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We present an approach to the automatic construction of decision procedures, via 
a detailed example in propositional logic. The approach adapts the methods of proof-
planning and the heuristics for induction to a new domain, that of meta-theoretic 
procedures. This approach starts by providing an alternative characterisation of 
validity; the proofs of the correctness and completeness of this characterisation, and 
the existence of a decision procedure, are then amenable to automation in the way we 
describe. In this paper we identify a set of principled extensions to the heuristics for 
induction needed to tackle the proof obligations arising in the new problem domain 
and discuss their integration within the CI$M-Oyster system. 

1. Introduction 

The task of building automated reasoning systems aims for systems with 
some concise and clear underlying logic, yet supporting powerful inference pro-
cedures. Furthermore, we want such procedures to be correct so that we do not 
endanger the system's integrity by their use, and efficient so that they can be 
useful in practice. Finally, we would like to have automated assistance in the 
construction of such procedures, perhaps using the system itself. In this paper, 
we concentrate on the final aspect, and describe an approach to the automatic 
construction of decision procedures. 

We make use of two logical systems: one is the object logic that we reason 
about (in this paper, classical propositional logic characterised via truth assign-
ments), and the other is the meta-logic that we reason in (here a constructive 
type theory). For the latter, we choose a version of Martin-Löf's Type Theory, 

The authors are supported in part by grants EPSRC GR/L/11724, British Council 
(ROM/889/95/70) and MURST in collaboration with CRUI under the Programme British-
Italian Collaboration in Research and Higher Education 
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as developed in (14]. For present purposes, the meta-logic gives us a restricted 
version of a standard sorted predicate calculus (i.e., an intuitionistic calculus), 
together with induction principles for inductively defined data-types - e.g., lists, 
formula trees. The meta-logic is designed in such a way that functional programs 
can be automaticallyderived from-proofs ofstatements of-an-appropriate form; 
this allows us to regard the synthesis of meta-theoretic procedures as a theorem 
proving task, if we succeed, we obtain a verified procedure for the task at hand, 
which assures us of its soundness. In this context, finding a decision procedure 
for a property 0 of objects of type r can be achieved by finding a proof in this 
meta-theory of the statement 

Vx : r.((x) V -'(z)) 	 (1) 

(Note that because of the restrictions to this logic, this statement is not trivially 
true, as it would be in classical logic; indeed if the property 4 is not decidable, 
then the statement has no proof in this logic.) The problem then is to find a 
good way of guiding the search for proofs of statements of this form. 

Whether logics are defined by proof systems or semantically, the definition is 
inviriably inductive (cf. Tarski's truth definition), and procedures for reasoning 
about them are often recursive. So the proofs we need to find in constructive 
logic involve induction; we follow the promising techniques of proof plans [11], 
and particularly that of rippling [9] to guide our proof search. 

To reduce the overall synthesis task to a set of proof obligations amenable of 
automated assistance, we adopt the following methodology: (I) Conjecture an al-
ternative characterisation of validity (i.e., extend the metatheory with definitions 
formalising a property P of the formulas of the object language); (ii) Show that 
the characterisation is indeed decidable (i.e., provide a constructive proof of the 
decidability statement Vw.(P(w) V -.P(w)fl; (UI) Extract the program from the 
decidability proof, and (iv) Show that the new characterisation is indeed equivalent 
to validity. 

The approach is presented by discussing the synthesis of a decision proce-
dure for the biconditional fragment of propositional logic in the ClAM-Oyster 
system. Step (i) clearly requires human intervention, and we provide our con-
jecture manually here. We discuss the automation of points (ii) and (iii) as 
carriedmut-in- CIAM-Oyster-and--show-that-a-significant--degree_of-automated__ 
assistance is achieved. Finally, it is a well known logical result that a program 
can be extracted from a constructive proof of its specification, and in our imple-
mentation, step (iv) simply amounts to retrieving this "extract" which is built 
up automatically by the prover as the proof is constructed. 

The contributions of our work are several fold: 

• we apply proof-planning and rippling to a new domain, that of meta-theoretic 
procedures; 

• we identify a principled extension to the set of heuristics for induction; 
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• we advance and discuss solutions to the problem of integrating the proposed 
extension to the earlier repertoire of heuristics of the CLAM-Oyster system; 

• we describe in detail the case study so that it can be used as challenge problem 
for automated theorem provers. 

It is worth pointing out that most of the effort in extending the set of available 
heuristics was confined to the design and implementation of a new proof proce-
dure, and - more importantly - that the proof planning framework allowed us 
to easily incorporate the new procedure into the system. Moreover the high level 
of automation achieved in the case study witnesses the strength and generallty 
of the available heuristics for induction. 

The paper is organised as follows. Section 2 introduces the proof-planning 
paradigm. Section 2.1 surveys the repertoire of heuristics for inductive domains 
available in the ClAM-Oyster system; Section 2.2 presents the extension we have 
incorporated to automate the synthesis of meta-theoretic procedures. Section 3 
presents the case study in detail. Section 4 discuss the related work, and finally, 
in Section 5, we draw some conclusions. 

