
Mechanising an algebraic
rely-guarantee refinement calculus

Diego Machado Dias

School of Computing Science

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

October 2017

Abstract

Despite rely-guarantee (RG) being a well-studied program logic established in the 1980s, it
was not until recently that researchers realised that rely and guarantee conditions could be
treated as independent programming constructs. This recent reformulation of RG paved the
way to algebraic characterisations which have helped to better understand the difficulties that
arise in the practical application of this development approach.

The primary focus of this thesis is to provide automated tool support for a rely-guarantee
refinement calculus proposed by Hayes et. al., where rely and guarantee are defined as
independent commands. Our motivation is to investigate the application of an algebraic
approach to derive concrete examples using this calculus. In the course of this thesis, we
locate and fix a few issues involving the refinement language, its operational semantics and
preexisting proofs. Moreover, we extend the refinement calculus of Hayes et. al. to cover
indexed parallel composition, non-atomic evaluation of expressions within specifications,
and assignment to indexed arrays. These extensions are illustrated via concrete examples.

Special attention is given to design decisions that simplify the application of the mech-
anised theory. For example, we leave part of the design of the expression language on the
hands of the user, at the cost of the requiring the user to define the notion of undefinedness
for unary and binary operators; and we also formalise a notion of indexed parallelism that is
parametric on the type of the indexes, this is done deliberately to simplify the formalisation of
algorithms. Additionally, we use stratification to reduce the number of cases in in simulation
proofs involving the operational semantics. Finally, we also use the algebra to discuss the
role of types in program derivation.

To my parents, José and Raquel, and my beloved aunt “Gel” (in memoriam)

Acknowledgements

First and foremost, I wish to thank to my supervisor, Leo Freitas, for his continued support,
encouragement and many constructive comments on the research described in this thesis. I
am indebted to him not only for his advices on my research, but for the very opportunity of
coming to Newcastle to do a PhD. I want to extend special thanks to my co-supervisor, Prof.
Cliff Jones, for his invaluable suggestions in this work, and the opportunity of attending
his course on operational semantics.

I thank Prof. Ian Hayes for the numerous discussions about the operational semantics
of the refinement calculus mechanised in this thesis, and discussions involving the repres-
entation of the refinement language. Additionally, Ian was always keen to discuss failed
proof attempts and provide insight in such situations.

My examiners, Brijesh Dongol and Paolo Zuliani, contributed valuable comments and
suggestions, which helped to improve this thesis. I also wish to thank people who discussed
and challenged my design decisions in the mechanisation: Andrius Velikys, Leo Freitas
and Frank Zeyda. Additionally, I wish to thank Ani Bhattacharyya for discussions about
simulation, and the users from the Isabelle mailing list for quick and useful responses.

I want to especially thank a couple of friends who helped me during difficult times
of the journey. Adolfo Duran put me back on track when I felt desolated with the issues
involving the characterisation of the programming language. Rosemeire Fiaccone helped
me to deal with the little stones in the journey, and helped me to broaden my horizon with
respect to research in other disciplines.

It is my great pleasure to thank my fellow PhD students and the members of the CSR
group for the warm working environment provided by them. Special thanks go to David,
Sami, Patrick, Maryam, Ehsan, Pablo, Razgar, Yu, Beibei, Xingjie, Andrius, Ilya, and
Ayad for saving me from plain boredom and starvation. I also want to thank friends with
whom I shared some of my best moments in England: Tim Pinnington, Yana Demyanenko,
Paola Fognani, Suzi Ribeiro and Gilberto Pires, and also those from overseas who have
never failed to provide support and encouragement: Wilson Pires, Arytan Lemos, Vinicius
Pinto and Robson Silva.

A special thanks goes to my parents, José and Raquel, for their love, encouragement,
patience and continued support which can never be fully acknowledged.

This work was funded by a scholarship provided by the School of Computing Science.

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Formal verification and refinement . 3
1.3 Need for tool support . 4
1.4 Thesis proposition . 5
1.5 Contributions . 6
1.6 Literature review . 6

1.6.1 Program logics . 6
1.6.2 Refinement-based approaches . 11
1.6.3 Data refinement . 12
1.6.4 Isabelle/HOL . 13

1.7 Structure of the thesis . 16

2 Foundation 19
2.1 Programming language . 21
2.2 Formalisation of the state (σ) . 23
2.3 Encoding the programming language . 25

2.3.1 Shallow and deep-embedding . 25
2.3.2 Expression language . 26
2.3.3 Definedness . 27
2.3.4 Encoding RG-WSL . 28

2.4 Relations . 33
2.4.1 Predicates . 34

x Contents

2.4.2 Satisfiability . 35
2.4.3 Post state notation . 35
2.4.4 Wellfounded relations . 35

2.5 Relational interpretation of expressions 36
2.6 Logical interpretation of relations . 37

2.6.1 Example: reasoning compositionally about logical interpretation . . 38
2.7 Operational semantics . 39

2.7.1 Expression evaluation . 41
2.7.2 Small-step semantics . 45
2.7.3 Big-step semantics . 51

2.8 Denotational semantics . 53
2.9 Refinement . 54
2.10 Forward simulation . 55
2.11 Unrestricted variables . 58
2.12 Discussion and summary of contributions 62

2.12.1 Alternative approaches to formalise states 62
2.12.2 Semantics . 64
2.12.3 Well-founded relations . 65
2.12.4 Unfair parallelism . 65

3 Rely-guarantee refinement calculus 67
3.1 Derived commands . 68

3.1.1 Precedence and associativity . 70
3.2 Stability . 71

3.2.1 Single reference property . 72
3.3 Basic refinement laws . 73

3.3.1 Associativity, commutativity and distributivity 76
3.3.2 Monotonicity . 77
3.3.3 Zeros and units . 78
3.3.4 Pre and post-conditioned assumptions 79
3.3.5 Iteration . 79
3.3.6 Termination . 81

3.4 The guarantee command . 85
3.4.1 Properties of strict conjunction . 86
3.4.2 Refining the guarantee command 88

Contents xi

3.4.3 Guarantee invariant and frames 90
3.5 The rely command . 92

3.5.1 Properties of interference . 95
3.5.2 Fundamental properties of rely . 95
3.5.3 Refining the rely command . 99

3.6 Arranging rely and guarantee commands 101
3.7 Trading postconditions with rely and guarantee 101
3.8 Introducing parallelism . 102

3.8.1 Example: nested parallelism . 104
3.9 Expressions and tests . 106
3.10 Local variables . 107

3.10.1 Example: shadowing . 108
3.11 Restricting access to variables . 109
3.12 Control structures and assignment . 112
3.13 Discussion and summary of contributions 115

3.13.1 Intricate aspects of using the R/G refinement calculus 117
3.13.2 Stronger definition of rely command 118

4 Rely-guarantee in Isabelle/HOL 121
4.1 Methodology . 122

4.1.1 Naming conventions . 122
4.1.2 Encoding lemmas . 124
4.1.3 Proof style . 126

4.2 Proof engineering . 128
4.2.1 Relational operators . 128
4.2.2 Single reference property . 130
4.2.3 Monotonicity and substitution . 132
4.2.4 Shortening proofs . 133
4.2.5 Representation issues . 134

4.3 Conflicts between semantics and local assumptions 134
4.3.1 Semantic encoding . 135
4.3.2 Stratification . 136
4.3.3 Justifying design decision . 137

4.4 Discussion and summary of contributions 138

xii Contents

5 Extensions to rely-guarantee algebra 141
5.1 Indexed parallelism . 141

5.1.1 Monotonicity and substitution . 143
5.1.2 Introducing indexed parallelism 144

5.2 Eguard . 147
5.3 Revised abortive conditions . 152
5.4 Assignment to indexed arrays . 154
5.5 Reachable evaluations . 157

5.5.1 Example: parallel assignments . 161
5.5.2 Discussion . 162

5.6 Sequential laws . 164
5.7 Type system . 164
5.8 Discussion and summary of contributions 166

5.8.1 Contributions . 166
5.8.2 Further extensions . 167

6 Applying the refinement calculus 169
6.1 Typographic conventions . 170
6.2 Reading advice . 172
6.3 Findp: Sequential . 172

6.3.1 Abbreviations . 172
6.3.2 Derivation . 174
6.3.3 Discussion . 180

6.4 Findp: Concurrent . 182
6.4.1 Abbreviations . 183
6.4.2 Derivation . 185
6.4.3 Discussion . 195

6.5 Sieve . 196
6.5.1 Abbreviations . 196
6.5.2 Derivation . 196
6.5.3 Discussion . 198

6.6 Floyd-Warshall algorithm . 199
6.6.1 Abbreviations . 201
6.6.2 Derivation . 202
6.6.3 Discussion . 212

Contents xiii

6.7 Discussion . 212
6.7.1 Proof metrics . 213
6.7.2 Bottlenecks . 214

7 Evaluation 217
7.1 Quantitative summary . 217

7.1.1 Local assumptions . 220
7.1.2 Threats to validity . 221

7.2 Lessons learned . 223
7.2.1 Isolate concepts . 223
7.2.2 Favour usability . 224
7.2.3 Benefit from integrated proof tools 225

7.3 Related work . 230
7.3.1 Systematic parallel programming 230
7.3.2 Formal analysis of concurrent programs 231
7.3.3 The rely-guarantee method in Isabelle/HOL 232
7.3.4 On the Mechanisation of Rely-Guarantee in Coq 232
7.3.5 Generalised rely-guarantee concurrency 233
7.3.6 An algebra of synchronous atomic steps 234
7.3.7 Algebraic Principles for Program Correctness Tools in

Isabelle/HOL . 235

8 Conclusion 237
8.1 Summary and contributions . 237
8.2 Takeaway message . 240
8.3 Limitations . 241
8.4 Future work . 243

Bibliography 247

A Rely-guarantee algebra in Isabelle/HOL 255
A.1 Mechanisation . 255
A.2 Precedence and associativity . 256
A.3 Revised paper proofs . 257
A.4 Additional material . 263

A.4.1 Compiled PDF of the theory . 263

xiv Contents

A.4.2 Uncountability of RG-WSL . 264
A.4.3 Uncountability of the set used to define the rely command 264
A.4.4 Font extension . 265

B Summary of laws and definitions used in Chapter 6 267

C Applying the refinement algebra (sources) 275
C.1 Findp Sequential . 275

C.1.1 Derivation . 275
C.2 Proof obligations . 277
C.3 Findp Concurrent . 278

C.3.1 Derivation . 278
C.3.2 Abbreviations for Findp . 283

List of Figures

1.1 Literature review for rely-guarantee refinement calculus 8
2.1 Wide spectrum language . 21
2.2 Grammar of expressions . 22
2.3 Encoding RG-WSL . 29
2.4 Logical connectives and noteworthy relations 34
2.5 Semantic hierarchy . 39
2.6 Forward simulation vs. refinement . 57
2.7 Unrestricted variables . 60
3.1 Derived commands . 68
3.2 Precedence and associativity . 71
4.1 Trace Semantics . 125
4.2 Algebra-Core . 125
4.3 Procedural proof example. 127
4.4 Structured proof example. 127
4.5 Semantic encoding for RG-WSL . 136
4.6 Nesting control for RG-WSL . 136
5.1 Reachable evaluations versus history variables. 159
5.2 Graphical representation of relation RelyEF. 163
6.1 Index partitioning for concurrent Findp 182
6.2 Simulating one-based indexing from zero-based indexing. 203
6.3 Stability of Sk . 209
7.1 Hasse diagram of theories. 218
8.1 Dekker’s algorithm for critical region . 242

xv

List of Tables

1.2 Appendices . 18
2.1 Precedence and associativity for RG-WSL 33
3.1 Precedence and associativity for derived commands 71
3.2 Summary of novel laws and definitions . 116
4.2 Naming convention . 123
6.1 Abbreviations for sequential Findp (Part I) 173
6.2 Abbreviations for sequential Findp (Part II) 174
6.3 Abbreviations for concurrent Findp (Part I) 183
6.4 Abbreviations for concurrent Findp (Part II) 184
6.5 Abbreviations for Sieve. 197
6.6 Abbreviations for Floyd-Warshall. 202
6.7 Calibrating weight for measuring total of proof obligations 213
6.8 Proof metrics for mechanised examples 214
7.1 Quantitative summary per theory file . 219
7.2 Classification of local assumptions . 220
7.3 Local assumptions . 220
7.4 Unproved local assumptions . 221
A.1 Precedence and associativity for commands 256
A.2 Precedence and associativity for remaining operators 256
C.1 Abbreviations for sequential and concurrent Findp (side by side) 283

xvii

Chapter 1

Introduction

Our ability to control and predict motion changes from an art to a science when we

learn a mathematical theory. Similarly programming changes from an art to a

science when we learn to understand programs in the same way we understand

mathematical theorems. With a scientific outlook, we change our view of how the

world works and what is possible. It is a valuable part of education for everyone.

Eric C. R. Hehner, A Practical Theory of Programming, 1993

1.1 Motivation

The popularisation of multi-core and many-core technologies has transformed software land-
scape into a shared-memory parallel platform [28]. Additionally, many computers are now
shipped with graphical boards that provide a highly parallel architecture that can be explored
both by graphical and non-graphical applications. Consequently, the parallel programming
paradigm is becoming mainstream among programmers, and has been employed to maximise
the usage of computing resources available in a platform [28].

Although parallel architectures are mainstream, writing correct parallel algorithms is still
a challenging task. The difficulty comes from the inherent non-determinism in applications,
which hinders the use of tests to validate these programs. In parallel programs, the number
of execution paths grows exponentially with the number of threads and the number of
instructions in the threads. Even for a fixed input, every time a parallel program is run, it
may exercise an execution path that may not have been considered by the programmer. In
this context, runtime errors are more often the rule rather than the exception.

Most programming languages evaluate expressions non-atomically, thus commands such
as assignment and the test of boolean expressions in conditionals and loops are not atomic as

1

2 Introduction

they appear to be in single-threaded programs. In general, expression evaluation is translated
into a sequence of low-level memory fetches that can be interrupted by the scheduler. For
example, a compiler enforcing a left-to-right evaluation might translate y := (x + x) ∗ z as:

1: LOAD AX, &x

2: LOAD BX, &x

3: ADD AX, BX

4: LOAD BX, &z

5: MUL AX, BX

6: STORE &y, AX

These low-level details can be ignored when developing sequential programs, but their effects
are perceived in the development of parallel programs because of the non-atomic evaluation
of expressions. In this scenario, expression evaluation does not observe mathematical laws,
e.g. if a and b are boolean variables, then a ∧ b may be true even if a and b are never true
simultaneously. Other example is the evaluation of arithmetic expressions: if x is a shared
variable, the evaluation of x + x may result in an odd number! From the perspective of a
developer, this means that replacing x + x by 2∗x in a parallel program will make it more
deterministic, while replacing 2∗x by x + x will increase the non-determinism [44]. Even
experienced programmers are likely to miss certain interactions between threads that can
result of non-atomic evaluation of expressions. Eliminating runtime errors can be quite
challenging, especially because it is difficult to reproduce the exact conditions that lead to
the manifestation of an error.

For non-critical applications, one may be able to afford trial-and-error to get certain
degree of confidence about the behaviour of parallel programs; however, for critical ap-
plications where failures can endanger human lives, trial and error is not an option. For
these applications, certification guidelines such as DO-178C [36] demand the use of formal
methodologies to verify the code or guide the development process.

Parallel programs communicate either via shared variables or via message passing through
buffered channels. In this thesis, we depart from Hayes et. al. [48], which delimits the context
to shared variable parallelism1. This thesis, as most of the formal treatments of concurrency,
abstracts away from hardware details, such as the actual capacity of executing programs
simultaneously, and consider interleaving as the underlying execution model for parallel
programs. In the rest of this thesis we use the term concurrent to refer to programs that are
composed in parallel, but whose execution is formally modelled through the interleaving of
the actions of the individual programs.

1Note that it is possible use one model of communication to simulate the other. Departing from shared
variable, message passing can be simulated as suggested in [32]; the inverse simulation can by achieved by
modelling variables as processes [98].

1.2 Formal verification and refinement 3

1.2 Formal verification and refinement

Two major techniques can be used to ensure the correctness of programs: posit-and-prove
and program refinement. For the first technique, the implementation of a program has to
be available in order to the user to be able to verify if it satisfies a given property; whereas
for the second technique, only the specification of a program is required, and the technique
allows the user to derive an implementation which is correct-by-construction.

• Posit-and-prove verification can be achieved using two major approaches: model
checking [56] or theorem proving [91, 60, 88]. Model checkers translate the source
code provided by the user into a state-transition automaton, and exhaustively check
the transitions to decide if the property given by the user holds. Model checking has
the advantage of being automatic once the user has formalised the desired property;
moreover, they provide a counter-example if there is an execution path for which the
specified property is violated. The main disadvantage of model checkers is that they
cannot handle infinite types, thus usually the user has to limit the range of values that
variables can take in order to obtain a model that can be verified using this technique.
An open-source model checker for analysing concurrent programs is SPIN [56]. It
accepts programs written in Promela, a modelling language with a C-like syntax, and
accepts properties written in LTL [58]. The infrastructure of SPIN is reused by Java
Path Finder, which is a model checker that supports a subset of Java [42].

The second approach to carry out posit-and-prove verification is to use a theorem
prover to assist the application of a program logic. By a program logic, we refer to a
deductive system that takes programs encoded using a predefined syntax, and offers
syntax-directed proof rules to show that a program satisfies a specification, usually a
pre and a postcondition. Hoare logic [51] is perhaps the most well-known example
of a program logic. In this approach, the user starts with a complete program and a
specification, and applies syntax-directed proof rules backwards to decompose the
verification of the complete program to the verification of subprograms. Correctness
proofs are commonly recorded using proof outlines, that is, a sequence of assertions
interspersed with the commands that compose the implementation. Examples of
program logics that handle verification of concurrent programs are the Owicki-Gries

method [91], rely-guarantee [60] and concurrent separation logic [88]. These three
are briefly discussed in in Section 1.6.1.

4 Introduction

• Program refinement is used to derive programs that are correct-by-construction.
The fundamental insight behind refinement is the extension of the programming
language with specification commands allowing programs and specifications to be
formalised within a uniform semantic framework. The extended language is generally
referred to as a wide-spectrum language. In this approach, a partial relation is used
to compare programs2. Generally, the relation conveys the intuition of reduction
of non-determinism between programs. The user of a refinement theory applies
semantic-preserving transformations, known as refinement laws, to refine an abstract
specification into an implementation. Refinement approaches are discussed in more
details in Section 1.6.2.

The work in this thesis fits into the category of refinement-based approaches, and is
based on the rely-guarantee refinement calculus proposed in [48], where rely and guarantee
are introduced as independent commands. The algebraic approach [54, 99] is applied in this
work to formalise a rely-guarantee refinement algebra in Isabelle/HOL. In this approach a
refinement relation is defined through a set of laws relating programming constructs. The laws
that form the basis of the refinement algebra are a subset of those provided in [48, 65], and
include a few additional laws to reason about iteration from [5, 49]. These laws characterise
refinement as a partial order, and provide a foundation for the refinement algebra, from which
more complex laws are derived by the application of simpler ones.

1.3 Need for tool support

The practical application of refinement theories involves discharging proof obligations which
are the provisos of the refinement laws. For most cases proof obligations are just tedious,
but in some cases these can be complex and intellectually challenging. In theory, a user can
carry out refinement of programs in a pen-and-paper style, but since this process is quite
error prone, it brings the credibility of using the formal approach into question, especially for
large-scale developments [89].

From the perspective of a user of a refinement theory, an interactive theorem prover (ITP)
records and maintains proofs. The ITP can be used to suggest the refinement laws available
for application at different stages of the development, ensure that proof obligations are
properly discharged, and identify derivation steps which are affected when the user adjusts

2That is slightly different from verification, where we compare a final implementation directly against
a specification. In a refinement language, programs can combine both specification and implementation
constructors.

1.4 Thesis proposition 5

specifications, say as result of the introduction of a new requirement or fixing a specification
that was incorrect.

From the perspective of the developer of the refinement theory, the ITP contributes to the
confidence that the refinement laws are indeed sound. The theorem prover does not allow
the user to get away with a proof without discharging all of its sub-goals, or clarify all the
assumptions made for the proof to be completed3.

For the work carried out in this thesis, we choose Isabelle/HOL as our ITP. The main
reasons for this choice are: (i) published evidence of its adequacy to represent a rely-guarantee
refinement algebra [18, 3]; (ii) up-to-date documentation [109]; and (iii) friendly support
offered by the user list. More on this will be discussed in the literature review on Section 1.6.4.

1.4 Thesis proposition

The primary aim of this thesis is to provide automated theorem proving support for proofs
based on the rely-guarantee refinement calculus presented in [48] and study the application of
the calculus to derive concrete programs. For that, we formulate and investigate the following
research questions.

Q1 Can the calculus in [48] can be given automated theorem proving support
via the algebraic approach discussed in [54]?

Q2 Is it possible to extend [48] to mechanically derive concurrent programs
involving indexed parallelism and arrays?

Q3 Is it possible to prevent undefined expressions of being introduced in pro-
grams while retaining the ability of extending the grammar of expressions
on-the-fly?

To investigate these questions we propose the use of a state-of-the-art verification sys-
tem [109]. While answering these questions we locate errors and omissions in [48], which
are discussed and corrected along this thesis. We discuss the design decisions behind our
encoding, its advantages and weakness, and investigate the practical aspects involved with
the application of the mechanisation.

3In practice, Isabelle offers the command sorry to allow a user to introduce a theorem without a proof.
While this command may be useful during proof exploration, the preparation of formal documents from within
Isabelle does not allow the use of sorried theorems unless the user explicitly sets a flag to enable the cheating
mode. The theories contained in this thesis contain no sorried theorems.

6 Introduction

1.5 Contributions

The overall contribution of this thesis is the provision of automated theorem proving support
for an algebraic approach to concurrent programming based on rely-guarantee. However,
the work in this thesis does not limit to the mechanisation of theories found elsewhere.
We extend the theory proposed in [48] with indexed parallelism, assignment to indexed
arrays, and a value model sufficiently expressive to derive programs that manipulate natural
numbers, integers, booleans, sets and arrays. Moreover, we design an extensible expression
language that provides a mechanism to decide if expressions are undefined. This mechanism
is specially useful in the context of concurrent programs, where undefinedness can arise from
interference on shared variables.

Additionally, the mechanised theory from this thesis presents some corrections with
respect to that published in [48]; in particular, we identified and fixed issues in the syntax
and semantics of the wide-spectrum language, as well as minor slips in a few paper proofs.
We also provide an implementation of forward simulation that is more efficient in proofs
than that suggested in [48], in the sense that it can be used to reduce the number of cases that
has to be considered in inductive proofs using the operational semantics. Finally, we discuss
a number of proof engineering decisions that were applied to enhance proof automation.

These contributions are illustrated by mechanically deriving a set of classical examples
found in the literature (Findp [48], Sieve [65] and Floyd-Warshall [32]). In order to mechanise
these examples, we investigate practical aspects that are not discussed in [48], such as the role
of types in derivations, the notion of code to allow syntactic restrictions in the development
of programs to be removed at the end of development, and the use of syntactic abstractions
to represent non-atomic evaluation via binary relations.

1.6 Literature review

1.6.1 Program logics

Program logics for concurrent programs can be classified in non-compositional or composi-
tional depending if proof of correctness of a program abstracts away from the implementation
of its environment or not. Non-compositional methods require the code of the program and
its environment prior the verification; thus, they do not serve to assist top-down development.
On the other hand, they are very successful to verify legacy code; the reason being that the
code of the environment is the most concrete piece of information that the user can aim for in

1.6 Literature review 7

proofs of correctness. The most well-known of such methods is Owicki-Gries [92], proposed
in 1975.

One of the first compositional methods for proving correctness of concurrent programs
was rely-guarantee [59, 60], proposed in 1981. It conquers compositionality by abstracting
the code of the environment using a binary relation, the rely condition. This abstraction
allows the developer to assume that the interference caused by the environment will be
bounded by the rely relation, even if the code of the environment is yet to be developed. The
counterpart of the rely condition is the guarantee condition, a relation to abstract the atomic
actions of a program, which in turn can be taken as a rely condition by the environment.
In rely-guarantee, the general argument for correctness is based in showing that a group of
threads can collaborate because they tolerate the interference imposed by each other. The
abstraction from actual code of the environment allows this method to be used as a foundation
for a refinement calculus for parallel programs.

Notable advance in the research on program logics for concurrent programs was triggered
by the development concurrent separation logic (CSL) in the early 2000s [88]. CSL is a
resource logic that provides the notion of ownership to reason in terms of transference of
resources between threads and resource-holders. In CSL, the state is composed of a heap
and a stack; resources are modelled as data structures on the heap. Supporting CSL is a
semantics carefully designed to guarantee that programs verified using this logic are free
from data-races and memory faults, such as the notorious segmentation fault that occurs
when programs try to access an illegal memory location.

Independent of the program logic, the verification of non-trivial examples generally
requires the usage of a theorem proof assistant (e.g. Isabelle/HOL [109], PVS [93], etc.) to
handle the amount of details involved in the application of proof rules. For certain formalisms,
like Hoare logic and a subset of CSL, there are semi-automatic tools that accept proof outlines
and use decision procedures to validate them. Examples of such a tool for Hoare logic is
Dafny [72], and for concurrent separation logic are Smallfoot [8] and Verifast [95]. To the
best of our knowledge, no such a tool is available for rely-guarantee.

Figure 1.1 shows the dependencies between some of the works cited in the literature
review and related work (Section 7.3). Next we discuss key aspects of Owicki-Gries,
rely-guarantee and separation logic before move the discussion towards refinement-based
approaches.

8 Introduction

1999

The logic of Bunched Implications

Peter O'Hearn & David Pym

2004

Resources, Concurrency and

Local Reasoning

Peter O'Hearn

2013

Refining Rely-Guarantee thinking

Hayes et al

1990

Programming From Specifications

Carroll Morgan

1983

Tentative Steps Toward a Development

 Method of Interfering Programs

Cliff Jones

2007

Modular fine-grained concurrency

Viktor Vafeaidis

1971

Towards a Theory of

Parallel Programming

Tony Hoare

1976

An axiomatic proof technique for

parallel programs I

Owicki and Gries

2015

Balancing Expressiveness

in Formal Approaches

to Concurrency

Cliff Jones

2001

Local Reasoning about Programs

that Alter Data Strucutres

O'Hearn et al

2005

Permission accounting

in Separation Logic

R. Bornat et al.

1980

Software Developement:

A Rigorous Approach (VDM)

Cliff Jones

2000

Systematic parallel programming

Juergel Dingel

1969

An axiomatic basis for computer programming

Tony Hoare

2014

Laws and semantics for rely-guarantee refining

Hayes et al

1976

A discipline of programming

Dijkstra

2016

Generalised rely-guarantee concurrency

Hayes

2016

An algebra of synchronous atomic steps

Hayes et. al.

Figure 1.1 Literature review for rely-guarantee refinement calculus

1.6 Literature review 9

Owicki-Gries

The Owicki-Gries method [91] extends Hoare logic [51, 52] with a parallel composition rule
and an await statement rule. The parallel composition rule of this method is shown next,
where Pi and Qi are predicates and Si is a subprogram representing a thread.

{P1} S1 {Q1} {P2} S2 {Q2}

{P1∧P2} S1 ∥ S2 {Q1∧Q2}
PARALLEL*

∗provided {P1}S1{Q1} and {P2}S2{Q2} are interference-free

This proof rule requires each thread to be verified in isolation, resulting in a proof outline per
thread. At the end of the verification, proof outlines have to be shown to be interference-free,
i.e. each assertion in each proof outline has to be proved stable (i.e. preserved) under the
atomic actions of sibling threads. If after the verification of individual threads the designer
discovers that the interference-free test fails, then the intermediate assertions in the proof
outline have to be fixed and the verification has to be restarted. In the worst case, the
implementation has to be redone and the verification task restarted from scratch.

Rely-guarantee

The essence of the rely-guarantee approach [26] is summarised by its parallel composition
rule, shown next. In this rule Si is a subprogram representing a thread; P is a predicate that
denotes a precondition; and R, Gi and Qi are relations denoting the rely, guarantee and post
conditions, respectively. To prove that a parallel composition of two programs S1 and S2 is
correct, the designer has to prove that each branch tolerates interference from the external
environment as well the interference of its sibling. Moreover, each of the threads has to be
shown to be correct with respect to its own specification, and the composed behaviour of the
threads has to achieve the overall postcondition Q.

{P, R ∪ G2} S1 {G1, Q1}
{P, R ∪ G1} S2 {G2, Q2}

G1 ∪ G2 ⊆ G

P ∩ Q1 ∩ Q2 (R ∪ G1 ∪ G2)
∗ ⊆ Q

{P, R} S1 ∥ S2 {G, Q}
PARALLEL

10 Introduction

Some of the proof rules in [26] assume that pre and postconditions are stable (invariant)
under the rely-condition. This is required for the proof of soundness of the proof rules, but it
forces postconditions and preconditions to be relatively weaker than the designer might wish.
To compensate for this weakness, auxiliary variables can be used. It is noted in [63], however,
that unrestricted use of auxiliary variables can invalidate the inductive proof of soundness for
the parallel composition rule, as well as as damage the process of data refinement. A strategy
adopted in [32] and further discussed in [96] to minimise the need for auxiliary variables is
to use programming constructs such as sequential composition and parallel composition in
top-level specifications.

Different semantic models have been proposed for rely-guarantee. Most agree that
an implementation is only required to satisfy the guarantee condition if the environment
actions respects the rely condition and the program starts in a state satisfying its precon-
dition [60, 104, 82, 26]. Some recent formalisations, such as [46] and [2] have proposed
the guarantee condition to be enforced even if the environment fails to respects the rely
condition. A recent survey of the semantic models for rely-guarantee suggests that only
the second interpretation allows for the decomposition of the rely-guarantee conditions into
independent commands [108]. We sustain that this decomposition is independent from the
interpretation under consideration. That is because, the work in this thesis and those reported
in [45] and [43] follow the most common interpretation, and they are able to achieve the
decomposition of rely and guarantee as independent commands.

Concurrent separation logic

Concurrent separation logic (CSL) [88] is a relatively recent approach to reason about shared-
variable concurrent programs using the idea of transferable ownership of resources. In
CSL, the state is composed of a heap and a stack; the heap provides a native way of giving
semantics to programs that use pointers. Resources (i.e. memory cells on the heap and
the data structures that they represent) are owned by resource-holders (e.g. semaphores) or
threads. Semaphores can hold and release the ownership of resources during the execution of
a thread. Two principles delineate proofs in CSL: (i) modularity: specifications can ignore
portions of the heap that are not used; (ii) sharing: programs executing in parallel mutually
agree in exchange ownership of memory cells (i.e., a process has to acquire ownership of a
resource prior accessing that resource).

In the early days of CSL, only one program could have access to a particular memory
cell at a time. This restriction was later lifted by introducing the concept of fractional
permissions [20, 17], which allows programs to share the ownership of cells for reading

1.6 Literature review 11

purposes, but constrain multiple processes to share ownership for writing purposes. For
comparison with the other two methods shown in this section, we shown next the rule for
parallel composition of threads operating in disjoint parts of the heap using CSL. As before,
Si is a thread; and Pi and Qi are assertions denoting the precondition and postcondition,
respectively. The simplicity of this rule is due to the separating conjunction operator (P1 ∗ P2),
which holds if, and only if, the conjoined assertions P1 and P2 hold for disjoint parts of the
heap.

{P1} S1 {Q1} {P2} S2 {Q2}

{P1 ∗ P2} S1 ∥ S2 {Q1 ∗ Q2}
PARALLEL

A method combining the benefits of rely-guarantee and concurrent separation logic
(RGSep) has been proposed in [107]. There, rely-guarantee conditions are used to en-
rich assertions with assumptions and commitments that each process makes about shared
resources.

1.6.2 Refinement-based approaches

In this approach the programmer is given a specification to be implemented and a collection of
mathematical laws that serve to manipulate specifications and to introduce control structures
in a program. Programming is reduced to the task of finding a sequence of refinement laws
that can transform a specification into an executable program. Each law that is applied makes
a step towards the final implementation, and may generate one or more proof obligations to
mathematically justify why that transformation is valid.

What is “valid” depends on how the notion of refinement is defined [24]. Perhaps
the most widespread definition is the one based on the predicate transformer semantics,
better known by the operator wp (weakest precondition), popularised by Dijkstra in [31].
Using this semantics, programs are interpreted as predicate transformers: the execution
of a program c from any state satisfying the predicate wp(c,q) terminates in a state that
satisfies the predicate q. This foundation is used by Morris and Morgan [79, 78] to define
refinement as (c ⊑ d)⇔ (∀ q. (wp(c,q)⇒ wp(d,q)), that is, a program c is refined by a
program d if, and only if, for every predicate q, d makes fewer assumptions than c to establish
such a predicate upon its termination. Back [5] proposes a definition based on contracts
(Hoare triples [51]): (c ⊑ d)⇔ (∀ p q. ({p} c {q})⇒ ({p} d {q})). Other authors, such as
Sampaio [99] and Hayes [45], encode programs as sets of traces and use algebraic definitions

12 Introduction

to define refinement: (c ⊑ d)⇔ (c ⊓ d = c), that is, a program c is refined by a program d

if, and only if, the traces of the non-deterministic choice (c ⊓ d) are equivalent to the traces
of the program c alone. Even though these definitions vary in shape, they are generally
consistent with the intuition of reduction of non-determinism.

When concurrency is taken into account, the definition of refinement becomes relative
to the environment. That is because it makes sense to say that a program reduces non-
determinism with respect to other in a specific environment, instead of comparing behaviours
for an arbitrary environment. In this context, programs are generally interpreted as sets of
traces (i.e. sequences of labelled state transitions). The exact notion of what is a valid trace
depends on the semantic model chosen; the literature on semantics models is very rich and
we do not attempt a comparison here [21, 26, 48, 22]. We note however that trace models
can be induced using a modular structural operational semantics (MSOS) [80]. This is the
case in [48], which is the main reference for this thesis. More on the definition of refinement
adopt in this work is discussed in Chapter 2.

1.6.3 Data refinement

In general, the stepwise derivation of programs may involve changes in the data structures
used to specify a program [24]. This process is known as data refinement or data reifica-

tion [62]. Algorithmic and data refinement can be study independently or be combined using
the notion of blocks, as discussed in [99]. In this work we follow the recent interest in the
investigation of refinement algebras [43, 45, 2, 55] and focus our attention in algorithmic
refinement. Nevertheless, we discuss in the derivation of Sieve (Section 6.5) a situation
where a change in the data representation is imperative to continue the refinement towards
code. For this reason, this section briefly discuss the proof obligations involved with data
reification.

Reification creates two proof obligations: adequacy and satisfaction [62]. Adequacy
establishes a link between abstract and concrete representation. It requires that all data that
can be represented at the abstract level must also be able to be represented at the concrete
level, that is, the concrete representation must be at least as expressive as the abstract
representation. The usual way of showing adequacy is via a retrieve function that maps
the concrete representation to the abstract representation [62]. Next we present this proof
obligation; a is used to denote an instance of the abstract state (SA), and c to denote an
instance of the concrete state (SC).

Adequacy: ∀a∈SA. ∃c∈SC. retrieve(c) = a

1.6 Literature review 13

Satisfaction relates the specifications on the abstract state to the specifications on the con-
crete state. This generally is split in two proof obligations [96]: domain and result. The
domain proof obligation requires that whenever the precondition of the abstract specification
(pre-OPA) holds for the abstract state (retrieve(c)), the precondition of the concrete operation
(pre-OPA) should hold for the concrete state (c). The result proof obligation establishes a
relationship between abstract and concrete postconditions (represented by relations post-OPA

and post-OPC, respectively) and the retrieve function.

Domain: ∀ c ∈ SC . pre-OPA (retrieve (c))⇒ pre-OPC (c)

Result: ∀ c1, c2 ∈ SA . pre-OPA (retrieve (c1)) ∧ post-OPC (c1, c2)⇒

post-OPA (retrieve (c1), retrieve (c2))

Sometimes the abstract state contains information that is irrelevant for the implementation.
In these occasions it may turn out to be impossible to find a retrieve function for a desired
concrete representation. In such cases, either the irrelevant information has to be carried
to the implementation or the retrieve function has to be replaced by a retrieve relation [96].
As example, consider the problem of generating primary keys when populating a database.
The generator must guarantee that primary keys are uniquely assigned to data sets. At the
abstract level, a set can be used to record all keys that have already been assigned, so that
the key generator simply returns an element that is not recorded. The implementation can
replace the set by the last key that was generated. Thus, the implementation just needs to
increment the last key to generate a new, unseen key. In this situation, it is not possible to find
a retrieve function from the implementation to the abstraction, but it is possible to establish a
relationship between the concrete and abstract states using a relation. As in the derivation of
Sieve (Section 6.5), the retrieve relation is also a function, we presented the more specialised
laws for data refinement in this section. For the general version of the proof obligations, we
refer the reader to [96].

1.6.4 Isabelle/HOL

Isabelle is a generic system for implementing logical formalisms. It is implemented in ML
and adopts the LCF approach. Isabelle/HOL is the specialisation of Isabelle for higher
order logic (HOL), a predicate calculus with terms from the typed lambda calculus [109].
Formalisations in Isabelle are organised into theories. Each theory is a named collection
of types, functions, definitions and theorems. Theories are structured in a similar way that

14 Introduction

packages are organised in programming languages: they can be related to other theories
forming a hierarchy of theories.

Part of the automation of Isabelle is supplemented by its interaction with powerful
external SMT solvers, such as Z3 [29] and CVC3 [7], which are invoked using the proof
finder sledgehammer [94]. Third-party applications, such as SMT solvers, are used to assist
Isabelle in finding the lemmas which are necessary to prove theorems using proof methods
such as metis and auto, but their result is generally only taken to provide guidance. That
is, if a SMT solver succeeds to find a proof, Isabelle first attempts to reconstruct the proof,
and if it does not succeed it may offer the possibility of trusting the result of the SMT solver
(depending on the SMT solver) via the smt proof method [13].

An important aspect of the use of Isabelle is that it distinguishes between those proof
rules that preserve provability from those that may turn a provable goal into an unprovable
one, by throwing away information from the assumptions or trading weaker goals by stronger
ones. Isabelle uses the terminology safe to refer to proof rules that preserve provability, and
unsafe to refer to those that can turn a predicate unprovable. Isabelle has specific commands
that automatically apply safe rules that are setup for automatic application. Depending on the
type of proof rule that a user is using, different proof methods should be adopted to instruct
Isabelle to apply the rule. Next we discuss two features of Isabelle that have been intensively
used in this thesis.

Locales

Apart from theories, Isabelle provides the structuring notion of locales. These can be
understood as detached proof contexts declared via an interface specifying a set of parameters
(constants and definitions) and assumptions (the fundamental properties of these parameters).
Proof developments in the scope of a locale are not visible in its outer theory unless the
locale is interpreted. The process of interpretation requires a user to provide a model for the
locale, that is, to show the existence of a set of objects in its outer scope (corresponding to
the parameters of the locale) that satisfies all the properties specified in the declaration of the
locale. Theorems can be proved within the scope of the locale and then exported to the outer
scope at a later stage by means of interpretation. Moreover, the independence with respect to
an underlying model makes this method of proof development geared towards reuse, that is,
the same locale can be interpreted for different models [6].

It is also possible to develop the theory fully within the scope of the locale without going
through the interpretation process. In this case, the interface of the locale makes explicit what
are the definitions and properties taken as assumption for that proof development. Although

1.6 Literature review 15

inconsistencies within a locale cannot contaminate the outermost context, care should be
taken when introducing assumptions in the interface of a locale to prevent wasting time on
the development of an infeasible theory.

In this work, a proof development is produced within the scope of a hierarchy of locales,
but we have not interpreted the locales used. Instead, we use an operational semantics defined
in the outer scope of the locales to prove properties that otherwise would need to be taken
as additional assumptions in the proof development. We explain the approach taken and its
motivation in Chapter 4, and we assess the inherent risks of this approach in Chapter 7. In
short, the properties we take to define locales in this thesis com from pen-and-paper proof
developments. Our motivation for using this approach is because we are mainly interested in
the applying the methodology discussed in [54] to investigate the practical aspects involving
the use of theory proposed in [48], instead of directing the effort to formally validate the
calculus discussed in [48, 65].

To prevent confusion we use the term local assumptions in Chapter 4 to refer to the
properties specified in the interface of the locale. Several terms are adopted in the literature [6,
109], such as local assumptions, local axioms, module axioms, etc. Our preference by the
term local assumption is to emphasize that we do not make use of the mechanism to define
axioms (i.e. we have not used the command axiomatization) in the scope of the outer theory
in this thesis.

Assisted document preparation

The mathematical formulae in the statement of definitions and theorems in this thesis are
extracted from the encoding of the respective concepts in Isabelle using anti-quotations.
From the user perspective, an anti-quotation is a markup command offered by Isabelle
that allows informal text within an Isabelle theory to quote formal entities like definitions,
theorems, expressions, etc. The Isabelle document preparation system performs many
technical consistency checks over anti-quoted entities. Anti-quotations provide a systematic
translation of formal entities to Latex. Isabelle comes with predefined translation rules, but
allows the user customise these translation rules and assign them to print modes (e.g. Latex,
HTML, etc.). The greatest benefit we take from anti-quotations is the prevention of mismatch
between the definitions and theorems shown in this thesis and those encoded in Isabelle.

16 Introduction

1.7 Structure of the thesis

As this thesis has been typeset using Isabelle/HOL, the reader might find useful to access
the Isabelle theories used to typeset the thesis. These theories are distributed with the
Appendix A.1 (CD-ROM) and they facilitate the inspection of proofs or details which
are most relevant for the reader. For that, the reader can use Isabelle to open the theory
containing the desired chapter, and click over the definitions and laws to be redirected to the
relevant theories (some minimal knowledge of Isabelle may be required to understand the
proofs). Table 1.2 (located at the end of this section) briefly shows the content of each of the
appendices.

