schematic
reasoning. Metavariables are readily implemented by means of Prolog variables.
The nice effect of this solution is that the instantiations found in a branch of the
proof are automatically propagated throughout the derivation.

However the introduction of metavariables complicates the checking of the
proviso of the (V:left) and (2:right) rule. Since a metavariable stands for an
nnspecified term which will be determined after the application of such rules, it
is necessary to delay the checking of the proviso to a later stage of the proof (i.e.,
when the metavariables occurring in the conclusion become instantiated). For
instance, consider the following proof attempt (borrowed from [231):

(ax) if X = a and Y = a
R(X, X) F R(a, Y)

(V:left)
Vx.R(x,x) F R(a,Y)

Vx.R(x,x) F Vz.R(z,Y)
(V:right)

(B:right)
Yx.R(x,x) F y.Vz.R(z,y)

If we apply the instantiation suggested by (ax) to the derivation, we discover that
the application of (V:right) violates the proviso. To cope with this problem we
adopted the solution proposed in [23]: when applying (V:right) and (3:1eft) the
fol method uses a term f(X1,. . . , X4 (where X1 ,. . . , X, are the metavariables
occurring in the input goal and f a fresh function symbol) in place of the fresh
individual constant a. In this way we are guaranteed that no metavariable in
the sequent (i.e. X1,. . . , X,) can get subsequently instantiated to f(X1 ,. . . , X,j
(provided that proper unification - i.e. with occur check - is used to carry out
the instantiation of metavariables).

A simple form of propositional and quantificational reasoning is also avail-
able in another method called normalize, normalize corresponds to the process
of exhaustively applying the (V:right), (—*:right), and (A:left) rules to the input
goal and then returning the resulting subgoal. This method makes explicit facts
which are otherwise embedded in the propositional structure of the goal and
therefore not available to relieve conditions of conditional rewrites. As a con-
sequence normalize has the beneficial effect of extending the set of conditional
rewrite rules applicable to the goal.

10 	 A. Armando et aL / Automating the synthesis of decision procedures

3. The case study

In our case study, we look at the problem of the validity of formulas of
propositional logic that only use the connective "". The notion of validity is

-- -

-standard:- a-formula -w is_valid..ifandonlyiiit istruewithrespectioallpossibl&_ - 	- -- - 	--
truth.value assignments. Truth-values are represented by the individual constants
T and F. Assignments are represented by lists of propositional letters by adopting
the convention that a list of propositional letters a represents an assignment a
if and only if a(s) = T whenever s is not in a. For the sake of simplicity we
drop the type information from the formulae and adopt the convention that p
ranges over propositional letters, w over biconditional formulas, a over truth-value
assignments, p1 over lists of propositional letters and ii, in over natural numbers,
with subscripts where needed.

The fact that p occurs in w is expressed in the metatheory by p E to and is
formalised as follows (here and in the sequel instead of the definitions we directly
present the wave/rewrite-rules as generated by ClAM):

pep'-p=p' 	 (6)

TH pEwi VpEw2 	 (7)

3.1. An alternative characterisation of validity

The biconditional fragment of propositional logic enjoys a very simple and
effective decision procedure: a formula is valid if and only if each propositional

letter occurs an even number of times in it. This can be formally stated as follows:

Theorem 1.

V'w.(Vp.even(occ(p, to)) — Va.eval(w, a) = T)

where occ(p, to) denotes the number of occurrences of p in to; even(n) is true if
and only if n is an even natural number and eval(w,a) denotes the truth value
of to under a. The rules for eval are:

	

eval(p1nil) T 	 (8)

	

p = p' — eval(p,p':: a) F 	 (9)

p 0 p' — eval(p,_p' :: a)* eval(p,a) 	 (10)

eval(to1 	2 	a) 	equal(eval(wi , a), eval(ui 2 , a))j 	(11)

where equal(bi, b2) is a boolean-valued function expressing the equality of its
boolean arguments. Vp.even(occ(p, to)) expresses the counting argument above,

A. Armando et al. / Automating the synthesis of decision procedures 	11

which we wish to use to establish the validity of to, while Va.eval(w,a) = T
encodes the usual notion of (classical) propositional validity for to. The rules for

0CC are:

p 0 p' - occ(p,p')r, 0
	

(12)

p = p' -. occ(p,p') 	s(0)
	

(13)

occ(PI 	 occ(p,wi)+occ(p,w2) 	 (14)

In the following sections we show how the proof obligations arising in our
case study are successfully (i.e., automatically) theorem planned and proved by
the version of Cl/'M-Oyster extended with the I ol method as illustrated in
Section 2.