2. Proof planning 

The proofs described in this paper have been carried out in Oyster-ClAM, 
a theorem planning and proving system for a higher-order, constructive, typed 
logic. Oyster is a reimplementation of the Nuprl interactive proof editor [14]. 
Tactics are Prolog programs which drive Oyster by applying its rules of inference. 
Tactics raise the level of interaction with the system from the basic inference 
rules provided by the prover to complex inference steps close to the ones used 
in informal mathematics. However tactics alone do not provide the degree of 
flexibility required in practice. 

Proof planning was proposed in [11] as a technique for flexibly combining 
tactics tailored to the goal at hand. A proof plan is a tactic together with a 
method. A method is a partial specification of the associated tactic. It consists 
of five slots (see Figure 1): the name, the input goal1 , the preconditions enabling 
the application of the tactic, the effects of applying the tactic, the output sub-
goals obtained by a successful application of the tactic to the input goal, and the 
tactic itself specified by the method. The application of a method to a given goal 
amounts to matching the actual goal with the input slot, checking the precondi-
tions and finally then determining the output sub-goals by computing the effects, 
i.e. it simulates the application of the associated tactic. If a method admits mul-
tiple solutions, the search proceeds on the first one, while the remaining ones are 
generated and used in the event of a backtracking. Methods can be hierarchically 

1  In this paper we consider goals to be sequents of the form r I- 0 , where # is a formula and I' 
is a sequence of formulae. 
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method (Name, 
F F o, 	% Input Slot 
[Prei ,... ,Prti), 	K Preconditions 

- - 	[Postj ,... ,Post,,2 ], 	 K Effects 
[F1 F 	F 	], K OtutSVot - -- 
Tactic) 

Figure 1. The slots of a method 

organised by gluing together simpler methods via constructs, e.g. THEN, ORELSE, 

and REPEAT, called methodicals. Let M 1  and M1 be methods specifying the tac-

tics T1  and 7'2  respectively. (M1 THEN M2 ) specifies the sequential composition 

of T1 and 12; (M1 ORELSE M2) is equivalent to M1  if M1 is successful on the 

input goal, otherwise it is equivalent to M2; (REPEAT Mi) specifies the exhaustive 

application of T1. 
Theorem proving in Oyster-ClAM is a two-stage activity. First CI4M tries 

to build a proof plan for the goal at hand by using plan formation techniques on 
the current repertoire of methods. Secondly - if the first step succeeds - the 
tactic associated with the proof plan is executed engendering the desired Oyster 
proof. It is worth pointing out that a method can promise more than what the 
corresponding tactic can actually do. In particular a method can be incorrect, 
i.e., it can deliver subgoals whose provability does not imply the provability of 
the input goal. However this only means that the planner can build proof-plans 
(i.e., tactics) whose execution will eventually fail or generate a theorem different 
from the goal proof-planning was applied to. As in every tactic-based theorem 
prover, it is impossible for a tactic to engender an unprovable sequent (provided 
that the basic inference rules are correctly implemented). 

Proof-planning amounts to trying the available methods according to a spe-
cific search strategy keeping track of the successful methods. The proof described 
in this paper have been carried out using the standard depth-first planner avail-

able in CLAM. 

- - 	2.i._12roof-planningininductivedomainS - 

ClAM's methods encode a particularly effective set of heuristics for theorem 
proving on inductive domains. The base_case method (Figure 2) encodes the 
strategy of exhaustively applying the equal, normalize_term, and casesplit 
submethods to the input goal, using the elementary submethod to get rid of 
"tautological" goals (i.e., goals provable using propositional and simple equational 
reasoning only). equal looks for equalities in hypotheses of the input goal and 
uses them to rewrite the goal. normalize_term rewrites the input goal by using 
the available definitions as a terminating term rewriting system. (When ClAM 
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base_case 	REPEAT (elementary ORELSE sym_eval) 

	

syrn_eval 	REPEAT (equal ORELSE 
normalize_term ORELSE 
casesplit) 

Figure 2. The base_case method 

parses the available definitions it looks for a recursive path ordering [17] guaran-
teeing the termination of the rewriting process carried out by normalize_term.) 
A complementary set is a set of conditional rewrite rules: 

Cn _*LR n  

where Cl ,..., C. are the conditions of the rules and (Cl  V... V C) is a theorem 
of the current theory. (In most cases n = 2 and C2 is the negation of C1.) 
Whenever a conditional rewrite in a complementary set is applicable to the input 
goal IT F (i.e. there exists a substitution a such that La occurs in the goal) 
casesplit performs a case split in the proof specifying C1 a I- 0, ..., Ca F- 0 in 
the output slot. (This approach to case splitting is similar to the one advocated 
in [5].) 

The generalise method replaces all the occurrences of a term in the goal 
by a new variable (provided that certain heuristic criteria are met). It is not 
unusual in inductive proofs [6] that more general goals turn out to be easier to 
prove. 