Chapter 2 introduces the foundation for the refinement calculus discussed in Chapter 3.
That includes: the wide-spectrum programming language (RG-WSL); its formal semantics;
and the definition of the refinement relation. Additionally, Chapter 2 discusses the design
decisions behind the representation of these concepts in Isabelle/HOL, and provides the
earliest evidence of the benefit of using Isabelle in this work.

Chapter 3 introduces a rely-guarantee refinement calculus. The material in that chapter is
mainly taken from [48], but is adapted to fit the particular encoding of RG-WSL discussed in
the previous chapter. Standard programming constructs are defined in terms of RG-WSL,
and rely and guarantee constructors are introduced as independent commands. Refinement
laws are organised per subject, which roughly resembles their organisation in the mechanised
theory. While mechanising the laws from Chapter 3 we discovered the need for extending
RG-WSL and adding extra laws to reproduce the proofs suggested in [48]. Contributions
in the form of definitions and laws presented in this chapter are marked using the keyword
contrib., and are visually highlighted in gray boxes in this chapter.

Chapter 4 discusses the infrastructure developed to encode the refinement calculus from
Chapter 3 as a refinement algebra in Isabelle/HOL. It explains conventions and decisions
which were taken to enhance the automation of the mechanisation, as well as make it easy to
identify laws by subject. These decisions are practical contributions of our encoding: without
careful design and introduction of redundancy in specific points of the mechanisation, the
theory would have become quite clumsy to use in practice. This chapter also concludes a
discussion started in Chapter 2 about the encoding of RG-WSL in Isabelle, in particular it
revisits the encoding of non-deterministic choice and analyses the theoretical consequences
of that choice. Finally, Chapter 4 presents a revised version of paper proofs from [48] where
we found mistakes.

1.7 Structure of the thesis 17

Chapter 5 presents the main contributions of this thesis in the form of extensions to the
algebra discussed in Chapter 4. Support to indexed parallelism and assignment to indexed
arrays is introduced, and an additional abstraction is provided to reason about programs that
constrain environment steps. This chapter also revisits the operational semantics of RG-WSL,
and solves a problem involving the characterisation of parallel composition. Finally, this
chapter introduces an abstraction to encode non-atomic evaluation of expressions using
relations (reachable expressions) and a minimalist type system to compensate for the lack of
knowledge about the type of program variables in proofs.

Chapter 6 presents the derivation of examples to illustrate (i) on-the-fly extension of
the expression language and treatment of undefinedness; (ii) compositional reasoning about
logical interpretation of relations; (iii) different laws for introducing indexed parallelism; (iv)
assignment to indexed arrays; (v) nested parallelism; (vi) reachable expressions; and (vii)
shadowing of variables. At the end of the chapter we present a comparative discussion of the
examples, and highlight the bottlenecks of the theory.

Chapter 7 discusses learned lessons and the use of proof integrated tools such as sledge-

hammer and nitpick to assist the mechanisation process. It also presents a quantitative
analysis of the mechanisation, that serves to guide the exploration of the mechanised theories.
The chapter ends with a comparison to related works.

Chapter 8 presents a summary of the contributions, limitations, and discusses future work.
Further material, such as glossary of precedence, additional proofs and complete source
of the derivation of concurrent Findp are provided in the appendix. Due to the size of the
mechanised theories, part of the appendix is provided as a companion CD-ROM rather than
in printed format. The digital content includes the mechanised theories, the thesis itself,
and instructions for extending Isabelle fonts to render the symbol used to represent strict
conjunction and compiled PDF of the theories. Table 1.2 shows the content of the appendices.

18 Introduction

Appendix Content

A.1 (Digital) Mechanisation in directory: /RG-laws
A.2 Table of precedence and associativity
A.3 Revised paper proofs
A.4 Extra material and tutorial to extend Isabelle fonts
B Summary of laws and definitions used in Chapter 6
C Complete derivation of concurrent version of Findp

Table 1.2 Appendices

Chapter 2

Foundation

The scientist is a practical man and his are practical aims. He does not seek the

ultimate but the proximate. He does not speak of the last analysis but rather of the

next approximation. His are not those beautiful structures so delicately designed

that a single flaw may cause the collapse of the whole. The scientist builds slowly

and with a gross but solid kind of masonry. If dissatisfied with any of his work, even

if it be near the very foundations, he can replace that part without damage to the

remainder. On the whole, he is satisfied with his work, for while science may never

be wholly right it certainly is never wholly wrong; and it seems to be improving

from decade to decade.

Gilbert Newton Lewis, The Anatomy of Science, 1926

This chapter discusses the foundation of the refinement calculus presented in Chapter 3. It
covers the programming language, its formal semantics, and the definition of the refinement
relation. The main reference for this chapter is [48], a technical report that introduces the
laws and semantics for a rely-guarantee refinement calculus supporting shared-variable
parallelism.

Except for the cases where the concepts given in [48] and the ones encoded in the
Isabelle/HOL differ, we simply present the corresponding encoding in Isabelle, the theorem
proof assistant (TPA) adopt in this work. For most cases, the encoding is more inclusive
of details than the description provided in [48]. It is no surprise that the representation
of a theory in a theorem prover forces the user to think about details that are sometimes
overlooked in the literature. The additional details in the encoding are thus, a key contribution,
instead of being a reproduction of concepts defined elsewhere. Contributions are summarised
at the end of the chapter.

19

20 Foundation

Section 2.1 presents the programming language as given in [48]. That description leaves
unspecified the range of values that variables can take on and the unary and binary operators
supported by the expression language. To set the context for the mechanisation, we delimit
the range of values that variables can take on (vvalue1) and specify the type used to represent
states (state) and relations (relation) in Section 2.2. In our encoding, boolean expressions
which are evaluated with respect to a single state or a pair of states are shallow-embedded
by relations, and expressions whose evaluation has to take into account the interference in
intermediate states are deep-embedded. Shallow and deep-embedding are the subject of
Section 2.3, which discusses the encoding of the programming language, and provides the
earliest evidence of the benefit of using Isabelle in this work: the identification of an issue in
the programming language that went unnoticed in the literature [47–49, 65]. Section 2.3 also
supplements the notions provided in [48] with the types used to encode unary and binary
operators (unaryop and binop, respectively), and discusses the treatment of undefinedness in
the mechanisation.

Since relations are a recurrent abstraction in this thesis, Section 2.4 presents a collection
of relational operators and properties of relations used in this work. Section 2.5 establishes
a crucial link between the shallow and deep-embeddings of boolean expressions ([[_]]r).
This link is applied to formalise laws that introduce control structures and assignment from
specifications in Section 3.12. Section 2.6 presents the concept of logical evaluation (⊢ _).
This concept captures the fact that a relation holds independent of the pair of states taken as
parameters. The concept of logical interpretation is used in a number of laws in Chapter 3 to
encode proof obligations that involve weakening and strengthening relations.

Section 2.7 introduces an operational semantics for the programming language. This
semantics is taken from [48], but is slightly adapted to fit the findings from Section 2.3.
The operational semantics subdivides into two semantics: small-step and big-step. Since
small-step semantics are more capable of capturing the high-degree of non-determinism
in concurrent computations, it is used to describe most of the commands. The big-step
semantics is used to describe commands that are better suited for an end-to-end semantics,
such as the specification command. Ultimately, the small-step semantics is used to induce a
corresponding big-step semantics for commands originally described using the small-step
relation. The big-step semantics is the basis for the definition of refinement used in this work.

Before introducing the definition of refinement, we present a denotational semantics
for the programming language in Section 2.8. The denotational semantics provides an

1The extra v in the word vvalue has no special meaning. It has been included because the word value is
already reserved in Isabelle, and cannot be used to name a new type.

2.1 Programming language 21

intermediate layer between the definition of refinement and the big-step semantics. This
intermediate layer allows the refinement relation to take the environment of a program into
account. Environments are abstracted as relations that characterise state updates that can be
observed as effect of the interference. The refinement relation is introduced in Section 2.9 as
ternary relation: it establishes a relationship between two programs considering a specific
environment.

Although the definition of a denotational semantics from the big-step semantics serves
the purpose of defining the refinement relation, the lack of properties about the denotational
semantics makes it unsuitable for mechanical proofs. To remedy this situation, Section 2.10
introduces forward simulation, an elaborated proof technique to prove refinement laws
from the small-step semantics. Forward simulation is not necessary condition to establish
refinement, but it is a sufficient condition and serves the purpose of proving refinement laws
in Chapter 5. Section 2.11 discusses a mechanism to decide if a variable is unrestricted in a
program. The notion of unrestricted variable approximates that of fresh variable (which is
not compatible with shallow-embedded relations), and is used in Chapter 3 to formalise the
introduction of local variables in a program. Section 2.12 closes the chapter with a discussion
and a summary of contributions.

2.1 Programming language

Refinement languages consist of specifications (non-executable) and implementation (ex-
ecutable) constructs, and for this reason are referred to as wide spectrum languages. We use
the following convention to describe the refinement language of rely-guarantee refinement
calculus (RG-WSL): a state is a total map from variable names to values, q and r are relations
over a pair of states (the first state in the pair is referred to as the before state, and the second,
the after state), p is a predicate (i.e. a relation which cannot refer to the after-state), b is a
boolean expression, c (c1, c2, ...) ranges over commands, C ranges over sets of commands, X

ranges over sets of variables, x ranges over variables and v ranges over values that variables
can take on.

Command = ⟨p, q⟩ | [q] | {p} |
l

C | c1 e c2 | c1 ;c c2 | c1 ∥ c2 | [[b]] |
uses X · c | state x 7→ v · c

Figure 2.1 Wide spectrum language: primitive commands

22 Foundation

The primitive commands of RG-WSL are shown in Figure 2.1. Atomic specification
(⟨p, q⟩) requires q to be established between the initial and final states via a single program
step if started in a state that satisfies p; if p is not satisfied at the starting state, then ⟨p, q⟩
aborts. The postcondition command ([q]) allows any finite number of steps to establish q

between its initial and final state; it ensures termination if the environment only does stuttering
steps, and aborts otherwise2. The precondition command ({p}) immediately terminates if
p holds on the state it is executed, otherwise it aborts; unbounded non-deterministic choice
d

C can behave as any element of C; strict conjunction (c1 e c2) synchronises atomic steps
of its operands to give an atomic step of their composition; sequential composition (c1 ; c2)
executes c1 and, if c1 terminates, it executes c2. Parallel composition (c1 ∥ c2) represents
interleaving of c1 and c2 Tests ([[b]]) perform a non-atomic evaluation of its argument; it
can succeed by evaluating b to true, fail by evaluating b to false, or abort by attempting to
evaluate an undefined boolean expression. The test command is central to the definition
of conditional, assignment and while loop, which are formalised as derived commands in
Chapter 3. The uses command (uses X · c) restricts the program c to only use free variables
which are in the set X, and the state command (state x 7→ v · c) declares the local variable x

and initialises it to v.
The programming language is untyped and global variables are undeclared, thus the

type of variables is inferred from the expressions and assignments where they appear in a
program. Boolean expressions are formalised in Figure 2.2, which introduces the general
type of expressions. Expressions can be a constant (N), a variable (V), or be formed from the
application of an unary (UOp) or binary (BOp) operator over existing expressions.

Exp = N vvalue | V vname | BOp binop Exp Exp | UOp unaryop Exp

Figure 2.2 Grammar of expressions

Unary and binary operators are not further specified in [48]. Preceding the encoding
of the programming language, the next section defines the range of values that variables
can take on and the types used to represent variables, states, relations and unary and binary
operators.

2Stuttering steps (computations) do not change the observable state of a program.

2.2 Formalisation of the state (σ) 23

2.2 Formalisation of the state (σ)

Variable names are represented using the type string (i.e. sequence of characters), and the
content of a variable is allowed to range over the datatype vvalue, which wraps several types
under a single type. States are encoded as total functions from variable names to vvalue, and
binary (state) relations are represented in curried form using the type state⇒ state⇒ IB.

Definition 2.1 (Basic types). Variables names (vname), values (vvalue), state and binary

state relations are defined next.

datatype vvalue = VNat IN

| VInt ZZ

| VBool IB

| VArray vvalue list

| VNatSet IN set

| VNone

type-synonym vname = string

type-synonym state = vname⇒ vvalue

type-synonym relation = state⇒ state⇒ IB

Aside. The characterisation of vvalue is tightened to the collection of examples presented in

Chapter 6, but the theory developed in this thesis is not dependent on this characterisation.

In fact, the value model can be easily extended to suit more examples and such extension has

no major impact on the development of the theory.

To introduce the type vvalue we use the command datatype of Isabelle, which formalises
a new type from a set of distinct constructors (e.g. VInt, VBool, etc.). Datatypes are commonly
used to encode BNF grammars and are explained in details in the next section. Arrays are
modelled as lists of vvalue and can be of arbitrary dimension. Multidimensional arrays can
be encoded by nesting the constructor VArray, e.g. the matrix

p11 p12 p13

p21 p22 p23

p31 p32 p33

is encoded as

VArray [VArray [p11, p12, p13], VArray [p21, p22, p23], VArray [p31, p32, p33]]

The type vvalue includes also the value VNone, which can be used to model option types for
the remaining types offered by vvalue. Option types are used to lift a type α to a new type
α option containing all values of α wrapped by the constructor Some plus a special value

24 Foundation

called None. The usage of VNone to model option types is more efficient than including a
constructor for option types in vvalue. Such efficiency can be observed in the amount of time
which is necessary for Isabelle to automatically prove termination of partial functions defined
over vvalue when options types are being represented. The modelling of option types is
illustrated in the derivation of the Floyd-Warshall algorithm [28] in Section 6.6. The datatype
vvalue does not include an additional constructor for representing undefined values, instead,
we use the native constant (undefined) from Isabelle to represent undefined when formalising
expression evaluation.

Consider now the task of writing a relation to establish the value of a variable x with the
after state value as VNat 5. Using the types seen so far, this can be captured by the relation:

λ s s ′. s ′ x = VNat 5

That is, the function that takes the before and after state and evaluates to True if the value
of variable x in the after state corresponds to VNat 5. Alternatively, we can use functions
to project the argument encapsulated in a vvalue, so that we can operate directly using the
wrapped value. Next, we define such projection functions and use them to construct an
example3.

Definition 2.2 (Project-Argument). The following functions project their arguments.

fun StripVNat :: vvalue⇒ IN ([[-]]n) where [[VNat v]]n = v

fun StripVInt :: vvalue⇒ ZZ ([[-]]i) where [[VInt v]]i = v

fun StripVBool :: vvalue⇒ IB ([[-]]b) where [[VBool v]]b = v

fun StripVNatSet :: vvalue⇒ IN set ([[-]]s) where [[VNatSet v]]s = v

fun StripVArray :: vvalue⇒ (vvalue list) ([[-]]a) where [[VArray v]]a = v

Using projection [[_]]n, the previous relation can be written as:

λ s s ′. [[s ′ x]]n = 5

Moreover, now we can write the following relation to specify that the value of x in the final
state is increased by one:

λ s s ′. [[s ′ x]]n = [[s x]]n + 1

That is, the function that takes before and after state and evaluates to True if the value of
variable x in the after state corresponds to the value of x in the before state increased by one.

3The command fun, used in the Definition 2.2, allows a user to introduce partial functions within Isabelle.

2.3 Encoding the programming language 25

Without using projection functions, we would need to define addition over the type vvalue in
order to represent the relation above.

Projection functions are partially defined (e.g. there is no rule to compute [[VBool True]]i).
As consequence, the relations (λ s s ′. [[s ′ x]]n = 5) and (λ s s ′. s ′ x = VNat 5) are not equival-
ent. The version written using projection functions is logically weaker than the one without
projection functions. That means that projection functions should be used in a consistent
manner, i.e. either one must use them in all definitions of a particular example, or not use
them at all. Examples of the use of projections to write complex relations can be seen in
Appendix A.1, where we provide the source of the mechanisation of the examples discussed
in Chapter 6.

The relations given as example in this section leave unspecified the value of variables
different from x in the final state. If we wish to use a relation to specify the update of a single
variable, we can use Isabelle’s built-in notation of function update, since states are total
functions. Given a state s, the state s(x:=v) is exactly the state s, except that x maps to value v.
Updates can be nested, producing the effect of sequential updates, e.g. (s(x:=v))(y:=w) is
exactly as state s, except that it maps variable x to v, and variable y to w.

2.3 Encoding the programming language

2.3.1 Shallow and deep-embedding

When facing the task of encoding a programming language in a theorem prover, a decision
between a deep-embedding and a shallow-embedding is required. In the former approach,
syntax and semantics are encoded separately, while in the latter approach, both are encoded
as a single structure. Deep-embedding is most suitable when we are interested in studying
meta-properties of a theory, because it allows proofs by structural induction on the language;
whereas shallow-embedding is most suited to the application of a theory, but not to proving
meta theorems about the programming language.

The approach we take here is quite well-established in the literature [83, 84]: it combines
the benefits of both shallow and deep-embeddings. We use deep-embedding to encode the
general structure of the programming language shown in Figure 2.1 and also to encode
boolean expressions taken as parameter by the test command ([[_]]); this decision is prompted
by the need of a syntax to formalise the operational semantics for command and expression
evaluation in a concurrent environment. We use shallow-embedding to encode expressions
taken as parameters by specification commands, i.e. precondition, postcondition and atomic

26 Foundation

commands; this is possible because these expressions are evaluated as relations. With respect
to expressions taken as parameter by the test command (Figure 2.2), we shallow-embed unary
and binary operators. In this case, the motivation is to provide more flexibility to deal with
concrete examples than we would have by defining a grammar of unary and binary operators
which can appear in programs.

2.3.2 Expression language

We use pairs of functions to encode unary and binary operators that can occur in expressions.
Our choice of representation combines the underlying mathematical operation and the
precondition that their operands must satisfy to succeed. The precondition is used to decide
if expressions are undefined. The next definition provides a concrete representation for the
types of unary and binary operators shown in Figure 2.2.

Definition 2.3 (Unary/Binary Operators). Unary and binary operators are defined as follows.

The first component of the cartesian product is the underlying mathematical operation and

the second component is the precondition of the respective operation.

type-synonym unaryop = (vvalue⇒ vvalue) × (vvalue⇒ IB)

type-synonym binop = (vvalue⇒ vvalue⇒ vvalue) × (vvalue⇒ vvalue⇒ IB)

For example, the binary operator “mod” (remainder after integer division) is encoded as:

(λva vb. V Nat ([[va]]n mod [[vb]]n)︸ ︷︷ ︸
Underlying mathematical operation

, λva vb. [[vb]]n ̸= 0︸ ︷︷ ︸
Precondition

)

The underlying mathematical operation specifies the usual meaning for “mod” and interprets
the arguments as natural numbers. The precondition states that the result of this operation is
defined if the second argument is not zero.

Thus, the grammar for expressions given in Figure 2.2 can be extended on demand with
unary and binary operators which are relevant to algorithms being derived by the user. The
expressiveness of operators in the expression language is bounded by the expressiveness of
Isabelle, instead of being set in stone by a predefined grammar4. The user is free to provide
operators on-demand, but has the obligation of providing the precondition for mathematical
operators at the time of the definition.

4Note however that if the user needs an operator that take more than two operands, the grammar of
expressions would restrict the ability of encoding such an operator. In this case the user would need to extend
the expression language (Figure 2.2) with a general n-ary operator.

2.3 Encoding the programming language 27

For the sake of readability of expressions in concrete programs, we provide definitions to
abbreviate expressions which are built from unary and binary operators. For example, for the
mod operation discussed in this section, we provide the next definition:

e1 modn e2 ≡ BOp (λva vb. V Nat ([[va]]n mod [[vb]]n), λva vb. [[vb]]n ̸= 0)︸ ︷︷ ︸
Binary operator

e1 e2 (2.4)

The len operator, that returns the length of the first dimension of an array, can be defined as5

len e ≡ UOp (λva. V Nat (length [[va]]a), λva. True)︸ ︷︷ ︸
Unary operator

e (2.5)

These definitions smooth the representation of concrete programs in Isabelle, by hiding
details such as the actual definition of unary and binary operators. For a complete list of
unary and binary operators provided with the mechanisation see Appendix A.

2.3.3 Definedness

The precondition of unary and binary operators is used to decide if expressions are well-
defined. Undefinedness can arise in programs by applying unary and binary operators outside
of their precondition, leading to situations such as division by zero, access out of bounds
for arrays, etc. In [48], the signature defined is meant to denote a predicate that takes an
expression and a state and decides if the expression is well-defined in that state. We contribute
with a recursive implementation for this signature. Our definition unpicks the precondition
of operators occurring in an expression and tests if the operands satisfy it. Next, is a generic
mechanism we defined to determine if an expression is well-defined. It is defined in terms of
an auxiliary function, [[-]]v, which takes an expression and a state and evaluates the expression
in that state.

Definition 2.6 (Expression-Evaluation and Definedness). Given an expression e and a state s,

we denote by [[e]]v s the evaluation of e in the state s. We say that e is well-defined in state s

if, and only if, (defExp e s) holds. If an expression is not well-defined, its evaluation results

in the native constant undefined.

fun SEvalExp :: Exp⇒ state⇒ vvalue ([[-]]v) and
defExp :: Exp⇒ state⇒ IB

where
5Arrays in RG-WSL are not pointer-based, thus we assume that len can always be applied to an array.

28 Foundation

[[N c]]v s = c

[[V v]]v s = s v

[[UOp u e]]v s = (if (defExp (UOp u e) s) then (fst u)([[e]]v s) else undefined)

[[BOp b e1 e2]]v s = (if (defExp (BOp b e1 e2) s) then (fst b)([[e1]]v s) ([[e2]]v s) else undefined)

defExp (N c) s = True

defExp (V v) s = True

defExp (UOp u e) s = ((defExp e s) ∧ (snd u) ([[e]]v s))

defExp (BOp b e1 e2) s = ((defExp e1 s) ∧ (defExp e2 s) ∧ ((snd b) ([[e1]]v s) ([[e2]]v s)))

The next abbreviation lifts defExp to the status of relation.

abbreviation defined :: Exp⇒ relation where defined e ≡ (λ s s ′. defExp e s)

Using the definition of defined we can infer, for example, that (V x) modn (N (VNat 0)) is
not well defined independently of the state in which it is evaluated. We return to discuss
undefinedness in the description of the operational semantics in Section 2.7, when discussing
non-atomic expression evaluation and semantics of tests.

2.3.4 Encoding RG-WSL

The grammar presented in Figure 2.3 is extracted from our encoding and shows the represent-
ation of RG-WSL in Isabelle/HOL. The encoded version of RG-WSL includes the additional
command eguard, that is subject of discussion in Section 5.2.

In the literature, preconditions and postconditions are described as unary and binary
relations, respectively. Without loss of generality, we use a single type, relation, to represent
these entities. The uniform treatment prevents the duplication of relational operators and
laws to reason about the parameters taken by the atomic, precondition and postcondition
commands. To stay consistent with [48], the encoded version of the semantics and refinement
laws include additional provisos which require that relations used to denote preconditions
are predicates, i.e. they must not constrain the after state. The formal definition of predicates
is introduced in Section 2.4.1.

Note in Figure 2.3 that the test command ([[_]]) takes a deep-embedded expression
(Exp) as parameter. The deep-embedding is relevant because the test command has to
discriminate between expressions such as x+x and 2∗x, for example, since these expressions
can be evaluated to distinct values in an interfering environment. The formalisation of
the expression language is given as already shown in Figure 2.2. The uniform treatment

2.3 Encoding the programming language 29

datatype
Command = Atomic relation relation (⟨-, -⟩)
| Post relation ([-])
| Pre relation ({-})
| DemNonDetChoice Command cset ((

d
-) 75)

| StrictConj Command Command (infix e 70)
| SeqComp Command Command (infixl ;c 80)
| ParComp Command Command (infix ∥ 70)
| Conditional Exp ([[-]])
| Uses vname set Command ((uses - ·/ -) [71,70] 70)
| State vname vvalue Command ((state - 7→ - ·/ -) [71,71,70] 70)
| EGard relation ((eguard -) [71] 70)

Figure 2.3 Encoding RG-WSL. In this thesis, the syntax for sequential composition (;c) is
written without the subscript c. In Isabelle, the subscript is used to prevent ambiguity between
sequential composition and the symbol used to separate assumptions in theorem statements.
The notation infix is used to define an infix operator. An extra l at the end of this notation is
used to enforce left-associativity. Precedence and associativity are discussed at the end of
this section.

of expressions and boolean expressions allows the same syntactic entity to be used in the
condition of an if-then-else and at the right-hand side of assignments, for example.

The crucial difference between the version of RG-WSL published in [48] (Figure 2.1 on
page 21) and its mechanised version shown in Figure 2.3 (page 29) is that in the mechanised
version the parameter taken by unbounded choice

d
_ is constrained to be a countable set of

commands, i.e. the cardinality of that set cannot exceed the cardinality of the set of natural
numbers (IN). In the description of the language gave in [48], no restriction is imposed over
the cardinality of the set of commands taken by the unbounded choice. To understand better
why this restriction matters, and how Isabelle helped to reveal the issue in the original design
of RG-WSL, it is worth to take a step back and analyse how the syntax of programming
languages are encoded in proof assistants.

Representing programming languages as datatypes

In general, the syntax of programming languages is encoded in proof assistants, such as
Isabelle/HOL, using the concept of datatype. This specification constructor is used to
formalise a type (D) from a collection of constructors (Ci), where each constructor can have
zero or more parameters of distinct types (τ i

j). The simplified syntax for introducing a
datatype is shown next

datatype D = C1 τ1
1

τ1
2 ... τ1

n | C2 τ2
1

τ2
2 ... τ2

m | ... | Ci τ i
1

τ i
2 ... τ i

s

30 Foundation

From a typed set-theoretical perspective, datatypes define a set of mathematical objects
that share the same type. To ensure that the collection of mathematical objects defined
by a datatype can be represented as a typed set, in addition to other properties which are
characteristic of datatypes in HOL (e.g. non-emptiness6, distinction between the datatype
constructors Ci, and injectivity of the datatype constructors), Isabelle performs a series of
checks and proofs at the time of the definition of a new datatype. Injectivity ensures the
existence of a typed set which contains all the elements generated by the constructors of the
datatype [9].

In principle, Isabelle/HOL proves at the time of the definition of a new datatype D, that
there exists an injection from the domain of each constructor Ci to the type D. The domain of
a constructor Ci is the type (τ i

1⇒ (τ i
2⇒ (...⇒ τ i

s))), thus the task for Isabelle is to prove
the existence of an injection of the type ((τ i

1⇒ (τ i
2⇒ (...⇒ τ i

s)))⇒ D). However, it is
well-known from Cantor’s diagonalisation theorem that some injective functions cannot exist,
e.g. there is no injective function of the type ′a set⇒ ′a, because the domain of this function
(′a set) is larger than its codomain (′a). If the user attempts to define a datatype where the
domain of at least one of its constructors would not allow such an injective function to be
constructed, Isabelle displays an error message. For the general scenario, however, Isabelle
is unable to automatically decide if such an injective function exists. This is the case of
some situations where one of the constructors (Ci) is recursive, i.e. when one of the types
(τ i

s) occurring in the parameters of that constructor has a nested instance of the type of the
datatype (D) under definition. In Isabelle, the recursive occurrence of a datatype in the type
of its constructors is referred to as (co)recursion. It can involve type constructors (e.g. set,
list, etc.) which nest the recursive datatype, as in

datatype DTA = Base | Idx DTA list

For a limited range of type constructors (list included), Isabelle is able to automatically
decide if its occurrence in nested (co)recursion preserves injectivity. To allow the user
to extend this range, the datatype package provides an interface based on the concept of
bounded natural functor (BNF), a semantic criterion that determines if (co)recursion can
appear on the right-hand side of an equation [14]. This criterion can be interpreted as a
cardinality constraint on type constructors. Isabelle only accepts type constructors in nested
(co)recursion if the type constructor is registered as a BNF.

6In Isabelle/HOL, types are not allowed to be empty. This decision simplifies the logic, ruling out corner
cases which otherwise would need to be taken care properly. For example, (∀x. P x) =⇒ (∃x. P x) is a theorem
in first-order logic and it should still hold even if types are empty.

2.3 Encoding the programming language 31

The attempt of encoding RG-WSL as a datatype in Isabelle/HOL results in the next
message being displayed to the user. The reason being the fact that the power set type
constructor (set) in the definition of the parameter of unbounded choice

d
_ is not registered

as a BNF.

Unsupported recursive occurrence of type “Command” via type constructor
“Set.set” in type expression “Command set”.

Use the “bnf” command to register “Set.set” as a bounded natural functor
to allow nested (co)recursion through it.

This error message lead us to formulate three questions:

i Is there any theoretical limitation to the encoding of RG-WSL as a datatype?

ii If there is a limitation, what does it reflect about the design of RG-WSL?

iii Can we constrain RG-WSL such that it can be encoded in Isabelle/HOL?

Our previous discussion sets the context to answer question (i). There exists a theoretical
limitation to the representation of RG-WSL as a datatype. Cantor’s theorem says that there is
no injective function of the type Command set⇒ Command, and thus, RG-WSL as published
in [48] cannot pass the injectivity check.

Question (ii) is more open-ended. Any proof assistant which gives a typed set theor-
etical foundation for datatypes is unable to represent the syntax of RG-WSL as proposed
in [48]. This language can be formalised using other logics supported by Isabelle, such as
Isabelle/ZF [71] or HOLZF [87], which are untyped, but in these cases we would lose certain
features of HOL such as decidable type checking. To the best of our knowledge, the relative
consistency of these logics have not been established and in both cases we would not be able
to build recursive set constructions in datatypes and would have to develop our own model for
the syntax of RG-WSL. That is, we would need to introduce the constructors of the language
using the specification command consts, and we would need to introduce the relevant axioms
about the constructors of RG-WSL, to ensure properties such as distinctiveness between
syntactic terms of the language. An example of the construction of a toy datatype using
Isabelle/HOLZF is described in [87].

The answer to question (iii) is positive. We can constrain the parameter taken by un-
bounded choice to be a countable set in order to work around the injectivity problem. To the
best of our knowledge, this is the best approximation to the definition provided in [48]. Our
solution solves the syntactic problem at the cost of creating another one. The language of

32 Foundation

commands itself is not countable7, but the definition of rely, provided in Chapter 3 (Defini-
tion 3.72 on page 94), is structured using unbounded choice and set comprehension over the
language of commands. Unbounded choice is also used to define other derived commands,
such as assignment and local variables, but these commands could, in theory, be introduced
as primitive commands in RG-WSL with little impact in the proof of the refinement laws
introduced in Chapter 3. On the other hand, the definition of the rely command cannot be
restructured, at least without impacting in the ability of benefiting from the theory published
in [48].

A definitive solution to the problem of mechanising the rely command requires RG-WSL
to be stratified to syntactically determine a maximum level of nesting of unbounded choice.
That is, by splitting the language into multiple syntactic layers, we can precisely control the
number of times that unbounded choice can be nested8. Although this approach works in
theory, its implementation would require the replication of laws and operators for each layer
of RG-WSL. The approach taken in this work is to recognise that some laws taken as basis
for the algebraic mechanisation cannot be derived from the semantics given to RG-WSL. To
compensate for this weakness, Section 4.3 explores the relationship between our refinement
algebra based on RG-WSL and, and a hypothetical refinement algebra based on a stratified
version of RG-WSL, where laws can be proved sound with respect to the semantics.

Precedence and associativity

To reduce the need for parentheses, we assign precedences and associativity to the commands
of RG-WSL. Our encoding extends the description of RG-WSL given in [48], where the
only information given about precedence is the fact that sequential composition should
have the highest precedence among the primitive commands of RG-WSL. The numbers
within parenthesis at the right-hand side of the language constructors in Figure 2.3 represent
the precedence of the constructor. The higher the number, the higher its precedence. For
constructors that have the same precedence, such as e and ∥, parentheses are required to
disambiguate expressions.

Associativity is encoded using mixfix annotations. In the definition of RG-WSL, infixl
is used to define associativity to the left. Table 2.1 illustrates the use of associativity and
precedence to omit parentheses. Note that in the some cases, parentheses cannot be omitted.
A glossary of precedences is available in Appendix A.2.

7Its cardinality is, at least, the same cardinality of the space of functions over states. See a proof of this fact
on Appendix A.4.2 on page 264.

8Stratification is discussed and exemplified in Section 4.3.2 on page 136.

2.4 Relations 33

Fully parenthesised Using precedence and associativity

(c0 ; c1) e (d0 ; d1) c0 ; c1 e d0 ; d1

(a ;c b) ;c c a ; b ; c

(c0 ∥ c1) e (d0 ∥ d1) (c0 ∥ c1) e (d0 ∥ d1)

Table 2.1 Precedence and associativity for RG-WSL

2.4 Relations

Most of the refinement laws contained in the chapters to follow deal with relations; thus, it is
convenient to define a collection of relational operators used to compose relations. Figure 2.4
presents relational operators and also noteworthy relations used in this work. The relational
connectives follow the usual precedence order from predicate calculus.

Since relations are defined over states, and these are modelled as total functions, relational
composition (Eq. 2.11) is pretty straightforward, because it does not need to check if the
domain of the states in the relations under composition match. The relation idset X (Eq. 2.15)
is the identity relation over a set of variables X. The special case when X is the universe set
(UNIV) is noted as idrel. The relation depends-only (g, X) (Eq. 2.16) is true if the relation
g only depends on variables within X. Isabelle already has a built-in operator to denote the
reflexive-transitive closure of a relation (r∗∗) and its transitive closure (r++). For dealing with
control structures (Section 3.12), we also need the reflexive-transitive closure on a closed
subset A (Eq. 2.17), which behaves as the transitive closure, but allows reflexive transitions
on variables within A.

Typographic conventions

To make specifications look more natural, we omit the subscript r in the relational operators
defined in Table 2.4 when it is clear from the context that the arguments are relations. For
example, if it is clear from the context that q and s are both relations, we write q ∧ s instead
of q ∧r s.

34 Foundation

Operator Definition Associativity
¬r p ≡ λ s s ′. ¬ p s s ′ (2.7)
p0 ∧r p1 ≡ λ s s ′. p0 s s ′∧ p1 s s ′ Left (2.8)
p0 ∨r p1 ≡ λ s s ′. p0 s s ′∨ p1 s s ′ Left (2.9)
p0⇒r p1 ≡ λ s s ′. p0 s s ′−→ p1 s s ′ Right (2.10)
q0 ;r q1 ≡ λ s s ′. ∃s ′′. q0 s s ′′∧ q1 s ′′ s ′ Right (2.11)
true ≡ λ s s ′. True (2.12)
false ≡ λ s s ′. False (2.13)
idrel ≡ λ s s ′. s = s ′ (2.14)
idset X ≡ λ s s ′. ∀v. v ∈ X −→ s ′ v = s v (2.15)
depends-only (g, X) ≡ (idset X ; g) ; idset X⇒ g (2.16)
r∗∗X ≡ r++ ∨ idset X (2.17)

Figure 2.4 Logical connectives and noteworthy relations

2.4.1 Predicates

To provide a uniform treatment of pre, post, guar and rely conditions, we use a single type
to represent these entities, namely binary state relations (relation). The uniform treatment
unburdens us from defining multiple operators for dealing with predicates (i.e. single-state
relations), binary relations and their combination. For example, if p1 and p2 are predicates
and q1 and q2 are relations, the conjunction of any two of these terms requires a single
operator over relations: ∧λ , already defined in Figure 2.4. If we were using different types for
representing these entities, say a type for relations and other for predicates, we would need
to define four operators for conjunction (e.g. p1 ∧p p2, p1 ∧pr q1, q1 ∧r p p1 and q1 ∧r q2),
which would lead to further redundancy in theorems.

Relations that do not restrict the post state are called predicates. Only predicates should
be used to instantiate preconditions9. Example of predicates are the relations λ s s ′. [[s x]]n ≥ 0

and λ s s ′. [[s x]]s = /0. The relation λ s s ′. [[s ′ x]]n ≥ 0 is not a predicate because it constrains
the after state. Formally, a relation p is a predicate if the satisfies the next definition.

Definition 2.18 (Predicate). For any relation p, we say that p is a predicate if pred p holds.

pred p ≡ ∀s s1 s2. p s s1 = p s s2
9If this condition is not satisfied, the user will find herself in a position that proof obligations cannot be

discharged when applying refinement laws which involve preconditions.

2.4 Relations 35

2.4.2 Satisfiability

A relation r is satisfied for a pair of states σ and σ ′ if r σ σ ′ holds. In such case we write
σ , σ ′ |= r; if r is also a predicate, we shorthen the notation to σ |= r.

2.4.3 Post state notation

We sometimes need to state that a predicate holds in the after state. To formalise this
notion we define a post-state notation, p‘, which only makes sense for relations that are also
predicates. This notation is formalised as follows.

Definition 2.19 (Post-state notation). For a predicate p,

p‘ ≡ λ s s ′. p s ′ s

2.4.4 Wellfounded relations

To ensure termination of loops, the rely-guarantee refinement calculus from Chapter 3 requires
any relation used to introduce a loop to be well-founded. Here we adopt the formulation
proposed in [49], which is close to the one proposed by the mathematician Pierre de Fermat:
a relation r is well-founded provided there are no infinite sequences of states s0, s1, s2,... such
that all pairs of successive states are related by r. Logically, this can be formalised in terms
of iteration of relations as follows.

Definition 2.20 (Iterated-Relation). For any relation r and natural number n,

(iter r n) =

{
idrel, if n = 0

r ; iter r k, n = Suc k.

Definition 2.21 (Wellfounded). For any relation r,

wellfounded r ≡ ∃ k. ∀ s ′. (iter r k) s s ′= false s s ′

36 Foundation

A relation is well-founded if, for every state s, there is a natural number k, such that after
k iterations, the iterated relation iter r k refuses to provide any matching state s ′ that relates
to the initial state s, i.e., the iterated relation eventually disables itself after k iterations. Note
that k can have different values based on the choice of the s.

In the context of proving termination of loops, we are interested in initial states s that
satisfy a given precondition p. Thus, the definition above can be relaxed to require the
relation r to be well-founded on a subset of its domain. To this purpose, a predicate p is used
to filter out initial states which are not relevant.

Definition 2.22 (Wellfounded-Precondition). For any relation r and predicate p,

wellfounded r p ≡ ∀s. p s s −→ (∃k. ∀s ′. iter r k s s ′= false s s ′)

The next lemma introduces a well known result about well-founded relations: the transit-
ive closure of a well-founded relation is also well-founded [15, 48]. This result is necessary
to prove the introduction of loops in the refinement calculus in Chapter 3 (see law 3.112 on
page 113).

Lemma 2.23 (Wellfounded-Transitive-Closure). For a predicate p and a relation w which is

well-founded on p,

wellfounded w++ p

2.5 Relational interpretation of expressions

The introduction of assignments, conditionals and loops requires a mechanism to interpret
boolean expressions as relations. Boolean expressions are just expressions whose evaluation
results in a vvalue denoting a boolean. This section introduces a denotational semantics for
boolean expressions in terms of relations, which is represented by the function [[-]]r. This
denotational semantics illustrates the interplay between our deep and shallow-embedding
design decision. The application of relational interpretation of expressions is seen in laws
which introduce control structures from specifications (see Section 3.12). The consequence
of having separated embeddings for expressions is that program development starts from
specifications formulated using shallow-embedded expressions (i.e. relations) which are
replaced by deep-embedded expressions in the places where control structure and assignment
are introduced.

2.6 Logical interpretation of relations 37

Abbreviation 2.24 (Relational-Interpretation). Let bexp be a boolean expression,

[[bexp]]r ≡ λ s s ′. [[[[bexp]]v s]]b

Remark. In this definition, the function [[_]]b strips the constructor VBool from its argument,

resulting in a boolean, and function [[_]]v atomically evaluates its argument, resulting in a

vvalue. Function [[_]]b was introduced in Definition 2.2, whereas function [[_]]v was introduced

in Definition 2.6. Note that the grammar of expressions (Fig. 2.2) does not include primed

variables, thus the relational denotation of a boolean expression is always a predicate.

2.6 Logical interpretation of relations

In the refinement calculus from Chapter 3, a number of laws have proof obligations involving
weakening and strengthening of relations, e.g. law 3.19 on page 74. Weakening or strength-
ening a relation generally involves proving that a relation in the form of implication is a
tautology, e.g. p ∧ q⇒ q. In [48], to denote that a relation whose main connective is an
implication is a tautology, the main implication is replaced by V, as in p⇒ q V q. This
notation has the disadvantage that it can only capture tautologies whose main connective is
an implication. To handle a broader variety of tautologies (e.g. true ∨ false), we introduce
the operator (⊢ _) to represent logical interpretation, i.e. that a relation evaluates to true

independent of the pair of states taken as argument. Thus, instead of writing (p ∧ q)V q we
write ⊢ p ∧ q⇒ q.

Definition 2.25 (Logical-Interpretation). Let r be a relation, then

(⊢ r) ⇔ (r = true)

The next law provides an alternative definition of logical interpretation that is more suitable
for practical application within theorem proving, because it applies a relation to a pair of
states and get rid of the lambda operator in the definition of the relation. Thus, built-in laws
of Isabelle can be directly applied to complete proofs involving logical interpretation.