3.2. Proving the decidability statement

The decidability statement is F- VwdX(Vp.even(occ(p, to))), where z(a) ab-
breviates the formula (-'a V a), and -'a abbreviates (a - 1).

Thus we are supposing an even function given via its recursive definition,
and here synthesis should supply an algorithm for checking for any given formula
to whether every sentential symbol in to occurs an even number of times or not.
It is important to notice that the decidability statement simply specifies such an
algorithm and it does not provide in itself any clue on how to carry out such a
computation.

Notice that the inner universal quantification over the sentential symbols is
- de facto - bounded to the propositional letters occurring in the formula (since
those not occurring occur an even number of times, i.e. 0). Since this pattern
of reasoning is common in the synthesis of metatheoretic procedures 2 we focused
on the more general result of proving the decidability of Vp.rj(p, to) for a generic
decidable statement ij(p, to) under the assumption that Vp.(p 0 to — q(p, to)),
more formally:

Lemma 2.

Vtj. [(Vp.Vw.a(i(p, to)) A Vw.Vp.(p to - q(p, to))) -* Vw.z(Vp.q(p, to))]

The following lemma is the key step of the proof of Lemma 2:

Lemma 3.

Vtj. [Vp.Vw.(q(p, to)) -* Vto.Vw ' .z(Vp.(p E to -* ij(p, to ')))]

2 For instance, the Affirmative.Negative Rule of Davis-Putnam procedure [16] states: "If an

atomic formula p occurs in a formula F only affirmatively, or if p occurs only negatively, then

all clauses which contain p can be deleted". We can use the previous argument to restrict the
universal quantification over p to the atomic formulas occurring in the clauses at hand.

	

12 	A. Artnando et al. / Automating the synthesis of decision 	procedures

Proof of Lemma 2. It suffices to show that Vw.LX(Vp.ij(p, to)) under the as-
sumptions Vp.VwS(ij(p,'w)) and Vw.Vp.(p $ to -* ij(p,w)) for a generic binary
predicate t of suitable sort. From the first assumption and Lemma 3 it follows
Vw.Vw'.(Vp.(p E to -* tj(p, to '))) which can be specialised to Vto.A(Vp.(p E to -*

	

(p;w))). From this-last fact and-our second assumption it 	is easy-to conclude 	- - 	- -
Vw.zX(Vp.(A(p € to) -* ij(p, to))) which can be finally simplified to Vw.i(ij(p, to))
thanks to the decidability of the "E" relation.

Proof of Lemma 3. The normalize method is tried with the effect of applying
(V : right) and (—*: right):

Vp.Vw.i(q(p, to)) F Vw.Vw'.z(Vp.(p e to — q(p, to ')))

Structural induction on to is then applied by ind_strat. The base_case method
simplifies (via equation (6)) the base case to:

Vp.VwS(ij(p, to)) F Vw'S(Vp.(p = Po -* q(p, w')))

The fol method applies (V: right), (V : left) and (V : left) and yields:

	

ij(P,W)F zs(Vp.(p = p0 — q(p,w'))) 	 (15)

	

-'71(P,W)1- zX(Vp.(p = Po -* ij(p,to5)) 	 (16)

where, for the sake of brevity, only the relevant hypotheses are displayed. Subgoal
(15) is readily proven by applying (V:right), (V:right), (—* :right), and (ax) whose
effect is also to instantiate F and W to po and to ' respectively. More difficult is
the proof of (16), which by effect of the propagation of the instantiation is turned
into:

	

-"l(po, to') F a(Vp.(p = p0 — q(p, w'))) 	 (17)

which the to]. method solves as follows:

-'?7(po, to ') I- -.Vp.(p = Po - tj(p, to ')) by (V:right j)

-(rio, to'), Vp.(p = po -* q(p, to')) F .L by (-. :right)

-'i(po, to'), P = p0 -* q(P, to') F I by (V:left)

-.77(po ,w'),71(po,to') F I by (V:left) and P = p0

I, rKpo, w') F I by (V:left)

which is readily solved by (ax).
In the step case the goal is

Vw'.z(Vp.(p El_ 	 — 	-i' to')))

A. Armondo et aI. / Automating the synthesis of decision procedures 	13

dec2(w, to') E if atomic(w)
then if occurs(w, to')

then w(w, w')
else false

else let (to1 	to2) = to in
if dec2(w i , to')
then dec2(w 2 , to')
else false

Figure 7. Decision Sub-Procedure

Rippling by means of (7) we get

Vw'.(VP.i p E w 1 Vp E to2 1 — 	to ')))

and further rippling using the following (domain-independent) wave-rules

I 	 I
AvB —*C => A—GAB—C

AAB)= Vx.AAVX.B

A (l_AA=>i (A) AA (B)

yields:

Vto'S(Vp.(p e w 1 — q(p, to'))) A Vw'A(Vp.(p € to2 — (p, to')))

which is easily solved by fertilisation.

The proof sketched above is automatically found by ClAM and witnesses the
successful integration of the fol method with the methods encoding the heuristics
for induction. The extract of the proof is the functional program dec(w)
dec2(w, to), where dec2 is defined in Figure 7 and 2r(p, to) is a program (extracted
from the decidability proof of i(p, to)) determining whether q(p, to) holds.

3.3. Proving the completeness

The completeness statement can be proven via reductio ad absurdum by
deriving a contradiction from the assumptions that a generic formula to is both
valid and contains a propositional letter p occurring an odd number of times. 3

The constructive validity of the argument by reductio ad absurdum is here justified by the
decidabiity result proven in Section 3.2.

14 	A. Arinando et aI. / Automating the synthesis of decision procedures

Under such hypotheses, the following lemma allows us to conclude that I lip(p, a)

is a falsifying assignment for to. This is clearly in contradiction with the assumed

validity of w, and from this we can infer the completeness result.

	

—Lemma-4. ---- -- ___—___ 	 —

Vp.Vto.Va.(eval(w, flip(p, a)) = nflip(oee(p, to), eval(w, a)))

The lemma says that the truth-value of to under the assignment obtained from

a by flipping (i.e. changing) the value associated top (i.e. flip(p,a)) is equal to

the result of flipping the truth-value of to under a a number of times equal to the

number of occurrences of p in to (i.e., nflip(occ(p,w),eval(w,a))). The definition

of nflip is:

	

nflip(0,b).-b 	 (18)

nflip(rfl) , b) 	not(nflip(n, b)) 	 (19)

while flip is defined as follows:

flip(p, nil) 	p:: nil 	 (20)

p = p' — flip(p,p' :: a) 	del ete(p,a) 	 (21)

pp'—flip(p,_ 	 p'::flip(p,a)
[

p':: 	 (22)

where delete(p, a) denotes the result of removing all the occurrences of p from a.

Proof of Lemma 4. Ripple analysis suggests structural induction on w. The

base case is

Va.(eval(p', flip(p, a)) = nflip(occ(p, p'), eval(p', a)))

and structural induction on a yields as base and step case

eval(p', flip(p, nil)) = nflip(occ(p, p'), eval(p', nil)) 	(23)

eval(p', flip(p, p" :: 	= nflip(occ(p, p'), eval(p', Kil 	(24)

respectively. By means of equations (20) and (8) the base case (23) is simplified

to:

	

eval(p',p:: nil) = nflip(occ(p,p'),T) 	 (25)

Since the left hand sides of (12) and (13) match with the subexpression occ(p,p')

of (25), the casesplit method suggests to case split over p = p'. The resulting

A. Armando et aL / Automating the synthesis of decision procedures 	15

cases are then readily solved via symbolic evaluation. The step case (24) is solved
by means of rippling, case splitting and two further inductive subproofs.