The ind_strat method first selects the most promising form of induction 
via a process called ripple analysis [10], then it applies the base_case and the 
step_case submethods to the base and step cases respectively. The main activ- 

	

step_case 	REPEAT (wave ORELSE casesplit) 
THEN fertilise 

Figure 3. The step_case method 

ity of step_case is a rewrite process called rippling [9] aiming at enabling the 
application of the induction hypothesis. To illustrate consider the proof of the 
associativity of + by structural induction on x. The induction hypothesis and 
conclusion are 

x+(y+z)=(z+y)+z 	 (2) 
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so 	 s(x) +y)+z 	 (3) 

The annotations on the conclusion mark the difference between the conclusion 
introduced and used by - 

	

ClAM to guide proof search. The sub-expressions which appear in the induction 	-- - - - - 

conclusion, but not in the induction hypothesis, are called wave-fronts. The rest 
of the induction conclusion, i.e. the expression occurring also in the induction 
hypothesis, is called skeleton. As illustrated in Figure 3, the step_case method 
amounts to a repeated application of the wave and casesplit submethods fol-
lowed by an invocation to the fertilise submethod. The wave submethod 
aims at moving the wave-fronts outwards in the expression tree by using a set of 
wave-rules. Wave-rules are rewrite rules on annotated terms which preserve the 
skeleton term structure and are guaranteed to make progress towards applying 
the induction hypothesis. Wave-rules are built automatically by ClAM from re-
cursive definitions and from lemmas. For instance, the wave-rule generated from 
the definition of + is: 

sO)_iH_s(x+y) 	 (4) 

Repeated application of wave-rule (4) rewrites (3) as follows: 

1 	 1 
s(x+(y+z)) = s(x+y) +z 

(5) 

if a wave-front is moved to dominate the left- or right-hand term of the induction 
conclusion then we say the induction conclusion is beached. In equation (5) both 
wave-fronts are beached. if a wave-front is not beached, but no wave-rule applies 
to it, then we say the wave-front is blocked. For more details, consult [91. 

fertilise is applied when no further rippling is possible. At this stage in 
fact it is often possible to use the induction hypothesis to rewrite the conclusion 
into an identity or a simplified formula. In our example, rewriting (5) by means 
of (2) we olitlin an idehtitythebyfinishiffg - the-proOf. 

Proof-planning has been proved successful on a large set of (mainly equa-
tionally presented) verification problems on inductive domains [131. However the 
task of synthesising meta-theoretic procedures poses new problems and paves the 
way for challenge extensions. 

2.2. Propositional and quantificational reasoning 

Since both propositional connectives and quantifiers are systematically used 
to specify proof procedures (cf. Section 3 and [151), strategies for propositional 
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AX (ax) if7EForLEF 	 FhAX7 
(ax-hyp) 

FE-7 

(A:left) 	
FF0 	FF(A:right) 

F,4A'F7 	 FF0A 

FF0 
(V:rightj) 

V 
FFOV0 F,F-y 	F)F7(Vlfl) 

F,0VF? 	 FF 
FFOV0 (V:righç) 

FFAXO 
F,4— o F 

F,Ol --4  (Ø- ib)F 7 (—:le) 
F,0F 	(—:ght) 

— 

F,0i—F7 
17,(01 v02)- 0 F If 

7 	r,2—F1-02 	
left4) 

F, (Oi — 02) -4 0  F 

Figure 4. fol method: inference rules for propositional reasoning 

and quantificational reasoning are to be added to the repertoire of methods pre-
sented in Section 21 in order to automate the sort of reasoning involved in the 
synthesis of meta-theoretic procedures. To this end we have designed and im-
plemented a new method, fol, encoding a complete procedure for intuitionistic 
propositional logic (borrowed from [181) augmented with inference rules for quan-
tificational and equational reasoning. 

The propositional component of the fol method amounts to a backward 
application of the inference rules in Figure 4 using a depth-first strategy. With 
the exception of (ax) and (ax-hyp), the rules in the left (right) column manipulate 
formulae of the hypothesis list (conclusion) of the sequent they apply to and 
we refer collectively to them as "left rules" ("right rules" resp.). While the 
application of right rules is determined by the main connective of the conclusion, 
in order to apply a left rule we have to choose the hypothesis which the rule has 
to be applied to. This introduces a first form of indeterminism. A further form 
of indeterminism is given by (V:right,) and (V:right,.) as both of them can be 
applied to any sequent having a disjunction as conclusion. Therefore, with the 
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only exception of (V:rightj ) and (V:right), right rules are given precedence w.r.t. 
left rules. This has the effect of delaying the indeterminism introduced by the 
left rules. 

Reasoning about equality is carried out by the rules in Figure 5. (syrn..eval) 
reduces the input goal to-a set of subgoals-by invoking-the sym_eval method- - -- --
introduced in Section 2.1. Notice that the sequent in the conclusion of (ax) and 
(refl), and in the premises of (ax-hyp) and (—* :left1 ) is subscripted by "Ax"; 

this means that only (ax) and (refi) will be used to relieve the left premise of 

(-. :left1 ) and the premise of (ax-hyp). 

(refi) 	F 1  I- ii - f, F 	
(syr&eval) = 	FFAX t=t 	 FE7 

* I' F y',..., F,, F- ya (ii > 1) are the result of applying the 
syui..eval method to F F 7 .  

Figure 5. fol method: equality rules 

Quantificational reasoning is carried out by backward application of the 
rules in Figure 6. (V:lefl) and (a:right) introduce in the premise the matrix of 

1',[X/x] F 	
' (V:left) 	

1' 
(V: right')* 

F,Vx.F 	 FFVx4 

1,44a/x} I- tfr 	F F 	[X/x] 
(3:left) 	 (2:righi) 

F, 3z4 F 	 I- 

Proviso: a must not appear in the conclusion. 