Law 2.26 (Logical-Interpretation-Expanded). For any relation r,

(⊢ q) ⇔ (∀s s ′. q s s ′)

38 Foundation

Since proof obligations involving logical interpretation are recurrent in the application
of laws from Chapter 3, law 2.26 is used quite frequently in our mechanisation. For non-
composite relations, it suffices to apply law 2.26 and call the simplifier. For composite
relations, this approach also requires expanding the definition of the connectives involved
(∧r, ∨r,⇒r, etc.). The drawback of expanding the definition of connectives is that it skips
the abstraction level of relations, and when a proof involving logical interpretation fails, it
complicates the identification of the precise reason why the proof failed. To remedy this
situation, we provide a small collection of laws to allow compositional reasoning over logical
interpretation in Section 4.2.1. These laws not only make the identification of problems in
failed proofs easier, but they also enhance the automation of the mechanisation.

2.6.1 Example: reasoning compositionally about logical interpretation

To clarify the value of compositional reasoning over logical interpretation, we anticipate
one of the laws presented in Section 4.2.1 and discuss how we used it to investigate a failed
proof obligation in the derivation of the sequential version of Findp presented in Section 6.3.
The next law splits the proof of ⊢ r⇒ q ∧ s into two smaller subproofs. The symbol =⇒
is called meta-implication, and is used within Isabelle to separate the assumptions from the
conclusion of a law.

⊢ r⇒ q ∧ ⊢ r⇒ s =⇒ ⊢ r⇒ q ∧ s (2.27)

Since a contextualised discussion of the failed proof obligation involves derived commands
and laws which have not yet been discussed, we do not provide a detailed explanation of the
proof obligation, and only care about its shape. Assume that s, and g1,...,g4 are relations; and
that that the next proof obligation has to be discharged in order to complete the derivation of
an algorithm.

⊢ s⇒ g1 ∧ g2 ∧ g3 ∧ g4 (2.28)

Without laws to decompose this proof, one has to expand all the definitions before invoking
the simplifier within Isabelle. Performing this step generally leads to a large proof goal, where
it may not be entirely clear the relationship between the original sub-goals (i.e. g1,...,g4)
and those in the expanded goal. We met one of such situations in the derivation of Findp.
There, the proof obligation had the shape described in Equation 2.28, and the premises were

2.7 Operational semantics 39

insufficient to derive the conclusion. To help tracing the offending conjunct we used law 2.27
to split the original proof obligation into four independent sub proofs. This helped to reveal
the offending conjunct and solve the problem.

2.7 Operational semantics

The main objective of this chapter is to discuss the notion of correctness for the refinement
relation used in the refinement calculus of Chapter 3. To give further background to those
unfamiliar, a refinement calculus establishes an ordering relation between programs, and
requires three elements for its definition: a programming language, a formal semantics and a
refinement relation. The first of these elements, a programming language, has already been
discussed in Sections 2.1 and 2.3. This and the next section discuss the formal semantics.

Two semantics are provided for RG-WSL: an operational and a denotational semantics;
these are taken from [48]. The operational semantics describes how a program executes,
whereas the denotational semantics maps programs into sets of traces (i.e. sequences of
labelled state transitions). The denotational semantics is used to define the refinement relation
and its definition reuses the operational semantics. The dependencies between the semantic
models are explained in Figure 2.5, which also shows the relationship between the semantic
models and forward simulation (defined in Section 2.10).

Denotational semantics

Refinement

Big-step

Small-step Simulation

Figure 2.5 Semantic hierarchy. A dark arrow indicates that the target depends on the
source. Small-step and big-step are subdivisions of the operational semantics. Labelled state
transitions defined at the small-step semantics are used to induce a big-step semantics, and
used to do proofs by forward simulation [75, 76, 73]. The denotational semantics builds on
top of the big-step semantics and is used to formalise the notion of refinement. The longest
arrow connects forward simulation to refinement and represents that forward simulation is a
sufficient (but not necessary) condition to establish refinement.

The operational semantics subdivides into two semantics: small-step and big-step. The
small-step semantics is the most powerful between the two. It allows a precise description of

40 Foundation

the non-determinism and interleaving involved in concurrent executions, and allows us to
reason about the intermediate states that programs go through during their execution. For
RG-WSL, the small-step semantics is formalised as a ternary relation: it takes a command, a
labelled state transition, and another command. The labelled state transition contains three
components: the state preceding the execution of an atomic action, the state succeeding
the execution, and a label to identify if the state transition is result of a program step or an
environment step, or if it is a termination step (in this case the preceding and succeeding states
are the same). Big-step semantics (also known as natural semantics [81, 85]) describe the
execution of a program as an end-to-end transformation. In RG-WSL, the big-step semantics
is formalised by a ternary relation: it takes a command, a sequence of labelled state transitions,
and a final command. The sequence of labelled state transitions is called a trace, and can
be finite or infinite (this is the case of non-terminating programs). Although commands
generally admit both styles of semantics, each of these styles has particular advantages over
the other. For example, the big-step semantics cannot distinguish situations where a program
does not terminate and aborted from situations where a program does not terminate but did
not abort. On the other hand, the small-step semantics can differentiate between abortive
and non-abortive behaviours. In the case of concurrent programming, it is well-known that
certain features of programming languages are more easily described using a small-step
semantics. We do not attempt a comparison of the power of these semantics in this thesis;
instead, we simply discuss how the operational semantics of RG-WSL can be formulated
as a combination of small-step and big-step semantics. Our mechanisation includes the
small-step semantics presented in [48], adapted to fit the findings from Section 2.3 (i.e., the
problem involving the encoding of unbounded non-determinism). The big-step semantics and
denotational semantics are only partially mechanised, and do not play a key role in proofs in
our mechanisation.

The use of a big-step semantics to define a denotational semantics is an arbitrary decision
taken in [48]. The most common approach in the literature is to define the denotational
semantics without resorting to an operational semantics; this is done, for example, by Dingel
in [32], who also develops a refinement calculus for rely-guarantee. The preference for
an operational stylem in [48] is justified on the grounds of it being more readable than a
denotational alternative.

Before moving to the next subsection, we discuss the type of labelled state transitions.
These are encoded using the datatype LSTransition whose definition is given next.

datatype LSTransition = π state state | ϵ state state | υ state

2.7 Operational semantics 41

For program (π) and environment (ϵ) steps (i.e. transitions), both preceding and succeeding
states are recorded. For termination (υ) steps, only the final state is recorded. This datatype
is complemented with two additional functions: pre and post, which extract, respectively,
the before and after state of a state transition. For clarity, we also introduce a projection to
extract the label of a transition. Labels are defined as program step (π), environment step (ϵ)
or termination step (υ).

Definition 2.29 (LSTransition-Projections). For any states σ and σ ′,

pre (π σ σ
′) = σ post (π σ σ

′) = σ
′ label (π σ σ

′) = π

pre (ϵ σ σ
′) = σ post (ϵ σ σ

′) = σ
′ label (ϵ σ σ

′) = ϵ

pre (υ σ) = σ label (υ σ) = υ

The next subsection discusses evaluation of expressions considering interference. This
evaluation is used later to define the semantics for the test command.

2.7.1 Expression evaluation

The evaluation of expressions (Exp) assumes that each occurrence of a variable can be fetched
atomically from the state. In standard programming languages such as C and Java, this
sampling policy can be enforced by declaring variables as volatile [44]. The fetching order is
arbitrary and the evaluation can be interrupted by environment actions. Such interruptions do
not change the expression under evaluation, but can change the state, possibly affecting the
subsequent evaluation of variables.

The assumption that variables are read atomically ensures that programs cannot perform
inconsistent reads in the sense that update and fetching operations never overlap10. Variable
reads are formalised by the next law. A program step without state changes (i.e. atomic fetch)
inspects the before state (σ) to look up the value (v) of a variable (x).

σ x = v

V x π σ σ−−−→e N v
(2.30)

To evaluate a binary expression, the operands are evaluated to values in a non-deterministic
order. In an operational semantics, non-determinism is encoded by having multiple rules

10This is a realistic assumption for variables of scalar types, but it does not realistically model the reading of
arrays. Arrays are object of discussion in Section 5.4.

42 Foundation

which can be chosen at a certain point of the execution. Two rules are provided for evaluating
operands of a binary expression in 2.31 and 2.32. In these rules the term α subsumes state
transitions of the form (π σ σ) and (ϵ σ σ ′), the term e is an expression (Exp) and the term
b is a binary operator (i.e. binop).

exp1
α−→e exp1

′

BOp b exp1 exp2
α−→e BOp b exp1

′ exp2
(2.31)

exp2
α−→e exp2

′

BOp b exp1 exp2
α−→e BOp b exp1 exp2

′
(2.32)

The final value of a binary expression is computed by applying the corresponding underlying
mathematical operator to the values resulting from the evaluation of the operands. Two cases
are considered in the evaluation of binary operators: in the first case (2.34) the expression is
well-defined and in the second case (2.35) the expression is not well-defined. Our encoding
of undefined using the constant undefined can be seen as simplistic, in the sense that it does
not introduce enough information to prove that undefined is different from any ordinary value
(e.g. VBool True). Nevertheless, it suffices the purpose of discussing the effect of interference
in expression evaluation. The function eval-binary extracts the underlying mathematical
operation from the definition of a binary operator.

eval-binary b ≡ fst b (2.33)

σ |= defined (BOp b (N v1) (N v2)) v ′= eval-binary b v1 v2

BOp b (N v1) (N v2)
π σ σ−−−→e N v ′

(2.34)

σ |= (¬ defined (BOp b (N v1) (N v2)))

BOp b (N v1) (N v2)
π σ σ−−−→e N undefined

(2.35)

Unary operators (represented by u in the next rules) are evaluated similarly to binary operators
(cf. rules 2.31 and 2.37, 2.34 and 2.38, and 2.35 and 2.39). Similarly, the function eval-unary

extracts from the definition of an unary operator the underlying mathematical operator

2.7 Operational semantics 43

represented by it.

eval-unary u ≡ fst u (2.36)

exp α−→e exp ′

UOp u exp α−→e UOp u exp ′
(2.37)

σ |= defined (UOp u (N v)) v ′= eval-unary u v

UOp u (N v) π σ σ−−−→e N v ′
(2.38)

σ |= (¬ defined (UOp u (N v)))

UOp u (N v) π σ σ−−−→e N undefined
(2.39)

The environment can interrupt the evaluation of an expression at any time. The next rule form-
alises such an interruption, and allows for traces which are finitely and infinitely interrupted
by the environment.

exp ϵ σ σ ′−−−−→e exp
(2.40)

To better explain expression evaluation, we return to an example given in the introduction
chapter: the expression (x+x). We stated previously that in the presence of interference,
expression evaluation does not observe mathematical laws, e.g. if x is a shared variable,
the evaluation of (x+x) can result in an odd value. Now we illustrate how the semantics
explains this non-observance. Assume that the evaluation of (x+x) starts in a state σ such
that (σ x = VNat 1), and assume that (σ ′ x = VNat 4). Then, formally

V x +n V x π σ σ−−−→e N (VNat 1) +n V x by 2.31, 2.30

N (VNat 1) +n V x ϵ σ σ ′−−−−→e N (VNat 1) +n V x by 2.40

N (VNat 1) +n V x π σ ′ σ ′−−−−→e N (VNat 1) +n N (VNat 4) by 2.32, 2.30

N (VNat 1) +n N (VNat 4) π σ ′ σ ′−−−−→e N (VNat 5) by 2.34

Thus, the evaluation of x + x in an interfering environment can result in an odd number. In the
expression above +n corresponds to addition over naturals (cf. modn on page 27). Addition

44 Foundation

is defined for any pair of naturals, and thus the expression V x +n V x is well-defined. To
illustrate undefinedness we consider the expression (N (VNat 5) modn V y) +n V x. Assume
that the evaluation starts in a state σ such that (σ x = VNat 4) and (σ y = VNat 0). To fit the
evaluation into a single line, we omit the references to the rules applied at each step.

(N (VNat 5) modn y) +n V x π σ σ−−−→e (N (VNat 5) modn N (VNat 0)) +n V x

(N (VNat 5) modn N (VNat 0)) +n V x π σ σ−−−→e N undefined +n V x

N undefined +n V x π σ σ−−−→e N undefined +n N (VNat 4)

At this point, the execution cannot proceed unless we define the result of addition (+n) for
the case where the left-hand side operand is undefined. Since in the context of a refinement
calculus we are generally interested in preventing computing undefined, it does not make
sense to define special cases to handle undefinedness. Instead, a generic approach to handle
undefinedness is to use the precondition of +n to specify that this operation can only
be applied if the operands are well-defined. This prevents the introduction of undefined
expressions in derived programs. Taking this approach corresponds to propagating undefined

whenever a sub-term of an expression evaluates to undefined, because it forces the evaluation
to follow rule 2.35. Using this approach the evaluation would proceeds as:

N undefined +n N (VNat 4) →e[π σ σ] N undefined.

However, to detect undefined as a value in the definition of the precondition of +n we would
need to be able to distinguish undefined from any other ordinary value, e.g. VNat 1. Since
our representation of undefined is simplistic, it does not suffice this purpose (e.g. we cannot
prove that 1 ̸= undefined). To enable the theory to tell apart a value from undefined, the
user would need to extend the vvalue (Definition 2.1) with a new constructor, specifically
designed to represent undefined as a distinct value. We do not need this extension for deriving
programs, because the refinement laws in Chapter 3 prevent the introduction of undefined
expressions in programs.

Multi-step expression evaluation

The single-step transition e α−→e e ′ induces a multi-step transition, e
lα−→e∗ e ′, where lα is

a sequence of labelled state transitions. The transition e
lα−→e∗ e ′ allows for sequences of

labelled state transitions which have arbitrary length. In [48], the description of the semantics
suggests that sequences of transitions can have infinite length. Such infinite sequence of

2.7 Operational semantics 45

transitions correspond to evaluations which fail to terminate. As we use lists to represent
sequences of transitions, our mechanisation only models finite traces. As our refinement
proofs involving expressions do not descent to the level of the semantics, this simplification
does not affect our algebraic characterisation. Next, hd is the conventional head operator for
lists (e.g. hd [a, b, c] = a) and last returns the last element of a list (e.g. last [a, b, c] = c).

exp α−→e exp ′

exp
[α]−→e∗ exp ′

(2.41)

l1 ̸= [] l2 ̸= [] l = l1 ⌢ l2

exp
l1−→e∗ exp ′′ exp ′′

l2−→e∗ exp ′ pre (hd l2) = post (last l1)

exp l−→e∗ exp ′
(2.42)

For example, using→e∗ the evaluation of x+x discussed before is synthesised next. Recall
from our previous discussion that we assume that σ x = VNat 1 and σ ′ x = VNat 4.

(V x +n V x)
[π σ σ , ϵ σ σ ′, π σ ′ σ ′, π σ ′ σ ′]−−−−−−−−−−−−−−−−−−−→e∗ N (VNat 5).

The multi-step evaluation is used to define an operational semantics for tests ([[_]]) in
Section 2.7.3, and the notion of reachable expressions in Section 5.5.

2.7.2 Small-step semantics

To describe the operational semantics, the programming language is extended with the
command nil, which represents the terminated command, i.e. a command that cannot do
any steps whatsoever. The small-step semantics for commands is able to tell apart normal
and abortive behaviour. Such expressiveness allows one to differentiate programs that do
not terminate because they engaged into an abortive behaviour from programs that do not
terminate because they fail to emit a termination step (υ).

The fact that a command meets the criteria for aborting from a given state is denoted by
its abortive condition. The abortive conditions (cσ×) are defined via an inductive predicate11

in Isabelle/HOL, and its definition takes two parameters: a command (c) and a state (σ) – the
11Inductive predicates are used to specify relations inductively from a set of rules. The relation generated

by an inductive predicate corresponds to the smallest relation induced by the rules provided by the user. For

example, the relations _ α−→e _ and _
[α]−→e∗ _ are typical examples of relations that are encoded in Isabelle/HOL

using inductive predicates.

46 Foundation

subscript “×” in the definition is just decorative. Whenever the abortive condition holds for
a given command c and state σ , the execution of c from state σ can take a non-deterministic
route, described by a set of three rules in the small-step semantics that are characteristic of
programs that have aborted. Following the presentation style from [48], we introduce the
abortive conditions together with the small-step semantics.

To give the reader a better understanding of our contributions in the formalisation of
the small-step semantics, this section reproduces the abortive conditions as they are defined
in [48]. In the original definition, if a branch of a parallel composition aborts, the parallel
composition itself aborts. As we will see in Section 5.3 (Revised abortive conditions), the
abortive conditions for parallel composition reproduced in this section can be inadvertently
used to equate the commands magic, defined as the non-deterministic choice over an empty
set, and abort, defined as {false}, which have very distinct roles in a refinement calculus.
To prevent this situation from happening, we discuss the problem and amend the abortive
conditions in Chapter 5. The current chapter is not the appropriate place to discuss this
problem into further details, because to understand how the theory can be exploited, we need
to be familiarised with the refinement laws introduced in Chapter 3.

A precondition {p} terminates immediately in any state σ in which p holds, and aborts
in any state p does not hold. The command skip, defined as skip ≡ {true}, terminates
immediately, and abort, defined as abort ≡ {false}, aborts immediately.

σ |= p

{p} υ σ−−→ nil

¬ σ |= p

{p}σ×
(2.43)

The next three rules characterise a program that has aborted. These rules define that
a program that aborted in a state σ may take any further finite or infinite behaviour, or
terminate immediately. Finite behaviour corresponds to any sequence of steps that ends in
a termination step (υ), while infinite behaviour corresponds to a sequence of steps which
includes no termination step.

cσ×

c π σ σ ′−−−−→ abort

cσ×

c ϵ σ σ ′−−−−→ abort

cσ×

c υ σ−−→ nil
(2.44)

2.7 Operational semantics 47

The atomic command ⟨p, q⟩ can do a program step if p holds or abort if p does not
hold. The execution of the program step can be preceded by any number of environment
steps (ϵ σ σ ′).

σ |= p σ , σ
′ |= q

⟨p, q⟩ π σ σ ′−−−−→ skip ⟨p, q⟩ ϵ σ σ ′−−−−→ ⟨p, q⟩

¬ σ |= p

⟨p, q⟩σ×
(2.45)

Non-deterministic choice between a countable set of commands C can behave as any
command within C. If any command c ∈ C can terminate, then the choice can terminate;
whereas if any c ∈ C can abort, then the choice can abort [48]. In the next definition, acset

is a function that takes a set of commands C, and returns an object of type Command cset.
Recall from Figure 2.3 (page 29) that the type expected by non-deterministic choice is
Command cset. The success of the application of acset depends on C to be a countable set.
Thus, this requirement is introduced in the set of premises of the next rules.

c ∈ C countable C c α−→ c ′
l

acset C α−→ c ′
c ∈ C countable C cσ×

(
l

acset C)σ×
(2.46)

Note that it is possible for both rules to be active if a C contains a program that aborts. This
means that non-deterministic choice does not force the execution of a program that can abort
to necessarily follow using rule 2.44.

A sequential composition, c1 ; c2, executes c1 until it terminates, after which c2 may begin,
provided c2 begin execution in the state in which c1 terminated. In general, the small-step
semantics formalised in [48] does not force abortive and non-abortive rules to be mutually
exclusive. Such flexibility allows programs to recover from abortion. For example, if the
first component of a sequential composition is a precondition that aborts (e.g. {false} ; c),
then the execution of the second component (c) can either abort or proceed. In the first case
the abortion is propagated to the whole sequential composition by rule 2.47, whereas in the
second case, the effect of the abortion of the precondition is kept local, by using rule 2.44 to
describe the abortive behaviour, and then using rule 2.48 to allow the sequential composition
to continue its execution upon termination of the command that aborted.

48 Foundation

label α ̸= υ c1
α−→ c1

′

c1 ; c2
α−→ c1

′ ; c2

c1σ×

(c1;c2)σ×
(2.47)

pre α = σ c1
υ σ−−→ nil c2

α−→ c2
′

c1 ; c2
α−→ c2

′
(2.48)

Sequential composition c1 ; c2 fails to terminate if c1 fails to terminate. Additionally, a
sequential composition does not anticipate abortion, e.g. the composition c ; abort first
executes c, and only upon termination of c, aborts.

A strict conjunction of two commands c e d behaves in a manner consistent with both c

and d, terminating when both terminate. It only requires one branch to abort for the whole
composition to abort.

label α ̸= υ c1
α−→ c1

′ c2
α−→ c2

′

c1 e c2
α−→ c1

′e c2
′

(2.49)

c1
υ σ−−→ nil c2

υ σ−−→ nil

c1 e c2
υ σ−−→ nil

(2.50)

c1σ×

(c1ec2)σ×

c2σ×

(c1ec2)σ×
(2.51)

The characterisation of parallel composition, c ∥ d, requires a matching relation to
compose a program step of c with an environment step of d (and vice-versa) to give a program
step of the composition. This relation also matches an environment of both commands to
produce an environment step of their composition.

Definition 2.52 (Match). Matching between environment and program steps is defined

inductively as

(π σ σ
′, ϵ σ σ

′) match π σ σ
′

(ϵ σ σ
′, π σ σ

′) match π σ σ
′

2.7 Operational semantics 49

(ϵ σ σ
′, ϵ σ σ

′) match ϵ σ σ
′

The next rule models unfair parallel composition, i.e. it does not prevent one branch from
infinitely overtaking the chance of the other branch perform program steps. A consequence
of the fact that parallel composition used in this work is unfair is that the refinement theory in
this thesis cannot be used to prove properties over programs that depend on the environment
to terminate, such as algorithms involving busy waiting and critical regions.

c1
α1−→ c1

′ c2
α2−→ c2

′ (α1, α2) match α

c1 ∥ c2
α−→ c1

′ ∥ c2
′

(2.53)

If one of the branches terminates earlier than the other, then the remaining branch subsumes
the parallel composition. To ensure that the remaining branch continues its execution from
the state where its sibling terminates, the condition pre α = σ is required to hold.

c2
υ σ−−→ nil c1

α−→ c1
′ pre α = σ

c1 ∥ c2
α−→ c1

′
(2.54)

c1
υ σ−−→ nil c2

α−→ c2
′ pre α = σ

c1 ∥ c2
α−→ c2

′
(2.55)

The whole composition aborts if any of the branches aborts.

c1σ×

(c1∥c2)σ×

c2σ×

(c1∥c2)σ×
(2.56)

A local state command (state y 7→ v · c) introduces and initialises a local variable y

to value v. It also limits the scope of the local variable (y) to the program in its body
(i.e., c), and shadows the global variable y within (state y 7→ v · c)12. Environment steps of
(state y 7→ v · c) are explicitly prevented from reading and modifying the local variable y,

12Recall that variables are not declared in RG-WSL. Variables are meant to be global per definition, with
local variables being introduced using the (state y 7→ v · c) command. Shadowing of variables is illustrated in
Section refsec:shadowing.

50 Foundation

but can access the global variable y. The notation σ(y := v) denotes the state σ with the
value of y updated to v.

c
π (σ(y := v)) (σ ′(y := v ′))−−−−−−−−−−−−−−−→ c ′ σ

′ y = σ y

state y 7→ v · c π σ σ ′−−−−→ state y 7→ v ′ · c ′
(2.57)

c
ϵ σ(y := v) σ ′(y := v)−−−−−−−−−−−−−→ c ′

state y 7→ v · c ϵ σ σ ′−−−−→ state y 7→ v · c ′
(2.58)

c
υ (σ(y := v))−−−−−−−−→ nil

state y 7→ v · c υ σ−−→ nil
(2.59)

cσ(y := v)×

state y 7→ v · cσ×
(2.60)

Rule 2.57 states that program steps do not affect the value of the global variable y

(i.e. σ ′ y = σ y), but can update the value hold by the local variable y from v to v ′. Updates
to the local variable y are recorded using the binder y 7→ v of the state command. Rule 2.58
states that the local variable y is private, thus it cannot be read or modified by the environment
of c. The environment can however to read and modify the global variable y. Rule 2.59
promotes the termination step (υ) in a state which is consistent with the local variable to a
termination step of the state block. When this rule is applied, the local value of y is forgotten
by the operational semantics.

The uses command enforces a syntactic restriction on the set of global variables that a
program can use. A program step π σ σ ′ of uses X · c is permitted if, and only if, c may take
essentially the same program step for every pair of states that is equal to (σ , σ ′) in X. The

term X denotes the complement of the set X, and the notation σ
X
= σ ′ denotes that states σ

and σ ′ are identical with respect to the value of variables in X.

σ
X
= σ

′ ∀σ1 σ1
′. σ

X
= σ1 ∧ σ

′ X= σ1
′∧ σ1

X
= σ1

′−→ c
π σ1 σ1

′
−−−−−→ c ′

uses X · c π σ σ ′−−−−→ uses X · c ′
(2.61)

2.7 Operational semantics 51

Next rules state that a uses command does not constrain environment and termination steps.
Thus, it only imposes restrictions on the implementation of a program, not on the actions of
its environment.

c ϵ σ σ ′−−−−→ c ′

uses X · c ϵ σ σ ′−−−−→ uses X · c ′
(2.62)

c υ σ−−→ nil

uses X · c υ σ−−→ nil
(2.63)

cσ×

uses X · cσ×
(2.64)

2.7.3 Big-step semantics

This section discusses two commands which are described using a big-step semantics in [48]:
test and postcondition command. Although we provide an overview of the big-step semantics,
we did not mechanise it. The reason for not encoding the full-model for the semantics in this
work is because our characterisation of rely guarantee is based on the algebraic approach, and
for that we only need to assume the validity of a set of refinement laws from which we can
derive more laws. The laws taken as basis for the algebraic characterisation corresponds to
the lemmas introduced in the next chapter. The encoding of the semantics is needed to prove
the soundness of these lemmas, but this is not included in the scope of our investigation.

The mechanisation of the big-step semantics provided in [48] would require the extension
of the programming language with commands to represent the result of infinite and partial
computations. These additional complications are not necessary for providing an algebraic
mechanisation of the rely-guarantee refinement calculus discussed in the next chapter. Next
we discuss parts of the big-step semantics of the test command provided in [48]. To preventing
introducing a number of definitions that are not relevant in the scope of this work, we provide
only comments on the big-step semantics for the postcondition command ([_]). For more
details we refer the reader to the original presentation of the semantics in [48].

52 Foundation

Semantics of tests

Tests ([[_]]) are one of the two commands of RG-WSL which are described using a big-step
semantics (_ t

=⇒ _), which gives an end-to-end view of its execution; the other command
is the specification command ([_]). The transition relation c t

=⇒ c ′ takes three arguments: a
command c, a trace t (i.e. a sequence of labelled state transitions), and another command c ′.
It denotes that c evolves to c ′ after the sequence of labelled state transitions has been executed.
For c ′= nil, it represents the complete execution of c.

Only tests that succeed contribute towards the trace of a program, thus the semantics
for tests does not provide a rule to promote the traces of tests which evaluate to false, that
is, failed tests are trace equivalent to magic ≡

d
acset /0. This lack of trace for tests which

evaluate to false is necessary to model commands such as if-then-else (Definition 3.13 on
page 69), where the decision of which branch to execute is modelled using non-deterministic
choice. This formulation is viable because the branch whose conditional evaluates to false is
eliminated from the set of choices, since magic is absorbed by non-deterministic choice. Next
we use the notation t0

st
= t1 to state that traces t0 and t1 are identical modulo finite stuttering

of programs.

e
t0−→e∗ N (VBool True) t0

st
= t1

[[e]]
t1=⇒ skip

(2.65)

The next rule states that a test aborts if the evaluation of an expression results in undefined.

e
t0−→e∗ undefined t0

st
= t1

[[e]]
t1=⇒ abort

(2.66)

The next two rules induce a big-step semantics for primitive commands which have a defined
small-step semantics. Taking c ′ to be nil corresponds to the termination of command c.

c α−→ c ′

c
[α]
=⇒ c ′

(2.67)

2.8 Denotational semantics 53

l1 ̸= [] l2 ̸= []

l = l1 ⌢ l2 c
l1=⇒ c ′′ c ′′

l2=⇒ c ′ pre (hd l2) = post (last l1)

c l
=⇒ c ′

(2.68)

Semantics for postcondition command

The semantics of [q] requires the relation q to be established between the initial (σ) and final
(σ ′) states. This requirement is suppressed in two situations: (i) if the environment does any
step that changes the state or, if the environment unfairly interrupts the execution of [q]. In
the first situation [q] aborts, while in the second situation its execution is described by traces
that contain an infinite and continuous sequence of environment steps. The execution of
[q] allows for immediate termination if σ , σ |= q, thus, a specification such as [idrel] can
terminate immediately.

2.8 Denotational semantics

This section uses the big-step semantics from Section 2.7.3 to define a denotational semantics,
which is the one used to define the refinement relation in the next section. For a finite trace of
steps, t, the relation is written c t

=⇒ nil, and if t is infinite, it is written c t
=⇒ ∞. The meaning

of a command c is the collection of all (finite and infinite) complete traces it may generate
that either terminate or are non-terminating [48].

[[c]] ≡ {t | c t
=⇒ nil ∨ c t

=⇒ ∞} (2.69)

Recall that we have not mechanised the big-step semantics. In the mechanisation (Ap-
pendix A) we introduce the denotational semantics ([[_]]) as an uninterpreted constant. This
type of specification is useful when we want to define the type of a constant without providing
further details about its definition.

In general, the semantics of a command is given for arbitrary environment transitions, as
defined above. However, to be able to discuss refinement in a concurrent setting, as it will
be the case for rely-guarantee, it is often necessary to restrict consideration to a particular
environment. Given a trace t, the environment relation env t can be constructed by collecting
the pairs of states in each of the environment transitions in t. Next, the operator set returns

54 Foundation

the set of elements of a list (e.g. set [a, b, a] = {a, b}).

env t ≡ λ s s ′. ϵ s s ′∈ set t (2.70)

For example, consider the finite trace t0 given next

t0 = [ϵ σ0 σ1, π σ1 σ2, ϵ σ2 σ3, ϵ σ3 σ4, π σ4 σ5, ϵ σ5 σ6, ϵ σ6 σ7, π σ7 σ8, υ σ8]

The relation (env t0) holds only for pairs of states that are related by environment steps (ϵ) in t0.
Thus, assuming the states to be distinct, we have (σ0, σ1 |= env t0) and (¬ (σ1, σ2 |= env t0)).
The traces of c for which the environment steps are defined to satisfy r or stutter are defined
as follows.

[[c]][r] ≡ {t ∈ [[c]] | ⊢ ((env t)⇒ (r ∨ idrel))} (2.71)

The next definition is provided in [48] and serves to structure proofs involving unbounded
choice using the denotational semantics.

Definition 2.72 (Trace countable-choice). Let C be a countable set of commands, and r a

relation,

[[
l

acset C]][r] =
⋃
{[[c]][r] | c ∈ C}

2.9 Refinement

We now introduce a refinement relation (a ⊑[r] c) takes three parameters: the syntactic
encoding of the abstract program (a), a relation representing the context in which the
refinement holds (r), and the syntactic encoding of the concrete program (c). The notion of
refinement that we will introduce corresponds to the intuition of reducing non-determinism.
This means that we consider a program d to be a refinement of a program c if all the
traces d are contained in the traces of c. The relation r abstracts the state transitions of the
environment, and is used to delimit the set of traces that are relevant for establishing the
comparison.

Formally, we say that a program d refines a program c in an environment r if the traces
of d are contained in the traces of c when only environment transitions that respect r are
considered.

2.10 Forward simulation 55

Definition 2.73 (Refinement-in-Context). Let c and d be commands, and r a relation,

c ⊑[r] d ≡ [[d]][r] ⊆ [[c]][true]

An immediate consequence of the definition of refinement is that this is a transitive
and reflexive relation. This formulation is not anti-symmetric because it allows for an
abstract and concrete programs to refine each other even if they are syntactically different,
e.g. c ⊑[r] c e c and c e c ⊑[r] c.

Definition 2.74 (Trace-Equality). Let c and d be commands, and r a relation,

c ∼[r] d ≡ c ⊑[r] d ∧ d ⊑[r] c

If two programs are trace-equivalent in a context r, then it is safe to replace one by the
other in a refinement chain. The laws that govern the substitution of programs in a refinement
chain are discussed in Chapter 4. The next abbreviation is used throughout this thesis to omit
the context relation r in a refinement or trace equality if its value is true13.

Abbreviation 2.75 (Context-Independent). Let c and d be commands,

c ⊑ d ≡ c ⊑[true] d

c ∼ d ≡ c ∼[true] d

2.10 Forward simulation

Forward simulation [75, 76, 73] is a relation between state transition systems that establishes
that a system can reproduce the behaviour of other system. An abstract system a simulates

a concrete system c if it a can match all transitions offered by c. In the rely-guarantee
refinement calculus [48], forward simulation is applied to provide a proof technique that
allows a user to directly employ the small-step operational semantics to carry out refinement

13The commands definition and abbreviation serve different purposes in Isabelle. The former introduces
a concept and provides resources to expand and contract the concept on-demand, thus introducing a new
abstraction for the user. Abbreviations introduce a syntactic sugar without adding resources for expanding and
contracting the abbreviation.

56 Foundation

proofs. The proof technique can be easily summarised as a consequence rule: if a program a

simulates a program c (a ≼[r] c), then a is refined by c (a ⊑[r] c). The small-step semantics
is used as the rule book from which the allowed transitions are taken. Next we formalise
forward simulation using two proof rules.

Definition 2.76 (Forward simulation). Let c and d be commands, and r a relation. We write

c ≼[r] d to denote that program c simulates d in an environment r.

c ≼[r] c

∀α d ′. ((α = ϵ σ σ
′) −→ (σ , σ

′ |= r ∨ idrel)) ∧ d α−→ d ′−→ (∃c ′. c α−→ c ′∧ c ′≼[r] d ′)

c ≼[r] d

To use definition 2.76 to prove refinements, one needs to enumerate all the transitions d α−→ d′

offered by the concrete program d and check that there is a corresponding transition c α−→ c′

offered by the abstract program c, requiring furthermore that d ′ is a refinement of c ′ under the
environment r. To account for refinements for a particular environment r, only pairs of state
(σ , σ ′) such σ , σ ′ |= r are considered in the case-analysis for the case when α = ϵ σ σ ′.
We write a ≼[r] c to denote that a simulates c. The consequence rule connecting forward
simulation and refinement is given by the next lemma.

Lemma 2.77 (Refinement-Forward-Simulation). For any commands a and c, and relation r,

a ≼[r] c =⇒ a ⊑[r] c

Although forward simulation is a sufficient condition to prove refinement, it is not necessary
to establish refinement. In fact, forward simulation is a stronger property than refinement,
i.e., it can distinguish two programs when the refinement relation does not. To illustrate
the distinction between forward simulation and refinement we consider two programs,
Abs ≡ (a ; b) ⊓ (a ; c) and Conc ≡ a ; (b ⊓ c), whose program transitions are abstracted
in Figure 2.6. We can show Abs ⊑ Conc using the definition of refinement presented in
Section 2.9, but we cannot show this refinement via forward simulation. The reason for
forward simulation to fail as a proof strategy for this refinement is that it exhausts the
possibility of choices at every transition, and it distinguishes two programs if the concrete

2.10 Forward simulation 57

a a

b c

Conc

a

b c

Abs

Abs⊑Conc

Abs �Conc

Figure 2.6 Forward simulation vs. refinement

program offers more choices of transitions than the abstract program. In this example,
Conc postpones the non-deterministic choice until the execution of a terminates, while
in the abstract program Abs, this choice precedes the execution of a. This difference is
indistinguishable from the perspective of a set of traces for these programs, and therefore the
definition of refinement based on reverse trace inclusion ignores this difference.

Forward simulation also admits a game-theoretic interpretation [105]. A forward simula-
tion proof can be viewed as an interactive game between two players, Attacker and Defender.
To explain the game, we refer to c as the abstract program, and d as the concrete program.
For a pair of abstract and concrete programs, and a relation r, the game consists of a series
of rounds. For each round, Attacker chooses a labelled state transition using the concrete
program. Next, Defender must match this transition using an equally labelled state transition
and the abstract program. At the end of each round, both players update their programs
to reflect the transitions taken (that is, the new state and the new shape of the concrete
and abstract programs). If one of the players is not able to perform his next move then
his opponent wins. Infinite plays are won by Defender; this allows a decision to be taken
when both the concrete and abstract programs are non-terminating, and the behaviour of the
concrete is a subset of the behaviour of the abstract. Attacker can only choose environment
transitions that satisfy r, that is, if α = ϵ σ σ ′, then it has to be the case that σ , σ ′ |= r.

Refinement proofs constructed using definition 2.76 can be quite inefficient. Consider, for
example, an abstract program c, and a concrete program uses X · c. To prove that the abstract
program simulates the concrete, one has to apply induction on the structure of c. This proof
strategy generates one case per each primitive constructor of RG-WSL (Figure 2.3), totaling
11 cases. For some situations like this, involving an infinite play between Attacker and
Defender, a more compact proof can be produced using an alternative formulation of forward
simulation based on observational equivalence (also known as stratified or approximants to

bisimilarity [100, 50]), which is presented next. This concept extends the notion of forward
simulation with an extra parameter of type IN (_ ≼[n,_] _). The additional parameter n

58 Foundation

imposes an upper limit on the number of rounds that Defender has to defeat Attacker. A proof
by forward simulation corresponds to showing that, for any number of rounds n, Defender
wins. Going back to our example, to prove that c simulates uses X · c we can universally
quantify c and use induction over naturals on the new parameter n. Two cases have to be
considered: zero and successor. In this example, the successor case requires case split on
the type of transition performed by the concrete program, but the case analysis is done for a
single quantified program (c), rather than for each of the 11 language constructors. Next we
present the concept of stratified forward simulation, and a law representing its relationship
with refinement.

Definition 2.78 (Stratified-Forward-Simulation). Let c and d be commands, n be a natural

number and r a relation. We write c ≼[n,r] d to denote that program c simulates d in an

environment r up to the first n transitions.

c ≼[0,r] d

∀α d ′. (α = ϵ σ σ
′−→ σ , σ

′ |= r ∨ idrel) ∧ d α−→ d ′−→ (∃c ′. c α−→ c ′∧ c ′≼[k,r] d ′)

c ≼[Suc k,r] d

Lemma 2.79 (Refinement-Stratified-Forward-Simulation). For any commands a and c, and

relation r,

∀n. a ≼[n,r] c =⇒ a ⊑[r] c

Note that forward simulation cannot be used to prove laws that have the refinement
symbol among the premises, such as transitivity and monotonicity laws. This limitation is
connected with the fact that refinement and forward simulation are not equivalent concepts.
Thus, it is not possible to extract information from the premises about the internal transitions,
which are generally needed to complete proofs by forward simulation.

2.11 Unrestricted variables

Refinement laws that introduce local variables and restrict access to variables require the
concept of free variables of a program for their formalisation. The characterisation of the

2.11 Unrestricted variables 59

set of free variables for deep-embedded languages is straightforward: it just requires pattern
matching on the constructors of the language. On the other hand, the definition of free
variables for shallow-embedded languages is a tricky task. The problem in this case is that it
is not possible to pattern match against a relation as it does not have a predefined syntax.

The difficulty in defining the set of free variables for RG-WSL is determining the set of
free variables for shallow-embedded relations. The closest to free-variables for relations we
can provide is the minimal set of variables a relation depends on, which we call the alphabet

of the relation. It is defined as14

α g ≡ SOME X. ⊢ depends-only (g, X) ∧ (∀Y. ⊢ depends-only (g, Y) −→ X ⊆ Y)

This formalisation of alphabets for relations, however, lacks a much needed decomposition
rule to infer the alphabet of composite relations (e.g. g ∧ h, g ∨ h, etc.) from the alphabet of
their parts. The problem is better discussed by considering the next two relations which are
defined using conjunction of simpler relations.

(3 < x) ∨ (x < 3)

(x = 3) ∨ (x ̸= 3)

For the first example, the alphabet coincides with the union of the alphabet of the parts, but
in the second example the alphabet is the empty set instead of the union of the alphabet of
the parts. In practice, there is no general method to decompose the alphabet of a relation in
terms of the alphabet of the parts.

Investigating the use of free variables in the RG refinement calculus of [48] we identify
two situations that summarise the application scenarios:

i to determine if an implementation uses variables outside a set specified by a user;

ii to determine conditions under which a local variable can be introduced.

For (i), only code needs to be considered and, for this subset of RG-WSL, a definition of free
variables is formalised on page 111 (Def. 3.107). For (ii), we need a mechanism to decide if a
program c can be nested in a local variable block of x without capturing any free occurrences
of x. The usual condition for (ii) is to require that x is not free in c, i.e. x is fresh in c. The

14The notation SOME X. P X refers to Hilbert’s ϵ-operator.

60 Foundation

usage of shallow-embedding, however, restricts our ability to test if a variable is fresh in
RG-WSL. Nonetheless, we can still decide if a variable is unrestricted [37], i.e. its value
is not restricted by a program, and use this condition to ensure no capturing of restricted
variables.

