10 research outputs found

    Bootstrapping Inductive and Coinductive Types in HasCASL

    Full text link
    We discuss the treatment of initial datatypes and final process types in the wide-spectrum language HasCASL. In particular, we present specifications that illustrate how datatypes and process types arise as bootstrapped concepts using HasCASL's type class mechanism, and we describe constructions of types of finite and infinite trees that establish the conservativity of datatype and process type declarations adhering to certain reasonable formats. The latter amounts to modifying known constructions from HOL to avoid unique choice; in categorical terminology, this means that we establish that quasitoposes with an internal natural numbers object support initial algebras and final coalgebras for a range of polynomial functors, thereby partially generalising corresponding results from topos theory. Moreover, we present similar constructions in categories of internal complete partial orders in quasitoposes

    Inductive datatypes in HOL - lessons learned in Formal-Logic Engineering

    No full text
    Isabelle/HOL has recently acquired new versions of definitional packages for inductive datatypes and primitive recursive functions. In contrast to its predecessors and most other implementations, Isabelle/HOL datatypes may be mutually and indirect recursive, even infinitely branching. We also support inverted datatype definitions for characterizing existing types as being inductive ones later. All our constructions are fully definitional according to established HOL tradition. Stepping back from the logical details, we also see this work as a typical example of what could be called "Formal-Logic Engineering". We observe that building realistic theorem proving environments involves further issues rather than pure logic only.

    Inductive datatypes in HOL - lessons learned in Formal-Logic Engineering

    No full text
    . Isabelle/HOL has recently acquired new versions of definitional packages for inductive datatypes and primitive recursive functions. In contrast to its predecessors and most other implementations, Isabelle/HOL datatypes may be mutually and indirect recursive, even infinitely branching. We also support inverted datatype definitions for characterizing existing types as being inductive ones later. All our constructions are fully definitional according to established HOL tradition. Stepping back from the logical details, we also see this work as a typical example of what could be called "Formal-Logic Engineering". We observe that building realistic theorem proving environments involves further issues rather than pure logic only. 1 Introduction Theorem proving systems for higher-order logics, such as HOL [5], Coq [4], PVS [14], and Isabelle [17], have reached a reasonable level of maturity to support non-trivial applications. As an arbitrary example, consider Isabelle/Bali [13], which is ..

    Partiality and Recursion in Interactive Theorem Provers - An Overview

    Get PDF
    To appearInternational audienceThe use of interactive theorem provers to establish the correctness of critical parts of a software development or for formalising mathematics is becoming more common and feasible in practice. However, most mature theorem provers lack a direct treatment of partial and general recursive functions; overcoming this weakness has been the objective of intensive research during the last decades. In this article, we review many techniques that have been proposed in the literature to simplify the formalisation of partial and general recursive functions in interactive theorem provers. Moreover, we classify the techniques according to their theoretical basis and their practical use. This uniform presentation of the different techniques facilitates the comparison and highlights their commonalities and differences, as well as their relative advantages and limitations. We focus on theorem provers based on constructive type theory (in particular, Agda and Coq) and higher-order logic (in particular Isabelle/HOL). Other systems and logics are covered to a certain extent, but not exhaustively. In addition to the description of the techniques, we also demonstrate tools which facilitate working with the problematic functions in particular theorem provers

    Extraction de code fonctionnel certifié à partir de spécifications inductives.