Figure 6. fol method: inference rules for quantification 

the selected quantified formula with a fresh metavariable, X, substituted for the 
quantified variable, x. Metavariables play the role of unspecified terms which 
are to be determined subsequently. The metavariables introduced by the appli-
cation of (V:left) and (R:right) must be properly dealt and instantiated by other 
methods, e.g. syrn_eval, or by other inference rules, e.g. (refi). Notice that the 
instantiations of the metavariables must be propagated on the different branches 
of the proof tree in a consistent way. For instance, let us consider the following 
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proof attempt: 

P(X)I- 
F(a) (ax) ifX = a 	

(b) R(X) 	
(ax) jfx = b 

F_11 

P(X) F P(a) v 11(b) 
(v:rightj) 

 11(X) F P(a) V 
11(b) (V:rightr) 

P(X) V 11(X) F P(a) V 11(b) 	
(V:left) 

Vx.(P(x) V 11(x)) F P(a) V 
11(b) (V:left) 

Clearly the instantiations generated by the two branches of the derivation are 
inconsistent since they require X to be a and b at the same time. The fact 
that ClAM is implemented in Prolog simplifies the implementation of schematic 
reasoning. Metavariables are readily implemented by means of Prolog variables. 
The nice effect of this solution is that the instantiations found in a branch of the 
proof are automatically propagated throughout the derivation. 

However the introduction of metavariables complicates the checking of the 
proviso of the (V:left) and (2:right) rule. Since a metavariable stands for an 
nnspecified term which will be determined after the application of such rules, it 
is necessary to delay the checking of the proviso to a later stage of the proof (i.e., 
when the metavariables occurring in the conclusion become instantiated). For 
instance, consider the following proof attempt (borrowed from [231): 

(ax) if X = a and Y = a 
R(X, X) F R(a, Y) 

(V:left) 
Vx.R(x,x) F R(a,Y) 

Vx.R(x,x) F Vz.R(z,Y) 
(V:right) 

(B:right) 
Yx.R(x,x) F y.Vz.R(z,y) 

If we apply the instantiation suggested by (ax) to the derivation, we discover that 
the application of (V:right) violates the proviso. To cope with this problem we 
adopted the solution proposed in [23]: when applying (V:right) and (3:1eft) the 
fol method uses a term f(X1,. . . , X4 (where X1 ,. . . , X, are the metavariables 
occurring in the input goal and f a fresh function symbol) in place of the fresh 
individual constant a. In this way we are guaranteed that no metavariable in 
the sequent (i.e. X1,. . . , X,) can get subsequently instantiated to f(X1 ,. . . , X,j 
(provided that proper unification - i.e. with occur check - is used to carry out 
the instantiation of metavariables). 

A simple form of propositional and quantificational reasoning is also avail-
able in another method called normalize, normalize corresponds to the process 
of exhaustively applying the (V:right), (—*:right), and (A:left) rules to the input 
goal and then returning the resulting subgoal. This method makes explicit facts 
which are otherwise embedded in the propositional structure of the goal and 
therefore not available to relieve conditions of conditional rewrites. As a con-
sequence normalize has the beneficial effect of extending the set of conditional 
rewrite rules applicable to the goal. 
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3. The case study 

In our case study, we look at the problem of the validity of formulas of 
propositional logic that only use the connective "". The notion of validity is 

-- - 
 

-standard:- a-formula -w is_valid..ifandonlyiiit istruewithrespectioallpossibl&_ - 	- -- - 	-- 
truth.value assignments. Truth-values are represented by the individual constants 
T and F. Assignments are represented by lists of propositional letters by adopting 
the convention that a list of propositional letters a represents an assignment a 
if and only if a(s) = T whenever s is not in a. For the sake of simplicity we 
drop the type information from the formulae and adopt the convention that p 
ranges over propositional letters, w over biconditional formulas, a over truth-value 
assignments, p1 over lists of propositional letters and ii, in over natural numbers, 
with subscripts where needed. 

The fact that p occurs in w is expressed in the metatheory by p E to and is 
formalised as follows (here and in the sequel instead of the definitions we directly 
present the wave/rewrite-rules as generated by ClAM): 

pep'-p=p' 	 (6) 

TH pEwi VpEw2 	 (7) 

3.1. An alternative characterisation of validity 

The biconditional fragment of propositional logic enjoys a very simple and 
effective decision procedure: a formula is valid if and only if each propositional 

letter occurs an even number of times in it. This can be formally stated as follows: 

Theorem 1. 