To illustrate the differences among free, fresh and unrestricted variables we consider
a relation q defined as x ′ = y + w − y. The set of free-variables of q consists of those
variables which are syntactically referred by q, i.e. free (q) = {x, y, w}; whereas the set
of fresh variables is the complement of the set of free variables (i.e. fresh q = {x, y, z}).
Finally, the set of unrestricted variables is formed by all variables that are not restricted
by q, i.e. unrestricted q = {x, w}. This example is summarised in Figure 2.7. The fact
that y is unrestricted in q means that a program such as [q], i.e. a postcondition command
supplied with a relation q, can be nested in a local variable block of y without affecting
restrictions already imposed over the global variable y. The next two definitions formalise
the notion of unrestricted variables of a program. The first denotes a set of free variables
of an expression (Figure 2.2 on page 22), whereas the second inductively defines the set of
unrestricted variables for each command of RG-WSL.

free unrestricted

𝑞 ≡ (𝑥′ = 𝑦 + 𝑤 − 𝑦)

𝑓𝑟𝑒𝑒 = {𝑥, 𝑤, 𝑦}

𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 = {𝑥,𝑤}

𝑓𝑟𝑒𝑒 ∩ 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 = {𝑦}

𝑓𝑟𝑒𝑠ℎ = {𝑥,𝑤, 𝑦}

Figure 2.7 Unrestricted variables

Definition 2.80 (Free-Exp). Expressions are deeply-embedded, and thus enjoy a notion of

free variables. Let c be a constant, v a variable, and e, e1 and e2 be expressions. The set of

free variables of an expression is defined on the structure of expressions as follows:

free-exp (N c) = /0

2.11 Unrestricted variables 61

free-exp (V v) = {v}

free-exp (UOp uop e) = free-exp e

free-exp (BOp bop e1 e2) = free-exp e1 ∪ free-exp e2

Definition 2.81 (Unrestricted-Variable). Let c and d be commands, x be a variable, e be an

expression, and b be a boolean expression, and remember that depends-only is defined in

Figure 2.4. The set of unrestricted variables of a program is inductively defined as follows,

⊢ depends-only (p, {x})

unrest(x, {p})

⊢ depends-only (q, {x})

unrest(x, [q])

⊢ depends-only (p, {x})
⊢ depends-only (q, {x})

unrest(x, ⟨p, q⟩)

unrest(x, c) unrest(x, d)

unrest(x, c e d)

unrest(x, c) unrest(x, d)

unrest(x, c ; d)

unrest(x, c) unrest(x, d)

unrest(x, c ∥ d)

∀c∈C. unrest(x, c)

unrest(x,
l

acset C)

x /∈ free-exp b

unrest(x, [[b]])

y = x ∨ unrest(y, c)

unrest(y, state x 7→ v · c)

unrest(x, c)

unrest(x, uses X · c)

A variable x is unrestricted in a postcondition [q], precondition command {p} or atomic
command ⟨p, q⟩, if the relations used to instantiate any of these commands do not depend
on x. A variable x is unrestricted in a test command [[b]] if x does not occur free on b, that
is, x /∈ free-exp b. Any variable that is unrestricted in c is also unrestricted in state x 7→ v · c.
Moreover, the variable x is by definition unrestricted in state x 7→ v · c; this is to allow the
nesting of local variable blocks of the same variable. We omit the description of remaining
cases as these are straightforward.

62 Foundation

2.12 Discussion and summary of contributions

This chapter introduced concepts that are required to understand the remaining chapters
and our characterisation of [48] in Isabelle/HOL. A key contribution with respect to [48] is
that all details were teased out and iron out with necessary adjustments and corrections as
discussed in following chapters. In particular, we use Isabelle to assist the preparation of this
manuscript [40]. This means that parts of this thesis are automatically extracted from our
Isabelle theories, and are inspected and validated by Isabelle prior to the generation of this
document. Our contributions in this chapter are:

1. A characterisation of a value model for variables that suits the derivation of examples
involving natural numbers, integers, booleans, sets, arrays and option types (Sec-
tion 2.2);

2. An extensible expression language (Exp) that incorporates a mechanism to check
undefidness of expressions (Sections 2.3.2 and 2.3.3);

3. Identification and discussion of a serious issue involving the syntactic characterisation
of RG-WSL (Section 2.3.4);

4. A compositional treatment of logical interpretation of relations (Section 2.6);

5. Mechanisation of the small-step operational semantics of RG-WSL (Section 2.7.2);

6. An efficient characterisation of forward simulation, which provides an interface for
using the small-step semantics for performing refinement proofs in Chapter 5 (Sec-
tion 2.10);

7. A characterisation of unrestricted variables to approximate the notion of free-variables
for shallow-embedded programs (Section 2.11).

Most of these contributions extrapolate the scope of this work and can be reused in similar
situations involving an algebraic characterisation of a refinement calculus in a proof assistant.
Next, we reflect upon aspects that could be improved in our encoding.

2.12.1 Alternative approaches to formalise states

In this work we represent states as total functions, but there are alternative approaches to
encoding the state of a program in a proof assistant. In the state as record approach [2, 82],
each field of a record represents a variable of a program. Comparatively to the state as total

2.12 Discussion and summary of contributions 63

function approach, the state as records has the advantage of enforcing that relations are type
consistent, but it has the disadvantage of not allowing the user to quantify over program
variables. That is because it is not possible to quantify over the fields of a record in Isabelle,
while it is possible to quantify elements in the domain of a function.

The state as total function can be described as weakly typed, in the sense that the datatype
vvalue masks the real type of program variables, i.e. variables assigned to distinct values
such as VInt 0 and VBool False have the same explicit type, namely vvalue, instead of being
assigned to the implicit types ZZ and IB, respectively. Thus, in our representation, one can
write a relation that holds for pairs of states that assign variables to distinct constructors, e.g.
idset {x} holds for σ and σ ′, where

σ=(λ s. VBool True)(x := VInt 0)

σ
′=λ s. VInt 0

Note that state σ assigns VBool True to any variables except x, while σ ′ assigns VInt 0 to all
variables. Since the value of x is the same for both states, we have σ , σ ′ |= idset {x}. This
means that the implicit type of a variable can change in a specification. In the state as record
approach the type of each variable is declared when defining the record that represents the
state.

To effectively combine the state as records approach and the shallow-embedding of
programming languages, the language has to be parametric on the state. This parameterisation
allows the theory development to be split into state-free and state-dependent laws and
definitions. On an abstract level the access to the state is defined using a lookup and update
functions, which provide an uniform interface for reading/writing on the state, respectively.
The specification of lookup and update functions are complemented at the moment of
application of the theory. While such division looks attractive, we struggled to reach a
satisfactory level of automation while trying to setup the abstraction of states in this manner.
Alternative ways of encoding states include tuples and locales. An excellent survey of the
existing approaches to characterise states is presented in [101], which also discusses the use
of locales to represent the state.

It is worth noting that the design of the expression language (Figure 2.2) is independent
from the choice of representation for the state. The expression language adopted in this
thesis is inherently weakly typed, because it unifies expressions of different types using a
single grammar. To ensure that refinement language that is type consistent by construction,
the expression language would need to be adapted. This would require boolean expressions,

64 Foundation

arithmetic expressions, list expressions, etc. to be placed into separate syntactic categories,
and the type of variables to be explicitly declared before their first use.

2.12.2 Semantics

Forward simulation Our experience using the small-step semantics to do forward sim-
ulation proofs is quite narrow. We used it to prove just about a dozen properties over
primitive commands of RG-WSL. We observed that for some situations, it would be easier
to prove properties if the small-step semantics were adapted to eliminate the overlapping
between abortive and non-abortive execution scenarios. To make this point clearer, consider
for example the abstract program abort and the concrete program (abort ; c). Law 2.79
(Refinement-Stratified-Forward-Simulation) allows us to use stratified forward simulation to
prove that the concrete program refines the abstract one. For that, we have to show

∀n. abort ≼[n,r] abort ; c (2.82)

This is a type of proof where we can reduce structural induction over RG-WSL (c) to
induction over natural numbers (n). In practice, we first have to prove

∀c. abort ≼[n,r] abort ; c (2.83)

by induction on n and use this result to show that (2.82) holds. In this example the extra
work in the proof of (2.83) comes from the fact that rules (2.47) and (2.48) (page 48) allow a
program that has aborted to recover from abortion. This is because these rules do not force
a sequential composition whose leftmost program has aborted to take the execution path
formalised by rule (2.44) (page 46). Consequently, a sequential composition c1 ; c2 where c1

aborts can recover from abortion, i.e. the execution of c2 can proceed from the state where
c1 terminates. This flexibility causes a mismatch between the induction hypothesis and the
conclusion in the proof of the inductive case of (2.83) when rule (2.48) is used in the case of
a program step (π). To solve the problem, we have two options: either we adapt rules (2.47)
and (2.48) to make abortive and non-abortive execution scenarios mutually exclusive, or we
reformulate the conjecture (2.83) to prevent the mismatch between the induction hypothesis
and the conclusion. In our experiments, we have always taken the second path, that is, to
adjust conjectures making them more generic and suitable for inductive proofs. In this case,

2.12 Discussion and summary of contributions 65

we would prove

∀c. abort ≼[n,r] c (2.84)

using induction on n and use this result to prove 2.83. Nevertheless, it seems a reasonable
choice to adapt the small-step semantics to make abortive and normal execution cases
mutually exclusive. This would make the semantics more deterministic, therefore easier to
do proofs with. We believe that this modification would not invalidate the proof of lemmas
assumed from [48], but the full understanding of the impact of this modification would
demand more experimentation with the semantics.

Expression evaluation Our encoding of the rules for expression evaluation introduced in
Section 2.7.1 use separate cases for defined and undefined expressions. In [48], the rules
for expression evaluation are condensed, and the signatures eval-binary and eval-unary are
expected to handle undefinedness. The advantage of our presentation is that it introduces a
novel and concrete method to handle undefinedness using the definition of binary and unary
operators.

2.12.3 Well-founded relations

Isabelle/HOL already comes with the theory Wellfounded containing a formalisation of
well-foundedness for curried relations (wfP) and proof rules to show that a specific relation
is well-founded. We experimented with applying this theory to show that the relations used
to introduce loops in the examples of Chapter 6 are well-founded, but we did not succeed. To
remedy this situation, we introduced the alternative definition of well-foundedness described
in Section 2.4.4. This definition also showed it be difficult to apply in practice. Currently,
we do not know how to prove well-foundedness for the relevant relations in Chapter 6. The
derivations presented in Chapter 6 use locales to assume that the relations used to introduce
loops are well-founded. Chapter 8 highlights the need of further experimentation involving
the concept of well-foundedness as future work.

2.12.4 Unfair parallelism

The semantics for parallel composition in [48] and in this work does not impose fairness.
This can be seen in rule (2.53) on page 49. This formulation allows a non-terminating branch
of parallel composition to infinitely overtake other branches. Unfair parallelism can only

66 Foundation

be used to prove a limited class of properties about algorithms involving busy waiting and
critical regions. For example, consider the program

x:=1 ; ((while x = 0 do skip) ∥ x:=0)

Unless we assume parallel composition to be fair, we cannot prove that this program ter-
minates. This is because, if the assignment of zero to x is never executed in the parallel
composition, then the while loop does not terminate. In general, to prove properties about
programs that depend on its environment to terminate, one has to rely on each branch of
parallel composition to be given opportunity to execute infinitely often, and unfair parallelism
breaks this assumption.

To impose fairness, it is necessary to eliminate traces containing an infinite sequence of
program steps of one process while other process can make a program step [43]. Modelling
of fair parallelism is well understood for denotational semantics [21, 32], but it is not clear to
us how this can be formalised using an operational semantics.

Chapter 3

Rely-guarantee refinement calculus

The main characteristic of intelligent thinking is that one is willing and able to study

in depth an aspect of one’s subject matter in isolation [...]. The crucial choice is, of

course, what aspects to study ‘in isolation’, how to disentangle the original

amorphous knot of obligations, constraints and goals into a set of ‘concerns’ that

admit a reasonably effective separation.

Edsger W. Dijkstra, A discipline of programming, 1976

This chapter introduces rely-guarantee refinement calculus, a programming methodology
for designing shared-variable concurrent programs. The material introduced here is taken
from [48], but is adapted to fit the particular encoding of RG-WSL discussed in Chapter 2.
Except for the laws where we found inconsistencies in the proofs, we omit proofs already
available in [48]. We call lemmas the theorems whose proof directly refers to the semantics
of the RG-WSL, and we call laws those whose proof can be done in terms of previously
defined lemmas.

Standard programming constructs, such as assignment, conditionals and loops are defined
in terms of RG-WSL in Section 3.1. Rely and guarantee constructors are introduced later as
independent commands. The separation between primitive commands and derived commands
is reflected in proofs: properties about derived commands are proved by expanding their
definitions and then applying the properties of the primitive commands that are part of the
definition. An exception to this strategy are the iterated commands, which are defined using
fix-point operators. Their properties are derived from lemmas that accompany their definition.

Section 3.2 discuss the concept of stability and single reference property, which play a
key role in the formalisation of laws involving rely conditions. Basic laws of refinement are
introduced in Section 3.3, and rely and guarantee commands are the subject of discussion in

67

68 Rely-guarantee refinement calculus

skip ≡ {true} (3.1)
abort ≡ {false} (3.2)
⟨q⟩ ≡ ⟨true, q⟩ (3.3)

[p, q] ≡ {p} ; [q] (3.4)

magic ≡
l

acset /0 (3.5)

c1 ⊓ c2 ≡
l

acset {c1, c2} (3.6)

c⋆ ≡ νx · skip ⊓ c; x (3.7)
c∞ ≡ µx · c; x (3.8)
cω ≡ µx · skip ⊓ c; x (3.9)

c⋆+ ≡ c⋆ ; c (3.10)
cω+ ≡ cω ; c (3.11)

Figure 3.1 Derived commands

Sections 3.4-3.7. Introduction of parallelism is discussed in Section 3.8. The final sections
treat expression evaluation, local variables, syntactic control of interference, control structures
and assignment. This chapter ends with discussion and summary of contributions.

While mechanising the theory, we discovered the need for extending RG-WSL and also
adding extra laws to reproduce the proofs suggested in [48]. Some of these extensions are
simple lemmas and laws, which are assumed to hold, but were not spelled out in [48]; some
are minor contributions that on their own do not justify a section in Chapter 5 (Extensions
to rely-guarantee algebra), where more solid contributions appear. To distinguish the extra
laws and definitions from those already given in the literature we extend their label with the
keyword contrib.

3.1 Derived commands

The following conventions are used to present the derived commands in this section: q is a
relation, p is a predicate, b is a boolean expression, v ranges over values that variables can
take on, and c, c1 and c2 range over commands. Figure 3.1 formalises derived commands in
terms of the primitive ones from Section 2.3.

Skip is the command that does a termination step immediately (3.1), and abort is the most
non-deterministic program (3.2). An atomic command with no assumptions on the before
state can be abbreviated by omitting its precondition true (3.3). The specification command

3.1 Derived commands 69

is the sequential composition of the precondition and postcondition commands (3.4). Magic
is defined as an empty choice (3.5); from an operational perspective, it offers no transition
whatsoever. A non-deterministic choice over two commands is abbreviated using the infix
operator ⊓ (3.6). The notation µx · F(x) denotes that x is the least fix point to satisfy F with
respect to the refinement ordering (⊑). Similarly, νx · skip denotes the greatest fix point.
Finite (c⋆), infinite (c∞), and potentially infinite (cω) iteration are defined via fixed points
(3.7-3.9). These definitions are then used to define non-empty iteration (c⋆+, cω+). Next
we discuss derived commands whose definition is more elaborated. These are also taken
from [48].

Assignment

An assignment consists of two stages: multi-step expression evaluation and variable update.
The evaluation stage non-deterministically chooses a value v, such that the test [[N v = e]]

succeeds, and the update stage sets x to v via a single atomic step, leaving variables other
than x unchanged (idset {x}).

x:=e ≡
l

acset {[[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ | True} (3.12)

The logical transfer of the value v between the commands is possible by enclosing both
commands into a non-deterministic choice and universally quantifying v by setting it as a
logical variable of the set comprehension. This formulation assures that we are considering
all possible evaluations of e instead of a particular evaluation. This is different from previous
works [59–61, 104], which treated assignment as atomic. This definition enables derivation of
programs considering fine-grain concurrency, where only the reading and writing operations
over variables are assumed to be atomic. In this direction, it differs from definitions of
assignment which assume all occurrences of the same variable to be fetched simultaneously,
such as the one proposed in [34].

Conditionals

Conditionals are defined via the non-deterministic choice between two branches. As the
semantics of tests does not provide evaluations to false, any test that would evaluate to false
is eliminated from the non-deterministic composition (i.e. the corresponding branch becomes
equivalent to magic, which is absorbed by the choice).

if b then c0 else c1 ≡ ([[b]] ; c0) ⊓ ([[¬b]] ; c1) (3.13)

70 Rely-guarantee refinement calculus

Loops

To formalise while loops, a sequential composition of a test ([[b]]) and a program (c) is
iterated using the omega iterator (([[b]] ; c)ω). The omega iterator denotes a potentially
infinite loop, and its use with the test command suffice to model the behaviour of terminating
and non-terminating while loops.

while b do c ≡ ([[b]] ; c)ω ; [[¬b]] (3.14)

Loops that terminate must have their guard (b) falsified by the body of the loop (c), or
the environment of the loop. A test is used to model that the loop guard is falsified upon
termination of the loop.

Local variables

Local variables are defined using the state command, which provides the abstraction of
hiding variables at the level of traces. Local variables are shielded from external interference
and have no predefined initial value.

var x · c ≡
l

acset {state x 7→ v · c | True} (3.15)

Note that local variables as well as global variables are untyped. Thus, a variable can be
assigned to values of different types during the lifetime of a program (e.g. booleans, integers,
etc.), without affecting the validity of the program. Type consistence could be enforced, for
example, by using conditions to check that once a variable is assigned to a vvalue with a
certain constructor (e.g. VBool), it is never assigned to a vvalue with a different constructor
(e.g. VInt).

3.1.1 Precedence and associativity

Figure 3.2 describes the precedence and associativity for binary operators of RG-WSL. This
convention is illustrated in Table 3.1 and is adopted in rest of this thesis.

3.2 Stability 71

80
Seq. comp. (;)

70
Parallel composition (∥)

Strict Conjunction (⋒)
Binary non-determinism (⊓)

Uses (𝐮𝐬𝐞𝐬)
State (𝐬𝐭𝐚𝐭𝐞)

Local variable (𝐯𝐚𝐫)

Higher precedenceLower precedence

90
Finite (

⋆
)

Infinite (∞)
Omega (𝜔)

Non-empty finite (
⋆ +

)
Non-empty omega(𝜔

+
)

Assignment (:=)

75
Non-deterministic choice (⨅)

Figure 3.2 Precedence and associativity. Commands are aligned according to their precedence
order. The higher the number at the top of the column, the higher the precedence of the
operators at that column. Sequential composition is left-associative and all other binary
commands in this figure are right-associative.

Fully parenthesised Using precedence and associativity

d ⊓ (c ; x) d ⊓ c ; b

skip ⊓ (c ; (c⋆)) skip ⊓ c ; c⋆

((c; d) ∥ (⟨true⟩ω)) e f (c ; d ∥ ⟨true⟩ω) e f

(a ∥ b) ∥ c (a ∥ b) ∥ c

(a; b); c a ; b ; c

Table 3.1 Precedence and associativity for derived commands

3.2 Stability

A specification [p, q] is stable under a relation r if, and only if, three conditions hold1:

• ⊢ r⇒ (p⇒ p‘), i.e. p is preserved by interference steps satisfying r;

1This chapter uses both precedence order and type distinction to omit parenthesis around logical evaluation
(⊢). For example, type distinction combined with precedence order allows us to omit all but the innermost
parenthesis in ⊢ ((p ∧ (r ; q))⇒ q), and omit all parenthesis in (⊢ (p0 ⇒ p1)) ∧ (⊢ ((p0 ∧ q1)⇒ q0)). Re-
call from Section 2.4 that ∧r,⇒r, and ;r are relational operators representing conjunction (left-associative),
implication (right-associative) and relational composition (right-associative). Grave accent (‘) is used to encode
the concept of post-state for predicates. Moreover, we omit the subscript r in the relational operators if its clear
from the context that we are referring to binary relations.

72 Rely-guarantee refinement calculus

• ⊢ p ∧ (r ; q)⇒ q, i.e. q is preserved by preceding interference steps satisfying r;

• ⊢ p ∧ (q ; r)⇒ q, i.e. q is preserved by following interference steps satisfying r.

Intuitively this means that r preserves the precondition p and the postcondition q. This
concept is applied to determine the feasibility of implementing a specification in the context
of a rely condition. Formally we write tol-interf (p, q, r) to represent that the conditions
above hold for a predicate p and relations q and r.

Definition 3.16 (Tolerate-Interference). Let p a predicate, and q and r relations. The

specification [p, q] tolerates interference r if,

tol-interf (p, q, r) ≡ ⊢ r⇒ (p⇒ p‘) ∧

⊢ p ∧ (r ; q)⇒ q ∧

⊢ p ∧ (q ; r)⇒ q

Law 3.17 (Closure-Interference). For any predicate p and relations q and r, such that

tol-interf (p, q, r), the following hold.

⊢ r∗∗⇒ p⇒ p‘ (3.17a)

⊢ p ∧ (r∗∗ ; q ; r∗∗)⇒ q (3.17b)

3.2.1 Single reference property

An expression e satisfies the single reference property with respect to a binary relation r, if e

contains at most one variable that is modified by r; additionally, e must contain no more than
one reference to such a variable. Intuitively, this property characterises that an expression
has at most a single reference to an unstable variable with respect to r. To illustrate this
property, consider the situation where y is a local variable (and hence, cannot be modified by
the environment) and x and z are shared variables that are monotonically increased by the
environment. The boolean expression x ≤ y respects the single reference property, because it
only contains no more than a reference to an unstable variable, which in this situation is x.
On the other hand, the boolean expressions x + x ≤ y and x ≤ y + z do not satisfy the single

3.3 Basic refinement laws 73

reference property, because they either have more than one unstable variable, or have more
than a reference to an unstable variable.

Programs derived using rely-guarantee refinement calculus observe the single reference
property in the guards of conditionals and loops. This means that these expressions have
no more than one reference to unstable variables. The single reference property allows the
multi-step evaluation of an expression (performed by the test command) to be abstracted
using a relation and the postcondition command.

3.3 Basic refinement laws

In general, the application of refinement laws require the user to perform preparatory steps in
between the application of relevant laws2. These steps generally correspond to weakening
a precondition, strengthening of a postcondition, splitting a specification into a sequential
composition, weakening the context of the refinement relation, etc. This section presents
laws which are relevant on their own, but that are generally applied as preparatory steps. It
follows directly from the definition of refinement (Def. 2.73) that it is reflexive, transitive
and monotonic with respect to the context (r).

Law 3.18 (Refinement-Preorder). For any commands c, d and f, and relations r, r0 and r1,

c ⊑ c (3.18a)

c ⊑[r] d ∧ d ⊑[r] f =⇒ c ⊑[r] f (3.18b)

⊢ r0⇒ r1 ∨ idrel ∧ c ⊑[r1] d =⇒ c ⊑[r0] d (3.18c)

Remark. Most laws in this chapter hold independently of the refinement context, that is,

r = true. Thus, to enable their application one first needs to apply monotonicity (law 3.18c)

to weaken the context if it is different from true. However, if such weakening is done carelessly

it blocks the application of subsequent context-specific laws. To avoid losing the refinement

context one needs to apply monotonicity point-wisely. This is done by splitting the refinement

chain into two sub-proofs via transitivity (law 3.18b), and by applying monotonicity only to

the relevant branch. Since the use of the laws above is quite frequent, we omit the reference

to them in paper proofs. For full details on proofs, we refer the reader to the Isabelle theories

in Appendix A.

2A recurrent example of this is the introduction of loops, that requires the specification command to be in a
predefined shape for its introduction. See, for example, discussion about step R19 on page 192.

74 Rely-guarantee refinement calculus

A precondition declares assumptions on the before state that a program expects to hold,
and a postcondition declares commitments a program must satisfy under its termination.
Weakening a precondition corresponds to removing assumptions on the before state, and
strengthening a postcondition corresponds to reducing non-determinism on the after state.

Lemma 3.19 (Consequence). For any predicates p0 and p1, and relations q0 and q1,

⊢ p0⇒ p1 ∧ ⊢ p0 ∧ q1⇒ q0 =⇒ [p0, q0] ⊑ [p1, q1] (3.19a)

⊢ p0⇒ p1 ∧ ⊢ p0 ∧ q1⇒ q0 =⇒ ⟨p0, q0⟩ ⊑ ⟨p1, q1⟩ (3.19b)

⊢ p0⇒ p1 =⇒ {p0} ⊑ {p1} (3.19c)

The precondition command sequentially distributes over parallel composition, strict conjunc-
tion and itself. In the last case, a sequential composition of preconditions is semantically
equivalent (∼) to a single precondition that conjoins the predicates enclosed in the sequential
composition.

Lemma 3.20 (Dist-Precondition). For any predicates p, p0 and p1, and commands c, d,

{p} ; (c ∥ d) ∼ ({p} ; c) ∥ ({p} ; d) (3.20a)

{p} ; (c e d) ∼ ({p} ; c) e ({p} ; d) (3.20b)

{p0} ; {p1} ∼ {p0 ∧ p1} (3.20c)

A specification ([p, q]) allows any number of atomic steps to be used to implement a desired
postcondition, and an atomic specification (⟨p, q⟩) requires the implementation to be achieved
in a single atomic step. Additionally, a specification aborts in any environment different from
idrel, while an atomic command cannot abort unless its precondition does not hold.

Lemma 3.21 (Make-Atomic). For any predicate p and relation r,

[p, q] ⊑ ⟨p, q⟩

The specification command aborts in any context different from idrel. Thus, to refine the
specification command one only needs to concern about the refinement in an idrel context.

3.3 Basic refinement laws 75

Lemma 3.22 (Refine-Specification). For any predicate p and relation q,

[p, q] ⊑[idrel] c ⇔ [p, q] ⊑ c

A postcondition that already holds in the before state can be implemented by a program that
performs no program steps and terminates immediately (skip).

Lemma 3.23 (Specification-Idrel). For any predicate p

[p, idrel ∧ p‘] ⊑ skip

A specification [p, q0 ; q1] can be implemented via a sequential composition of specifications
that progressively establish the desired postcondition. This is quite similar to the standard
refinement calculus [78].

Lemma (contrib.) 3.24 (Relational-Composition-Split). For any predicates p and mid,

and relations q0 and q1,

[p, q0 ; q1] ⊑ [p, q0 ∧ mid‘] ; [mid, q1]

In contrast to [48], the next law is derived from predefined lemmas instead of being proved
directly using the semantics of RG-WSL.

Law 3.25 (Sequential). For any predicates p and mid, and relations q, q0 and q1, such that

⊢ p ∧ (q0 ∧ mid‘ ; q1)⇒ q,

[p, q] ⊑ [p, q0 ∧ mid‘] ; [mid, q1]

Proof.

[p, q]

⊑ by lemma 3.19a (Consequence) and assumption

[p, q0 ∧ mid‘ ; q1]

⊑ by law 3.24 (Relational-Composition-Split)

[p, q0 ∧ mid‘] ; [mid, q1]

76 Rely-guarantee refinement calculus

⊑ by logical simplification

[p, q0 ∧ mid‘] ; [mid, q1]

Remark. The choice of mid impacts on the feasibility of the refined program. The choice

of a too strong predicate for mid, e.g. false, introduces a specification that cannot be

implemented by code. The choice of a too weak predicate for mid, e.g. true, may fail to

provide relevant information to discharge proof obligations in later stages of a derivation,

such as implementation of assignments. In general, a good choice for mid is one that can

maximise the transference of knowledge about the state of a program.

3.3.1 Associativity, commutativity and distributivity

All binary primitive commands of RG-WSL are associative; additionally, strict conjunction
and parallel composition are commutative. Sequential composition distributes over binary
non-deterministic choice on the left, and unbounded non-deterministic choice on the right.
Strict conjunction and parallel composition distribute on the right over unbounded non-
deterministic choice. The uses block distributes over several commands.

Lemma 3.26 (Assoc-Comm-Dist). For any commands a, b and c, and set of variables X,

and set commands C and D, such that D ̸= /0,

a ; (b ; c) ∼ (a ; b) ; c (3.26a)

a ∥ (b ∥ c) ∼ (a ∥ b) ∥ c (3.26b)

c0 e (c1 e c2) ∼ (a e b) e c (3.26c)

a e b ∼ b e a (3.26d)

c ∥ d ∼ d ∥ c (3.26e)

a ; (c ⊓ d) ∼ (a ; c) ⊓ (a ; d) (3.26f)
l

acset D e c ∼
l

acset {c e d | d ∈ D} (3.26g)
l

acset C ; d ∼
l

acset {c ; d | c ∈ C} (3.26h)
l

acset C ∥ d ∼
l

acset {c ∥ d | c ∈ C} (3.26i)

uses X ·
l

acset C ∼
l

acset {uses X · c | c ∈ C} (3.26j)

uses X · c e d ∼ (uses X · c) e (uses X · d) (3.26k)

uses X · c ; d ∼ (uses X · c) ; (uses X · d) (3.26l)

uses X · c ∥ d ∼ (uses X · c) ∥ (uses X · d) (3.26m)

3.3 Basic refinement laws 77

uses X · c⋆ ∼ (uses X · c)⋆ (3.26n)

uses X · c∞ ∼ (uses X · c)∞ (3.26o)

All the lemmas introduced in this chapter are used in proofs of derived laws or examples (in
Chapter 6) at least once. This means that this chapter contains no orphan lemmas, in the
sense of properties which are introduced but never used.

3.3.2 Monotonicity

A key feature of a refinement calculus is the ability to refine parts of a program independently.
Compositionality is only enjoyed for programming constructs that are monotonic with respect
to the refinement order. The following lemma covers monotonicity properties of RG-WSL
and derived commands. For a gentle revision of precedence (Section 3.1.1), law 3.27a is
presented fully parenthetised. All parentheses in this law can be omitted.

Lemma 3.27 (Monotonic-WSL). For any commands a, b, c and d, relation r, and variable x

and set of variables X,

((a ⊑[r] d0) ∧ (c1 ⊑[r] d1)) =⇒ ((a ; c) ⊑[r] (b ; d)) (3.27a)

a ⊑[r] b ∧ c ⊑[r] d =⇒ a e c ⊑[r] b e d (3.27b)

c ⊑[idset {x}] d =⇒ var x · c ⊑ var x · d (3.27c)

c ⊑[r] d =⇒ uses X · c ⊑[r] uses X · d (3.27d)

c ⊑[r] d =⇒ c⋆ ⊑[r] d⋆ (3.27e)

c ⊑[r] d =⇒ cω ⊑[r] dω (3.27f)

a ⊑ b ∧ c ⊑ d =⇒ a ∥ c ⊑ b ∥ d (3.27g)

Remark. The branches of parallel composition can be refined independently if the refine-

ments are carried out in an environment independent of context (i.e. r = true,law 3.27g).

Refinement in a particular context requires one to know the interference that each branch

imposes and can tolerate from its environment.

The next law is derived using lemma 2.72 (Trace countable-choice) and definition 2.73
(Refinement-in-Context).

78 Rely-guarantee refinement calculus

Law 3.28 (Monotonic-WSL). For any sets of commands C and D, commands c and d, and

relation r,

(∀d. d ∈ D −→ (∃c. c ∈ C ∧ c ⊑[r] d)) =⇒
l

acset C ⊑[r]
l

acset D (3.28a)

d ∈ D =⇒
l

acset D ⊑[r] d (3.28b)

(∀d. d ∈ D −→ c ⊑[r] d) =⇒ c ⊑[r]
l

acset D (3.28c)

Proofs in Chapter 6 deliberately omit the application of properties involving monotonicity.
These laws are applied in almost every proof of refinement to select the specific component to
be refined. We omit the reference to these laws to prevent obfuscating derivations of examples
with minor details. Such omission does not imply that these laws are “less important” than
others: in fact, if they were not available in our mechanisation, there would be no way around
to perform refinement proofs of nested subprograms.

3.3.3 Zeros and units

Skip is the identity for sequential and parallel compositions, magic is the unit for non-
deterministic choice, and ⟨true⟩ω (the program that can do any step whatsoever but is not
allowed to abort) is the unit for strict conjunction. Magic is the absorbing element for parallel
composition and a left-absorbing element for sequential composition; abort is the absorbing
element for strict conjunction and non-deterministic choice, and is also a left-absorbing
element for sequential composition.

Lemma 3.29 (Zeros-and-units). For any command c,

skip ; c ∼ c (3.29a)

c ; skip ∼ c (3.29b)

skip ∥ c ∼ c (3.29c)

magic ⊓ c ∼ c (3.29d)

⟨true⟩ω e c ∼ c (3.29e)

magic ∥ c ∼ magic (3.29f)

magic ; c ∼ magic (3.29g)

abort e c ∼ abort (3.29h)

abort ⊓ p ∼ abort (3.29i)

abort ; c ∼ abort (3.29j)

3.3 Basic refinement laws 79

Remark. Lemma 3.26 (Assoc-Comm-Dist) states that sequential composition does not

distribute through unbounded choice on the left, i.e. c ;
d

acset C ∼
d

acset {c ; d | d ∈ C}
is not a law. The problem with this equivalence is the case C = /0. It leads to the equivalence

c ; magic ∼ magic, which can be combined with law 3.29j to show magic ∼ abort, which is

false and not what we want.

Most of these equivalences were proved using stratified forward simulation (Definition 2.79
on page 58).

3.3.4 Pre and post-conditioned assumptions

A redundant precondition can be introduced/eliminated in the postcondition.

Law (contrib.) 3.30 (Redundant-Pre-Post). For any predicate p and relation q,

[p, p ∧ q] ∼ [p, q]

Remark. Shifting an assumption from the postcondition to the precondition is not possible,

i.e. [p ∧ q] ̸⊑ [p, q]. Preconditions give permission to programs to abort if the assumptions do

not hold; assumptions enclosed in a postcondition do not give permission to the specification

to abort, instead they force the postcondition command to behave as magic if they do not

hold on the before state.

3.3.5 Iteration

Finite (c⋆), infinite (c∞) and potentially infinite (cω) iteration are defined via fixed-point
operators as shown in Figure 3.1. For proof purposes, their definitions can be abstracted
using a set of laws for folding and unfolding iteration, and induction over iteration. Recall
from Section 3.1.1 that the iteration operators have the highest priority among the commands
of the language, thus an expression such as (skip ⊓ (c ; (c⋆))) can have all parenthesis elided.

Lemma 3.31 (Fold/Unfold-Iteration). For any command c,

c⋆ ∼ skip ⊓ c ; c⋆ (3.31a)

cω ∼ skip ⊓ c ; cω (3.31b)

80 Rely-guarantee refinement calculus

Lemma 3.32 (Iteration-Induction). For any relation r and commands b, c and d,

b ⊑[r] d ⊓ c ; b =⇒ b ⊑[r] c⋆ ; d (3.32a)

d ⊓ c ; b ⊑[r] b =⇒ cω ; d ⊑[r] b (3.32b)

Lemma 3.33 (Isolation). For any command c,

cω ∼ c⋆ ⊓ c∞

Lemma (contrib.) 3.34 (Iteration-Commute). For any command c,

c ; c⋆ ∼ c⋆ ; c (3.34a)

c ; c∞ ∼ c∞ ; c (3.34b)

Law 3.35 (Iteration-Properties). For any relation g and command c,

[g∗∗] ⊑ ⟨g⟩⋆

The infinite iteration of a specification [p, p‘ ∧ r], where p is a predicate and r is a well-
founded relation, generates no possible behaviours from states satisfying p, i.e. it is infeasible.
The next lemma is taken from [49] and is used in the proof of law 3.112 (Rely-Loop).

Lemma 3.36 (Wellfounded-Infinite-Iteration). If a relation r is well-founded on a predicate p,

[p, p‘ ∧ r]∞ ∼ [p, false]

Next, we extend Definition 2.81 (page 61) to cover iterated commands. Unrestricted variables
are used in Section 3.10 to formalise the nesting of a command inside of a local variable
block.

Definition (contrib.) 3.37 (Unrestricted-Iteration). Let x be a variable and c a com-

mand,

unrest(x, c)

unrest(x, c⋆)

unrest(x, c)

unrest(x, c∞)

unrest(x, c)

unrest(x, cω)

3.3 Basic refinement laws 81

3.3.6 Termination

The next concept defines from which states a command is required to terminate when running
in a specific environment. This notion is particularly useful for the definition of the rely
command in Section 3.5, because that definition pulls apart the concerns of behavioural
preservation and termination.

The weakest precondition for termination of program c in an environment r is formalised
as a predicate, stops(c, r). The concept is akin to Dijkstra’s weakest precondition [31], but it
does not restrict the final state in which the program must terminate.

Definition 3.38 (Stops). For any command c and relation r, stops(c, r) is the weakest

predicate such that from states satisfying stops(c, r), the command c is guaranteed to stop in

an environment r.

(⊢ p⇒ stops(c, r)) ⇔ ({p} ; ⟨true⟩⋆ ⊑[r] c)

Remark. The precondition {stops(c, r)} is interpreted as the weakest precondition for

ensuring that c only performs a finite number of program steps when started in an envir-

onment r. That is, if the environment does not unfairly interrupt c, and c does not abort,

then its execution ends in a termination step (υ). This interpretation follows from the use of

atomic steps in the definition of stops. The program ⟨true⟩ can only perform one program

step followed by a termination step, but it admits any number of environment steps before the

program step takes place. The program ⟨true⟩⋆ can perform a finite number of program steps

(zero or more), admitting any number of environment steps in between program steps.

The operator stops is monotonic on both arguments. Thus, if we know that a program
c stops in an environment r, we also know that it stops in any environment that is more
restrictive than r. Similarly, if we know that c stops in an environment r, and we know that d

refines c in the environment r, we also know that d stops in the environment r.

Law 3.39 (Term-Monotonic). For any relations r, r0 and r1, and commands c and d,

⊢ r0⇒ r1 ∨ idrel =⇒ ⊢ stops(c, r1)⇒ stops(c, r0) (3.39a)

c ⊑[r] d =⇒ ⊢ stops(c, r)⇒ stops(d, r) (3.39b)

The next two equivalences allow one to absorb the precondition command from the argument
taken by stops.

82 Rely-guarantee refinement calculus

Lemma 3.40 (Term-Equivalences). For any predicate p, relation r and commands c, c0 and

c1,

stops(c0 ; c1, r) = stops(c0 ; {stops(c1, r)}, r) (3.40a)

stops({p} ; c, r) = p ∧ stops(c, r) (3.40b)

A postcondition ([q]) terminates in a stuttering environment r, or aborts if the environment
r does any step that changes the state.

Lemma 3.41 (Term-Postcondition). For any relations q and r,

stops([q], r) =

{
true, if ⊢ r⇒ idrel

false, otherwise.
(3.42)

An atomic command ⟨p, q⟩ stops in an environment r if its precondition p holds in the state
where it is executed.

Lemma 3.43 (Term-Atomic). For any predicate p, and relations q and r, such that p is

preserved by relation r,

stops(⟨p, q⟩, r) = p

A test [[e]] only fails to terminate in an environment r if the evaluation of e results in undefined.
If a test [[e]] starts its execution from a state that satisfies a predicate p, such that p is both
preserved by r and strong enough to ensure that e is well-defined, then [[e]] terminates.

Lemma (contrib.) 3.44 (Term-Test). Let p be a predicate p, b a boolean expression,

and r a relation r, and remember that notion of defined expressions is introduced in

Definition 2.6 on page 28. If p is preserved by r and ⊢ p⇒ defined b, then

⊢ p⇒ stops([[b]], r)

Law (contrib.) 3.45 (Term-Precondition). For any predicate p and relation r,

stops({p}, r) = p

If a precondition p is strong enough to ensure the termination of c0 ; c1 in an environment z,
then it necessarily ensures that the execution of c0 will terminate in a state from where the
execution of c1 is guaranteed to terminate (considering the environment z).

3.3 Basic refinement laws 83

Lemma (contrib.) 3.46 (Distribute-Stops-Sequential). For any predicate p and com-

mands c0 and c1, such that ⊢ p⇒ stops(c0 ; c1, z),

{p} ; c0 ∼[z] {p} ; c0 ; {stops(c1, z)}

The next lemma states that if the parallel composition of finite interference r ∨ idrel with
a program guarded by a precondition p terminates in an environment z when iterated for
a potentially infinite number of times, then the potentially infinite iteration of the guarded
program also terminates in an environment z ∨ r. The insight behind this lemma is that,
potentially infinite iteration distributes to the branches of parallel composition, and the
potentially infinite iteration of finite interference results in potentially infinite interference.
This lemma is used to prove that the rely command distributes over iteration (law 3.85 on
page 99).

Lemma 3.47 (Term-Iteration). For any predicate p, relations r and z, and command c, such

that ⊢ p⇒ stops(c, z ∨ r),

⊢ stops(({p} ; c ∥ ⟨r ∨ idrel⟩⋆)ω+, z)⇒ stops(({p} ; c)ω+, z ∨ r)

If the sequential composition c ; d stops in an environment z, then the first component
of the sequential composition also does. Note that we cannot conclude that the second
component of the sequential composition always stops in an environment z if c ; d does it;
the reason is that the termination of d may be conditional on the state in which c terminates.

Law (contrib.) 3.48 (Term-Sequential). For any commands c and d and relation z,

⊢ stops(c ; d, z)⇒ stops(c, z)

A specification uses X · [p, q] stops when executed from a state that satisfies p in an
environment that protects all variables in X.

Lemma 3.49 (Term-Uses). For any command predicate p,

⊢ p⇒ stops(uses X · [p, q], idset X)

84 Rely-guarantee refinement calculus

The addition of finite interference that respects r0 or r1 to a program c that already terminates
in an environment (r0 ∨ r1) does not affect the termination of c.

Law 3.50 (Term-In-Context). For any relation r and command c,

stops(c ∥ ⟨r ∨ idrel⟩⋆, r) = stops(c, r)

For any predicate p, the execution of the postcondition command [p] in an environment idrel

terminates in a state where p holds.

Law (contrib.) 3.51 (Term-Post-Precondition). For any predicate p,

stops([p‘] ; {p}, idrel) = true

Law (contrib.) 3.52 (Term-Sequential-Special-Case). For any predicate p, relations r,

r0, r1, q and z,

⊢ p⇒ stops(c, r) ∧ ⊢ stops(d, r) =⇒ ⊢ p⇒ stops(c ; d, r)

Law 3.52 is useful to reason about termination of sequential compositions where the rightmost
program always terminate, and one has only to care about the termination of the leftmost
program to ensure the termination of the composition, e.g. c ; ⟨q⟩.