    Get PDF
    Les outils d aide à la preuve basés sur la théorie des types permettent à l utilisateur d adopter soit un style fonctionnel, soit un style relationnel (c est-à-dire en utilisant des types inductifs). Chacun des deux styles a des avantages et des inconvénients. Le style relationnel peut être préféré parce qu il permet à l utilisateur de décrire seulement ce qui est vrai, de s abstraire temporairement de la question de la terminaison, et de s en tenir à une description utilisant des règles. Cependant, une spécification relationnelle n est pas exécutable.Nous proposons un cadre général pour transformer une spécification inductive en une spécification fonctionnelle, en extrayant à partir de la première une fonction et en produisant éventuellement la preuve de correction de la fonction extraite par rapport à sa spécification inductive. De plus, à partir de modes définis par l utilisateur, qui permettent de considérer les arguments de la relation comme des entrées ou des sorties (de fonction), nous pouvons extraire plusieurs comportements calculatoires à partir d un seul type inductif.Nous fournissons également deux implantations de notre approche, l une dans l outil d aide à la preuve Coq et l autre dans l environnement Focalize. Les deux sont actuellement distribuées avec leurs outils respectifs.Proof assistants based on type theory allow the user to adopt either a functional style, or a relational style (e.g., by using inductive types). Both styles have advantages and drawbacks. Relational style may be preferred because it allows the user to describe only what is true, discard momentarily the termination question, and stick to a rule-based description. However, a relational specification is usually not executable.We propose a general framework to turn an inductive specification into a functional one, by extracting a function from the former and eventually produce the proof of soundness of the extracted function w.r.t. its inductive specification. In addition, using user-defined modes which label inputs and outputs, we are able to extract several computational contents from a single inductive type.We also provide two implementations of our approach, one in the Coq proof assistant and the other in the Focalize environnement. Both are currently distributed with the respective tools.PARIS-CNAM (751032301) / SudocSudocFranceF

    Mechanising an algebraic rely-guarantee refinement calculus

    Get PDF
    PhD ThesisDespite rely-guarantee (RG) being a well-studied program logic established in the 1980s, it was not until recently that researchers realised that rely and guarantee conditions could be treated as independent programming constructs. This recent reformulation of RG paved the way to algebraic characterisations which have helped to better understand the difficulties that arise in the practical application of this development approach. The primary focus of this thesis is to provide automated tool support for a rely-guarantee refinement calculus proposed by Hayes et. al., where rely and guarantee are defined as independent commands. Our motivation is to investigate the application of an algebraic approach to derive concrete examples using this calculus. In the course of this thesis, we locate and fix a few issues involving the refinement language, its operational semantics and preexisting proofs. Moreover, we extend the refinement calculus of Hayes et. al. to cover indexed parallel composition, non-atomic evaluation of expressions within specifications, and assignment to indexed arrays. These extensions are illustrated via concrete examples. Special attention is given to design decisions that simplify the application of the mechanised theory. For example, we leave part of the design of the expression language on the hands of the user, at the cost of the requiring the user to define the notion of undefinedness for unary and binary operators; and we also formalise a notion of indexed parallelism that is parametric on the type of the indexes, this is done deliberately to simplify the formalisation of algorithms. Additionally, we use stratification to reduce the number of cases in in simulation proofs involving the operational semantics. Finally, we also use the algebra to discuss the role of types in program derivation

    Coalgebraic Methods for Object-Oriented Specification

    Get PDF
    This thesis is about coalgebraic methods in software specification and verification. It extends known techniques of coalgebraic specification to a more general level to pave the way for real world applications of software verification. There are two main contributions of the present thesis: 1. Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that classes containing methods with arbitrary types (including binary methods) can be modelled with these generalised coalgebras. 2. Chapter 4 presents the specification language CCSL (short for Coalgebraic Class Specification Language), its syntax, its semantics, and a prototype compiler that translates CCSL into higher-order logic.Die Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwarespezifikation und -verifikation. Die Ergebnisse dieser Dissertation vereinfachen die Anwendung coalgebraischer Spezifikations- und Verifikationstechniken und erweitern deren Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein Stück nähergebracht. Diese Dissertation enthält zwei wesentliche Beiträge: 1. Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vorgestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassenschnittstellen mit beliebigen Methodentypen (insbesondere mit binären Methoden). 2. Im Kapitel 4 wird die coalgebraische Spezifikationssprache CCSL (Coalgebraic Class Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik und einen Prototypcompiler, der CCSL Spezifikationen in Logik höherer Ordnung (passend für die Theorembeweiser PVS und Isabelle/HOL) übersetzt

    A Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler

    Get PDF
    The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio
    corecore