Going back to the step case of the main goal, the induction conclusion is:

eval(w 1 	w2 	flip(p, a)) = nf1ip(occ(p, wi 	w2 i' eval(w1 	w2
1,

 a))

Application of (11) and (14) yields:

equal(eval(w i , flip(p, a)), eval(w2, flip(p, a)))

nf1ip(occ(p, w i) + occ(p, w2
)

I , eqtzal(eval(w i , a), eval(w2, a))

At this stage no further rippling is possible. The wave front of the left hand side is
beached, while both wave fronts in the right hand side are blocked. Fertilisation
is however applicable, yielding:

equal(nflip(occ(p, w j), eval(w i , a)), nflip(occ(p, w 2), eval(w2, a)))

nfliPi occ(p,
ni1) + occ(p, w2) 	equal(eval(w i , a), eval(w2, a))

A repeated application of the generalise method replaces each occurrence of
occ(p,w j), occ(p,w 2), eval(w i ,a) and eval(w 2 ,a) with new variables m 1 , m 2 , b

and 62 respectively:

equal(nflip(mi, b i), nflip(m 2, 62)) = nflip(rni + in2 , equal(bi , b2)) (26)

The generalisation has the beneficial effect of enabling a further application of
the induction method. The induction suggested by ripple analysis is over m1.

The base_case method simplifies the base case to:

equal(bi , nflip(m 2 , b2)) = nflip(m2 , equal(bi , 62))

The induction method is applicable once more and induction over m2 is at-
tempted. The base case is again proven by base_case, so we focus on the step
case. The induction conclusion is:

equal(bj , nf1ip(s(m 2) ' b2)) = nf1ip(s(m2) ' equal(bj , b2))

By rippling via (19) and the following wave rule

equal(_not(bi)_1,62) 	not(equal(bi , b2))

16 	A. Armando et at. / Automating the synthesis of decision procedures

we get the fully rippled goal:

not(equal(bi, nflip(m2, b2))) 	= not(nflip(m2 , equal(bi, b2)))

- 	hieh iseasi1ysolvedby1ertiiise - 	-- ----- 	- 	--- -------- - ----- - -
The induction conclusion in the step case of the proof of (26) is:

equal(nflip(5(mi) 'bi)' nflip(m 2 , b4) = nfliri s(mj) + m2 , equal(bi , b2))

Rippling by means of rules (19) and (4) yields:

euai not(nflip(mi, b1)) 	nf1iP(m2
 b2)) = nflip(_s(m j + m2) ' equal(bi , b2))

and further rippling by rules (27) and (19) yields the fully rippled goal

not(equal(nflip(mi, b 1), nflip(m2, b2))) 	= not(nflip(mi + m2 , equal(bi , b2)))

which is also easily solved via fertilisation.

Despite the complexity of the proof (6 inductive subproofs, 4 generalisations
are needed), no search is carried by the planner, i.e., no backtracking occurs. This
fact witnesses the strength of the heuristics for induction (rippling in particular)
available in CLAM-Oyster.

3.4. Proving the correctness

The proof of the correctness statement requires two lemmas (Lemma 5 and
Lemma 6).

Lemma 5.

VwNa.(eval(w, a) = eval(w, flipl(a, nil)))

where Jtipt(pl,a)denQte the assignment obtained from a by changingthe truth-
values associated with the propositional letters in p1 and nil denotes the empty
list and hence represents the assignment associating T to every propositional
letter. The lemma says that the assignment obtained from nil by flipping the
truth values associated to the propositional letters in a is equivalent to a itself.
Here follow the rules for flipl:

flipl(nil, a) * a 	 (27)

member(p, p1) 	f1ip1(p :: p1 ' a) => flip(p, flipl(pl, a)) 	(28)

A. Armando et at. / Automating the synthesis of decision procedures 	17

member(p, p1) — flip1(p :: p1 , a) * flipl(pl , a)) 	 (29)

Proof of Lemma 5. Ripple analysis suggests structural induction on in. Since
the step case is easily solved by the step_case method, here we locus on the base
case:

'cla.(eval(p, a) = eval(p, flipl(a, nil)))

A further induction on a yields the following two subgoals:

eval(p, nil) = eval(p, flipl(nil , nil)) 	 (30)

eval(p, p' :: 	H = 	eval(p, flipl(_p' :: 	i,nil)) 	(31)

(30) is readily solved by base_case. (31) is proved by step_case in the following
way. casesplit carries out a double case split over member(p', a) and p = p'
as suggested by equations (28), (29), (9), and (10). This leaves us with four
subgoals. In the cases {p 0 p', member(p', a)} and {p 54 p', -'rnember(p', a)}
the goal is first rippled by a repeated application of wave and then solved by
fertilise. More interesting are the remaining cases {p = p',member(p',a)}

and {p = p', -'member(p', a)}. In the first case, the wave submethod rewrites the
goal to:

eval(p,_p' :: a) = eval(p, flipl(a, nil))

fertilise uses the induction hypothesis to rewrite the conclusion into:

eval(p,p' :: a) = eval(p, a)

The base_case method applies (9) and simplifies the goal to:

F = eval(p, a)

The ind_strat method "lifts" the hypothesis rnember(p, a) into the conclusion
and then proves the resulting goal by structural induction on a.

In the other case, i.e. when p = p' and -'rnember(p',a), wave first applies
(29):

eval(p,_p' :: a) = eval(p, flip(p', flipl(a, nil))

The capability of carrying out ripple analysis on equivalent goals obtained by lifting into
the conclusion heuristically chosen hypotheses was a missing feature of rippling analysis. Its
introduction has been motivated by the present case study.

18 	 A. Armando et at. / Automating the synthesis of decision procedures

and then uses Lemma 4 as the following wave-rule:

eval(w,_flip(p,a 	nflip(occ(p,w),eval(w,a)) 	 (32)

ToèWtitéthëbãflo: 	 -- -

eval(p, Ea) = nflip(occ(p, p'), eval(p, f lipl(a, nil)))

fertilise then turns the goal into:

eval(p, p' :: a) = nflip(occ(p, p'), eval(p, a))

The goal is then simplified by base_case which, by applying (9), (13), (19), and

(18) yields:

F = non(eval(p, a))

Similarly to the previous case, ind..strat first lifts the hypothesis -'member(p, a)

into the conclusion and then proves the resulting goal by structural induction on
a.

Lemma 6.

Vw.(Vp.even(occ(p, to)) — Vpl.Va.eval(w, a) = eval(w, flipl(pl , a)))

This lemma says that if to is a formula in which all the propositional letters occur
an even number of times then the truth value of to w.r.t. a given assignment a is

equal to the truth value of to w.r.t. the assignment obtained from a by flipping
the truth values associated to the letters in any given list p1.

Proof of lemma 6. The normalize method applies (V right) and (—+: right)

yielding:

Vp.even(oce(p, to)) F- Vpl.Va.eval(w, a) = eval(w, f lipl(pl , a))

Ripple analysis then suggests structural induction on p1. The base case is

w,a) = evatw,jtzptntt,a

which is readily solved by rewriting with (27). The step case is

eval(w,a) = eval(w, f lipl(p :: p1

Equations (28) and (29) suggest to case split over member(p, p1). If mernber(p, p1),

then we can apply (29), obtaining:

eval(w,a) = eval(w, f lipl(pl, a))

A. Armando et al. / Automating the synthesis of decision pmcedures 	19

which is solved by fertilisation. if -'member(p,pl), then we can apply (28):

Vp.even(occ(p, to)) F eval(w, a) = eval(w, flip(p, flipl(pl , a))

and further rippling by means of (32) yields:

Yp.even(occ(p,w)) F- eval(w,a) = nf lip(occ(p, w), eval(w, f lipl(pl, a)))

The fertilise submethod then applies and yields

Vp.everi(occ(p, to)) F- eval(w, a) = nflip(occ(p, to), eval(w, a))

The base_case method then applies the following rewrite:

even(n) — nflip(n,b) =' b

thereby turning the goal into an identity.