The laws in this section allow one to algebraically reason about the termination of com-
mands, and are particularly useful to prove laws involving the rely command in Section 3.5.
They can also be used to compute the weakest precondition for termination of composed
specifications, for example, consider the concrete program:

[x = 0, (x = 1) ′] ; [x = 1, x ′= x + 1] ∥ ⟨idrel⟩⋆

The weakest precondition for its termination in a non-interfering environment is {x = 0}.
The key laws involved in the computation of the weakest precondition are laws 3.50 (Term-
In-Context), 3.40 (Term-Equivalences), 3.41 (Term-Postcondition), 3.45 (Term-Precondition)
and 3.51 (Term-Post-Precondition).

3.4 The guarantee command 85

3.4 The guarantee command

The guarantee command restricts the program steps (π σ σ ′) that a program can perform. It
is designed to handle terminating and non-terminating programs via the strict conjunction
of a program and the potentially infinite iteration of atomic steps that respect the guarantee
condition or do not modify the state (i.e. stutter).

Definition 3.53 (Guarantee). Let g be a relation and c a command,

guar g · c ≡ ⟨g ∨ idrel⟩ω e c

Remark. The relation g does not need to be reflexive or transitive; instead, its reflexive-

transitive closure is used in the relevant proof obligations of laws that demand g to be

reflexive-transitive.

To understand the intuition behind the guarantee command a few refinement examples
are discussed before presenting its formal definition. The next examples are taken from [48],
and the laws referred on them are given later in this chapter. To allow the representation
of relations in a single line, we represent relations by their characteristic expression (i.e.
omitting lambda expressions).

1. Use two assignments that both satisfy the guarantee.

guar (x < x ′) · [true, x ′= x + 2]

⊑ by law 3.25 (Sequential) and 3.60b (Guarantee-Monotonic)

guar (x < x ′) · [x ′= x + 1] ; [x ′= x + 1]

⊑ by law 3.62a (Distribute-Guarantee)

(guar (x < x ′) · [x ′= x + 1]) ; (guar (x < x ′) · [x ′= x + 1])

⊑ by law 3.113 (Assignment-Guarantee, twice)

x:=x + 1 ; x:=x + 1

2. Using a guarantee to restrict choices: the nested specification is non-deterministic, but
in the context of the guarantee surrounding the specification it becomes deterministic.

guar (x < x ′) · [x ′= x + 1 ∨ x ′= x − 1]

86 Rely-guarantee refinement calculus

∼ by law 3.62g (Distribute-Guarantee) and (x < x ′)∗∗ = (x ≤ x ′)

guar (x < x ′) · [(x ′= x + 1 ∨ x ′= x − 1) ∧ (x ≤ x ′)]

∼ by logical simplification

guar (x < x ′) · [x ′= x + 1]

3. A specification constrained by a guarantee cannot be implemented if there is no
sequence of atomic steps satisfying g that satisfy the postcondition.

guar (x ′< x) · [x ′= x + 1]

∼ by law 3.62g (Distribute-Guarantee) and (x < x ′)∗∗ = (x ≤ x ′)

guar (x ′< x) · [(x ′= x + 1) ∧ (x ≤ x ′)]

∼ by law 3.24 (Relational-Composition-Split)

guar (x ′< x) · [false]

The next section presents a collection of properties of strict conjunction. These properties
are used to prove laws involving the guarantee command which are given in Section 3.4.2
(Refining the guarantee command).

3.4.1 Properties of strict conjunction

Strict conjunction (e) is at the very core of the definition of the guarantee command. This is
an associative, commutative and idempotent operator with identity ⟨true⟩ω and zero abort. It
is monotonic with respect to refinement in each of its arguments.

For the next lemma, recall from Figure 2.4 on page 34 that depends-only (g0, {y}) means
that the relation g0 does not restrict the (initial or final) value of y. For example, the relation
denoted by (x ≤ x ′) ∧ (x ′≤ z) does not constrains the value of y, but constrains the values of
x and z.

Lemma 3.54 (Conjunction-Properties). For any predicates p, p0 and p1, relations g, g0, q,

q0 and q1, and variable y, such that ⊢ depends-only (g0, {y}), and commands c, c0, c1 and d,

{p} ; (c e d) ∼ ({p} ; c) e d (3.54a)

3.4 The guarantee command 87

⟨p0, q0⟩ e ⟨p1, q1⟩ ∼ ⟨p0 ∧ p1, q0 ∧ q1⟩ (3.54b)

(⟨p0, q0⟩ ; c0) e (⟨p1, q1⟩ ; c1) ∼ (⟨p0, q0⟩ e ⟨p1, q1⟩) ; (c0 e c1) (3.54c)

(⟨p, q⟩ ; c) e skip ∼ {p} ; magic (3.54d)

magic e ⟨q⟩ω ∼ magic (3.54e)

⟨g⟩ω e (c ; d) ∼ (⟨g⟩ω e c) ; (⟨g⟩ω e d) (3.54f)

⟨g⟩ω e (c ∥ d) ∼ (⟨g⟩ω e c) ∥ (⟨g⟩ω e d) (3.54g)

⟨idrel⟩ω e [[b]] ∼ [[b]] (3.54h)

⟨g⟩ω e cω ∼ (⟨g⟩ω e c)ω (3.54i)

[q0] e [q1] ∼ [q0 ∧ q1] (3.54j)

⟨g0⟩ω e (var y · c) ∼ var y · ⟨g0⟩ω e c (3.54k)

⟨idset {y}⟩ω e (var y · c) ∼ var y · c (3.54l)

In a non-stuttering environment, the specification [q] aborts, and so does the strict con-
junction of [q] and ⟨true⟩⋆.

Lemma 3.55 (Conjunction-Spec-Finite). For any relations q and r, such that r ̸= idrel,

⟨true⟩⋆ e [q] ⊑[r] [q]

In [48], a property known as fusion [5] is introduced to reason about fixed-points in
a complete lattice. In this mechanisation, the iterated commands c⋆, c∞ and cω are not
represented as fixed points, but uninterpreted functions due to technical difficulties that arose
in their fixed-point characterisation. In particular, we also did not prove that RG-WSL and the
refinement relation form a complete lattice. Therefore, we are unable to apply the property
of fusion. To compensate for our abstract characterisation of iterated commands, we have to
introduce the next bridging lemma to encode one of the consequences of fusion. It is used to
prove law 3.57d. It is worth emphasizing that law 3.57d is an exceptional case: all remaining
laws over iterated commands do not require the application of fusion and follow from the
application of laws given in Section 3.3.5 (Iteration).

Lemma 3.56 (Terminating-Iteration-Fusion). For any relation q and command c such that

(skip ⊓ ⟨true⟩ ; c) e ⟨q⟩ω ∼ skip ⊓ ⟨q⟩ ; (c e ⟨q⟩ω),

⟨true⟩⋆ e ⟨q⟩ω ∼ ⟨q⟩⋆

88 Rely-guarantee refinement calculus

Law 3.57 (Conjunction-Atomic). For any relations g0 and g1 the following hold.

⟨g0⟩ω e ⟨g1⟩ω ∼ ⟨g0 ∧ g1⟩ω (3.57a)

⟨g0⟩⋆ e ⟨g1⟩⋆ ∼ ⟨g0 ∧ g1⟩⋆ (3.57b)

⟨g⟩ω e ⟨p, q⟩ ∼ ⟨p, g ∧ q⟩ (3.57c)

⟨true⟩⋆ e ⟨q⟩ω ∼ ⟨q⟩⋆ (3.57d)

Lemma 3.58 (Interchange-Conjunction). For any commands c0, c1, d0 and d1,

(c0 ∥ c1) e (d0 ∥ d1) ⊑ (c0 e d0) ∥ (c1 e d1) (3.58a)

(c0 ; c1) e (d0 ; d1) ⊑ (c0 e d0) ; (c1 e d1) (3.58b)

3.4.2 Refining the guarantee command

The laws in this section exempt the user from expanding the definition of guarantee while
deriving programs.

Law 3.59 (Introduce-Guarantee). For any relation g and command c,

c ⊑ guar g · c

The guarantee command is monotonic with respect to the refinement of its body and the
strengthening of the guarantee condition.

Law 3.60 (Guarantee-Monotonic). For any relations g, g0 and g1, and commands c and d,

⊢ g0⇒ g1 ∨ idrel =⇒ guar g1 · c ⊑ guar g0 · c (3.60a)

c ⊑[r] d =⇒ guar g · c ⊑[r] guar g · d (3.60b)

The next lemma is a fundamental property of guarantees used in parallel composition
and is used in the proofs of parallel introduction laws from Section 3.8.

3.4 The guarantee command 89

Lemma 3.61 (Refine-In-Guar-Context). For any relations g and r and commands c0, c1 and

d, such that a ⊑[g ∨ r] b,

a ∥ (guar g · c) ⊑[r] b ∥ (guar g · c)

Guarantee is a specification command and must not appear in the final implementation.
There are several ways of eliminating guarantee commands in a program, but the most
practical is to ensure that a guarantee is met when an assignment is introduced. To prepare
a program for this elimination strategy, the guarantee must be distributed to the branches
of all composite commands before introducing assignments. The next law shows how the
guarantee constructor can be distributed over the main commands of RG-WSL.

Law 3.62 (Distribute-Guarantee). For any predicate p, relations g, g0, g1 and q, boolean

expression b, commands c and d, and variable x, the following hold.

guar g · c ; d ∼ (guar g · c) ; (guar g · d) (3.62a)

guar g · c ∥ d ∼ (guar g · c) ∥ (guar g · d) (3.62b)

guar g0 · (guar g1 · c) ∼ guar g0 ∧ g1 · c (3.62c)

guar idset {x} · var x · c ∼ var x · c (3.62d)

guar g · (if b then c else d) ∼ if b then guar g · c else guar g · d (3.62e)

guar g · (while b do c) ∼ while b do guar g · c (3.62f)

guar g · [q] ∼ guar g · [g∗∗ ∧ q] (3.62g)

guar g · ⟨p, q⟩ ∼ ⟨p, (g ∨ idrel) ∧ q⟩ (3.62h)

guar g · [[b]] ∼ [[b]] (3.62i)

Note that any restriction imposed by the guarantee condition over the global variable x

has no effect on the local variable of same name (law 3.62d).

Law (contrib.) 3.63 (Distribute-Guarantee-Var). For any variable x and relation g, such

that g does not depend on x,

guar g · var x · c ∼ var x · (guar g ∨ idset {x} · c)

Remark. In [48], a different law for distributing the guarantee over local variables is

proposed. It is similar to the one presented here, but replaces g ∨ idset {x} by g on the right

90 Rely-guarantee refinement calculus

hand side of the equivalence. While attempting to mechanise its proof, we discovered the

need for an additional assumption, namely: ∃S. ⊢ idset S⇒ g. This assumption holds, for

example, for any reflexive guarantee condition. Without the additional assumption, only the

refinement from the left to the right hand-side can be proved.

The additional assumption is used to prove that ⊢ depends-only (g ∨ idrel, {x}) from

the fact that ⊢ depends-only (g, {x}). The original proof reduces to this sub-goal after

expanding the guarantee command and applying law 3.54k (Conjunction-Properties).

The next section uses guarantees to adapt the concept of frames and invariants from the
sequential refinement calculus to the concurrent context. The notion of frames is strengthened
to ensure that the restriction on the set of variables that a program can modify is enforced over
all atomic transitions of the program, instead of only being enforced between the initial and
final states of the execution of the program. A stronger version of the concept of invariants
that requires the preservation of a predicate over all atomic actions of a program is also
introduced.

3.4.3 Guarantee invariant and frames

An invariant is a predicate that is preserved by the specification command. A guarantee
invariant is an extension of the concept of invariant to any command, but enforcing the
preservation of the predicate over all atomic actions that a program can perform. In the next
definition, a guarantee invariant is formalised as a guarantee with a fixed format. For this
definition to make sense, p must be a predicate for p‘ to represent it holding in the after state.

Definition 3.64 (Guarantee invariant). Let p be a predicate and c a command,

guar−inv p · c ≡ guar p⇒ p‘ · c

Frames delimit the set of variables that can be changed by a nested command. The
concept is taken from the sequential refinement calculus [78]. There, {x}: [q] stands for
[q ∧ idset {x}]. The definition in [78] is too coarse-grained to suit concurrent programs,
where the intermediate behaviour is as important as the end-to-end behaviour. The problem
in reusing Carroll Morgan’s definition is that it would allow intermediate changes to variables
specified in the frame as long as their final value were unchanged with respect to the initial
one.

3.4 The guarantee command 91

To cope with concurrency, a stronger definition of frame is given in terms of the guar-
antee command. The definition applies to any command instead of being restricted to the
specification command.

Definition 3.65 (Frame). Let x be a set of variables and c a command,

x: c ≡ guar idset x · c

A program without frames can be converted into a framed version by taking the frame
to be universe of variables names (UNIV). Nested frames are equivalent to a single frame
formed from the intersection of the sets of variables.

Law 3.66 (Frames). For any set of variables X and Y, and command c,

c ∼ UNIV: c (3.66a)

X: Y: c ∼ (X ∩ Y): c (3.66b)

As general advice, nesting of frames should be avoided to improve the readability of
specifications and to avoid confusions. Assuming x ̸= y, the equivalence between {x}: {y}: c

and /0: c follows directly from the previous theorem, but it is much easier to understand that
the frame is empty in /0: c. Note that a frame formed by the union of sets of variables cannot
be decomposed into nested frames.

Law 3.67 (Distribute-Guarantee-Frame). For any relation g, set of variables X and com-

mand c, the following hold.

guar g · X: c ∼ X: (guar g · c)

The next law is more general than the one offered in [48], where p0 = p. The reason for
introducing a weakening step in this law is that more often than not, a guarantee invariant
will not enforce the preservation of all predicates in a precondition, but only a subset of
them. This can be seen, for example, in the refinement step R4 in the derivation of Findp at
page 175.

92 Rely-guarantee refinement calculus

Law 3.68 (Trade-Guarantee-Invariant). For any predicates p and p0 and relation q, such that

⊢ p0⇒ p,

[p0, p‘ ∧ q] ⊑ guar−inv p · [p0, q]

Care must be taken when introducing guarantee invariants. Nested guarantee invariants
impose a stronger requirement on a program than a single guarantee invariant of conjoined
predicates. This can be seen in the next law.

Law (contrib.) 3.69 (Distribute-Guarantee-Invariant). For any predicates p1 and p2

and command c,

guar−inv p1 ∧ p2 · c ⊑ guar−inv p1 · (guar−inv p2 · c)

Remark. The refinement in the opposite direction does not hold. To see why it, take the

predicates p1 and p2 to be such that p1 ∧ p2 = false. In this case, a guarantee invariant of

p1 ∧ p2 does not impose any restriction on its body, while the nested guarantee invariants

restrict the body.

Note that although we alert about the consequences of nesting frames and guarantee
invariant, there is no actual problem in nesting multiple instances of the guarantee command.
This nesting occurs naturally in the development of programs that involve nested parallelism,
as can be seen in Section 3.8.1 on page 104.

3.5 The rely command

Unlike the guarantee command, which constrains the steps of a program, the rely command
does not constrain the steps the environment of a program can do. Instead, the command
rely r · c gives permission for the program c to abort if the environment performs a step that
does not satisfy the rely-condition r.

Just like the guarantee command, nesting a program into a rely command can potentially
turn the resulting program infeasible. To understand the intuition behind the rely command
a few examples are discussed before presenting its definition. Here again we adopt the

3.5 The rely command 93

convention of representing relations by their characteristic expressions (i.e. omitting lambda
expressions).

1. rely x < x ′ · [x + 1 ≤ x ′], requires that, when it is put in an environment that may
increase x, the value of x is increased by at least one. This command can be implemen-
ted by an assignment x:=x + 1. Note that the environment may interfere by further
increasing x, but the combined effect ensures that x is increased by at least one.

2. rely x < x ′ · [x ′= x], requires that, when it is put in an environment that may increase x,
the value of x is unchanged. There is no implementation for this specification. Even the
likely candidate, skip, is not an implementation because the environment may increase
x, making the overall effect to be the increment of x;

3. rely idset {x, y} · [x ′= x + 2] specifies that variables x and y are not affected by the
interference. This specification can be implemented by a direct assignment of x+2 to
x, or a sequence of two unary increments. It also allows y to be used as a temporary
location for the assignment, since y is not affected by the interference.

The definition of the rely command pulls apart the concerns of behaviour and termination,
and is designed specifically to allow the nesting of rely commands, just like multiple instances
of a guarantee command can be nested. To allow nesting, the rely command is formulated as
a ternary operator, rely (r, z) · c, where r and z are relations and c is a command. Relation
r represents the environment of program c and relation z the rely context within c. For a
rely command that has no other rely command nested in c, the relation z assumes the default
value idrel, which we omit for the sake of readability. If there are nested instances of the
rely command (e.g. rely (r0, z0) · (rely (r1, z1) · c)), the relation z of the outermost rely
command has to match the interference recorded by the nested rely (e.g. z0 = z1 ∨ r1).

The command rely (r, z) · c is the most general command that when run in parallel with
finite interference ⟨r ∨ idrel⟩⋆, the composite behaviour implements c from states in which c

terminates with interference z, i.e.

{stops(c, z)} ; c ⊑[z] (rely (r, z) · c) ∥ ⟨r ∨ idrel⟩⋆ (3.70)

Equation 3.70 poses a behavioural requirement on the rely command. The parameter z

determines the context in which the refinement is required to hold. Equation 3.70 does not

94 Rely-guarantee refinement calculus

specify the behaviour of rely (r, z) · c when it runs with interference that is neither bounded
by r nor finite. As example of program generating interference, consider

loop-incr ≡ while true do x:=x + 1.

The interference it generates is bounded by the relation x ≤ x ′, but it does not terminate. To
account for environments such as loop-incr, a second requirement is introduced. It states
that the command (rely (r, z) · c) must terminate in an environment (z ∨ r) if c does it in an
environment z, even if the interference is infinite. Formally:

⊢ stops(c, z)⇒ stops(rely (r, z) · c, z ∨ r) (3.71)

The role of requirement 3.71 is to prevent the derivation of programs that may not terminate
in presence of infinite, yet bounded interference. This requirement prevents, for example, the
derivation of a program such as

var lx · lx:=x ; (while lx < x do lx:=x)

from a specification enclosed in a rely condition of x ≤ x ′. The insight behind this condition
is that the program rely (r, z) · c must not condition its termination to the termination of
the interference. The definition of the rely command given next satisfies conditions 3.70
and 3.71.

Definition 3.72 (Rely). Let r and z be relations and c a command,

rely (r, z) · c ≡
l

acset

{
d

∣∣∣∣∣ ({stops(c, z)} ; c ⊑[z] d ∥ ⟨r ∨ idrel⟩⋆) ∧
(⊢ stops(c, z)⇒ stops(d, z ∨ r))

}

Next abbreviation is used to omit the parameter z in the rely command if its value is idrel.

Abbreviation 3.73 (Rely-Idrel). Let r be a relation and c a command,

rely r · c ≡ rely (r, idrel) · c

To prevent ambiguity about the scope of a rely command, whenever this command is
composed with other commands, it appears parenthesised. For example, in (rely r · c) ; d

the rely command is the left argument of the sequential composition. When parentheses are
omitted, as in rely r · c ; d, any command appearing at the right of the bullet symbol (·) is
meant to be within the scope of the rely command.

3.5 The rely command 95

3.5.1 Properties of interference

This section presents some basic properties of iteration of atomic commands which represent
interference in the definition of the rely command. The motivation of this set of laws is to
provide support for the proof of properties involving the rely command.

The parallel composition of different sources of interference is equivalent to a single
source that behaves as disjunction of the sources (3.74a). Interference on an atomic command
can only precede it or follow it (3.74c).

Lemma 3.74 (Properties-Finite-Interference). For any predicate p, relations r, r0, r1 and q,

and commands c0 and c1,

⟨r0 ∨ r1⟩⋆ ∼ ⟨r0⟩⋆ ∥ ⟨r1⟩⋆ (3.74a)

c⋆ ; c⋆ ∼ c⋆ (3.74b)

⟨p, q⟩ ∥ ⟨r⟩⋆ ∼ ⟨r⟩⋆ ; ⟨p, q⟩ ; ⟨r⟩⋆ (3.74c)

The next laws allow interference to be distributed to sub-components during the development.

Lemma 3.75 (Distribute-Interference). For any commands c0 and c1 and relation r,

c0 ; c1 ∥ ⟨r⟩⋆ ∼ (c0 ∥ ⟨r⟩⋆) ; (c1 ∥ ⟨r⟩⋆)

3.5.2 Fundamental properties of rely

The laws in this section are proved from the definition of rely and previously given laws.
The next law trades the refinement of the rely command by a refinement and termination
proof. It can be used to prevent the expansion of the rely command when it appears at the
left hand-side of the refinement relation.

Law 3.76 (Rely-Refinement). For any relations z and r, and commands c and d,

rely (r, z) · c ⊑ d ⇔

(
{stops(c, z)} ; c ⊑[z] d ∥ ⟨r ∨ idrel⟩⋆ ∧

⊢ stops(c, z)⇒ stops(d, z ∨ r)

)

The next law determines the termination condition for the rely command. It is useful for
proofs which follow from the application of law 3.76 where d is a rely command.

96 Rely-guarantee refinement calculus

Law 3.77 (Rely-Stops). For any relations z and r and command c,

stops(rely (r, z) · c, z ∨ r) = stops(c, z)

The next law over the rely command is similar to lemma 3.22 (Refine-Specification on
page 75) over specifications. To refine rely (r, z) · c one only needs to concern with the
refinement in the environment (z ∨ r). In an environment different from (z ∨ r), the command
rely (r, z) · c aborts.

Law 3.78 (Rely-Environment). For any relations z and r and commands c and d,

rely (r, z) · c ⊑[z ∨ r] d⇔ rely (r, z) · c ⊑ d

Next law shows how nested relies can be refined into a single rely. This refinement is
only possible if the total interference recorded by the inner rely (rely (r1, z) · c) is taken into
account by the external rely, i.e. the parameter z of the external rely has to match (z ∨ r1).

Law 3.79 (Distribute-Rely). For any relations z, r0 and r1, and command c,

rely (r0, z ∨ r1) · (rely (r1, z) · c) ⊑ rely (r0 ∨ r1, z) · c

Next law can be used to introduce a rely command from a command guarded by a
precondition. It is stepping stone to prove the more useful law 3.81 (Rely-Idrel-Specification)
that is given afterwards.

Law 3.80 (Introduce-Rely-Precondition). For any predicate p, relations z and r, and com-

mand c, such that ⊢ p⇒ stops(c, z),

{p} ; c ⊑[z] (rely (r, z) · {p} ; c) ∥ ⟨r ∨ idrel⟩⋆

The next law states that a specification command with no explicit rely command wrapping it
is equivalent to itself wrapped in the context of a rely command of idrel.

3.5 The rely command 97

Law (contrib.) 3.81 (Rely-Idrel-Specification). For any predicate p and relation q,

(rely idrel · [p, q]) ∼ [p, q]

Remark. This equivalece does not hold in the general case, where the rely command wraps a

command c instead of a specification. The problem is the refinement from the left to the right.

By law 3.76 one needs to show the following refinement, which does not hold in general.

{stops(c, idrel)} ; c ⊑[idrel] c ∥ ⟨idrel⟩⋆

For example, for c = skip, this would require skip to be able to perform stuttering program

steps, but it semantics does not allow such kind of transitions.

The next law pulls out a precondition from within the body of a rely command.

Law 3.82 (Distribute-Rely-Precondition). For any predicate p, relations z and r, and com-

mand c, such that ⊢ p⇒ stops(c, z),

rely (r, z) · {p} ; c ∼ {p} ; (rely (r, z) · {p} ; c)

Lemma 3.83 (Distribute-Rely-Post-Assertion). For any predicate p, relations z and r, and

command c,

rely (r, z) · c ; {p} ⊑ (rely (r, z) · c) ; {p}

Remark. This lemma is presented as a derived law in [48]. It plays a key role in establishing

the distributivity of rely over sequential composition (next law). While mechanising its

proof, we discovered the need for lemmas that are not spelled out in [48], and which are

challenging to prove. The description in [48] suggest to begin the proof of this refinement by

applying law 3.76 (Rely-Refinement on page 95). After this step, one has to prove the next

two sub-goals in order to show the validity of the refinement.

G1: {stops(c ; {p}, z)} ; (c ; {p}) ⊑[z] (rely (r, z) · c) ; {p} ∥ ⟨r ∨ idrel⟩⋆

G2: ⊢ stops(c ; {p}, z)⇒ stops((rely (r, z) · c) ; {p}, z ∨ r)

98 Rely-guarantee refinement calculus

Note that law 3.76 formalises an equivalence. Thus, it is correct to say that its application

preserves provability, in the sense that it does not trade a provable conjecture by an unprov-

able one. Let us consider the first goal, G1. To complete its proof as suggested in [48], we

need the next property to hold.

P: ((rely (r, z) · c) ∥ ⟨r ∨ idrel⟩⋆) ; {p} ⊑ (rely (r, z) · c) ; {p} ∥ ⟨r ∨ idrel⟩⋆

Although property P might hold, we were unable to find a proof or produce a counter-example.

Despite our efforts to find an alternative proof for G1 without using P, we did not succeed

in that. The proof of G2 also stands as an open challenge. Approximately, one man-month

was dedicated to search for a proof of this lemma. During this investigation we attempt to

produce an alternative proof for this lemma, as well an alternative proof for law 3.84 without

using this lemma.

Currently, the only alternative we are aware of that can be used to get rid of the

lemma 3.83 in the proof of law 3.84 is to drop the termination requirement in the defin-

ition of the rely command. This requirement corresponds to the right hand-side of the

conjunction in Definition 3.72 (page 94). The simplified definition allows the rely command

to abort whenever the environment is characterised by potentially infinite iteration. The

problem is, even terminating loops (e.g. while i < 10 do i:=i + 1) are described using the

notion of potentially infinite iteration. Thus, the weaker definition of the rely command leaves

too many cases unconstrained, where one would like the behaviour of the rely command to

be more well-defined. At the end of this chapter we discuss a direction to tweak the definition

of the rely command so that it can be made stronger, and perhaps sufficient for establishing

law 3.84 without resorting to lemma 3.83.

Law 3.84 (Distribute-Rely-Sequential). For any predicate p, relations z and r, commands c0

and c1, such that ⊢ p⇒ stops(c0 ; c1, z),

rely (r, z) · {p} ; (c0 ; c1) ⊑ (rely (r, z) · {p} ; c0) ; (rely (r, z) · c1)

Law 3.85 (Distribute-Rely-Iteration). For any predicate p, relations z and r, and command

c, such that ⊢ p⇒ stops(c, z),

rely (r, z) · ({p} ; c)ω+ ⊑ (rely (r, z) · {p} ; c)ω+

3.5 The rely command 99

Next, we extend Definition 2.81 (page 61) to cover the rely command. Recall that unrestricted
variables are used in Section 3.10 to formalise the nesting of a command inside of a local
variable block.

Definition (contrib.) 3.86 (Unrestricted-Rely). Let z and r be relations, x a variable,

and c a command,

⊢ depends-only (r, {x}) ∨ ⊢ r⇒ idrel

⊢ depends-only (z, {x}) ∨ ⊢ z⇒ idrel unrest(x, c)

unrest(x, rely (r, z) · c)

Remark. The extension of unrest to deal with the rely command is done via local as-

sumptions (discussed in Section 1.6.4 on page 14). The reason for this is that we cannot

derive this rule from the rule for unbounded non-determinism by expanding the defini-

tion of rely. The problem in this derivation is to show (unrest(x, d)) from the premises

{stops(c, z)} ; c ⊑[z] d ∥ ⟨r ∨ idrel⟩⋆ and ⊢ stops(c, z)⇒ stops(d, z ∨ r).

3.5.3 Refining the rely command

The rely command is monotonic with respect to the refinement of its body and weakening of
the rely condition.

Law 3.87 (Rely-Monotonic). For any relations r, r0 and r1, such that ⊢ r0⇒ r1 ∨ idrel, and

commands cand d, such that {stops(c, z)} ; c ⊑[z] d,

rely (r0, z) · c ⊑ rely (r1, z) · c (3.87a)

rely (r, z) · c ⊑ rely (r, z) · d (3.87b)

Law 3.88 (Rely-Specification). For any predicate p, relations r and q and command d, such

that ⊢ p⇒ stops(d, r),

rely r · [p, q] ⊑ d ⇔ [p, q] ⊑ d ∥ ⟨r ∨ idrel⟩⋆

The following law splits a specification command inside of a rely command and applies
law 3.84 to distribute the rely command over the sequentially composed specifications. This

100 Rely-guarantee refinement calculus

law motivates the view of the rely command as a permission given to the specification com-
mand, which is equally transferred to the branches of the sequential composition whenever
the original specification is split into a sequential composition of specifications.

Law 3.89 (Rely-Sequential). For any predicates p and mid, and any relations r, q0 and q1,

such that ⊢ p ∧ (q0 ∧ mid‘ ; q1)⇒ q,

rely r · [p, q] ⊑ (rely r · [p, q0 ∧ mid‘]) ; (rely r · [mid, q1])

When refining a rely command in a context rx, one can strengthen the rely condition to
reflect that the environment steps are bounded by rx.

Law 3.90 (Strengthen-Rely-In-Context). For any relations r, z and rx, and command c,

rely (r, z) · c ⊑[rx] rely (rx ∧ r, z) · c

Remark. The mechanised proof of this law requires the extension of RG-WSL with an

additional command to complete the instantiation of an existential quantifier introduced in

the proof via application of lemma 3.28a. In the paper proof in [48], programs are treated

as simple abbreviation for their semantics (i.e. sets of traces), and thus, set comprehension

suffices to constrain the environment steps of a program. In the mechanisation, programs are

syntactic entities, and the instantiation requires a command to constrain environment steps.

The extension of RG-WSL and the proof of the mechanised version of this law are discussed

in Section 5.2.

Similarly to law 3.68, the next law is presented in a version more flexible than the one
presented in [48], where p0 is replaced by p. The motivation for introducing the weakening
step is that more often than not, a guarantee invariant will not enforce the preservation of all
predicates in a precondition, but only a subset of them.

Law 3.91 (Introduce-Rely-Guar-Invariant). For any predicate p and relations r and q, such

that ⊢ r⇒ p⇒ p‘ and ⊢ p0⇒ p,

rely r · [p0, p‘ ∧ q] ⊑ guar−inv p · rely r · [p0, q]

3.6 Arranging rely and guarantee commands 101

3.6 Arranging rely and guarantee commands

Rely and guarantee commands can be nested in any order, but only a rely nested inside of a
guarantee corresponds to a rely-guarantee specification in the sense of [26]. The problem in
nesting a guarantee inside of a rely is that to show rely r · (guar g · [p, q]) ⊑ d, law 3.76
(Rely-Refinement) requires one to show guar g · [p, q] ⊑[idrel] d ∥ ⟨r ∨ idrel⟩⋆, which
requires the interference r as well the implementation d to satisfy the guarantee g. For a
rely nested within a guarantee, only d is required to satisfy the guarantee. As a general
rule, a guarantee within a rely should be avoided. There are however, situations in which
this is acceptable: if the rely is idrel, or the more general case where the rely implies the
guarantee [48].

To prevent nesting of a guarantee inside of a rely, the most general laws for introducing
parallelism discussed in Section 3.8 considers that a command or specification is already
nested inside of rely command (see laws 3.96 and 3.97). By using the general laws instead of
more specific ones (see laws 3.94 and 3.95), the designer can ensure that the rely command
is kept in the innermost part of a program. We illustrate in Section 3.8.1 the consequences of
choosing the incorrect rule during a derivation.

Law 3.92 (Guarantee-Plus-Rely). For any relations g, z and r, and commands c and d, such

that rely (r, z) · c ⊑ d and guar g · d ⊑ d,

guar g · rely (r, z) · c ⊑ d

3.7 Trading postconditions with rely and guarantee

A specification surrounded by a rely context of r and a guarantee context of g incorporates
the reflexive transitive closure of g ∨ r in the postcondition.

Law 3.93 (Trade-Rely-Guarantee). For any predicate p, relations g, r and q,

guar g · rely r · [p, q] ∼ guar g · rely r · [p, q ∧ (g ∨ r)∗∗]

This law is used to eliminate redundant information from a postcondition. The redundancy
comes from the fact that parts of a postcondition may be inferred from the frame and

102 Rely-guarantee refinement calculus

surrounding rely and guarantee commands. In the absence of a rely command, the standard
route to eliminate this kind of redundancy is to use law 3.62g (Distribute-Guarantee). In the
case where a rely command stands between the specification command and the frame, this
route does not work. In this case, the rely command has to be taken into account as illustrated
in the refinement step R11 on page 188.

3.8 Introducing parallelism

We now turn our attention to introduction of parallelism in a program. Rely and guarantee
commands play a key role in such introduction because they define the interface between a
program and its environment, delimiting the scenarios where an abortive behaviour is accept-
able. The reason why rely and guarantee commands are needed in the process of introducing
parallelism is better understood via an example. Consider the program [x ′= 1] e [y ′= 2].
As each specification modifies a different variable, we can provide a parallel implementation
for this program. An intuitive, but inconsistent, way of deriving a parallel implementation
is to replace the strict conjunction by a parallel composition. To understand the problem in
this transformation, we need to remember that a specification aborts in any non-stuttering
environment, i.e. specifications have an implicit rely condition of idrel. The conjunction of
commands does not abort in a stuttering environment, but [x ′= 1] ∥ [y ′= 2] aborts, because
each branch updates the state and generates interference, thus breaking the rely of the other
branch. Therefore, this transformation introduces a new behavior in the implementation
instead of constraining the behaviour of the abstract program. Nevertheless, we can still refine
the conjunction to a parallel composition if we take into account the issue of interference,
which is well handled by the rely and guarantee commands.

The next law captures the essence of rely-guarantee approach to develop a parallel pro-
gram. It allows a conjunction of two programs to be implemented by the parallel composition
of its parts. This law generalises the parallel introduction law from [26] because it applies to
a conjunction of commands rather than a conjunction of postconditions.

Law 3.94 (Introduce-Parallel-SConj). For any predicate p, relations z, g0 and g1, and

commands c0 and c1 such that ⊢ p⇒ stops(c0, z) ∧ stops(c1, z),

{p} ; (c0 e c1) ⊑[z] (guar g0 · rely (g1, z) · {p} ; c0) ∥ (guar g1 · rely (g0, z) · {p} ; c1)

3.8 Introducing parallelism 103

The next law specialises the conjunction of commands to a specification. This law is
useful to introduce parallelism from a specification that is not nested in a rely command.

Law (contrib.) 3.95 (Introduce-Parallel-Spec). For any predicates p, p0 and p1, and

relations q, q0, q1, g0 and g1, such that ⊢ p⇒ p0 ∧ p1 and ⊢ p ∧ (q0 ∧ q1)⇒ q,

[p, q] ⊑ (guar g0 · rely g1 · [p0, q0]) ∥ (guar g1 · rely g0 · [p1, q1])

Note that the introduction of parallelism can make a feasible specification infeasible.
This can occur because the previous law poses no restrictions on the choice of g0 and g1

with respect to the stability of [p0, q0] and [p1, q1]
3. A similar situation occurs in law 3.25

(Sequential), which splits a specification into a sequential composition of specifications;
there, the choice of mid has an impact on the feasibility of the refined program.

If a specification or a conjunction of commands is already enclosed in a rely command
and one needs to further split the specification into a parallel composition, the usage of the
previous laws would cause the nesting of a guarantee inside of a rely command. The next
laws offer arrangements that are particularly useful for developments where one aims to have
nested parallelism. They ensure that rely commands are kept inside of the scope of guarantee
commands during the development; this is necessary to allow further refinement using the
laws offered in this chapter.

Law 3.96 (Introduce-Parallel-SConj-Nested). For any predicates p, p0 and p1, relations z, r,

g0 and g1, such that ⊢ p⇒ p0 ∧ p1, and commands c0 and c1 such that ⊢ p0⇒ stops(c0, z)

and ⊢ p1⇒ stops(c1, z),

rely (r, z) · {p} ; (c0 e c1) ⊑

(guar g0 · rely (g1 ∨ r, z) · {p0} ; c0) ∥ (guar g1 · rely (g0 ∨ r, z) · {p1} ; c1)

Aside. Law 3.94 (Introduce-Parallel-SConj) is special case of law 3.96, where the implicit

rely condition is idrel.

Law 3.97 (Introduce-Parallel-Spec-Nested). For any predicates p, p0 and p1, and relations

q, q0, q1, g0, g1 and r, such that ⊢ p⇒ p0 ∧ p1 and ⊢ p ∧ (q0 ∧ q1)⇒ q,

rely r · [p, q] ⊑ (guar g0 · rely g1 ∨ r · [p0, q0]) ∥ (guar g1 · rely g0 ∨ r · [p1, q1])

3As it will be discussed later in this chapter, stability is required for introducing control structures and
assignment from specifications.

104 Rely-guarantee refinement calculus

Aside. Law 3.95 (Introduce-Parallel-Spec) is special case of law 3.97, where the implicit

rely condition is idrel.

3.8.1 Example: nested parallelism

This example explores the range of choices for introducing parallel composition and invest-
igates the consequences of each choice. As example, we consider the development of a
program that performs four assignments in parallel. The implicit type of the variables in this
program is IN. The program to be developed is:

(x:=x + 2 ∥ y:=y + 2) ∥ (z:=x + 2 ∥ w:=w + 1)

To abstract this program using the postcondition command we need to consider that the
assignment to z may happen before or after the assignment to x. To cater for both scenarios,
we can specify that the final value of z will be at least higher than x + 2. The next specification
offers a starting point for this derivation.

[true, (x ′= x + 2) ∧ (y ′= y + 2) ∧ (x + 2 ≤ z ′) ∧ (w ′= w + 1)]

The refinement can be done by splitting the initial specification into a parallel composition
of two specifications, each of them responsible for setting the final value of two variables,
and then splitting each of these specifications into a nested parallel composition, where each
branch sets the value of a single variable. The first attempt to reproduce this intuition is
shown below, and reveals that care must be taken when introducing nested parallelism.

[true, (x ′= x + 2) ∧ (y ′= y + 2) ∧ (x + 2 ≤ z ′) ∧ (w ′= w + 1)]

⊑ by 3.95 (Introduce-Parallel-Spec)

(guar idset {z, w} ∧ (x + 2 ≤ x ′) · rely idset {x, y} · [(x ′= x + 2) ∧ (y ′= y + 2)]) ∥

(guar idset {x, y} · rely idset {z, w} ∧ (x + 2 ≤ x ′) · [(x + 2 ≤ z ′) ∧ (w ′= w + 1)])

3.8 Introducing parallelism 105

⊑ by 3.95 (Introduce-Parallel-Spec), 3.62c (Distribute-Guarantee)

and 3.62b (Distribute-Guarantee)
guar idset {z, w} ∧ (x + 2 ≤ x ′) · rely idset {x, y} ·

(guar idset {z, w, y} ∧ (x + 2 ≤ x ′) · rely idset {x} · [true, x ′= x + 2]) ∥

(guar idset {z, w, x} · rely idset {y} · [true, y ′= y + 2])

 ∥

guar idset {x, y} · rely idset {z, w} ∧ (x + 2 ≤ x ′) ·

(guar idset {x, y, w} · rely idset {z} ∧ (x + 2 ≤ x ′) · [true, x + 2 ≤ z ′]) ∥

(guar idset {x, y, z} · rely idset {w} · [true, w ′= w + 1])

The use of law 3.95 (Introduce-Parallel-Spec) to introduce nested parallelism results in

a program containing a guarantee command nested inside of a rely command. Recall from
Section 3.6 (Arranging rely and guarantee commands) that a guarantee nested inside of a
rely block requires the environment to satisfy the guarantee condition. This arrangement
is only feasible when the rely implies the guarantee condition, which is not the case in this
application. To prevent this arrangement from occurring, the existing rely command has to
be pushed towards the innermost part of the program in the moment of introducing nested
parallelism. This can be done by using law 3.97 (Introduce-Parallel-Spec-Nested). Next, we
present the correct derivation.

[true, (x ′= x + 2) ∧ (y ′= y + 2) ∧ (x + 2 ≤ z ′) ∧ (w ′= w + 1)]

⊑ by 3.95 (Introduce-Parallel-Spec)

(guar idset {z, w} ∧ (x + 2 ≤ x ′) · rely idset {x, y} · [(x ′= x + 2) ∧ (y ′= y + 2)]) ∥

(guar idset {x, y} · rely idset {z, w} ∧ (x + 2 ≤ x ′) · [(x + 2 ≤ z ′) ∧ (w ′= w + 1)])

⊑ by 3.97 (Introduce-Parallel-Spec-Nested) and 3.87a (Rely-Monotonic)
guar idset {z, w} ∧ (x + 2 ≤ x ′) ·

(guar idset {z, w, y} ∧ (x + 2 ≤ x ′) · rely idset {x} · [true, x ′= x + 2]) ∥

(guar idset {z, w, x} · rely idset {y} · [true, y ′= y + 2])

 ∥

guar idset {x, y} ·

(guar idset {x, y, w} · rely idset {z} ∧ (x + 2 ≤ x ′) · [true, x + 2 ≤ z ′]) ∥

(guar idset {x, y, z} · rely idset {w} · [true, w ′= w + 1])

⊑ by 3.62b (Distribute-Guarantee), 3.62c (Distribute-Guarantee)

and 3.60a (Guarantee-Monotonic)

106 Rely-guarantee refinement calculus

(
(guar idset {z, w, y} ∧ (x + 2 ≤ x ′) · rely idset {x} · [true, x ′= x + 2]) ∥

(guar idset {z, w, x} · rely idset {y} · [true, y ′= y + 2])

)
∥(

(guar idset {x, y, w} · rely idset {z} ∧ (x + 2 ≤ x ′) · [true, x + 2 ≤ z ′]) ∥

(guar idset {x, y, z} · rely idset {w} · [true, w ′= w + 1])

)

The derivation can continue by introducing assignments using laws presented in Sec-
tion 3.12 (Control structures and assignment). The key point of the example is to show the
consequence of choosing a wrong law for introducing nested parallelism. In that case, an
uninformed user might continue the refinement from a bad design decision only to discover
that after eliminating the innermost rely and guarantee commands there would be no way of
get rid of the outermost rely and guarantee commands.