V'w.(Vp.even(occ(p, to)) — Va.eval(w, a) = T) 

where occ(p, to) denotes the number of occurrences of p in to; even(n) is true if 
and only if n is an even natural number and eval(w,a) denotes the truth value 
of to under a. The rules for eval are: 

	

eval(p1nil) T 	 (8) 

	

p = p' — eval(p,p':: a) F 	 (9) 

p 0 p' — eval(p,_p' :: a )* eval(p,a) 	 (10) 

eval( to1 	2 	a) 	equal(eval(wi , a), eval(ui 2 , a))j 	(11) 

where equal(bi, b2 ) is a boolean-valued function expressing the equality of its 
boolean arguments. Vp.even(occ(p, to)) expresses the counting argument above, 
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which we wish to use to establish the validity of to, while Va.eval(w,a) = T 
encodes the usual notion of (classical) propositional validity for to. The rules for 

0CC are: 

p 0  p' - occ(p,p')r, 0 
	

(12) 

p = p' -. occ(p,p') 	s(0) 
	

(13) 

occ(PI 	 occ(p,wi)+occ(p,w2) 	 (14) 

In the following sections we show how the proof obligations arising in our 
case study are successfully (i.e., automatically) theorem planned and proved by 
the version of Cl/'M-Oyster extended with the I ol method as illustrated in 
Section 2. 

3.2. Proving the decidability statement 

The decidability statement is F- VwdX(Vp.even(occ(p, to))), where z(a) ab-
breviates the formula (-'a V a), and -'a abbreviates (a - 1). 

Thus we are supposing an even function given via its recursive definition, 
and here synthesis should supply an algorithm for checking for any given formula 
to whether every sentential symbol in to occurs an even number of times or not. 
It is important to notice that the decidability statement simply specifies such an 
algorithm and it does not provide in itself any clue on how to carry out such a 
computation. 

Notice that the inner universal quantification over the sentential symbols is 
- de facto - bounded to the propositional letters occurring in the formula (since 
those not occurring occur an even number of times, i.e. 0). Since this pattern 
of reasoning is common in the synthesis of metatheoretic procedures 2  we focused 
on the more general result of proving the decidability of Vp.rj(p, to) for a generic 
decidable statement ij(p, to) under the assumption that Vp.(p 0 to — q(p, to)), 
more formally: 

Lemma 2. 

Vtj. [(Vp.Vw.a(i(p, to)) A Vw.Vp.(p to - q(p, to))) -* Vw.z(Vp.q(p, to))] 

The following lemma is the key step of the proof of Lemma 2: 

Lemma 3. 

Vtj. [Vp.Vw.(q(p, to)) -* Vto.Vw ' .z(Vp.(p E to -* ij(p, to ')))] 

2  For instance, the Affirmative.Negative Rule of Davis-Putnam procedure [16] states: "If an 

atomic formula p occurs in a formula F only affirmatively, or if p occurs only negatively, then 

all clauses which contain p can be deleted". We can use the previous argument to restrict the 
universal quantification over p to the atomic formulas occurring in the clauses at hand. 
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Proof of Lemma 2. It suffices to show that Vw.LX(Vp.ij(p, to)) under the as-
sumptions Vp.VwS(ij(p,'w)) and Vw.Vp.(p $ to -* ij(p,w)) for a generic binary 
predicate t of suitable sort. From the first assumption and Lemma 3 it follows 
Vw.Vw'.(Vp.(p E to -* tj(p, to '))) which can be specialised to Vto.A(Vp.(p E to -* 

	

(p;w))). From this-last fact and-our second assumption it 	is easy-to conclude 	- - 	- - 
Vw.zX(Vp.(A(p € to) -* ij(p, to))) which can be finally simplified to Vw.i(ij(p, to)) 
thanks to the decidability of the "E" relation. 

Proof of Lemma 3. The normalize method is tried with the effect of applying 
(V : right) and (—*: right): 

Vp.Vw.i(q(p, to)) F Vw.Vw'.z(Vp.(p e to — q(p, to '))) 

Structural induction on to is then applied by ind_strat. The base_case method 
simplifies (via equation (6)) the base case to: 

Vp.VwS(ij(p, to)) F Vw'S(Vp.(p = Po -* q(p, w'))) 

The fol method applies (V: right), (V : left) and (V : left) and yields: 

	

ij(P,W)F zs(Vp.(p = p0 — q(p,w'))) 	 (15) 

	

-'71(P,W)1- zX(Vp.(p = Po -* ij(p,to5)) 	 (16) 

where, for the sake of brevity, only the relevant hypotheses are displayed. Subgoal 
(15) is readily proven by applying (V:right), (V:right), (—* :right), and (ax) whose 
effect is also to instantiate F and W to po  and to '  respectively. More difficult is 
the proof of (16), which by effect of the propagation of the instantiation is turned 
into: 

	

-"l(po, to') F a(Vp.(p = p0 — q(p, w'))) 	 (17) 

which the to]. method solves as follows: 

-'?7(po, to ' ) I- -.Vp.(p = Po - tj(p, to ')) by (V:right j ) 

-(rio, to'), Vp.(p = po -* q(p, to')) F .L by (-. :right) 

-'i(po, to'), P = p0 -* q(P, to') F I by (V:left) 

-.77(po ,w'),71(po,to') F I by (V:left) and P = p0 

I, rKpo, w') F I by (V:left) 

which is readily solved by (ax). 
In the step case the goal is 

Vw'.z(Vp.(p El_ 	 — 	-i' to'))) 
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dec2(w, to') E if atomic(w) 
then if occurs(w, to') 

then w(w, w') 
else false 

else let (to1 	to2) = to in 
if dec2(w i , to') 
then dec2(w 2 , to') 
else false 

Figure 7. Decision Sub-Procedure 

Rippling by means of (7) we get 

Vw'.(VP.i p E w 1  Vp E to2 1 — 	to '))) 

and further rippling using the following (domain-independent) wave-rules 

I 	 I 
AvB —*C => A—GAB—C 

AAB )= Vx.AAVX.B 

A (l_AA=>i ( A ) AA ( B ) 

yields: 

Vto'S(Vp.(p e w 1  — q(p, to'))) A Vw'A(Vp.(p € to2 — (p, to'))) 

which is easily solved by fertilisation. 