Given the above lemmas, the proof of correctness proceeds as follows. Let
to be a biconditional formula such that Vp.even(occ(p,w)). We must prove that

eval(w,a) = T for a generic assignment a. By Lemma 5 eval(w,a) is equal

to eval(tn, flipl(a, nil)). Since every propositional letter occurs an even number
of times in w, by Lemma 6 eval(w, f lipl(a, nil)) is equal to eval(w,nil) and

(since nil enjoys the property of satisfying every formula of the fragment) we can
conclude eval(w, a) = T.

Again, the proof-plans for Lemma 5 and Lemma 6 outlined above are auto-
matically found by ClAM. The automated assistance provided by Clam-Oyster
in this case study (compared with other state-of-the-art theorem provers for in-
duction) is significant. For instance, NQTHM [8] requires several auxiliary lemmas
(and hence considerably more user intervention) to prove the same facts.

4. Related work

Little attention has been devoted to the automation of metatheoretic reason-
ing though it has been recognised as a main obstacle in the way of metatheoretic
extensibility. To this extent, the work most closely related to ours is [7]. However
Boyer & Moore's system [6,8] allows only the verification of user-defined proce-
dures - even the simple algorithm synthesised here would have to be supplied
explicitly before it could be reasoned about. This is because their use of classical
quantifier-free logic prevents the specification and hence the automation of the
synthesis of theorem proving procedures, whereas this is the main objective of
our work.

[15] shows how the adoption of a constructive metatheory allows one to
regard theorem proving algorithms as implementations of theorems about proofs

20 	A. Arnzando et al. / Automating the synthesis of decision procedures

and formulas. The paper gives evidence of the practical viability of the proposal
by presenting the synthesis of a tableau decision procedure for a propositional
calculus and a matching algorithm. Our work is to be understood in the setting
of Constable and Howe's proposal. However our emphasis is on the automation

- --- -- - - - of the-synthesis-process whichis -essential to-the success-of the-programme.--------- --
Both [2] and [22] advocate the use of an explicit metatheory as a framework

for theorem proving architectures. The former proposes a metatheory built out
of a constructive type theory augmented with higher-order abstract data types.
The latter describes an experiment in using FS0 [19] as a theoretical frame- -
work for encoding and reasoning about logics. But again, the automation of the
metatheoretic reasoning is not addressed.

The use of a declarative metatheory capable of expressing and reasoning
about proof procedures is proposed in [20,1]. The emphasis is however on estab-
lishing a tight correspondence between the metatheory and the implementation
code and the automation of the synthesis activity is not addressed.

Work on program synthesis is clearly related to ours. The Deductive Tableau
System [21] is an environment for interactive program development. The synthesis
activity amounts to proving the specification statement, and the system incre-
mentally builds the program as the proof progresses. Some degree of automation
has been achieved in the SNARK system [24], but in an application domain com-
pletely different from ours. [3,4] describe a system based on a special method
of deductive program synthesis, where several strategies and heuristics provide
a significant degree of automation. However, the system does not provide the
guarantee of correctness required in the setting of metatheoretic extensibility.

5. Conclusions

We have described the automation of meta-theoretic reasoning within a con-
structive meta-theory. The adoption of a constructive meta-theory enables us to
extract programs from proofs of theorems stating the decidability of certain prop-
erties. We have identified a set of principled extensions to the heuristics for in-
duction needed to tackle the proof obligations arising in the new problem domain
andwehave4iscussedsolution&toihe problenioLincorporatingñtproposethex-
tensions into the ClAM-Oyster system. While this involved some extensions to
the available heuristics, the basic inductive plan and associated heuristics were
successful in this new domain. Since syntax is usually defined inductively, and
properties of the syntax are defined by corresponding forms of recursion, the
heuristics devised in the setting of inductive theorem proving suitably extended
in the way we have described provide a significant degree of automation in the
setting of meta-theoretic reasoning. The synthesis of the decision procedure for
the biconditional fragment described in this paper gives empirical support to this
claim.