3.9 Expressions and tests

A successful test evaluates its argument non-atomically and can only perform stuttering
program steps. The evaluation performed by the test command is sensitive to interference,
and aborts if the evaluation of its argument results in undefined.

Lemma 3.98 (Introduce-Test). For any boolean expression b,

[defined b, [[b]]r ∧ idrel] ⊑ [[b]]

Remark. This lemma establishes a semantic connection between relational and non-atomic

evaluation, and is needed in proofs involving the introduction of control structures in pro-

grams that are not subject to interference.

If a boolean expression b satisfies the single reference property (Section 3.2.1) with respect
to a relation r, the value of e is its value in the state in which the unstable variable is sampled,
or if there is no unstable variable the value of e is stable under interference. In both cases,
given an initial state s, the evaluation state is related to the initial state by r∗∗. This property
is encoded by the following law, which is applied in proof of law 3.100 (Rely-Test).

Lemma 3.99 (Test-Single-Reference). For any predicate p, relations q and r, and boolean

expression b, such that b satisfies the single reference property with respect to r,

[p, q] ⊑ [[b]] ∥ ⟨r ∨ idrel⟩⋆ ⇔ [p, q] ⊑ ⟨r ∨ idrel⟩⋆ ; [[b]] ; ⟨r ∨ idrel⟩⋆

3.10 Local variables 107

The next law plays a similar role to law 3.98, but can be used if a specification is wrapped in
a rely command. The side conditions of this law ensure that the relational evaluation captures
all possible outcomes of a non-atomic evaluation.

Law 3.100 (Rely-Test). For any relation r, predicate p that is preserved by r, boolean

expression b that has the single reference property with respect to r and predicate

b0 such that ⊢ p ∧ [[b]]r ⇒ b0 and ⊢ p ∧ r⇒ (b0⇒ b0‘) and ⊢ p⇒ defined b,

rely r · [p, r∗∗ ∧ b0‘] ⊑ [[b]]

Aside. Remember from Section 3.2.1 that an expression e satisfies the single reference

property with respect to a relation r, if e has at most a single variable that is unstable under

the relation r, and e has at most a single occurrence of such a variable.

3.10 Local variables

The command (var x · c) shadows the global variable x within its body c; in other words,
references to x within c are directed to the local variable x and the global variable of same
name becomes inaccessible. The local variable x is not affected by interference external to
var x · c.

Recall that local variable blocks are monotonic with respect to the refinement of its body4,
and have distributive and absorption properties over strict conjunction and guarantees5.
The next two laws on local variables are about their introduction in a program. Since the
introduction of local variables affects the frame of a program, these laws require the frame of
a program to have already been declared to enable their application.

Lemma 3.101 (Introduce-Variable-Frame). For any variable x, set of variables Y, and

command c, assuming x is not in Y and is unrestricted in c,

Y: c ⊑ var x · ({x} ∪ Y): c

4Lemma 3.27c.
5Lemma 3.54, and laws 3.62 and 3.63.

108 Rely-guarantee refinement calculus

The next law states that local variables are shielded from the interference in its outer
scope.

Law 3.102 (Introduce-Variable-Rely). For any relations z and r, variable x and set of

variables Y, such that x is not in Y and is unrestricted in rely (r, z) · c, then

Y: (rely (r, z) · c) ⊑ var x · ({x} ∪ Y): (rely (idset {x} ∧ r, z) · c)

3.10.1 Example: shadowing

This example discusses shadowing of global variables using the local variables. Shadowing
refers to the situation where a global variable becomes inaccessible within the scope of a local
variable block of same name. Prior to shadowing a variable, we have to make it unrestricted
within the the command where it will be shadowed. In the case where the command is a
specification, this can be done by splitting the specification into a sequential composition,
and then using appropriate laws to manipulate the frame of the specification. The process is
illustrated next. For readability, relations are represented by their characteristic expressions.

guar (x ≤ x ′) · {x}: [true, x ′= x + 2]

R1 ≡ ⊑ by 3.25 (Sequential) and 3.62a (Distribute-Guarantee)

guar (x ≤ x ′) · {x}: [true, x ′= x + 1];

guar (x ≤ x ′) · {x}: [true, x ′= x + 1]

R2 ≡ ⊑ by 3.25 (Sequential) and 3.62a (Distribute-Guarantee)

guar (x ≤ x ′) · {x}: [true, x ′= x + 1];

guar (x ≤ x ′) · {x}: [true, idset {x}]; ▹

guar (x ≤ x ′) · {x}: [true, x ′= x + 1]

3.11 Restricting access to variables 109

At this point, we refine a specification that is only allowed to stutter by another one that
can perform internal computations on a local variable. In this situation, even though for an
external observer a program may appear inactive, it may be actively performing internal
computations. The left-hand side of the refinement R3 corresponds to the program marked
with ▹ in the result of the refinement R2.

R3 ≡ ⊑ by 4.7c (Monotonic-Derived)

guar (x ≤ x ′) · /0: [true, idset {x}]

R4 ≡ ∼ by 4.9 (Trade-Spec-Frame)

guar (x ≤ x ′) · /0: [true, true]

R5 ≡ ⊑ by 3.101 (Introduce-Variable-Frame)

guar (x ≤ x ′) · var x · {x}: [true, true]

R6 ≡ ⊑ by 3.60a (Guarantee-Monotonic)

guar idset {x} · var x · {x}: [true, true]

R7 ≡ ∼ by 3.62d (Distribute-Guarantee)

var x · {x}: [true, true]

From this point, the development can continue by strengthening the restrictions on the
final value of the local variable x. There is no relationship between the final value of the local
variable x and the global variable.

3.11 Restricting access to variables

Given a command c, a way of syntactically controlling interference is to delimit the variables
that are in the scope of c that can be referenced by c. RG-WSL offers the command
(uses X · c) to restrict the set of variables that c can use to those in the set X. Any command
c can be refined by constraining the variables it can use.

Lemma 3.103 (Introduce-Uses). For any command c and set of variables X,

c ⊑ uses X · c

The syntactic control of interference is formalised by the next two laws. The first of these
trades the refinement of a specification by a parallel program for the refinement of the same

110 Rely-guarantee refinement calculus

specification by a sequential program. Law 3.105 refines a specification enclosed in a rely
by a specification enclosed in a uses command.

Lemma 3.104 (Uses-Atomic-Effective). For any predicate p, relation q, command c, and

set of variables X,

([p, q] ⊑ (uses X · c) ∥ ⟨idset X⟩⋆) ⇔ ([p, q] ⊑ ⟨idset X⟩⋆ ; (uses X · c) ; ⟨idset X⟩⋆)

Law 3.105 (Rely-Uses). For any predicate p, relation q, and set of commands X, such that

[p, q] tolerates interference idset X,

rely idset X · [p, q] ⊑ uses X · [p, q]

If a program is enclosed in a uses command, it carries this syntactic restriction throughout
its development. The command uses itself is not code and must be eliminated in the last stage
of the development, when its body contains only code. The notions of code and free variables

for code are necessary to formalise the elimination of the uses block and are defined next.
The elimination of the uses command is briefly discussed in [48], but is not formalised there.

Definition (contrib.) 3.106 (Code). Let c and d be commands, x a variable, e an ex-

pression, and b a boolean expression,

code (x:=e) code [[b]]

code c

code (var x · c)

code c

code (while b do c)

code c code d

code (if b then c else d)

code c code d

code (c ; d)

code c code d

code (c ∥ d)

3.11 Restricting access to variables 111

Definition (contrib.) 3.107 (Free-Variables-Code). Let c, c1 and c2 be code, x a vari-

able, e an expression, and b a boolean expression. The set of free variables of programs

which qualify as code is inductively defined as follows:

free [[b]] (free-exp b) free (x:=e) ({x} ∪ free-exp e)

free c1 X1 free c2 X2

free (c1 ; c2) (X1 ∪ X2)

free [[b]] X0 free c0 X1 free c1 X2

free (if b then c0 else c1) (X0 ∪ X1 ∪ X2)

free c1 X1 free c2 X2

free (c1 ∥ c2) (X1 ∪ X2)

free [[b]] X0 free c1 X1

free (while b do c) (X0 ∪ X1)

free c X

free (var x · c) (X − {x})

The next lemma formalises the strategy suggested to eliminate uses blocks in [48], which
consists into syntactically discharge this constraint.

Lemma (contrib.) 3.108 (Elimination-Uses). For any command c, which consists only

of code, and set of variables X, such that all free variables of c are in X,

uses X · c ⊑ c

Proof. The assumption that c is code prevents further refinements to extend the set of free
variables of c. Thus, it is only necessary to show that c already satisfies the constraint imposed
by the uses block. This can be done by syntactically checking that all free variables in c are
contained in X.

Remark. The strategy for eliminating the uses constructor assumes that once code is

reached, the user will not try to further refine the code. Such additional refinement steps are

possible by expanding the definition of the commands classed as code and further refining

the sub-components.

112 Rely-guarantee refinement calculus

Law (contrib.) 3.109 (Distribute-Uses). For any sets of variables X and Y, relation g,

predicate p and command c,

guar g · uses X · c ⊑ uses X · (guar g · c) (3.109a)

guar−inv p · (uses X · c) ⊑ uses X · guar−inv p · c (3.109b)

Y: (uses X · c) ⊑ uses X · Y: c (3.109c)

Once a uses block has been introduced, the user can opt to use lemma 3.26 (Assoc-
Comm-Dist) to distribute the uses block through its body, or to monotonically refine the body
without distributing the uses block. The first strategy leads to a situation where multiple
instances of the uses block need to be eliminated separately, whereas the second strategy is
more efficient as it only requires a single proof to eliminate the uses block. Note that the user
is allowed to refine the body of a uses block without respecting the restriction imposed by
this constructor, but in such case the uses block cannot be eliminated. An uses block whose
body includes free variables outside those in X cannot perform program steps unless it aborts.

The next rule complements the definition of unrestricted variables given in Section 2.11
to state that if a variable is not free in a code c, then it is unrestricted.

Definition (contrib.) 3.110 (Unrestricted-Free). Let x be a variable, c a command, and

S a set of variables,

free c S x /∈ S code c

unrest(x, c)

3.12 Control structures and assignment

The laws in this section introduce while loops, conditionals and assignments from specific-
ations wrapped in rely and guarantee commands. A limitation of the laws that introduce
control structure is that they require the guard to satisfy the single reference property with
respect to the rely condition. Thus, if the guard does not respect the single reference property,
the offending occurrences of unstable variables must be read and stored in local variables
before introducing control structures.

In general, refining programs requires one to collect information about the state of a
program along the derivation to then use this information to discharge proof obligations in
later stages of the development. The guard of a control structure generally provides relevant

3.12 Control structures and assignment 113

information to the context of its body. In the sequential refinement calculus, for example,
one can assume the validity or negation of the guard in specific parts of the body of the
control structure. However, if the control structure is subject to interference, the extraction
of information from its guard (b) requires additional care. This is because the predicate
denoted by the guard ([[b]]r) may not be stable under the environment actions, but may imply
a weaker predicate b0 that is stable. Similarly, the negation of the guard ([[¬b]]r) may not
be stable under the environment actions, but may imply a weaker predicate b1 that is stable.
This weakening is useful for the purpose of enriching the context within the body of the
control structure. In page 182, for example, the refinement step R20 introduces a loop whose
guard is ok < ot ∧ ok < et, but since only the condition ok < ot is stable under interference
(et ′≤ et) ∧ idset {ot, ok, v}, only this part of the guard is used to enrich the precondition of
the specification nested in the loop.

Law 3.111 (Rely-Conditional). For any predicates p, b0 and b1, relations r and q, such

that [p, q] tolerates interference r, and boolean expression b, such that b satisfies the single

reference property with respect to r and ⊢ p ∧ [[b]]r ⇒ b0 and ⊢ p ∧ r⇒ (b0⇒ b0‘), and

⊢ p ∧ [[¬b]]r ⇒ b1 and ⊢ p ∧ r⇒ (b1⇒ b1‘), and ⊢ p⇒ defined b,

rely r · [p, q] ⊑ (if b then rely r · [p ∧ b0, q] else rely r · [p ∧ b1, q])

Law 3.112 (Rely-Loop). For predicates p, b0 and b1, relations r, w and q, and set of variables

X, such that p is preserved by r and w is well-founded on p and ⊢ depends-only (w, X) and

⊢ p ∧ r∗∗⇒ w∗∗X and boolean expression b, such that b satisfies the single reference prop-

erty with respect to r and ⊢ p ∧ [[b]]r ⇒ b0 and ⊢ p ∧ r⇒ (b0⇒ b0‘), and ⊢ p ∧ [[¬b]]r ⇒ b1,

and ⊢ p ∧ r⇒ (b1⇒ b1‘) and ⊢ p⇒ defined b,

rely r · [p, p‘ ∧ b1‘ ∧ w∗∗X] ⊑ while b do rely r · [p ∧ b0, p‘ ∧ w]

Remark. Remember from definition 2.17 on page 34 that the notation r∗∗X is the transitive

closure of r enlarged with (idset X). To apply the law above, the loop invariant must

be encoded using the predicate p, and the well-founded relation w should only concern

the variables relevant to the falsification of the loop condition. A potential mistake in

the application of this law is to attempt to encode the postcondition in the well-founded

114 Rely-guarantee refinement calculus

relation. The postcondition should be encoded using the loop invariant and the negation of

the condition of the loop.

To introduce an assignment from a specification in the context of a guarantee, one must
ensure that the assignment implements the postcondition and also satisfies the guarantee.
These checks allow the elimination of the guarantee constructor. The precondition must
ensure that the expression appearing in the right-hand side of the assignment is well-defined.

Law 3.113 (Assignment-Guarantee). For any predicate p, relation g, variable x and ex-

pression e such that ⊢ ((p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x})⇒ (q ∧ (g ∨ idrel))) and also

⊢ p⇒ defined e,

guar g · [p, q] ⊑ x:=e

Remark. For nested guarantee contexts, one has to flatten the nested guarantees using

law 3.62c (Distribute-Guarantee) before applying law 3.113 (Assignment-Guarantee). Oth-

erwise, the refinement will lead to an assignment nested in a guarantee command.

Law 3.114 (Assignment-Rely-Guarantee). For any variable x, expression e, set of variables

X, predicate p and relations g and q, such that [p, q] tolerates interference idset X, and

⊢ p⇒ defined e, and ⊢ ((p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x})⇒ (q ∧ (g ∨ idrel))), and

free-exp e ∪ {x} ⊆ X,

{x}: (guar g · rely idset X · [p, q]) ⊑ x:=e

The next law is adequate for situations where the rely condition is not in the shape idset X.
Its proof obligations use the single-reference property (Section 3.2.1) to allow assignment to
be introduced in situations where its right-hand side includes up to one occurrence of a single
unstable variable. The key idea is that, if the expression on the right-hand of the assignment
is stable under interference, then the assignment can be introduced.

The proof of next law published in [48] has minor slips. These discussed and fixed in
Section A.3 (Law 3.115 (Assignment-Single-Reference)) on page 260.

Law 3.115 (Assignment-Single-Reference). For any variable x, expression e, predic-

ate p, and relations r and q, such that [p, q] tolerates interference r, ⊢ p⇒ defined e,

e satisfies the single reference property with respect to r and is preserved by r, i.e.

tol-interf (true, λ s s ′. [[e]]v s = [[e]]v s ′, r), and ⊢ p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x} ⇒ q

3.13 Discussion and summary of contributions 115

rely r · [p, q] ⊑ x:=e

3.13 Discussion and summary of contributions

This chapter introduced a total of 115 laws and definitions, including many of which are not
present in [48]. Novel laws and definitions are accompanied by the keyword contrib and are
summarised in Table 3.2. Each additional law or definition shown in this table is used at least
once in the mechanisation of top-level laws. This means that we introduced no irrelevant
laws and definitions. For a full appreciation of the application of these laws and definitions,
we invite the reader to consult the proofs available in Appendix A.1.

Recall that we use the term lemma to refer to properties whose proof directly follows
from the semantics of RG-WSL and the term law to refer to properties whose proof can
be derived without directly appeal to the semantics. A key contribution of our work is that
all the definitions and laws presented in this chapter are mechanised using Isabelle/HOL.
Moreover, we prove that all laws are derived from the set of lemmas discussed in this thesis.
The lemmas themselves are a key part of the mechanisation, but in general, we have not
proved them from the semantics. Instead, Chapter 4 discusses the use of locales for encoding
the lemmas as local assumptions of the algebra.

116 Rely-guarantee refinement calculus

Reference Name Type Page

3.24 Relational-Composition-Split Lemma 75
3.30 Redundant-Pre-Post Law 79
3.44 Term-Test Lemma 82
3.34 Iteration-Commute Lemma 80
3.45 Term-Precondition Law 82
3.46 Distribute-Stops-Sequential Lemma 83
3.63 Distribute-Guarantee-Var Law 89
3.69 Distribute-Guarantee-Invariant Law 92
3.81 Rely-Idrel-Specification Law 97
3.86 Unrestricted-Rely Lemma 99
3.106 Code Definition 110
3.107 Free-Variables-Code Definition 111
3.108 Elimination-Uses Lemma 111
3.109 Distribute-Uses Law 112
3.110 Unrestricted-Free Definition 112

Table 3.2 Summary of novel laws and definitions

The main contributions of this chapter are:

1. Identification and formalisation of relevant lemmas about RG-WSL that are missing
in [48]. Each lemma presented in this chapter is used at least once in the mechanisation.
There are no lemmas that are defined and never used in proofs;

2. Investigation of the route to be taken by a designer in order to derive programs
featuring nested parallelism. We illustrate the pitfalls involved with nested parallelism
in Section 3.8.1.

3. Extension of the concept of unrestriction to cover derived commands;

4. Notion of code and free variables for code. We apply these concepts to design a method
for eliminating the uses command from implemented code. The application of the
proposed method is illustrated in Section 6.4;

3.13 Discussion and summary of contributions 117

5. A novel interpretation for stops(c, r) that provides a direct link between the concept
formalised by stops and the notion of program steps (π) discussed in Section 2.7
(Operational semantics on page 39);

6. Investigation of the stability of stops and its impact on the theory;

7. A generalisation of stops, used to tweak the definition of the rely command to sheds
light into an alternative proof for law 3.84 (Distribute-Rely-Sequential).

3.13.1 Intricate aspects of using the R/G refinement calculus

Indistinguishable rely conditions

The definition of rely does not distinguish between a relation that only allows stuttering
interference from a relation that does not allow interference at all. The next equivalences
formalise this observation, and also show that adding stuttering interference to a rely condition
is equivalent to add no interference at all.

Law 3.116 (Rely-Equivalences). For any relations z and r, and command c,

rely (idrel, z) · c = rely (false, z) · c

rely r · c = rely (r, false) · c

Stability of stops

We investigated the stability of stops(c, r) under r and discovered that stops(c, r) is not stable
under r in general. Recall that stability is formalised by the definition Tolerate-Interference
introduced on page 72.

Law 3.117 (Stops-Not-Stable). The predicate stops(c, r) is not stable under r in general.

¬ (∀c r. tol-interf (stops(c, r), true, r))

Proof. This can be proved by showing that ∃c r. ¬ tol-interf (stops(c, r), true, r). To
instantiate c use the command {x = 0} and to instantiate r use the relation x < x ′. The proof
that ¬ tol-interf (stops(c, r), true, r) follows immediately from definition 3.16 (Tolerate-
Interference).

118 Rely-guarantee refinement calculus

3.13.2 Stronger definition of rely command

Here we discuss a small change in the definition of the rely command that might lead
to a proof of law 3.84 (Distribute-Rely-Sequential on page 98) that is independent from
lemma 3.83 (Distribute-Rely-Post-Assertion on page 97). The importance of law 3.84 can be
succinctly described by the fact that it distributes the rely command over the components
of sequential composition. Thus, it provides a mechanism to distribute the permission of
making assumptions about the environment to sub-components of a program.

In the first attempt to get rid of the controversial lemma 3.83 in the proof of law 3.84
we dropped the termination condition in the definition of the rely command. While this
simplification eliminates the need for lemma 3.83, it creates another problem. Dropping the
terminating requirement on the rely command causes this command to be given permission
to abort when put run with infinite but fair interference satisfying r. In general, we want the
rely command to terminate even in situations where the interference does not cease to exist.

For a second attempt to eliminate lemma 3.83 from the proof of law 3.84 we suggest to
tweak the definition of the rely command. But this time, instead of dropping (weakening)
the termination condition as we experimented, we suggest to make it stronger. For that, we
introduce a generalisation of stops that takes into account the state in which a program is
required to terminate.

Definition 3.118 (Weakest Precondition). Let p and q be predicates, r a relation, and c a

command.

(⊢ p⇒ wp(c, r, q)) ⇔ ({p} ; ⟨true⟩⋆ ⊑[r] c ; {q})

The command {wp(c, r, q)} denotes the weakest precondition for termination of c in a
state satisfying q when running in an environment r. Note that stops is a special case of the
definition of wp, that is, stops(c, r) = wp(c, r, true). A novel definition for the rely command
is proposed next. It leaves the behavioural restriction of the rely command unaffected, but
strengthens the terminating condition.

3.13 Discussion and summary of contributions 119

Definition (contrib.) 3.119 (Rely-WP). Let r and z be relations and c a command,

rely (r, z) · c ≡
l

d

∣∣∣∣∣∣∣∣∣∣∣

({wp(c, true, z)} ; c ⊑[z] d ∥ ⟨r ∨ idrel⟩⋆) ∧

∀ q.

tol-interf (true, q, z ∨ r)

−→

⊢ wp(c, q, z)⇒ wp(d, q, z ∨ r)

This definition determines that rely (r, z) · c must stop when running in an environ-

ment z ∨ r from states where c stops in an environment z. Up to this point, it looks like the
original definition. The novelty comes from the added requirement: considering the same
initial state, any predicate stable under r that c is able to establish at the end of its execution
in an environment z must also be established by rely (r, z) · c at the end of its execution in
an environment z ∨ r.

We believe this formulation is a potential candidate to eliminate the controversial
lemma 3.83 from the proof of law 3.84. The adjustment in the definition of rely has to
be accompanied by the introduction of properties about wp. In this direction we further
contribute with two laws about wp, that highlight some essential properties of this operator.

Law (contrib.) 3.120 (WP-Monotonic). For any predicates q, q0 and q1, relations r, r0

and r1, and commands c and d,

c ⊑[r] d =⇒ ⊢ wp(c, r, q)⇒ wp(d, r, q) (3.120a)

⊢ r0⇒ r1 ∨ idrel =⇒ ⊢ wp(c, r1, q)⇒ wp(c, r0, q) (3.120b)

⊢ q0⇒ q1 =⇒ ⊢ wp(c, r, q0)⇒ wp(c, r, q1) (3.120c)

Law (contrib.) 3.121 (WP-Transference-CQ). For relation r, predicate q and command c,

wp(c, r, q) = wp(c ; {q}, r, true)

The generalisation of stops proposed in Definition 3.118 is just one out of five definitions
that were investigated to replace stops. For the alternative definitions, we refer the reader to
theory 12-Extensions in Appendix A.1. The reason we have not investigated the impacts of
the proposed definition for the rely command is because of time constraints. To carry out the
investigation of the adequacy of a new definition for the rely command, we have to revisit all
proofs involving this concept and also to build a consistent infrastructure to support the use
of wp. The distributivity of the rely command over a sequential composition is a well-known
property in the literature of rely guarantee (e.g. [26, 43]). Considering the definition of the

120 Rely-guarantee refinement calculus

rely command as a “black-box”, there should be no doubts that law 3.84 must hold. The
challenge is, of course, to demonstrate that this property holds in this algebraic incarnation
of rely-guarantee and, if it does not hold, to fine-tune the definition of the rely command to
make this property to hold.

Chapter 4

Rely-guarantee in Isabelle/HOL

The separation of practical and theoretical work is artificial and injurious. Much of

the practical work done in computing, both in software and in hardware design, is

unsound and clumsy because the people who do it have not any clear understanding

of the fundamental design principles of their work. Most of the abstract

mathematical and theoretical work is sterile because it has no point of contact with

real computing. [...] This separation cannot happen.

Christopher Strachey

This chapter discusses the infrastructure developed to encode the refinement calculus
from Chapter 3 as a refinement algebra in Isabelle/HOL. It explains conventions adopted
to keep the mechanisation manageable, the proof style used to formalise derivations, and
decisions we took to enhance the level of automation of the mechanisation. These decisions
are practical contributions of our encoding: without careful design and introduction of
redundancy in specific points of the mechanisation, the theory would have become quite
clumsy to use to derive the examples from Chapter 6, because it would offer little support
from Isabelle to automatically complete proofs.

A key contribution of this chapter is that it concludes the discussion started in Chapter 2
about the encoding of RG-WSL. Recall from Section 2.3.4 that our encoding of RG-WSL
differs from that proposed in [48], in the sense that the argument taken by unbounded choice
is required to be a countable set of commands, instead of an arbitrary set of commands. We
analyse alternative choices for encoding RG-WSL, and compare these to our encoding.

This chapter also discusses a few incorrect paper proofs from [48], presenting a sketch of
the mechanised proof in these cases. The chapter ends with a brief parallel between relations
and lattices.

121

122 Rely-guarantee in Isabelle/HOL

4.1 Methodology

Our objective is to take the algebraic approach to encode rely-guarantee refinement calculus
as presented in Chapter 3 using Isabelle/HOL [109]. As a consequence of this decision, our
mechanisation departs from a set of laws taken for granted, which is a reduced set of laws
sufficiently expressive to derive other laws. In this chapter we refer to laws taken for granted
as local assumptions. In doing so, we differ from the usual nomenclature adopted in the
literature [54, 43], which employs the term axioms to refer to properties introduced without
a proof. The term “axiom” is not technically honest to our mechanisation: we do not use
axiomatisation within Isabelle, but locales to create local contexts where properties without
an underlying proof can be introduced.

We represent programs via datatypes, i.e. syntactic entities, thus the algebraic laws
express semantic properties over syntactic terms. The syntax is necessary to formalise the
operational semantics discussed in Chapter 2. We use the operational semantics to prove the
soundness of about a dozen refinement laws via stratified forward simulation. Recall from
Figure 2.7 on page 60 that forward simulation is not a general proof method for refinement:
it is possible for a concrete program to refine an abstract one, even though the abstract does
not simulate the concrete. The general strategy to prove the soundness of a refinement law is
to expand the definition of refinement (Definition 2.73 on page 55) and reason in terms of a
denotational semantics. Our mechanisation can be extended to support this proof strategy by
adding a proof-oriented denotational semantics to the theory. The mechanisation provided in
Appendix A.1 abstracts the denotational semantics as a constant. Thus, it does not contain
enough details to prove the soundness of the local assumptions.

4.1.1 Naming conventions

To organise the refinement laws in Isabelle, we developed a naming convention to help the
user to search laws by the key commands or operators involved, and count the number of
theorems of a certain type. The most frequent elements of our convention are summarised in
Table 4.2, which maps infixes to their meanings. These infixes are included in the label of
the laws, but have no semantics within Isabelle.

Additionally, we use Isabelle predefined attributes to enhance levels of automation. The
following attributes can be enclosed within square brackets and added after the label of a
law. These attributes affect automated proof commands such as safe, simp and auto, and

4.1 Methodology 123

Term Meaning

Ref main symbol in the conclusion is refinement
Tr main symbol in the conclusion is trace equality
Pre precondition command
Spec specification command
Dist distributivity property
Mono monotonic property
Trans transitive property
Assoc associative property
Comm commutative property
Idem idempotent property
Ident identitity
ParC parallel composition
SeqC sequential composition
SConj strict conjunction
UCh unbounded choice
Iter iteration
Guar guarantee
Rely rely
Term termination

Table 4.2 Naming convention

124 Rely-guarantee in Isabelle/HOL

thus are used at discretion1. Attributes can only be added to a law if the law matches the
characteristic shape required by the attribute.

simp can be applied to laws whose main symbol is an equality. As general
advice, the left-hand side of a simplification rule should be more complex
than its right-hand side in some sense (e.g., number of unique function
symbols). Upon invocation of simplification tactics such as simp and auto,
Isabelle tries pattern match the left-hand side of each simplification rule
against the goal, and when it succeeds, it rewrites it by the respective
right-hand side of the successful rule.

intro! automatically used by the safe proof method. This attribute should be
applied only to introduction laws that preserve provability, i.e., that trade a
provable goal by other that is not stronger than it.

Great care needs to be taken, however, as unrestricted use of attributes might render
Isabelle tools to loop (i.e., rewrites must adhere to some notion of simplification to prevent
one rewriting undoing the previous). This is a hard task that is achieved heuristically and
through experience. It sets the difference between easy/hard proof. It may also bias the
rewriting direction towards specific choices. All these are key proof engineering techniques
to make theories usable and productive. Without such fine tuning, our mechanisation would
be very hard to use.

4.1.2 Encoding lemmas

Lemmas from Chapters 2 and 3 are taken as local assumptions to form the refinement
algebra discussed in this chapter. We group the local assumptions based on their subject:
basic laws, associativity, commutativity, distributivity, monotonicity, etc. These groups
resemble the structure of the previous chapter. Each group is encoded using a locale and
inherits definitions given in previously defined locales. At the base of the hierarchy of local
assumptions is the locale Trace_Semantics (Figure 4.1), which introduces key concepts
about the semantics, such as the abstract notion of denotational semantics (trace-program).
The concept of refinement is introduced in the locale Algebra_Core (Figure 4.2), which

1Safe splits a sub-goal into simpler sub-goals and break the premises into independent pieces of information.
This transformation is expected to preserve the provability of a conjecture. Simp performs simple arithmetic
and logical simplifications, and is generally fine-tuned by listing the laws to be applied. Simplification rules are
applied by default both by simp and auto. This last command performs a more aggressive transformation on the
goal and may transform an originally provable goal into one whose provability is not guaranteed.

4.1 Methodology 125

introduces refinement and trace equality, and also introduces most of the lemmas discussed
in Section 3.3 (Basic refinement laws)2. The encoding of assumptions is available in the
theory 05-RG-Algebra in Appendix A.

locale Trace-Semantics =
fixes trace-program :: Command⇒ Traces ([[-]]) and

trace-semantics :: Command⇒ relation⇒ Traces ([[-]][-])
defines [[c]][r] ≡ { t. t ∈ [[c]] ∧ ⊢ env t⇒r (r ∨r idrel)}
assumes [[(

d
acset C)]][r] =

⋃
{ [[c]][r] | c . c ∈ C}

Figure 4.1 Trace Semantics

locale Algebra-Core = Trace-Semantics +
fixes refinement :: Command⇒ relation⇒ Command⇒ IB ((- ⊑[-]/ -) [51,51,51] 50)
and trace-eq :: Command⇒ relation⇒ Command⇒ IB ((- ∼[-]/ -) [51,51,51] 50)

defines
c ⊑[r] d ≡ [[d]][r] ⊆ [[c]][true] and
c ∼[r] d ≡ c ⊑[r] d ∧ d ⊑[r] c

assumes
— Semantics and Forward Simulation
∀n. a ≼[n,r] c =⇒ a ⊑[r] c and
— Basic refinement laws
[defined b, [[b]]r ∧r idrel] ⊑[true] [[b]] and
pred p =⇒ [p, idrel ∧r p‘] ⊑[true] skip and
pred p =⇒ [p, q] ⊑[true] ⟨p, q⟩ and
pred p =⇒ ([p,q] ⊑[idrel] c) = ([p,q] ⊑[true] c) and
[[pred p0; pred p1; ⊢ p0 ⇒r p1]] =⇒ {p0} ⊑[true] {p1} and
[[pred p0; pred p1]] =⇒ {p0} ;c {p1} ∼[true] {p0 ∧r p1} and
[[pred p; pred mid]] =⇒ [p, q0 ;r q1] ⊑[true] [p, q0 ∧r mid‘] ;c [mid, q1] and
[[pred p0; pred p1; ⊢ p0 ⇒r p1 ; ⊢ p0 ∧r q1⇒r q0]] =⇒ ⟨p0, q0⟩ ⊑[true] ⟨p1, q1⟩ and
[[pred p0; pred p1; ⊢ p0 ⇒r p1 ; ⊢ p0 ∧r q1⇒r q0]] =⇒ [p0, q0] ⊑[true] [p1, q1]

Figure 4.2 Algebra Core

The encoding of assumptions via locales provides a modular representation where sets of
assumptions can be plugged together to form a larger proof context. Using this approach, we
cannot refer to definitions and assumptions of a locale unless we are within its context. To be

2 Isabelle adopts mixfix annotations to define the syntax of operators together with their precedence. In
Figure 4.2, the syntax _ ⊑[_] _ is assigned to refinement, whose priority is 50. This choice forces the user
to put parenthesis around equalities involving this symbol, because equality has the same precedence. The
numbers within square brackets are used to declare the priority of each argument in isolation, and are used to
fine-tune the use of parenthesis to solve ambiguity between operators. These numbers are set-up generally
experimentally.

126 Rely-guarantee in Isabelle/HOL

in such context the user has two options: either she must interpret the locale with respect to
the top-level proof context, or expand the context of the locale. For the first approach, the
user has to discharge all assumptions of the locale first. This lifts the laws and definitions
that are originally confined to the scope of the locale to become available in the context
under which the locale was interpreted. To follow this approach we need a model of the trace
semantics suitable for mechanical proofs, as many of the lemmas from Chapter 3 can only
be argued using a denotational semantics. Since we do not have such a model, we took a
pragmatic approach in the mechanisation: we prove laws by expanding the context of locales.
For that, we use the reserved word context followed by the name of the locale and a block
defined via begin/end to introduce additional definitions or prove laws within the context of
a specific locale. Thus, derived laws are correct modulo the validity of the local assumptions.
To minimise the reliance on local assumptions, we used stratified forward simulation to prove
about a dozen lemmas discussed in Chapter 3.

4.1.3 Proof style

The proof style we adopted is called procedural and provides a precise control of the proof
engine, but it does not show the state of the proof in the proof script, thus making our proofs
difficult to be followed outside Isabelle. The proof state can be seen in Isabelle by selecting
either the state tab or output tabs, and then moving the input cursor through the lines of the
proof script. We illustrate the procedural proof style in Figure 4.3. For convenience, in this
example we show the proof state after the application of key laws, and we systematically
replace the actual identifier of the laws by their respective names in this thesis.

Alternatively, Isabelle admits a structured proof style via Isar [109], which makes proofs
suitable for reading outside Isabelle. See an example of structured proof in Figure 4.4. For
convenience, we systematically replace the actual identifier of the laws by their respective
names in this thesis. The decision for mostly using the procedural style is due to the
familiarity of the author with this proof style, and the fact that for large proof exercises such
as in our work, the procedural style is more productive. This has already been observed (and
followed) by other large developments at the repository of formal proofs3 and seL4 verified
microkernel [69].

Many of the proofs in this document can be automatically found by sledgehammer, an
Isabelle’s proof finder. For certain cases where sledgehammer can find a proof, it can also
provide a structured proof. The ability to use sledgehammer to find proof hints at an adequate

3http://afp.sourceforge.net

4.1 Methodology 127

theorem Conjunction-Atomic-Procedural-Subproof :
(magic ⊓ (⟨g1⟩ ;c ⟨g1⟩ω e ⟨g0⟩ ;c ⟨g0⟩ω)) ∼ (magic ⊓ ⟨g0 ∧r g1⟩;c (⟨g0⟩ω e ⟨g1⟩ω))
apply (rule Substitution (4.8c) , simp)
— Proof state: ⟨g1⟩ ; ⟨g1⟩ω e ⟨g0⟩ ; ⟨g0⟩ω ∼ ⟨g0 ∧ g1⟩ ; (⟨g0⟩ω e ⟨g1⟩ω)
apply (rule Transitivity-Trace (4.6b))
apply (rule Assoc-Comm-Dist (3.26d))

— Proof state: ⟨g0⟩ ; ⟨g0⟩ω e ⟨g1⟩ ; ⟨g1⟩ω ∼ ⟨g0 ∧ g1⟩ ; (⟨g0⟩ω e ⟨g1⟩ω)
apply (rule Transitivity-Trace (4.6b))
apply (rule Conjunction-Properties (3.54c) , simp+)

— Proof state: (⟨g0⟩ e ⟨g1⟩) ; (⟨g0⟩ω e ⟨g1⟩ω) ∼ ⟨g0 ∧ g1⟩ ; (⟨g0⟩ω e ⟨g1⟩ω)
apply (rule Transitivity-Trace (4.6b))
apply (rule Substitution (4.8a))
by (rule Conjunction-Properties (3.54b) , simp)

Figure 4.3 Procedural proof example.

theorem Conjunction-Atomic-Structured-Subproof :
(magic ⊓ (⟨g1⟩ ;c ⟨g1⟩ω e ⟨g0⟩ ;c ⟨g0⟩ω)) ∼ (magic ⊓ ⟨g0 ∧r g1⟩;c (⟨g0⟩ω e ⟨g1⟩ω))

proof −
have ⟨g0⟩ e ⟨g1⟩ ∼ ⟨g0 ∧r g1⟩

by (metis Relation-Properties (4.1h) Conjunction-Properties (3.54b))
hence ⟨g0⟩ ;c ⟨g0⟩ω e ⟨g1⟩ ;c ⟨g1⟩ω ∼ ⟨g0 ∧r g1⟩;c (⟨g0⟩ω e ⟨g1⟩ω)

using Conjunction-Properties (3.54c) Substitution (4.8a)
Transitivity-Trace (4.6b) Predicate (2.19) Typographic conventions (2.12) by metis

hence ⟨g1⟩ ;c ⟨g1⟩ω e ⟨g0⟩ ;c ⟨g0⟩ω ∼ ⟨g0 ∧r g1⟩;c (⟨g0⟩ω e ⟨g1⟩ω)
using Assoc-Comm-Dist (3.26d) Transitivity-Trace (4.6b) by blast

thus
(magic ⊓ (⟨g1⟩ ;c ⟨g1⟩ω e ⟨g0⟩ ;c ⟨g0⟩ω)) ∼ (magic ⊓ ⟨g0 ∧r g1⟩;c (⟨g0⟩ω e ⟨g1⟩ω))
using Substitution (4.8c) by simp

qed

Figure 4.4 Structured proof example.

128 Rely-guarantee in Isabelle/HOL

fine tuning of theory attributes, lemma shape and granularity. All this effort is crucial proof
engineering in order to make theories usable and as highly automated as possible.

4.2 Proof engineering

This section presents part of the setup necessary to enable modular proofs in Isabelle/HOL.
The laws in this section serve to organize the mechanical reasoning into layers, so that
algebraic reasoning about high-level commands is possible without expanding their definition.
This section also introduces a mechanical formulation of the single reference property, which
is necessary to formalise side conditions of laws that introduce control structures in programs.

4.2.1 Relational operators

Most refinement laws generate proof obligations when applied. For example, the application
of law 3.84 (Distribute-Rely-Sequential) to distribute the rely over a sequential composition
of commands adds two new goals to the proof state: pred p and ⊢ p⇒ stops(c0 ; c1, z). More
often than not, the proof obligations involve reasoning over logical interpretation of relations
(⊢). We provide a collection of laws to algebraically reason about relations and their logical
interpretation. To a certain extent, these laws prevent the need for expanding definitions
given in Figure 2.4 on page 34. The next set of laws illustrates some of the properties that are
provided to reason about relations, post-state notation, implication, conjunction and closure
of relations. For a complete list of these property, we refer the reader to theory 02-Relations

in Appendix A.1.

Law 4.1 (Relation-Properties). For any sets of variables X and Y, relation g, q, r and s, and

predicates p, p0 and p1,

idrel ∨ idset X = idset X (4.1a)

idset X ∧ idset Y = idset (X ∪ Y) (4.1b)

(g ∨ idrel)∗∗ = g∗∗ (4.1c)

idrel ∨ (g ; g∗∗) = g∗∗ (4.1d)

(p0 ∧ p1)‘ = p0‘ ∧ p1‘ (4.1e)

r⇒ q⇒ s = q ∧ r⇒ s (4.1f)

p⇒ p‘ = (p⇒ p‘)∗∗ (4.1g)

true ∧ q = q (4.1h)

4.2 Proof engineering 129

q ∧ true = q (4.1i)

q⇒ r⇒ q = true (4.1j)

q⇒ r ∨ q = true (4.1k)

q ∧ r⇒ q = true (4.1l)

q ∧ r⇒ r = true (4.1m)

While reasoning over logical evaluation (⊢), it is generally useful to decompose proofs
into sub-goals. For example, the next law is often used to split a proof obligation in the shape
⊢ r⇒ q ∧ s, and also to reason monotonically using logical interpretation.