The proof sketched above is automatically found by ClAM and witnesses the 
successful integration of the fol method with the methods encoding the heuristics 
for induction. The extract of the proof is the functional program dec(w) 
dec2(w, to), where dec2 is defined in Figure 7 and 2r(p, to) is a program (extracted 
from the decidability proof of i(p, to)) determining whether q(p, to) holds. 

3.3. Proving the completeness 

The completeness statement can be proven via reductio ad absurdum by 
deriving a contradiction from the assumptions that a generic formula to is both 
valid and contains a propositional letter p occurring an odd number of times. 3  

The constructive validity of the argument by reductio ad absurdum is here justified by the 
decidabiity result proven in Section 3.2. 
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Under such hypotheses, the following lemma allows us to conclude that I lip(p, a) 

is a falsifying assignment for to. This is clearly in contradiction with the assumed 

validity of w, and from this we can infer the completeness result. 

	

—Lemma-4. ---- -- ___—___ 	 — 

Vp.Vto.Va.(eval(w, flip(p, a)) = nflip(oee(p, to), eval(w, a))) 

The lemma says that the truth-value of to under the assignment obtained from 

a by flipping (i.e. changing) the value associated top (i.e. flip(p,a)) is equal to 

the result of flipping the truth-value of to under a a number of times equal to the 

number of occurrences of p in to (i.e., nflip(occ(p,w),eval(w,a))). The definition 

of nflip is: 

	

nflip(0,b).-b 	 (18) 

nflip(rfl) , b) 	not(nflip(n, b)) 	 (19) 

while flip is defined as follows: 

flip(p, nil) 	p:: nil 	 (20) 

p = p' — flip(p,p' :: a) 	del ete(p,a) 	 (21) 

pp'—flip(p,_ 	 p'::flip(p,a) 
[ 

p':: 	 (22) 

where delete(p, a) denotes the result of removing all the occurrences of p from a. 

Proof of Lemma 4. Ripple analysis suggests structural induction on w. The 

base case is 

Va.(eval(p', flip(p, a)) = nflip(occ(p, p'), eval(p', a))) 

and structural induction on a yields as base and step case 

eval(p', flip(p, nil)) = nflip(occ(p, p'), eval(p', nil)) 	(23) 

eval(p', flip(p, p" :: 	= nflip(occ(p, p'), eval(p', Kil 	(24) 

respectively. By means of equations (20) and (8) the base case (23) is simplified 

to: 

	

eval(p',p:: nil) = nflip(occ(p,p'),T) 	 (25) 

Since the left hand sides of (12) and (13) match with the subexpression occ(p,p') 

of (25), the casesplit method suggests to case split over p = p'. The resulting 
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cases are then readily solved via symbolic evaluation. The step case (24) is solved 
by means of rippling, case splitting and two further inductive subproofs. 

Going back to the step case of the main goal, the induction conclusion is: 

eval( w 1 	w2 	flip(p, a)) = nf1ip(occ(p, wi 	w2 i' eval( w1 	w2 
1, 

 a)) 

Application of (11) and (14) yields: 

equal(eval(w i , flip(p, a)), eval(w2, flip(p, a))) 

nf1ip( occ(p, w i ) + occ(p, w2
) 

I , eqtzal(eval(w i , a), eval(w2, a)) 

At this stage no further rippling is possible. The wave front of the left hand side is 
beached, while both wave fronts in the right hand side are blocked. Fertilisation 
is however applicable, yielding: 

equal(nflip(occ(p, w j), eval(w i , a)), nflip(occ(p, w 2), eval(w2, a))) 

nfliPi occ(p, 
ni1) + occ(p, w2 ) 	equal(eval(w i , a), eval(w2, a)) 

A repeated application of the generalise method replaces each occurrence of 
occ(p,w j ), occ(p,w 2), eval(w i ,a) and eval(w 2 ,a) with new variables m 1 , m 2 , b 

and 62 respectively: 

equal(nflip(mi, b i ), nflip(m 2, 62)) = nflip(rni  + in2 , equal(bi , b2 )) (26) 

The generalisation has the beneficial effect of enabling a further application of 
the induction method. The induction suggested by ripple analysis is over m1. 