A. Armando ci al. / Automating the synthesis of decision procedures 	21

References

[1] A. Armaudo, A. Cimatti, and L. Viganb. Building and executing proof strategies in a
formal metatheory. In AI*JA 1993, 3rd Conference of the Italian Association for Artificial

Intelligence, volume 728 of Lecture Notes in Artificial Intelligence. Springer Verla, 1993.
[2] D. Basin and R. Constable. Metalogical frameworks. In Gerard Huet and Gordon Plotkin,

editors, Logical Environments, Cambridge, 1993. Cambridge University Press.
[3] S. Biundo. A synthesis system mechanizing proofs by induction. In Proc. 1986 European

Conf. on Artificial Intelligence, pages 69-78, 1986.
[4] S. Biundo. Automated synthesis of recursive algorithms as a theorem proving tool. In

Y. Kodratoff, editor, Eighth European Conference on Artificial Intelligence, pages 553-8.
Pitman, 1988.

[5] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal of

Automated Reasoning, 14(2):189-235, 1995.
[6] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979. ACM

monograph series.
[7] R. S. Boyer and J S. Moore. Metafunctions. In R. S. Boyer and J S. Moore, editors, The

Correctness Problem in Computer Science, pages 103-184. Academic Press, 1981.
[8] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, 1988.

Perspectives in Computing, Vol 23.
[9] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Small!. Rippling: A heuristic

for guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993. Also available from
Edinburgh as DAI Research Paper No. 567.

[10] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A rational reconstruc-
tion and extension of recursion analysis. In N. S. Sridha.ran, editor, Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pages 359-365. Morgan
lCaufmann, 1989. Also available from Edinburgh as DAI Research Paper 419.

[11] Alan Bnndy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Over-
beek, editors, 9th Conference on Automated Deduction, pages 111-120. Springer-Verlag,
1988. Longer version available from Edinburgh as DAI Research Paper No. 349.

[12] Alan Bundy, editor. 12th Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence, Vol. 814, Nancy, France, 1994. Springer-Verlag.

[13] Alan Bundy, Frank van Harmelen, Jane Hesketh, and Alan Smaill. Experiments with proof
plans for iuduction. Journal of Automated Reasoning, 7:303-324, 1991. Earlier version
available from Edinburgh as DAI Research Paper No 413.

[14] R. L. Constable, S. F. Allen, H. M. Bromley, et al. Implementing Mathematics with the

Nuprl Proof Development System. Prentice Hall, 1986.
[15] R. L. Constable and D. J. Howe. Implementing metamathematics as an approach to au-

tomatic theorem proving. In R. B. Banerji, editor, Formal Techniques in Artificial Intelli-
gence: A Sourcebook, pages 45-76, Amsterdam, 1990. North Holland.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. J. Association

for Computing Machinery, 7:201-215, 1960.
[17] N. Dershowita. Orderings for term-rewriting systems. Theoretical Computer Science,

17(3):279-301, March 1982.
[18] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic

Logic, 57:795-807, 1992.
[19] S. Feferman. Finitary inductively presented logics. In Logic Colloquium '88, pages 191-220,

Amsterdam, 1989. North-Holland.
[20] F. Giuncbiglia and P. Traverso. A metatheory of a mechanized object theory. Artificial

Intelligence, 80:197-241, 1996. Also available as IRST-Technical Report 9211-24, IRST.
Trento, Italy, 1992.

22 	A. Armando et aL / Automating the synthesis of decision procedures

[21] Z. Manna and R. J. Waldinger. A deductive approach to program synthesis. ACM Trans-

actions on Programming Languages and Systems, 2(1):90-121, 1980.
[221 Sean Matthews, Alan Smaill, and David Basin. Experience with FS0 as a framework

theory. In Gerard Iluet and Gordon Plotkin, editors, Logical Environments, pages 61-82,
Cambridge, 1993. Cambridge University Press.

J23]Liwrence C: Paulson. Designing a theorem-proven--In-S. Abramsky, D. M.-Gabbay,.and__ -- 	-
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 415-
475. Oxford University Press, 1992.

[24] Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Pressburger, and Ian Under-
wood. Deductive composition of astronomical software from subroutine libraries. In Bundy
[12], pages 341-355.