Law 4.2 (Log-Interp-Imp-Monotonic). For any relations r, q and s, and sets of variables X

and Y,

⊢ r⇒ q ∧ ⊢ r⇒ s =⇒ ⊢ r⇒ q ∧ s (4.2a)

⊢ q⇒ q ′∧ ⊢ r⇒ r ′ =⇒ ⊢ q ∧ r⇒ q ′∧ r ′ (4.2b)

⊢ r0⇒ r0
′∧ ⊢ r1⇒ r1

′ =⇒ ⊢ r0 ; r1⇒ r0
′ ; r1

′ (4.2c)

Y ⊆ X =⇒ ⊢ idset X⇒ idset Y (4.2d)

We also offer laws to decompose the proof that a relation is a predicate. For example, the
next laws are useful to show that relations formed from conjunction or disjunction of simpler
predicates are still a predicate

Law 4.3 (Monotonic-Predicate). For any relations p0 and p1,

pred p0 ∧ pred p1 =⇒ pred (p0 ∧ p1)

pred p0 ∧ pred p1 =⇒ pred (p0 ∨ p1)

Laws to manipulate relations can be introduced on-demand while proving refinement
laws. Thus, the set of laws to manipulate relations is deliberately incomplete. This is easy
to notice in proofs involving relations that have quantifiers. In general, to reason over such
relations one has to expand logical evaluation and also the definitions given in Figure 2.4.
In practice, the user can always expand the definitions and apply simplification tactics such
as simp and auto. If the algebraic style is preferred, the user can extend the set of laws to
manipulate relations on-demand.

130 Rely-guarantee in Isabelle/HOL

To enhance the automation of proofs involving relations, redundant laws can be provided
and attributes such as simp can be assigned to the laws. In our experience, attributes were
added in a late stage of the mechanisation, in an experimental manner, i.e. analysing the
effect of adding attributes on a case-by-case basis. The next guideline was observed when
introducing laws to enhance automation, and assigning the attributes to them. Some of these
observations are also noted in [38].

1. Avoid marking commutative and associative laws with the simp attribute, because both
left and right hand side are equally complex;

2. Offer some degree of redundancy in laws. Human interaction during proofs can be
counter-balanced by introducing redundant laws. For example, we offer laws 4.1h
and 4.1i to minimise the manual application of commutative laws;

3. Create simplification laws to absorb tautologies. Laws such as laws 4.1j and 4.1k speed
up proofs, as they prevent the need for expanding logical interpretation (⊢);

4. Create introduction rules to trade complex for simpler goals. Law 4.2a is a perfect
example of this type of strategy. Beyond increasing the modularity of proof scripts,
these laws can be used to increase automation by tagging laws that preserve provability
with the attribute intro!.

5. Create zooming rules to jump between operators’ level of abstraction. We used
zooming rules to prevent the expansion of the concept of stability (Definition 3.16 on
page 72). Law 3.17 (Closure-Interference) is a good representative of zooming rules.

4.2.2 Single reference property

The single reference property holds for an expression e and a relation r if e has at most a
single reference to a variable modified by r [48]. The concept is discussed in Section in 3.2.1,
but is not given a formal definition there.

For the mechanisation of laws 3.100 (Rely-Test), 3.111 (Rely-Conditional), 3.112 (Rely-
Loop), and 3.115 Assignment-Single-Reference), which require the concept of single ref-
erence, we are forced to come up with a mathematical representation. The proposed form-
alisation requires the user to identify the unstable variable x if such a variable exists in an
expression e, and then to prove that all remaining free variables are stable with respect to the
relation r and that the unstable variable happens at most once.

4.2 Proof engineering 131

Definition 4.4 (Single reference property). Let b an expression and r a relation,

SRF (b, r) ≡

(
⊢ r⇒ idset (free-exp b) ∨

∃x. count(x, b) ≤ 1 ∧ ⊢ r⇒ idset (free-exp b − {x})

)

where count is defined by induction on the structure of Exp as

count(v, N n) ≡ 0

count(v, V x) ≡ if v = x then 1 else 0

count(v, UOp uop e) ≡ count(v, e)

count(v, BOp bop e1 e2) ≡ count(v, e1) + count(v, e2)

To illustrate the application of the concept we discharge a proof obligation that arises
in the refinement step R20 in the derivation of a concurrent version of FINDP on page 192.
We use the symbol ⇐ to indicate that we are applying a weakening rule, that is, a law
that matches a certain conclusion, and trades it by another one that implies the original.
Next, ok, ek, ot and v denote program variables, b is boolean expression and r is relation.
Let b = (oc < ot ∧ oc < et) and r = ((et ′≤ et) ∧ idset {ot, oc, v}). The proof obligation
require us to prove SRF (b, r).

SRF (b, r)

= by Definition 4.4

⊢ r⇒ idset (free-exp b) ∨

∃x. count(x, b) ≤ 1 ∧ ⊢ r⇒ idset (free-exp b − {x})

⇐ by logical simplification (introduce disjunction)

∃x. count(x, b) ≤ 1 ∧ ⊢ r⇒ idset (free-exp b − {x})

⇐ by logical simplification (introduce existential quantifier)

count(et, b) ≤ 1 ∧ ⊢ r⇒ idset {ot, ok}

Any expression respects the single reference property with respect to the relation idrel.
This happens because idrel = idset UNIV, thus the first component of the disjunction in the
definition of SRF always evaluate to true.

132 Rely-guarantee in Isabelle/HOL

4.2.3 Monotonicity and substitution

Substitution laws smooth the proof process by encoding the intuition of substitutions into the
theory of refinement. Typical usage of substitution laws occur when one has a refinement
proof to complete and wants to replace one of the terms at one side by other term that is
semantically equivalent. Using substitution laws this is encoded via laws 4.5a and 4.5b. For
example, using 4.5a, the user has to prove that program a is equivalent to c in the context r,
and also show that a ⊑[r] d to complete the original proof that c ⊑[r] d.

Law 4.5 (Substitution-Refinement). For any commands a, c and d, and relation r,

a ∼[r] c ∧ a ⊑[r] d =⇒ c ⊑[r] d (4.5a)

c ∼[r] d ∧ a ⊑[r] c =⇒ a ⊑[r] d (4.5b)

Trace equality is reflexive, transitive and symmetric. These are examples of laws where
the attributes simp and sym are added to the label of the law.

Law 4.6 (Transitivity-Trace). For any commands a, c and d, and relation r,

c ∼ c (4.6a)

a ∼[r] c ∧ c ∼[r] d =⇒ a ∼[r] d (4.6b)

One of the benefits of defining derived commands in terms of the primitive ones is that
some properties enjoyed by the primitive commands, e.g. monotonicity for strict conjunction
(e), are also enjoyed by derived commands, e.g. the guarantee command (guar g · c). To
prevent the need for expanding derived commands in proofs to apply these properties, we
have to add extra laws in the mechanisation to make explicit that the monotonic properties
also hold for the derived commands. In general, properties of monotonicity are overlooked in
the description of rely-guarantee refinement calculus [48], but are essential to allow modular
development of programs, such as those presented in Chapter 6. Some top-level monotonic
laws are shown next.

Law 4.7 (Monotonic-Derived). For any relations z and r, predicate p, boolean expression e,

sets of variables W and Y, and commands a, b, c and d,

c ⊑[r] d =⇒ while e do c ⊑[r] while e do d (4.7a)

a ⊑[r] b ∧ c ⊑[r] d =⇒ (if e then a else c) ⊑[r] (if e then b else d) (4.7b)

W ⊆ Y ∧ c ⊑[r] d =⇒ Y: c ⊑[r] W: d (4.7c)

4.2 Proof engineering 133

The next law illustrates some cases of substitution of terms via trace equality. In most
cases the application of this law is preceded by the application of law 4.5 to substitute the
left or right-hand side of a refinement proof, or the application of law 4.6b to prove trace
equivalence by transitivity.

Law 4.8 (Substitution). For any relation r, variable x, set of variables Y, and commands a, b,

term c and d,

a ∼[r] b =⇒ a ; c ∼[r] b ; c (4.8a)

c ∼[r] d =⇒ a ; c ∼[r] a ; d (4.8b)

a ∼[r] b ∧ c ∼[r] d =⇒ a ⊓ c ∼[r] b ⊓ d (4.8c)

a ∼ b ∧ c ∼ d =⇒ a ∥ c ∼ b ∥ d (4.8d)

c ∼[r] d =⇒ guar g · c ∼[r] guar g · d (4.8e)

a ∼[z] b =⇒ rely (r, z) · a ∼ rely (r, z) · b (4.8f)

4.2.4 Shortening proofs

The next laws are used to shorten proofs by preventing the expansion of derived commands.

Law 4.9 (Trade-Spec-Frame). For any predicate p, relation r and set of variables X and Y,

such that Y ⊆ X,

X: [p, q] ∼ X: [p, idset Y ∧ q]

Law 4.10 (Skip-Iteration). For any command c,

c⋆ ⊑ skip

Law 4.11 (Dist-Guarantee-Var). For any variable x, program c and relation g, such that

⊢ depends-only (g, {x}),

guar g · var x · c ∼ var x · (guar g · c)

134 Rely-guarantee in Isabelle/HOL

Law 4.12 (Trade-Spec-Guarantee). For any predicate p and relations g and q,

guar g · [p, g∗∗ ∧ q] ∼ guar g · [p, q]

Law 4.13 (Distribute-Frame-Sequential). For any set of variables Y, Y1 and Y2, such

that Y1 ⊆ Y and Y2 ⊆ Y, and commands c, c ′, d and d ′, and relation r such that c ⊑[r] c ′

and d ⊑[r] d ′,

Y: (c ; d) ⊑[r] Y1: c ′ ; Y2: d ′

Law 4.14 (Omega-Star-Atomic). For any relations r, rx and ry, such that ⊢ rx ∧ ry⇒ r,

⟨r⟩⋆ ⊑ ⟨rx⟩ω e ⟨ry⟩⋆

4.2.5 Representation issues

Isabelle represents set comprehension via the Collect constructor. This representation makes
proofs involving sets sometimes cumbersome, and required us to create additional laws,
such as 4.15a,4.15b and 4.15c to handle internal representation issues in Isabelle. Also, the
conversion between the derived command ⊓ (Definition 3.6 on page 68) and the primitive
command

d
sometimes require us to handle internal representation issues of Isabelle. The

next laws increase the ability of sledgehammer (Isabelle’s automatic proof finder) to succeed
when trying to prove a goal that involves non-deterministic choice.

Law 4.15 (Representation-Nondeterministic-Choice). For any programs c1, c2 and d,

{c1 ∥ d | P c1} = {x ∥ d | x ∈ {x | P x}} (4.15a)

{c1 ∥ d, c2 ∥ d} = {c ∥ d | c ∈ {c1, c2}} (4.15b)

{c1 ; d, c2 ; d} = {c ; d | c ∈ {c1, c2}} (4.15c)

4.3 Conflicts between semantics and local assumptions

RG-WSL as presented in Figure 2.1 on page 21 cannot be formalised in Isabelle/HOL. Recall
from Section 2.3.4 on page 28 that the problem amounts to the use of the type constructor set

4.3 Conflicts between semantics and local assumptions 135

in the constructor of unbounded choice (
d

). To encode RG-WSL, we have restricted the
argument of unbounded choice to be a countable set of commands. This section discusses
the divergence between the operational semantics and the mechanised laws pointed at the
end of Section 2.3.4.

To better understand the issue, we turn our attention to the operational semantics for
unbounded choice (law 2.46 on page 47). The premise of this rule requires C to be a
countable set. This assumption is strictly necessary to allow one to infer that acset C denotes
a countable set. The constructor acset is defined in the theory Countable-Set-Type, which is
distributed with Isabelle/HOL. It takes a set of a type α and returns a representation of this
set using the type α cset. The success of the application of acset depends on its argument to
be a countable set.

To encode the local assumptions of the algebra, we have the option of dropping the
requirement on the set taken by unbounded choice to be countable. On one hand, if we
drop this restriction, we introduce a discrepancy between the local assumptions and the
operational semantics of the language. On the other hand, if we enforce this restriction via
the introduction of provisos in the local assumptions, the derivation of laws involving the
rely command from local assumptions is compromised, because it would demand us to prove
that the set used to define the rely command (Definition 3.72 on page 94) is countable, but
this set is not countable (see proof on Appendix A.4.3).

The position taken in this thesis is that of dropping the restriction on countable sets for
the local assumptions of the algebra. Before justifying this design decision in Section 4.3.3,
we discuss two alternative encodings for RG-WSL in Isabelle/HOL.

4.3.1 Semantic encoding

The conflict between semantics and local assumptions can be prevented by eliminating the
syntax and replacing the encoding of RG-WSL using datatypes by an encoding where each
programming constructor is a function from their arguments to an abstract type ′a, as done
in [35]. In this formulation, a possible encoding for RG-WSL using locales is shown in
Figure 4.5.

This formulation does not restrict the argument taken by unbounded choice to be count-
able. It circumvents this restriction by avoiding a syntactic representation of RG-WSL. The
drawback of this approach is that the lack of syntax means that one has to give up on the
operational semantics and the laws that establish a foundation for the algebra in terms of the
semantics provided in Chapter 2.

136 Rely-guarantee in Isabelle/HOL

locale RG-WSL =
fixes

Atomic :: relation⇒ relation⇒ ′a and
Post :: relation⇒ ′a and
Pre :: relation⇒ ′a and
UCh :: ′a set⇒ ′a and
SConj :: ′a⇒ ′a⇒ ′a and
SeqComp :: ′a⇒ ′a⇒ ′a and
ParComp :: ′a⇒ ′a⇒ ′a and
Conditional :: Exp⇒ ′a and
Uses :: vname set⇒ ′a and
State :: vname⇒ vvalue⇒ ′a

Figure 4.5 Semantic encoding for RG-WSL

4.3.2 Stratification

RG-WSL can be split in two syntactic layers: one containing inner commands that can be
used inside of unbounded choice (ICommand); and other of outer commands that operate on
the same level as unbounded choice (Command) as shown in Figure 4.6.

datatype ICommand = iAtomic relation relation (⟨-,-⟩i)
| iPost relation ([-]i)
| iPre relation ({-}i)
| iStrictConj ICommand ICommand (infix ei 70)
| iSeqComp ICommand ICommand (infix ;i 80)
| iParComp ICommand ICommand (infix ∥i 70)
| iConditional Exp ([[-]]i)
| iUses vname set ICommand ((usesi - ·/ -) [71,71] 70)
| iState vname vvalue ICommand ((statei -7→- ·/ -) [71,71,71] 70)

datatype Command = DemNonDetChoiceSet ICommand set ((
d

-) 75)
| Atomic relation relation (⟨-,-⟩)
| Post relation ([-])
| Pre relation ({-})
| StrictConj ICommand ICommand (infix e 70)
| SeqComp ICommand ICommand (infix ;c 80)
| ParComp ICommand ICommand (infix ∥ 70)
| Conditional Exp ([[-]])
| Uses vname set ICommand ((uses - ·/ -) [71,71] 70)
| State vname vvalue ICommand ((state -7→- ·/ -) [71,71,71] 70)

Figure 4.6 Nesting control for RG-WSL

Using the syntax proposed in Figure 4.6, the operational semantics can be given to both for
inner and outer layers. The key insight of this design is that it introduces nesting control for
unbounded choice. In the case illustrated in Figure 4.6, no nesting is allowed. One can think
of that language as RG-WSL(0) in the sense that it allows no nesting of unbounded choice.

4.3 Conflicts between semantics and local assumptions 137

Several layers can be devised between the inner and outer language, such that a number of
levels of nesting is allowed. For example, one can denote by RG-WSL(k) a formulation of RG-
WSL that allow up to k nested occurrences of unbounded choice. The impact of limiting the
nesting non-deterministic choice is that it constrains the nesting of derived commands based
on it, such as the rely command, conditionals, local variable and assignment. To illustrate the
expressiveness of RG-WSL(k) we list some programs from RG-WSL and show the minimum
value of k to represent them in RG-WSL(k). Next we assume that c ∈ RG-WSL(0),

(rely (r, z) · c) ∈ RG-WSL(k), for 1 ≤ k

(rely (r0, z ∨ r1) · (rely (r1, z) · c)) ∈ RG-WSL(k), for 2 ≤ k

(var m · if x < y then m:=y else m:=x) ∈ RG-WSL(k), for 2 ≤ k.

The drawback of implementing RG-WSL(k) for any k≥0, is that it requires redundancy in the
semantics and also in the local assumptions of the algebra, because each layer requires its
own laws. Ignoring the tedious aspects involved with the mechanisation of several layers,
the stratification scales on-demand. That is, one can systematically add or remove layers as
necessary for expressing an intended program.

4.3.3 Justifying design decision

We use the experiment on stratification to draw conclusions about the consistencyof our
encoding using countable sets. We conjecture that any concrete derivation based on the

encoding of RG-WSL using countable sets has a corresponding refinement using RG-WSL(k)

for some value of k.
To see why this holds, consider the refinement chain: C0 ⊑[r] C1 ⊑[r] ... ⊑[r] Cn, where

each program Ci contains a finite number of nested occurrences of unbounded choice. Let
C j ∈ {C0, ..., Cn} be such that it has the highest number of nested occurrences of unbounded
choice among all elements in {C0, ..., Cn}. Let the number of nested occurrences of
unbounded choice in C j be k. It is possible to systematically convert each Ci ∈ RG-WSL into
Ci
′∈ RG-WSL(k), and find a derivation for Cn

′ from C0
′ using laws over RG-WSL(k).

Thus, although local assumptions do not include a proviso to ensure that the set taken by
non-deterministic choice is countable, we can map each concrete derivation in our algebra
to a respective derivation using a stratified version of RG-WSL. This mapping allow us to
compensate for the conflict between the semantics and local assumptions.

138 Rely-guarantee in Isabelle/HOL

4.4 Discussion and summary of contributions

In this chapter we discussed the encoding of the refinement calculus presented in Chapter 3
in Isabelle/HOL. We encoded the algebra using a hierarchy of locales, where each locale
is used to group local assumptions that are related by a specific subject (e.g. monotonicity,
commutativity, etc.). This chapter also closes the discussion about the encoding of RG-WSL,
and analyses two alternative encodings that could have been used to represent RG-WSL.
Next we summarise the contributions of this chapter.

1. Guidelines for enhancing the level of automation of the mechanisation. Section 4.2.1
discussed the rationale behind the use of attributes that enable automatic application of
laws in our mechanisation, and the creation of auxiliary laws to increase the efficiency
of tools such as sledgehammer to find proofs;

2. Discussion and formalisation of single reference property in Section 4.2.2;

3. Additional refinement laws to facilitate proofs. Sections 4.2.3-4.2.5 presented laws that
prevent the need for expanding derived commands to apply monotonic and distributive
properties;

4. Discussion of the conflict between semantics and local assumptions in the mechanised
theory. Section 4.3 revisits the issue involving the formalisation of non-deterministic
choice, and analyses the limitations of alternative encodings that prevent the problem.

Although the laws presented in this chapter do not increase the expressiveness of the
algebra (they are all derived from local assumptions), they are essential to smooth the path
for the application of mechanised theory.

Encoding of relations The level of automation for proofs involving logic interpretation
(⊢) can be improved. The current encoding does not limit the expressiveness of the theory,
but requires considerable interaction from the user to discharge proof obligations. This can
be minimised by: (i) introducing more laws to reason about relations, or (ii) instantiating
the type of relations to be a lattice. The second approach appears to be more effective, as it
would allows the user to directly benefit from properties already included in the libraries of
Isabelle/HOL. In our experiments, we did not succeed to instantiate relations as a lattice, but
we proved the next law that hints at this possibility.

4.4 Discussion and summary of contributions 139

Law 4.16 (Lattice-Exchange). For any relations q and r,

q ∧ r = inf q r (4.16a)

q ∨ r = sup q r (4.16b)

¬ r = − r (4.16c)

q⇒ r = sup (− q) r (4.16d)

true = top (4.16e)

false = bot (4.16f)

Type constraints. Another direction for improving the mechanisation is to introduce a
mechanism to automatically discharging proof obligations involving type constraints. Recall
from Section 2.4.1 (Predicates on page 34) that we use a single type to encode relations
used as preconditions and postconditions. This simplification is compensated by introducing
provisos in the local assumptions to ensure that relations used to instantiate preconditions are
predicates (see Figure 4.2 for examples). Sometimes the same proviso is proved a number of
times in a proof, as it is reintroduced every time a law manipulating a precondition is used.
These provisos are trivial to be proved, but perhaps there might be a more effective way of
managing them without polluting proofs with their details.

Chapter 5

Extensions to rely-guarantee algebra

Formalization is an experimental science.

Dana Scott

This chapter extends the rely-guarantee algebra with indexed parallel composition, as-
signment to indexed arrays and two abstractions: eguard and reachable values. The primitive
eguard r delivers a mechanism to restrict environment steps of a program; this command
is necessary to complete the proof of law 3.102 (Introduce-Variable-Rely on page 108).
Reachable evaluations provide an over-approximation for the use of history variables, and
allows the designer to refer to non-atomic evaluation of expressions within postconditions.
Reachable evaluation is inspired in the convention known as possible values, which was first
discussed in [66], where there is a need of modelling the transference of value between a
global variable x and another variable read-x, and the value acquired by read-x may be the
initial or final value or x, as well any intermediate value that x may have held as result of
interference prior the transference.

5.1 Indexed parallelism

We define a generalisation of the binary parallel composition to a collection of programs.
Before presenting the actual definition of indexed parallelism mechanised in this thesis
(Def. 5.3), we discuss two hypothetical definitions and analyse their problems. To formalise
these definitions we consider two components: a set of indices S and a parameterised program
F, which is not a program itself but a function from indices to programs. The i-th program of
the composition is represented by F i. The first definition is introduced next.

141

142 Extensions to rely-guarantee algebra

Definition 5.1 (Indexed Parallel Composition). Let n be a positive natural number, and F a

total function from naturals to commands.

∥S · F =

skip for S = /0,

(F n) ∥ (∥{1..n−1} · F) for S = 1..n.

The set of indices S is finite, but its size is arbitrary. The base case, S = /0, returns
the identity for parallel composition, i.e. skip; in the inductive case, S={1..n}, the n-th
program is composed in parallel with the indexed parallel composition of the first n−1

programs. To illustrate this definition, consider the parameterised program F12 where
F12 (1) = a and F12 (2) = b. Expanding the definition of indexed parallelism we can show
that ∥{1,2} · F12 = b ∥ (a ∥ skip).

Definition 5.1 requires indices to be positive natural numbers. For certain algorithms,
it is more convenient to use a different type to represent indices, e.g. for the derivation of
Floyd-Warshall in Section 6.6, programs are indexed according to the position of the cells
(i, j) of a matrix where they operate on. Thus, to facilitate the representation of algorithms,
the next definition allows indices of a generic type.

Definition 5.2 (Indexed Parallel Composition). Let S be a finite set of indices of type ′a, and

F a total function of the type ′a⇒ Command.

∥S · F =

skip for S = /0,

F e ∥ (∥S ′ · F) for S = S ′∪ {e} ∧ e /∈ S ′.

Returning to our example, we can now represent (b ∥ (a ∥ skip)) as (∥{a,b} · id), because
it will expand as (id b ∥ ((id a) ∥ skip)). Note that Definition 5.2 only makes sense from
a semantic point of view. The reason is that b ∥ (a ∥ skip) ̸= a ∥ (b ∥ skip), and for the
definition over sets to be consistent from a syntactic perspective, we would need these terms
to be syntactically equivalent. Thus, the equality in the definition using sets is not syntactic,
but is semantic equivalent (∼ in our notation). To provide a syntax for indexed parallelism,
sets must be accompanied by an ordering relation to establish a unique order for parallel
composition. In the mechanisation of indexed parallelism we use the next definition based
on lists instead of sets, since lists already impose an order over the elements and are finite by
definition.

5.1 Indexed parallelism 143

Definition 5.3 (Indexed Parallel Composition). Let L be a list of indices of the type ′a, and F

be a total function of the type ′a⇒ Command.

∥L · F =

skip for L = [],

F c ∥ (∥CL · F) for L = c · CL.

It is worth emphasising that programs and parameterised programs (F) have different
types. The former is an element of RG-WSL, whereas the latter is a function from indices to
programs. In the context of parameterised programs, it makes sense to refer to parameterised

relations, which themselves are not relations, but functions from indices to relations. In
the discussion that follows, we refer to a parameterised program as the body of an indexed
parallel composition.

5.1.1 Monotonicity and substitution

Handling indexed parallelism is pretty much similar to handling binary parallelism. It is
possible to refine the body of an indexed parallel composition using laws for monotonicity
and substitution, and also distribute a guarantee over an indexed composition. Special care
must be taken if the guarantee is parameterised by an index: specific laws for pushing the
guarantee inside the indexed parallel composition and to move a nested guarantee to outside
of the indexed parallel composition are needed and usual distributivity laws do not work.

Law 5.4 (Monotonic-Indexed-Parallelism). For any parameterised programs F and D, and

list of indices Idx, such that F i ⊑ D i for all i ∈ set Idx,

(∥Idx · F) ⊑ (∥Idx · D)

To refine the parameterised program F in the indexed parallel composition ∥Idx · F by
D, it is sufficient to ensure that pointwise D refines F for all the indices in Idx. Similarly,
substitution of F by D requires parameterised programs to be pointwise trace equivalent for
all indices in Idx.

Law 5.5 (Substitution-Indexed-Parallelism). For any parameterised programs F and D, and

lists of indices Idx, such that F i ∼ D i for all i ∈ set Idx,

(∥Idx · F) ∼ (∥Idx · D)

144 Extensions to rely-guarantee algebra

Non-parameterised guarantees distributes over indexed parallelism.

Law 5.6 (Distribute-g-Parallel). For any context function F and relation g,

(guar g · ∥Idx · F) ∼ (∥Idx · (λc. guar g · F c))

If the guarantee condition is parameterised by an index, the previous law cannot be
applied. In this case, the next two laws formalise the trade of a guarantee to inside or
outside of the indexed parallel composition. To remove the inner parameterised guarantee g0,
one needs to use an external and non-parameterised guarantee g1 that is stronger than the
conjunction of the guarantees of all programs composed in parallel.

Law 5.7 (Pull-Out-Parameterised-Guar). For any parameterised program F, list of indices

Idx, relation g1 and parameterised relation g0, such that (⊢ g1⇒ g0 i), for all i ∈ set Idx,

(∥Idx · (λc. guar g0 c · F c)) ⊑ (guar g1 · ∥Idx · F)

To push a non-parameterised guarantee g0 inside of an indexed parallel composition
one can apply law 5.6 (Distribute-g-Parallel). Alternatively, one can use a parameterised
guarantee g1 that is stronger than g0 for each index in Idx.

Law 5.8 (Push-In-Parameterised-Guar). For any context function F, list of indices Idx,

relation g0 and parameterised relation g1, such that ⊢ g1 i⇒ g0 for all i ∈ set Idx,

(guar g0 · ∥Idx · F) ⊑ (∥Idx · (λc. guar g1 c · F c))

5.1.2 Introducing indexed parallelism

The introduction of indexed parallelism in a development mirrors the introduction of binary
parallelism discussed in Section 3.8. Two cases are provided, but only the first strictly
necessary: parameterised rely and guarantee conditions for a nested specification. The reason

5.1 Indexed parallelism 145

for presenting the second case is to tailor the proof obligations for the scenario where rely
and guarantee conditions are not parameterised, reducing the effort necessary to introduce
indexed parallel composition. We illustrate the first law in the derivation of Floyd-Warshall,
and the second in the derivation of Sieve.

Law 5.9 (Introduce-Multi-Parallel-Parameterised). For any predicate p, injective list of

indices Idx1, non-parameterised relations Q and R, and parameterised relations g, r and q

such that ⊢ g i⇒ r j for all i, j ∈ set Idx satisfying i ̸= j, and ⊢ R⇒ r i ∨ idrel for all i ∈ Idx,

and ⊢ (λ s s ′. ∀ i∈set Idx. q i s s ′)⇒ Q,

rely R · [p, Q] ⊑ ∥Idx · (λ i. guar g i · rely r i · [p, q i])

Proof. By induction on the structure of Idx. To prepare law 5.9 for the inductive proof both
the rely and postcondition must be formulated in terms of Idx. This formulation establishes
an interface between the induction hypothesis and the conclusion of the law. The first step
is thus to strengthen the postcondition Q and weaken the rely condition R using laws 3.19a
(Consequence) and 3.87a (Rely-Monotonic). This leaves the conjecture in the right shape for
a proof by induction, as

rely (λ s s ′. ∀ i∈set Idx. r i s s ′) · [p, λ s s ′. ∀ i∈set Idx. q i s s ′]

⊑ ∥Idx · (λ i. guar g i · rely r i · [p, q i])

The base case (Idx = []) requires us to show that rely true · [p, true] ⊑ skip. This follows
from law 3.88 (Rely-Specification) as ⊢ p⇒ stops(skip, true) and [p, true] ⊑ skip ∥ ⟨true⟩⋆.
For the inductive case (Idx = a · list), we must show:

rely (λ s s ′. ∀ i∈set (a · list). r i s s ′) · [p, λ s s ′. ∀ i∈set (a · list). q i s s ′]

⊑ ∥(a · list) · (λ i. guar g i · rely r i · [p, q i])

using the inductive hypothesis:

a /∈ set list ∧ (∀ i j. {i, j} ⊆ set (a · list) ∧ i ̸= j −→ ⊢ g i⇒ r j) ∧(
rely (λ s s ′. ∀ i∈set list. r i s s ′) · [p, λ s s ′. ∀ i∈set list. q i s s ′]

⊑ ∥list · (λ i. guar g i · rely r i · [p, q i])

)
1Injective lists do not contain repeated elements.

146 Extensions to rely-guarantee algebra

rely (λ s s ′. ∀ i∈set (a · list). r i s s ′) · [p, λ s s ′. ∀ i∈set (a · list). q i s s ′]

⊑ by logical equivalence as (∀ i∈set (a · list). P i) = (P a ∧ (∀ i∈set list. P i))

rely r a ∧ (λ s s ′. ∀ i∈set list. r i s s ′) · [p, λ s s ′. q a s s ′∧ (∀ i∈set list. q i s s ′)]

⊑ by law 3.97 (Introduce-Parallel-Spec-Nested)

(guar g a · rely r a ∨ (r a ∧ (λ s s ′. ∀ i∈set list. r i s s ′)) · [p, q a]) ∥

(guar r a · rely g a ∨ (r a ∧ (λ s s ′. ∀ i∈set list. r i s s ′)) · [p, λ s s ′. ∀ i∈set list. q i s s ′])

⊑ by laws 3.27g (Monotonic-WSL) and 3.87a (Rely-Monotonic)

(guar g a · rely r a · [p, q a]) ∥

(guar r a · rely g a ∨ (r a ∧ (λ s s ′. ∀ i∈set list. r i s s ′)) · [p, λ s s ′. ∀ i∈set list. q i s s ′])

⊑ by laws 3.27g (Monotonic-WSL), 3.87a (Rely-Monotonic) and ind. hypothesis

(guar g a · rely r a · [p, q a]) ∥

(guar r a · rely (λ s s ′. ∀ i∈set list. r i s s ′) · [p, λ s s ′. ∀ i∈set list. q i s s ′])

⊑ by laws 3.27g (Monotonic-WSL), 3.60b (Guarantee-Monotonic) and ind. hypothesis

(guar g a · rely r a · [p, q a]) ∥ (guar r a · ∥list · (λ i. guar g i · rely r i · [p, q i]))

⊑ by laws 3.27g (Monotonic-WSL), 3.62c (Distribute-Guarantee)

and 5.8 (Push-In-Parameterised-Guar) and ind. hypothesis

(guar g a · rely r a · [p, q a]) ∥ (∥list · (λ i. guar g i · rely r i · [p, q i]))

∼ by Definiton 5.3 (Indexed Parallel Composition)

∥(a · list) · (λ i. guar g i · rely r i · [p, q i])

Remark. The assumption (∀ i j. {i, j} ⊆ set Idx ∧ i ̸= j −→ ⊢ g i ⇒ r j) requires each

guarantee to imply the rely of all sibling programs. The guard i ̸= j weakens this assumption

by not requiring the guarantee of each program to imply its own rely. To get rid of this guard

in the inductive case, the list of indices Idx is required to be injective.

The injective requirement on the list of indices Idx does not prevent law 5.9 being used to

model parallel compositions with multiple instances of a same program. This can be done

by defining the parameterised relations g, r and q in such a way that given the indices of

replicas, say i,j ∈ set Idx (i ̸= j), one has g i = g j, q i = q j and r i = r j. For example, for

p = true and a relation Q denoting ((x ≤ x ′) ∧ (y + 1 ≤ y ′)), and R = idrel, law 5.9 allows

5.2 Eguard 147

the derivation of the parallel composition

∥[1, 2, 3] · (guar g i · rely r i · [p, q i])

where g, r and q are defined to meet the constraints:

g 1 = (x ≤ x ′) ∧ idset {x} r 1 = (x ≤ x ′) q 1 = (x ≤ x ′)

g 2 = (x ≤ x ′) ∧ idset {x} r 2 = (x ≤ x ′) q 2 = (x ≤ x ′)

g 3 = idset {x} r 3 = idset {y} q 3 = (y ′= y + 1)

Thus, the indices 1 and 2 result in instances of a same program.

For the case where rely and guarantee conditions are independent of the index of the
programs, relations are not parameterised and the assumption ⊢ g⇒ r replaces the assumption
∀ i j. {i, j} ⊆ set Idx ∧ i ̸= j −→ ⊢ g i⇒ r j of law 5.9. A consequence of this simplification
is that the list of indices does not need to be injective. Since the proof of the next two laws
are analogous to the proofs already discussed, we omit them here.

Law 5.10 (Introduce-Multi-Parallel). For any predicate p, list of indices Idx, non para-

meterised relations g, r, R and Q, and parameterised relation q such that ⊢ g⇒ r and

⊢ R⇒ r ∨ idrel, and ⊢ (λ s s ′. ∀ i∈set Idx. q i s s ′)⇒ Q,

rely R · [p, Q] ⊑ ∥Idx · (λ i. guar g · rely r · [p, q i])

5.2 Eguard

In a step of the derivation of a search algorithm in Section 6.4, we needed to introduce two
local variables in a program containing a rely command. We wanted the rely condition
resulting from this transformation to record the fact that local variables are unaffected by
external interference. The desired transformation is shown next and corresponds to the
refinement step R2 on page 186.

{t}: rely idset {v, t} · [true, post0(t, t, T p)]

⊑ var ot · var et · {t, ot, et}: rely idset {v, t, ot, et} · [true, post0(t, t, T p)]

148 Extensions to rely-guarantee algebra

This refinement can be justified using law 3.102 (Introduce-Variable-Rely). To prove this law
we needed first proving law 3.90 (Strengthen-Rely-In-Context), shown below for conveni-
ence.

rely (r, z) · c ⊑[rx] rely (rx ∧ r, z) · c

To prove this law we have to instantiate an existentially quantified program, say b, to be the
same as another program, say d, except that program b only allows environment steps (ϵ)
satisfying the relation rx ∨ idrel, that is [[b]] = [[d]][rx]. While trying to characterise such a
program we discovered that RG-WSL is not sufficiently expressive to encode it. The reason
being because there is no command allowing one to constrain environment steps. In [48], the
proof of this law follows as if it were possible to constrain environment steps of a program
through set comprehension. This would only be possible if we had encoded programs as
an abbreviation for sets of traces. However, we characterise programs as syntactic objects.
Recall from Chapter 2 that our syntactic encoding is necessary to formalise the operational
semantics of RG-WSL. We cannot define the operational semantics without a syntax.

To overcome this expressiveness weakness we propose a new primitive command,
eguard. The next definition extends the operational semantics (see Section 2.7) to cover
this new primitive. The command (eguard r) takes a relation r, used to constrain envir-
onment steps (rule 5.11a). It does not impose restrictions on program and termination
steps (rules 5.11b and 5.11c, respectively). The lack of a rule to infer eguard rσ× means
that eguard cannot abort. This semantics is ideal for our purpose of proving law 3.90: the
program ((eguard rx ∨ idrel) e d) only aborts when d aborts, and it behaves exactly as d,
except that it only allows environment steps satisfy the relation rx ∨ idrel.

Definition 5.11 (Semantics-Eguard). Let r be a relation, and σ and σ ′ states, and remember

υ σ means a termination step, π σ σ ′means a program step and ϵ σ σ ′means an environ-

ment step. Morever, remember that σ , σ ′ |= r means that the relation r is satisfied by the

pair of before and after states (σ , σ ′)

σ , σ
′ |= r

eguard r ϵ σ σ ′−−−−→ eguard r
(5.11a)

eguard r π σ σ ′−−−−→ eguard r
(5.11b)

5.2 Eguard 149

eguard r υ σ−−→ nil
(5.11c)

Three lemmas are introduced to reason about eguard. These lemmas are used in the proof
of law 3.90 (Strengthen-Rely-In-Context), which is discussed at the end of this section. We
prove the first lemma using forward simulation (Section 2.10), and for the other two we offer
an informal proof sketch and encode them as local assumptions of the algebra.

Lemma 5.12 (Strengthen-Eguard). For any relations r1, r2 and r, such that ⊢ r1 ∧ r2⇒ r,

eguard r ⊑ (eguard r1) e (eguard r2)

Proof. By law 2.79 (Refinement-Stratified-Forward-Simulation), one has to show that:

eguard r ≼[n,true] (eguard r1) e (eguard r2)

for all n ∈ IN. The proof is done by induction on n. For n = 0 the proof is trivial and follows
from the base case of Definition 2.78 (Stratified-Forward-Simulation). For the inductive case,
one has to show that

eguard r ≼[Suc n,true] (eguard r1) e (eguard r2)

from the assumptions

⊢ r1 ∧ r2⇒ r (5.12a)

eguard r ≼[n,true] (eguard r1) e (eguard r2) (5.12b)

By the inductive case of Definition 2.78, this holds if

∀α d ′. ((eguard r1) e (eguard r2)
α−→ d ′) −→ (∃c ′. (eguard r) α−→ c ′∧ c ′≼[n,true] d ′)

The proof follows by case analysis on the type of transition α . Three cases have to be
considered: environment step (ϵ), termination step (υ) and program step (π). For each case
we provide a witness for c ′ and discuss the proof of the left and right conjunct in the scope of
the existential quantifier. Next we refer to the left-hand side of the implication as the premise.

150 Extensions to rely-guarantee algebra

Program step Choose c ′ to be eguard r. The left conjunct is eliminated by rule 5.11b.
The right conjunct is proved by case analysis2 on the premise. Two
cases have to be considered: (i) (eguard r1) e (eguard r2) aborts; or (ii)
eguard r1

α−→ d1
′ and eguard r1

α−→ d2
′ and d ′= d1

′e d2
′. Since neither

eguard r1 nor eguard r2 can abort, their conjunction cannot abort and
case (i) is spurious. Thus, only case (ii) needs to be considered. Applying
rule 5.11b twice, we have that d1

′= eguard r1 and d2
′= eguard r2, and

thus d ′= (eguard r1) e (eguard r2). Therefore, c ′≼[n,true] d ′ follows
from the inductive hypothesis 5.12b.

Term. step Choose c ′ to be nil. By rule 5.11c we prove the left conjunct. By case
analysis on the premise, one can infer that d ′= nil and therefore the right
conjunct holds because forward simulation is a reflexive relation.

Env. step Let α = ϵ σ σ ′ and choose c ′ to be eguard r. By case analysis on the
premise, either (i) the strict conjunction aborts or (ii) it does an environment
step. Since eguard cannot abort, case (i) is spurious. By case analysis on
(ii), both branches of strict conjunction have to agree on the environment
step. Therefore, it has to be the case that eguard r1

ϵ σ σ ′−−−−→ eguard r1 and
eguard r2

ϵ σ σ ′−−−−→ eguard r2, and then d ′ = (eguard r1) e (eguard r2).
By case analysis each of these transitions, one can infer that σ , σ ′ |= r1

and σ , σ ′ |= r2. Thus, it follows from assumption 5.12a that σ , σ ′ |= r.
Hence, the left conjunct holds by rule 5.11a and the right conjunct follows
from the inductive hypothesis 5.12b.

The next lemma uses eguard to establish a relationship between the traces of a program
in a restricted environment ([[c]][r]) and traces of a program in an unrestricted environment
([[c]][true]). The proof of this lemma is beyond the expressiveness of our mechanisation. We
provide a proof sketch, but its mechanisation would requires the algebraic manipulation of

2Case analysis on inductive assumptions is a proof technique available for inductive definitions. It corres-
ponds to exhausting all possible causes which can make the inductive assumption to hold, and then show that
each of these causes suffices to prove the conclusion of the original conjecture. Such proof technique holds
because an inductive definition corresponds to the smallest set closed over the inference rules of that definition,
and then an inductive assumption only holds if there is a “good” reason for it to hold [70]. In Isabelle, such
proof technique is available through the so-called rule-inversion mechanism [85]. For example, if the premise
contains c e d α−→ d ′ and we know that α is not a termination step, then it must be the case that this transition
happened either because: (i) rule 2.49 was triggered; or (ii) rule 2.51 (abortion) was triggered, and cause the
triggering of rule 2.44. If we know that c and d cannot abort, then we know that their conjunction cannot abort
as well. Therefore, case (ii) is impossible (i.e., spurious), and we only need to consider case (i).

5.2 Eguard 151

the concept of denotational semantics ([[_]]), which we encoded as an uninterpreted constant
in Isabelle. Thus, the next equivalence was encoded as a local assumption by the algebra.

Lemma 5.13 (Traces-Eguard). For any command d relation r,

[[d]][r] = [[d e (eguard r ∨ idrel)]][true]

Proof sketch. By definition 2.71 (Denotational semantics), [[d]][r] only includes traces of d

whose environment transitions (ϵ) satisfy r or stutter. Since the operational semantics for

(eguard r) only allows environment steps which satisfy r (rule 5.11b), and the operational

semantics for strict conjunction requires both branches to agree on labelled state transitions

(π , ϵ, υ), we can infer that any trace of ((eguard r ∨ idrel) e c) can only contain environment

transitions that satisfy r or stutter.