The base_case method simplifies the base case to: 

equal(bi , nflip(m 2 , b2)) = nflip(m2 , equal(bi , 62)) 

The induction method is applicable once more and induction over m2 is at-
tempted. The base case is again proven by base_case, so we focus on the step 
case. The induction conclusion is: 

equal(bj , nf1ip( s(m 2 ) ' b2 )) = nf1ip( s(m2) ' equal(bj , b2)) 

By rippling via (19) and the following wave rule 

equal(_not(bi )_1,62) 	not(equal(bi , b2)) 
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we get the fully rippled goal: 

not(equal(bi, nflip(m2, b2))) 	= not(nflip(m2 , equal(bi, b2 ))) 

- 	hieh iseasi1ysolvedby1ertiiise - 	-- ----- 	- 	--- -------- - ----- - - 
The induction conclusion in the step case of the proof of (26) is: 

equal(nflip( 5(mi) 'bi)' nflip(m 2 , b4) = nfliri s(mj ) + m2 , equal(bi , b2 )) 

Rippling by means of rules (19) and (4) yields: 

euai not(nflip(mi, b1)) 	nf1iP(m2 
 b2)) = nflip(_s(m j  + m2) ' equal(bi , b2 )) 

and further rippling by rules (27) and (19) yields the fully rippled goal 

not(equal(nflip(mi, b 1 ), nflip(m2, b2))) 	= not(nflip(mi + m2 , equal(bi , b2))) 

which is also easily solved via fertilisation. 

Despite the complexity of the proof (6 inductive subproofs, 4 generalisations 
are needed), no search is carried by the planner, i.e., no backtracking occurs. This 
fact witnesses the strength of the heuristics for induction (rippling in particular) 
available in CLAM-Oyster. 

3.4. Proving the correctness 

The proof of the correctness statement requires two lemmas (Lemma 5 and 
Lemma 6). 

Lemma 5. 

VwNa.(eval(w, a) = eval(w, flipl(a, nil))) 

where Jtipt(pl,a)denQte the assignment obtained from a by changingthe truth-
values associated with the propositional letters in p1 and nil denotes the empty 
list and hence represents the assignment associating T to every propositional 
letter. The lemma says that the assignment obtained from nil by flipping the 
truth values associated to the propositional letters in a is equivalent to a itself. 
Here follow the rules for flipl: 

flipl(nil, a) * a 	 (27) 

member(p, p1) 	f1ip1( p :: p1 ' a) => flip(p, flipl(pl, a)) 	(28) 
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member(p, p1) — flip1( p :: p1 , a) * flipl(pl , a)) 	 (29) 

Proof of Lemma 5. Ripple analysis suggests structural induction on in. Since 
the step case is easily solved by the step_case method, here we locus on the base 
case: 

'cla.(eval(p, a) = eval(p, flipl(a, nil))) 

A further induction on a yields the following two subgoals: 

eval(p, nil) = eval(p, flipl(nil , nil)) 	 (30) 

eval(p, p' :: 	H = 	eval(p, flipl(_p' :: 	i,nil)) 	(31) 

(30) is readily solved by base_case. (31) is proved by step_case in the following 
way. casesplit carries out a double case split over member(p', a) and p = p' 
as suggested by equations (28), (29), (9), and (10). This leaves us with four 
subgoals. In the cases {p 0 p', member(p', a)} and {p 54 p', -'rnember(p', a)} 
the goal is first rippled by a repeated application of wave and then solved by 
fertilise. More interesting are the remaining cases {p = p',member(p',a)} 

and {p = p', -'member(p', a)}. In the first case, the wave submethod rewrites the 
goal to: 

eval(p,_p' :: a ) = eval(p, flipl(a, nil)) 

fertilise uses the induction hypothesis to rewrite the conclusion into: 

eval(p,p' :: a) = eval(p, a) 

The base_case method applies (9) and simplifies the goal to: 

F = eval(p, a) 

The ind_strat method "lifts" the hypothesis rnember(p, a) into the conclusion 
and then proves the resulting goal by structural induction on a. 

In the other case, i.e. when p = p' and -'rnember(p',a), wave first applies 
(29): 

eval(p,_p' :: a ) = eval(p, flip(p', flipl(a, nil)) 

The capability of carrying out ripple analysis on equivalent goals obtained by lifting into 
the conclusion heuristically chosen hypotheses was a missing feature of rippling analysis. Its 
introduction has been motivated by the present case study. 
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and then uses Lemma 4 as the following wave-rule: 

eval(w,_flip(p,a 	nflip(occ(p,w),eval(w,a)) 	 (32) 

ToèWtitéthëbãflo: 	 -- - 

eval(p, Ea) = nflip(occ(p, p'), eval(p, f lipl(a, nil))) 

fertilise then turns the goal into: 

eval(p, p' :: a) = nflip(occ(p, p'), eval(p, a)) 

The goal is then simplified by base_case which, by applying (9), (13), (19), and 

(18) yields: 

F = non(eval(p, a)) 

Similarly to the previous case, ind..strat first lifts the hypothesis -'member(p, a) 

into the conclusion and then proves the resulting goal by structural induction on 
a. 

Lemma 6. 

Vw.(Vp.even(occ(p, to)) — Vpl.Va.eval(w, a) = eval(w, flipl(pl , a))) 

This lemma says that if to is a formula in which all the propositional letters occur 
an even number of times then the truth value of to w.r.t. a given assignment a is 

equal to the truth value of to w.r.t. the assignment obtained from a by flipping 
the truth values associated to the letters in any given list p1. 

Proof of lemma 6. The normalize method applies (V right) and (—+: right) 

yielding: 

Vp.even(oce(p, to)) F- Vpl.Va.eval(w, a) = eval(w, f lipl(pl , a)) 

Ripple analysis then suggests structural induction on p1. The base case is 

w,a) = evatw,jtzptntt,a 

which is readily solved by rewriting with (27). The step case is 

eval(w,a) = eval(w, f lipl( p :: p1 

Equations (28) and (29) suggest to case split over member(p, p1). If mernber(p, p1), 

then we can apply (29), obtaining: 

eval(w,a) = eval(w, f lipl(pl, a)) 
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which is solved by fertilisation. if -'member(p,pl), then we can apply (28): 

Vp.even(occ(p, to)) F eval(w, a) = eval(w, flip(p, flipl(pl , a)) 

and further rippling by means of (32) yields: 

Yp.even(occ(p,w)) F- eval(w,a) = nf lip(occ(p, w), eval(w, f lipl(pl, a))) 

The fertilise submethod then applies and yields 

Vp.everi(occ(p, to)) F- eval(w, a) = nflip(occ(p, to), eval(w, a)) 

The base_case method then applies the following rewrite: 

even(n) — nflip(n,b) =' b 

thereby turning the goal into an identity. 

Given the above lemmas, the proof of correctness proceeds as follows. Let 
to be a biconditional formula such that Vp.even(occ(p,w)). We must prove that 

eval(w,a) = T for a generic assignment a. By Lemma 5 eval(w,a) is equal 

to eval(tn, flipl(a, nil)). Since every propositional letter occurs an even number 
of times in w, by Lemma 6 eval(w, f lipl(a, nil)) is equal to eval(w,nil) and 

(since nil enjoys the property of satisfying every formula of the fragment) we can 
conclude eval(w, a) = T. 

Again, the proof-plans for Lemma 5 and Lemma 6 outlined above are auto-
matically found by ClAM. The automated assistance provided by Clam-Oyster 
in this case study (compared with other state-of-the-art theorem provers for in-
duction) is significant. For instance, NQTHM [8] requires several auxiliary lemmas 
(and hence considerably more user intervention) to prove the same facts. 

4. Related work 

Little attention has been devoted to the automation of metatheoretic reason-
ing though it has been recognised as a main obstacle in the way of metatheoretic 
extensibility. To this extent, the work most closely related to ours is [7]. However 
Boyer & Moore's system [6,8] allows only the verification of user-defined proce-
dures - even the simple algorithm synthesised here would have to be supplied 
explicitly before it could be reasoned about. This is because their use of classical 
quantifier-free logic prevents the specification and hence the automation of the 
synthesis of theorem proving procedures, whereas this is the main objective of 
our work. 

[15] shows how the adoption of a constructive metatheory allows one to 
regard theorem proving algorithms as implementations of theorems about proofs 
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and formulas. The paper gives evidence of the practical viability of the proposal 
by presenting the synthesis of a tableau decision procedure for a propositional 
calculus and a matching algorithm. Our work is to be understood in the setting 
of Constable and Howe's proposal. However our emphasis is on the automation 

- --- -- - - - of the-synthesis-process whichis -essential to-the success-of the-programme.--------- -- 
Both [2] and [22] advocate the use of an explicit metatheory as a framework 

for theorem proving architectures. The former proposes a metatheory built out 
of a constructive type theory augmented with higher-order abstract data types. 
The latter describes an experiment in using FS0 [19] as a theoretical frame- - 
work for encoding and reasoning about logics. But again, the automation of the 
metatheoretic reasoning is not addressed. 

The use of a declarative metatheory capable of expressing and reasoning 
about proof procedures is proposed in [20,1]. The emphasis is however on estab-
lishing a tight correspondence between the metatheory and the implementation 
code and the automation of the synthesis activity is not addressed. 

Work on program synthesis is clearly related to ours. The Deductive Tableau 
System [21] is an environment for interactive program development. The synthesis 
activity amounts to proving the specification statement, and the system incre-
mentally builds the program as the proof progresses. Some degree of automation 
has been achieved in the SNARK system [24], but in an application domain com-
pletely different from ours. [3,4] describe a system based on a special method 
of deductive program synthesis, where several strategies and heuristics provide 
a significant degree of automation. However, the system does not provide the 
guarantee of correctness required in the setting of metatheoretic extensibility. 

5. Conclusions 

We have described the automation of meta-theoretic reasoning within a con-
structive meta-theory. The adoption of a constructive meta-theory enables us to 
extract programs from proofs of theorems stating the decidability of certain prop-
erties. We have identified a set of principled extensions to the heuristics for in-
duction needed to tackle the proof obligations arising in the new problem domain 
andwehave4iscussedsolution&toihe problenioLincorporatingñtproposethex-
tensions into the ClAM-Oyster system. While this involved some extensions to 
the available heuristics, the basic inductive plan and associated heuristics were 
successful in this new domain. Since syntax is usually defined inductively, and 
properties of the syntax are defined by corresponding forms of recursion, the 
heuristics devised in the setting of inductive theorem proving suitably extended 
in the way we have described provide a significant degree of automation in the 
setting of meta-theoretic reasoning. The synthesis of the decision procedure for 
the biconditional fragment described in this paper gives empirical support to this 
claim. 
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