The next lemma allows the user to introduce or remove a syntactic restriction on a sibling
program (d) that runs in parallel with a program (c) guarded by eguard r.

Lemma 5.14 (Conjunction-Parallel-Eguard). For any relations r and commands c and d,

((c e (eguard r)) ∥ d) ∼ ((c e (eguard r)) ∥ (⟨r⟩ω e d))

Proof sketch. The refinement from left to right is straightforward. It uses law 3.29e (Zeros-

and-units) to substitute (d) by (⟨true⟩ω e d) on the left-hand side, and law 3.19b (Con-

sequence) to strengthen the atomic command from ⟨true⟩ω to ⟨r⟩ω .

The refinement from right to left holds because whenever d attempts to do a program step

that does not satisfy r, its transition is blocked by the sibling program c e (eguard r). Such

blocking is explained by the matching mechanism used in the rule for parallel composition

(see Definition 2.52 on page 48 and rule 2.53 on page 49). Thus, any program step that d

can make must also be a program step of ⟨r⟩ω e d. For environment and termination steps,

the refinement holds because the command ⟨r⟩ω does not restrict any of these steps, thus the

strict conjunction preserves the behaviour already allowed by d.

Law 5.15 (Refinement-Eguard). Let c and d be commands, and r a relation,

(c ⊑[r] d) = (c ⊑ d e (eguard r ∨ idrel))

152 Extensions to rely-guarantee algebra

The previous law follows from Definition 2.73 (Refinement-in-Context) and lemma 5.13
(Traces-Eguard). A revised proof of the derivation of law 3.90, discussed in the begin of this
section, is available in Appendix A.3 (Revised paper proofs) on page 257. The revised proof
has been mechanised and uses eguard in a challenging instantiation step of the derivation.

5.3 Revised abortive conditions

While investigating properties about parallel composition we draw our attention to an in-
triguing case: the parallel composition between magic and abort. Using the abortive condi-
tions for parallel composition introduced in Section 2.7.2, we proved by forward simulation
that (magic ∥ abort) ∼ abort. This equivalence raised a red flag, as it could be combined
with law 3.29f (Zeros-and-units) to show that magic ∼ abort, which is false and not what we
want.

The problem behind the proof of magic ∼ abort amounts to the abortive conditions
presented in Section 2.7. More precisely, the abortive conditions for parallel composition
state that the composition aborts if any branch can abort. To prevent the abortion of the
parallel composition in magic ∥ abort, we introduce an extra requirement in the small-step
semantics: for the parallel composition to abort, not only does one branch has to abort, but the
other branch has to agree with the abortion of its environment. We model that all commands
except magic do not prevent their environment from aborting.

The fact that a program c does not prevent its environment from aborting from a state σ

is formalised as cσ×env. The small-step semantics receives the following additional rules.
They state each command does not prevent their environment from aborting.

1. A precondition does not prevent its environment from aborting.

{p}σ×env
(5.16)

2. The atomic command and the command eguard r do not prevent their environments
from aborting.

⟨p, q⟩σ×env eguard rσ×env
(5.17)

5.3 Revised abortive conditions 153

3. As long as there is one command within C which does not prevent the environment
from aborting, the unbounded choice does not prevent the environment from abort.
This prevents magic from conceding permission for its environment to abort, because
the proviso is not vacuously true.

countable C c ∈ C cσ×env
l

acset Cσ×env
(5.18)

4. As long as the first component of a sequential composition does not prevents its
environment from aborting, the composition does not prevent the environment from
aborting. This allows, for example, the program abort ; magic to give permission for
its environment to abort.

c1σ×env

c1 ; c2σ×env
(5.19)

5. For strict conjunction, both branches need to agree in order to allow the environment
to abort.

c1σ×env c2σ×env

c1 e c2σ×env
(5.20)

6. If c allows the environment to abort from a state σ(y := v), then state y 7→ v · c allows
the environment to abort in a state σ .

cσ(y := v)×env

state y 7→ v · cσ×env
(5.21)

7. If c allows the environment to abort, then uses X · c also allows the environment to
abort.

cσ×env

uses X · cσ×env
(5.22)

The abortive conditions for parallel composition are patched with proviso ciσ×env to
restrict the abortive behaviour of the composition. The patch is simple: instead of relying in

154 Extensions to rely-guarantee algebra

a single branch to infer that a composition aborts, both branches are required to agree on the
abortion; one branch actively aborts and the other branch allows the sibling to abort.

c1σ× c2σ×env

c1 ∥ c2σ×

c2σ× c1σ×env

c1 ∥ c2σ×

c1σ×env c2σ×env

c1 ∥ c2σ×env
(5.23)

Recall that indexed parallelism is not introduced as a primitive command. Instead, it is
recursively defined using binary parallelism. Therefore, the patch for the semantics of binary
parallel composition is the only one we need to concern about.

5.4 Assignment to indexed arrays

Arrays are a common datatype in programming languages, and provide a powerful mechanism
to store and index a predefined number of values. In this thesis, arrays are used in the
formalisation of two concurrent programs discussed in Chapter 6: Floyd-Warshall and Findp.
The rely-guarantee refinement calculus as presented in [48] is capable of handling reading
on arrays assuming atomic fetch of an array, but it does not include refinement laws to
introduce assignments to cells of an array in a program. This section extends the algebra
with a formalisation of assignment to indexed arrays.

Similarly to [41], we model arrays using a recursive datatype, where each dimension is
encoded as a list. Recall that arrays are formalised via the constructor VArray in Definition 2.1
on page 23. Lists in Isabelle are zero-based, i.e. their index starts from zero. Thus, arrays
in RG-WSL are also zero-based. Isabelle uses the operator ! (exclamation mark) to access
positions of a list, thus the first element of the list [a, b, c] is retrieved using [a, b, c] ! 0. Next,
we propose a definition for assignment to indexed arrays which is inspired on Definition 3.12
(Assignment), introduced on page 69.

Definition 5.24 (Assignment-Array). Assignment of an expression e to an indexed position l,

where l = [i0, i1, ..., in−1], of a n-dimensional array A, is modelled as the non-deterministic

choice between all possible evaluations of the expression e followed by an atomic update of

the target cell of A to the evaluated value of e.

xl:=e ≡
l

acset {[[N v = e]] ; ⟨(λ s s ′. s ′ x = (s x)[l←v]) ∧ idset {x}⟩ | True}

In this definition, v is a logical constant that is existentially quantified in the scope of the
non-deterministic choice (

d
). The terms x, l and e represent, respectively, the name of the

5.4 Assignment to indexed arrays 155

array to be updated, a list of natural numbers that index a single cell in the array x, and the
expression to be assigned. The assignment is composed of two stages: evaluation and update,
which are related via sequential composition. In the evaluation stage, the expression e is
evaluated to the value v. Next, the array is updated atomically, but only a single cell of the
array is modified during the update.

The expression (s x)[l←v] in the atomic command reflects the update of a single cell
of the array (x) and is used to update the state (s). It is an abbreviation for the function
Substitute-Cell (defined next), which takes three arguments: an array A, a list of natural
numbers l that index a cell within the array, and a value v that is used to replace the old
value stored in the indexed cell. The update (A)[l←v] is defined by recursion on the list of
indices (l): for each recursive call, the task of updating a n-dimensional array is reduced to
the task of updating a (n−1)-dimensional array. The base case consists of a 0-dimensional
array, that is, a scalar value, whose update consists in replacing the old value by the new
value. In the recursive case, every time the head (x) of the list of indices (x · xs) is taken,
the function Substitute-Cell returns an array that is equal to the argument A, except for the
sub-array indexed from x which may differ. Attempts to update a non-existent position in an
array leaves the array unchanged3.

The next definition makes use of Isabelle’s notation for updates of lists, where l[i := x]

is equal to list l, except for position i which holds the value x provided that i < length l; if
length l ≤ i, l[i := x] = l.

Definition 5.25 (Substitute-Cell). Let A be the encoding of an array as a vvalue, and lv a

list of indices (where each index is a natural number), and let v be a vvalue; and recall from

Definition 2.2 (Project-Argument) that [[VArray v]]a = v.

(A)[lv←v] =

v if lv = [],

VArray ([[A]]a[x := ([[A]]a ! x)[xs←v]]) if lv = x · xs.

To see how this definition works, take for example the array

A = (VArray [VArray [p11, p12, p13], VArray [p21, p22, p23], VArray [p31, p32, p33]])

3Recall that variables are not declared in RG-WSL. Thus, whenever we need to handle arrays in a program,
we must include in the precondition information about the dimension of the array. Section 6.6 illustrates how
the dimension of an array is included in a precondition.

156 Extensions to rely-guarantee algebra

whose visual representation as a matrix was presented on Section 2.2 on page 23. If we want
to replace the value p23, indexed by the list [1, 2], by the value VNat 5, we can denote the
updated array by (A)[[1, 2]←VNat 5].

Now we present a law that establishes the conditions for introducing assignments to
indexed arrays in programs nested into rely and guarantee commands. The law deals with
a special case: when the expression (e) to be assigned to the indexed cell is stable under
interference. The law is introduced as a local assumption in the algebra and its application is
illustrated in the derivation of Floyd-Warshall in Section 6.6. To highlight the assumptions,
we enumerate them.

Lemma 5.26 (Assignment-Array). For any array x, list of natural numbers l, expression e,

predicate p and relations g, q and r, such that

1. [p, q] tolerates interference r; and

2. ⊢ p⇒ defined e; and

3. ⊢ p ∧ (λ s s ′. s ′ x = (s x)[l←[[e]]v s]) ∧ idset {x} ⇒ q ∧ (g ∨ idrel); and

4. e is preserved by r, that is, ⊢ p ∧ r⇒ (λ s s ′. [[e]]v s = [[e]]v s ′),

the following holds,

{x}: (guar g · rely r · [p, q]) ⊑ xl:=e

The inspiration for the provisos comes from the context of application of this law4. We
expect the proof of this law to mirror the structure of the proof of law 3.115 (Assignment-
Single-Reference), which is discussed in detail on Section A.3 on page 260. However, as this
law does not assume the expression e to satisfy the single reference property with respect to
r, the proof has to take a different path to justify the distribution of interference over the test
command (cf. proof of the sub-goal G1.1 on page 262). We hope the necessary details to
formally justify this distribution can be extracted from the fact that e is stable under r.

4We explicitly mark this law as a lemma to emphasize that that it has been taken as an assumption of the
mechanisation, instead of being proved in Isabelle/HOL.

5.5 Reachable evaluations 157

5.5 Reachable evaluations

In the sequential refinement calculus, any program can be abstracted using pre and postcon-
ditions. On the other hand, for rely-guarantee algebra, there are concurrent programs that
cannot be expressed accurately modulo the introduction of auxiliary variables [106, 63, 48].
A canonical example is a program that copies the value of shared variables into a local
variable. Using rely-guarantee, one has no clean way of providing an abstract specification
for (var x · x:=w) without making assumptions on how the environment changes w. For
example, the specification

var x · rely true · [x ′= w ∨ x ′= w ′]

fails to capture an intermediate value of w being read by the assignment. A way of character-
ising this program is to appeal to auxiliary variables and assume that the environment will
record in a history variable all the updates to w. Next, the operator drop n eliminates the first
n elements of a list (e.g. drop 2 [a, b, c, d] = [c, d]), and the operator set returns the set of
elements of a list (e.g. set [a, b, a] = {a, b}).

var x · rely (w ̸= w ′−→ hw ′= hw ⌢ [w]) ∧ idset {x} ·
[x ′∈ set (drop (length hw) hw ′) ∨ x ′= y]

(5.27)

This specification uses an auxiliary variable (hw) to record all values that have been
stored in the variable w. The rely condition assumes that whenever the environment changes
w, it atomically logs the previous value that w had into hw. The specification command
has a relational perspective of hw, and uses this perspective to state that the final value of x

corresponds to one of the values that w has stored since the begin of the computation.
Auxiliary variables (e.g. hw) are a specification artefact, necessary to compensate for the

limited expressiveness of specification languages5, but they do not play an essential role in the
refined code. As general rule, auxiliary variables do not affect the control flow of a program
and are only assigned to, but not read from in the final code, which motivates some program
logics, such as [92, 106], to offer a rule for their elimination. Normal usage of auxiliary
variables is to record progress of a process (e.g., how many times a variable has been assigned
to, or which stage of an algorithm a program is executing), or to formulate a specification

5Limited in the sense that certain programs cannot be specified using solely the variables effectively involved
in the final computation, as we discuss for the assignment involving shared variables.

158 Extensions to rely-guarantee algebra

in a way that it is stable under interference. Nevertheless, indiscriminate usage of auxiliary
variables jeopardise the compositionality of rely-guarantee specifications [63]. Furthermore,
they obfuscate specifications. For example, to abstract the assignment x:=y ∗ z + w using
history variables we need to use a quite unwieldy relation in the postcondition:

x ∈

 v

∣∣∣∣∣∣∣∣∣∣
∃ y0 z0 w0. (y0 ∈ set (drop (length hy) hy ′) ∨ y0 = y) ∧

(z0 ∈ set (drop (length hz) hz ′) ∨ z0 = z) ∧
(w0 ∈ set (drop (length hw) hw ′) ∨ w0 = w) ∧

v = y0 ∗ z0 + w0

This section introduces a notion of reachable evaluations: a syntactic abbreviation that

facilitates the use of the multi-step evaluation within relations. The concept is inspired by the
notion of possible values [64], a convention proposed in [66] to refer to intermediate values
that a variable can acquire during the execution of a program. Using the notion of reachable
evaluations, one can obtain a relation that serves to abstract the program (var x · x:=w)
without requiring history variables, as shown in 5.27. The intuition behind the concept is
that, generally a designer will wrap a concurrent specification inside of a rely command, and
the information provided by the rely can be used to predict the states that a program can go
through when it is interrupted by the environment. By predicting these states, one can predict
which values shared variables can acquire as a result of updates caused by the environment.
Then, by combining the set of values that variables can acquire in the lifetime of an evaluation,
one can predict the potential results of non-atomic evaluation and use it inside of a relation.
There is a caveat though: the concept of reachable evaluations over-approximates the set of
evaluations allowed by history variables. It relies on predicting rather than inspecting the
effect of interference via history variables, thus it considers values that may not occur in the
actual history of a variable for a given execution trace.

To understand this over-approximation, consider again the example 5.27, but this time
enrich the rely condition with the knowledge that w monotonically increases. Suppose that
the task is to abstract the assignment var x · x:=w in the context of the parallel composition:

{w = 4} ; (var x · x:=w ∥ (w:=5 ; w:=6 ; w:=8 ; w:=12 ; w:=13 ; w:=15))

Figure 5.1 compares the accuracy provided by the usage of history variables versus that
provided by reachable evaluations. Inspecting the history variable (hw), one can observe that
the environment effectively updates the variable w to the values 5, 6, 8, 12, 13 and 15 (in this
order). If we are to predict the set of reachable evaluations for the variable w, knowing that it

5.5 Reachable evaluations 159

is subject to interference that monotonically increases this variable, then we have to consider
the evaluation of w in every state that can be related to the initial state via the rely condition.
Thus, this approach includes values such as 7, 9 and 11 that never appear in the history of
variable w. Next we introduce the formal definition of reachable evaluations.

5 6 8 124 13…

5 6 7 84 9 10 11 …

Over-approximation using reachable evaluations

Values in hw

15

Figure 5.1 Reachable evaluations versus history variables.

Definition 5.28 (Reachable-Evaluations). Let r be a relation, s a state, and exp an expression.

Additionally, let α be a labelled state transition of the form ϵ σ σ ′ or π σ σ ′, and let t denote

a trace, and remember that: pre extracts the before state (e.g. pre ϵ σ σ ′= σ), hd returns

the head of a list (e.g. hd [a, b, c] = a), env abstracts the environment of a trace6, and

exp t−→e∗ (N v) denotes that the expression exp evaluates for the value v via trace t.

RE r s exp = {v | ∃ t. (exp t−→e∗ N v) ∧ (pre (hd t) = s) ∧ (⊢ env t⇒ r)}

The set RE r s exp denotes all potential evaluations (v) of the expression exp from the
initial state s, where the evaluation is subject to interference r. It is important to understand
that the motivation for reachable evaluations is to abstract assignments that contain one or
more unstable variables without using auxiliary variables. The weakness of this definition
is that it allows the user to bypass interference, as she can choose one potential evaluation
instead of sampling the variables to evaluate the expression exp. Thus, one has to be aware
that specifications using reachable evaluations record the intention of an assignment, but do
not force the user to sample the variables to implement the desired assignment. To facilitate
the usage of the concept of reachable evaluations in specifications, we introduce a definition
that we call loose equality.

6To refresh the concept of env, see Definition 2.70 on page 54.

160 Extensions to rely-guarantee algebra

Definition 5.29 (Loose-Equality). For any variable name x, relation r and expression exp,

(x .
=r exp) ≡ λ s s ′. s ′ x ∈ RE r s exp

Using this definition, the program var x · x:=w running in an environment z is specified as

var x · rely z · [true, x .
=z w]

We provide only one lemma to reason about reachable evaluations. It eliminates reachable
evaluations from a specification command. This lemma is formalised as a local assumption
of the algebra and its use is illustrated in the next example.

Lemma 5.30 (RE-Intended-Assignment). For any predicate p, relations g, r and q, variable

x and expression e such that

1. ⊢ p⇒ defined e; and

2. p is stable under r; and

3. ⊢ r⇒ idset {x}; and

4. ⊢ p ∧ x .
=[r] e ∧ idset {x} ⇒ q ∧ (g ∨ idrel),

the following holds,

{x}: (guar g · rely r · [p, q]) ⊑ x:=e

Proof sketch. If the environment does a step which does not satisfy the relation r the left-

hand side aborts, and in this case the refinement holds trivially. Therefore we only need

to care about refinement on an environment r. The relation (x .
=r e) specify that x is a

reachable evaluation of the expression e in an environment r. This relation establishes an

over-approximation: it sets a lower bound in the sense that it accepts the final value of x to

be equal to any evaluation of e from which the variables are sample in states coherent with

the operational semantics for expression evaluation. However, it does not impose an upper

bound to restrict which environment transitions are allowed during the evaluation. This law

establishes a refinement by ruling out some of the possibilities of interference allowed in

the evaluation of e: it requires any environment transition chosen in the evaluation to be

compliant with the traces of x:=e.

5.5 Reachable evaluations 161

5.5.1 Example: parallel assignments

This is an adapted version of example 3.8.1 to illustrate the application of reachable expres-
sions to encode multi-step evaluation of expressions via a relation. Consider the following
program where an expression containing multiple unstable variables is assigned to z.

(x:=x + 2 ∥ y:=y + 2) ∥ (z:=x + y + w ∥ w:=w + 1)

To abstract this program we leave the final value of z under-specified. A way to achieve
this, while still recording the intentional assignment, is shown next.

[true, (x ′= x + 2) ∧ (y ′= y + 2) ∧ (z .
=idset {z} x + y + w) ∧ (w ′= w + 1)]

We now split the initial specification into a parallel composition of four specifications, where
each branch sets the value of a single variable.

[true, (x ′= x + 2) ∧ (y ′= y + 2) ∧ (z .
=idset {z} x + y + w) ∧ (w ′= w + 1)]

⊑ by 3.95 (Introduce-Parallel-Spec), 3.97 (Introduce-Parallel-Spec-Nested),

3.87a (Rely-Monotonic), 3.62b (Distribute-Guarantee),

⊑ 3.62c (Distribute-Guarantee), and 3.60a (Guarantee-Monotonic)(
(guar idset {z, w, y} · rely idset {x} · [true, x ′= x + 2]) ∥

(guar idset {z, w, x} · rely idset {y} · [true, y ′= y + 2])

)
∥(

(guar idset {x, y, w} · rely idset {z} · [true, z .
=idset {z} x + y + w]) ∥

(guar idset {x, y, z} · rely idset {w} · [true, w ′= w + 1])

)
⊑ by 3.59 (Introduce-Guarantee), 3.114 (Assignment-Rely-Guarantee)

and 5.30 (RE-Intended-Assignment)

(x:=x + 2 ∥ y:=y + 2) ∥ (z:=x + y + w ∥ w:=w + 1)

The relation idset {z}, used to predicate the values of x, y and w in the loose equality, just
tells that z is stable; it does not restrict the values that x, y and w can acquire. Even such a
weak specification still records the intentional assignment of the expression x + y + w to

162 Extensions to rely-guarantee algebra

z. Such strategy to specify assignment involving multiple unstable variables works only if
the user sticks to the application of law 5.30 (RE-Intended-Assignment) to eliminate loose
equality. This was the law used in this example.

Of course, a user can expand the definition of loose equality and the definition of reachable
evaluations, and then use rules 2.41 and 2.42 to prove that a different assignment (e.g. x:=e)
still meets the specification. But, in the case where the user reasons in terms of expression
evaluation, even the most restrictive prediction cannot rule out the possibility of a user pick
an aleatory value among the predicted evaluations that does not reflect the actions of the
environment over the state.

5.5.2 Discussion

To further discuss the notion of reachable evaluations we consider a clear-cut example. Let
St-EFxy be the state where variable e evaluates to (VInt x) and variable f evaluates to (VInt y).
Additionally, let RelyEF the reflexive-transitive relation illustrated Figure 5.2. We use RelyEF

to analyse two aspects of the definition RE which were not discussed before:

i RE rules out unrealistic evaluation paths. For example, it does not allow one to infer that
8 is a reachable evaluation for the expression e + f from the initial state ST-EF00. Such
evaluation would only be possible if state St-EF52 had a transition to state St-EF33 (or
vice-versa), but such transitions do not exist. Thus, once an evaluation starts, RE keeps
track of the transitions already taken.

ii RE separates the evaluation of expressions into two stages: sampling and evaluation, e.g.
e ∗ e + f can sample variables in the order e, f, e, even though multiplication has higher
precedence than addition;

Our approach to compute the set of reachable evaluations of an expression is essentially
different from that used in abstract interpretation [85] to compute the set of possible values
for variables and expressions in points of a program. During the computation of the set
of reachable expressions we keep track of the relationship between variables (see item (i)
above), while in the technique of abstract interpretation this relationship is lost to make it
possible to record a potentially infinite amount of set of states in a finite amount of space. We
also abstract away from the control flow of the environment by using a relation (representing
interference) and use the operational semantics (for expression evaluation) to estimate the set
of reachable evaluations of an expression. The over-approximation of the set of reachable
evaluations in Definition 5.28 is influenced by the accuracy of the relation used to abstract

5.5 Reachable evaluations 163

E = 5

F = 2

��_����

E = 0

F = 0

��_����

E = 1

F = 0

��_��	�

E = 4

F = 5

��_��
�
E = 3

F = 3

��_����

Figure 5.2 Graphical representation of relation RelyEF.

the state: the more accurate the relation, the more accurate is the set of reachable evaluations.
For the technique of abstract interpretation, such imprecision comes from the encoding of
sets of states as abstract values.

Although the concept of reachable evaluations does not provide the accuracy given by
the use of auxiliary variables, it can be argued that it leads to clearer specifications. As we
have only introduced one law to handle the concept of reachable evaluations in proofs, it is
premature to judge its value as a specification tool. We believe that for further exploration of
the concept, a good start point is to investigate if the definition of reachable evaluations can
be used to prove properties about the possible values of a variable (ux) and possible evaluations
of an expression (uue), which are notations discussed in [64].

The concept of reachable evaluations may also proven useful to investigate expression
decomposition and refinement of expressions [25]. This would work in the following way:
an expression e ′ refines an expression e in an environment r if the set of evaluations that e ′

produces under interference r is contained in the set of evaluations produced by e under the
same circumstances.

164 Extensions to rely-guarantee algebra

5.6 Sequential laws

The next laws provide special cases to facilitate the introduction of control structures in
sequential programs. The conventional route for applying laws 3.111 (Rely-Conditional)
and 3.112 (Rely-Loop) for a specification not enclosed in a rely command is to introduce a
rely command with the rely condition of r = idrel using law 3.81 (Rely-Idrel-Specification).
A drawback of using laws 3.111 and 3.112 in the refinement of sequential programs is to have
to manually instantiate b0 and b1 and rewrite the transitive-reflexive closure of a well-founded
relation (w∗∗) using the notion of transitive-reflexive closure on a closed subset (w∗∗UNIV).

Law 5.31 (Sequential-Conditional). For any predicate p, relation q and boolean expression

b, such that ⊢ p⇒ defined b,

[p, q] ⊑ (if b then [p ∧ [[b]]r, q] else [p ∧ [[¬b]]r, q])

Law 5.32 (Sequential-Loop). For any predicate p, boolean expression b and relation w that

is well-founded on p, such that ⊢ p⇒ defined b,

[p, p‘ ∧ [[¬b]]r‘ ∧ w∗∗] ⊑ while b do [p ∧ [[b]]r, p‘ ∧ w]

5.7 Type system

The algebra discussed in this thesis allows for derivations that are not type consistent, such as

[true, x ′= 1]

⊑ by law 3.25 (Sequential)

[true, x ′= False] ; [true, x ′= 1]

There are a number of programming languages used in industry that support concurrency
and are weakly typed (e.g. C [68], PHP [102], etc.). The lack of type consistency is caused
by the fact our representation of state does not record the type of variables. The fact that the
algebra allows the derivation of weakly typed programs does not raise any concerns about its
consistency, but makes it harder to prove properties about programs.

5.7 Type system 165

In some occasions it is essential to know the type of variables to eliminate projection
functions, such as [[_]]n and [[_]]i (Definition 2.2), in proofs. We met one of such situations in
the derivation of Floyd-Warshall, an algorithm to solve the all-pairs shortest-path problem,
in Section 6.6. There, we need to know the type and dimension of a matrix of adjacency to
prove properties involving the application of operators such as min and max over the cells of
that matrix.

Next, we provide three definitions that can be used to embed information about types
in the precondition of programs. The key motivation for these definitions is not to enforce
type consistency, but to compensate for the lack of knowledge about types that is usual in
derivations using RG-WSL.

Definition 5.33 (Type-Vvalue). The implicit type of a vvalue (Definition 2.1) can be described

via the constructors of the following datatype.

datatype vvalue-type = type-VNat

| type-VInt

| type-VBool

| type-VNatSet

| type-option vvalue-type

| type-array vvalue-type

Definition 5.34 (Infer-Type). Given a vvalue, its type can be inferred using the following

inductive rules.

x = VNat i

Type x type-VNat

x = VInt i

Type x type-VInt

x = VBool b

Type x type-VBool

x = VNatSet s

Type x type-VNatSet

x = VNone ∨ Type x t

Type x (type-option t)

x = VArray v ∀ i<length v. Type (v ! i) t

Type x (type-array t)

166 Extensions to rely-guarantee algebra

For example, consider the array B:

B = VArray [VArray [VNat 0, VNat 7], VArray [VNat 8, VNat 2], VArray [VNat 4, VNat 5]]

Using Definition 5.34 (Infer-Type) we can prove that B is a bi-dimensional array of natural
numbers, i.e. its type is type-array (type-array type-VNat).

Definition 5.35 (Dimension-Array). The dimension of an array (M) can be recorded using

the relation dim, defined by recursion on the dimension of the array.

dim M [] = true

dim M (a · ls) = (λ s s ′. length [[M]]a = a ∧ (∀c<a. dim (VArray [[[[M]]a ! c]]a) ls s s ′))

Using this definition, we can record the dimension of the array B via the relation dim B [3, 2].

5.8 Discussion and summary of contributions

5.8.1 Contributions

In this chapter we discussed extensions to the rely guarantee algebra formalised in Chapter 4.
We introduced two derived commands: one to represent indexed parallelism, and other to
represent assignment to indexed arrays. These commands are accompanied by relevant laws.
We also introduced a new primitive command (eguard r) to constrain environment steps.
This new command, and its lemmas, are necessary to complete the proof of a derived law
that relates a newly introduced local variable and the rely command.

This chapter also solves a latent problem in the abortive conditions for parallel composi-
tion. The problem was due to the possibility of a single branch to force a parallel composition
to abort, independent of the other branch. Under this conditions, the semantics could be used
to prove the trace equivalence between the programs magic and abort, which is false and not
what we want. Our solution to this problem consisted on introducing of an agreement clause
in the operational semantics to characterise that a program can only abort if its environment
allows it to abort. The undesired equivalence was rule out by defining magic to be a program
that does not give permission for its environment to abort.

We also discussed a syntactic abstraction (reachable evaluations) to over-approximate
the non-atomic evaluation of expressions when writing specifications, and also introduce
tailored laws to facilitate the introduction of conditionals and loops in sequential programs.

5.8 Discussion and summary of contributions 167

The notion of reachable expression is illustrated with a simple derivation, and compared to
the notion of possible values [66, 64], which is discussed in the literature.

Finally, this chapter discusses few auxiliary definitions that can be used to record type-
related information in derivations. The need for recording such kind of information is
observed in the mechanisation of Chapter 6, especially in the derivation of the Floyd-Warshall
algorithm, where it is necessary to know the type and dimension of an array in order to
eliminate projection functions in proofs.

For convenience, we list the contributions of this chapter.

1. Formalisation of indexed parallelism, including laws for its introduction and refinement
(Section 5.1). The laws to reason about indexed parallelism are more involved than
intuition.

2. New primitive command to specify programs that constrain environment steps. We
illustrate its use by discussing the mechanised proof of law Strengthen-Rely-In-Context
(Section 5.2).

3. Identification and patch of a problem in the abortive conditions of parallel composition
(Section 5.3).

4. Formalisation of assignment to indexed positions of arrays (Section 5.4);

5. Introduction of an abstraction to reason about potential evaluations of expressions
(Section 5.5).

6. Tailored laws to facilitate introduction of conditionals and loops in sequential programs
(Section 5.6).

7. Minimalist type system to record meta-data in specifications (Section 5.7).

5.8.2 Further extensions

In general, code can only be derived from specifications that are stable with respect to
interference. This has a practical impact on the way that specifications are formulated in rely-
guarantee, since it limits the accuracy that can be enforced in the specification of a program.
In certain situations, as in the specification of a consumer and producer [106, 30], the limited
expressiveness implies that without auxiliary variables one cannot rule out implementations
such as skip, or implementations that add multiple copies of an element to a buffer.

168 Extensions to rely-guarantee algebra

To increase expressiveness of specifications while preventing the use of auxiliary vari-
ables, what is needed (among other extensions) is an abstraction to specify intermediate
properties that a process is required to establish independent of environment actions. The
key idea is that each trace in the set of traces of iprop q · c should include a fragment
π (σ i,σ i+1),..., π(σ j−1, σ j) such that σ i, σ j |= q holds, i.e. the relation q is established.
The formulation of this property requires the use of an existential quantifier to allow the
choice of i and j to vary according to the trace. For this reason, it is not clear to us how this
abstraction can be introduced in a refinement calculus.

The concept of intermediate properties could be used, for example, to express that a
producer is required to add a single element to a buffer, although the environment might
remove the element before the insertion terminates. In practice, the current approach for
dealing with situations where stability forces the specification to be too vague is to either:
(i) select an initial specification that already has implementation constructs on it; or (ii) to
use auxiliary variables to formulate a specification in a way that it satisfies the criteria of
stability. The use of programming constructs (sequential composition, atomic blocks, parallel
composition, etc.) to specify programs is illustrated in [32], while the usage of auxiliary
variables is illustrated in [106, 30]. Considering these two alternatives, it can be argued that
the use of programming constructors to describe specifications may lead to more clarity than
the use of auxiliary variables to abstract algorithms.

Chapter 6

Applying the refinement calculus

He who seeks for methods without having a definite problem in mind seeks for the

most part in vain.

David Hilbert

This chapter presents four derivations to illustrate different aspects of the rely-guarantee
refinement algebra discussed in the previous chapters. These are taken from the literature on
rely-guarantee: Findp (sequential and concurrent versions) comes from [48], Sieve comes
from [65] and Floyd-Warshall comes from [32].

For Findp we present the derivation of a sequential and a concurrent version. The general
structure of these refinements is the same presented in [48], but the discussion there has minor
slips which cause some steps of refinement to be in short of assumptions to discharge proof
obligations. We fix these derivations, and observe a potential good practice to be followed
in subsequent refinements. We also use the derivation of a concurrent version of Findp to
illustrate a refinement path which restricts the access to variables in a program using the
novel laws presented in Section 3.11.

The derivation of a concurrent version for Findp shows that interference does not neces-
sarily have a negative connotation: it can actually mean that programs cooperate to complete
a task in faster time than a single program would be able to, i.e. programs can anticipate the
termination of others. We also use Findp to discuss a limitation of the algebra to derive pro-
grams which depend on the environment to terminate. In short, the use of unfair parallelism
as foundation for the algebra limits the ability of deriving this kind of program.

We use Sieve to illustrate the introduction of indexed parallelism in a context where
rely and guarantee conditions are symmetric, i.e., they coincide. Sieve provides a classical
example of data race, where programs compete to assign values to a shared variables without

169

170 Applying the refinement calculus

explicit synchronisation. This kind of development is characteristic of programs that present
some form of idempotence with respect to memory writings, i.e., programs compete to set a
variable to the same value. Different from Findp, in Sieve the termination of one branch of
parallel composition does not anticipate the termination of other branches.

Floyd-Warshall illustrates a development with asymmetric rely and guarantee conditions,
and suggests that rely-guarantee may be useful to derive parallel versions of dynamic
programming algorithms, such as solutions for the Knapsack problem. The derivation of
Floyd-Warhsall motivated us to think about assignment to arrays (Section 5.4), and also
revealed the weakness of representing the state as total function from variable names to
vvalue. In short, this choice of representation imposes on the developer the need for including
additional information in the precondition stating the type and dimension of an array; this
would not be necessary if we had used a strongly typed language, where variables are declared.
To cope with such weakness, we introduced a minimalist type system in Section 5.7. A
comparison between the examples and a discussion about the bottlenecks of the mechanised
theory are presented at the end of the chapter.

6.1 Typographic conventions

The examples in this chapter are automatically converted to Latex using a set of rules defined
in Isabelle via the command notation. These rules encode notation conventions which allow
for a more natural representation of programs, and prevent distracting the reader with details
of the actual encoding in Isabelle. The motivation for formalising these conventions within
Isabelle is that they ensure the consistence between the Isabelle theories and the examples as
presented in this chapter. Changes in the theory are automatically reflected in parts of this
thesis; moreover, the algorithms presented in the appendix are generated automatically from
the Isabelle sources.

Conventions are activated using anti-quotations1, via the new print modes algorithm and
expression, which can be mutually active. The algorithm mode outputs Latex in a format
compatible with the package algorithmicx2, and the print mode expression converts annotated
lambda expressions into predicates and simplify expressions by omitting quotes around the
name of variables and constructors which are “obvious”, such as datatype constructors V

preceding the name of variables and N preceding values. To benefit from these print modes,
programs need to be annotated with meta-data related to formatting. This meta-data does not

1For the definition of anti-quotation, see Section 1.6.4 on page 13.
2https://www.ctan.org/pkg/algorithmicx

6.1 Typographic conventions 171

interfere in proofs; they are completely erased by Isabelle in proofs after the user invoke the
simp proof method.

The automatic conversion to Latex ensures that the text in this chapter reflects its form-
alisation in Isabelle. There is a price to pay for such a simplification of notation: the
formalisation in Isabelle uses a richer representation with respect to the type of constants and
unary and binary operators, which is elided in this chapter. Instead of explicitly displaying
the type of each vvalue and the operands over vvalue, we mention in the relevant sections
what is the type of the variables. For example:

• vvalue constructors are omitted, e.g. 5 instead of VNat 5;

• expressions are written using mathematical symbols rather than actual syntax, e.g.
len v instead of lene (V ′′v ′′);

• projection functions are omitted and binary relations are displayed in usual mathemat-
ical notation, e.g. i ≤ i ′means λ s s ′. [[s ′′i ′′]]i ≤ [[s ′ ′′i ′′]]i;

• variable names are displayed without quotes, e.g. x:=y means ′′x ′′ := (V ′′y ′′);

• the validity of a predicate in the after state is denoted by priming the predicate, e.g.
gi-satp⇒ gi-satp ′means gi-satp⇒ gi-satp‘;

• for readability, sometimes we write parallel c and d end parallel instead of c ∥ d,
where c and d are programs;

• lambda expressions in the body of indexed parallelism is omitted, e.g. ∥i∈ S · F i

means ∥S · (λ i. F i);

• indentation is used to suppress parenthesis.

We omit the application of laws for reflexivity, transitivity, symmetry, monotonicity
and substitution in the discussion that follows. These laws are at the very heart of the
mechanisation and are used to navigate throughout the parts of a program under refinement,
selecting specific components to be refined. Because the application of these laws is intuitive
and is pervasive in the derivations, we do not mention them in the examples here. Refinement
steps are marked using the notation Ri to allow reference to them in the text. This way of
marking refinement steps is taken from [32].

To minimise repetition, we follow the convention adopted in the literature [78, 48] of
marking the term to be refined next with ▹. Thus, a refinement with no explicit left side applies

172 Applying the refinement calculus

to the most recent command marked with ▹. Since commands can be nested into blocks
which are split over more than one line, a single marker can be ambiguous to distinguish
between the refinement of a nested command or the whole block. To avoid ambiguity, in the
cases where a block is split over consecutive lines, and we are refining the whole block, all
lines are marked with ▹.

6.2 Reading advice

To facilitate the reading of the material in this chapter, we summarised in Appendix B the
laws that are referenced along the chapter. Those pages can be used as a reference sheet to
speed up the reading of this chapter, as they prevent the tedious task of searching for laws in
different chapters. Laws are identified by their respective number, and their names. We hope
that after consulting a law a few times, it becomes easier to remember it from its name, thus
minimising the need for switching between pages.

6.3 Findp: Sequential

This example is taken from [48] and illustrates the derivation of a sequential program.
It motivates the introduction of arrays in RG-WSL, and serves to discuss the benefit of
mechanical versus pen-and-paper derivations.

Findp finds the lowest index t in the domain of an array v, such that the indexed element
v[t] satisfies a predefined property p. In the implementation we are to develop, the search
starts from the lowest index and moves upwards; thus, if it finds an indexed element that
satisfies p, it terminates the search. If no element in the array satisfies p, then the algorithm
sets t to be the position immediately after the last in the array. Recall that in RG-WSL arrays
are zero-based. Thus, if the first element of the array v satisfies p, then t is set to 0; if no
element in the array v satisfies p, then t is set to the length of the array3.

6.3.1 Abbreviations

Table 6.1 introduces part of the abbreviations used in the derivation of the sequential version
of Findp. Recall from Section 2.3.1 on page 25 that unary operators are defined via the
Cartesian product of a function of type vvalue⇒ vvalue and a function of type vvalue⇒ IB.

3We will reuse the definition of length of an array introduced in example 2.5 (len) on page 27 on Chapter 2.

6.3 Findp: Sequential 173

The first denotes the shallow-embedded operator, whereas the second denotes its precondition
(i.e. for which values the operation is well-defined). The unary operator P wraps the property
p of Findp, so that it can be used in deep embedded expressions (Exp), such as the condition
of an if-then-else command. We follow [48] and assume that p is well-defined for every
element (x) of the searching array v. Undefinedness could be modelled by defining TP(x)

to be a function different from the one we choose. We discuss at the end of this section the
impact of modelling undefinedness for the property p. The operator p itself is introduced
as an uninterpreted constant. That means that the derivation does not depend on the actual
property under test.

TP(x) ≡ True
P(e) ≡ UOp (p, TP) e

notp(v, s, t) ≡ ∀ i∈s. i < t −→ ¬ p (v ! i)
domain(v) ≡ {x | x < length v}

satp(v, t) ≡ t ∈ domain(v) ∧ p (v ! t)
post0 ≡ (t ′= length v ∨ satp(v, t ′)) ∧ notp(v, domain(v), t ′)

gi-satp ≡ (t = length v) ∨ satp(v, t)
gi-notp ≡ notp(v, domain(v), k) ∧ bnd(k, v)

Table 6.1 Abbreviations for sequential Findp (Part I)

The predicate notp(v, s, t) takes an array of natural numbers (v), a subset of the domain
of the array (s), and an index (t). It states that there is no index (i) in s, such that i < t, for
which p (v ! i) holds. The set domain(v) represents the domain of the array v. The predicate
satp(v, t) is true if t is within the domain of v and p (v ! t) holds. The relation post0 is used
to define the initial specification for Findp. It demands the final value of t to be such that it
either lies outside of the domain of the array, or it is least index in the domain of v such that
p (v ! t) holds. The predicates gi-notp and gi-satp are used during the development to shift
constraints from the initial postcondition to guarantee invariants.

The remaining abbreviations are given in Table 6.2. The predicate bnd(k, v) is a loop
invariant. It establishes boundaries the loop variable k. The predicate init is used to record
information about the initialisation of variable t to be used at a later stage of the development.
The relation post-dec records what is left to be done once initial restrictions from post0

are shifted using guarantee invariants. The well-founded relation w is used to establish
the termination of the loop used to iterate over the array. The boolean expressions c-while

and c-if are used to introduce a loop and a conditional, respectively.

174 Applying the refinement calculus

bnd(k, v) ≡ 0 ≤ k ∧ k ≤ length v
init ≡ t ≤ length v

post-dec ≡ t ′≤ k ′

w ≡ (0 ≤ t ′− k ′) ∧ (t ′− k ′< t − k)
c-while ≡ k < t

c-if ≡ P(v[k])

Table 6.2 Abbreviations for sequential Findp (Part II)

6.3.2 Derivation

This derivation of Findp is a revised version of the pen-and-paper version published in [48].
A problem with the original derivation is that it does not record relevant information about
variables at the moment of their initialisation. This information is needed to discharge proof
obligations in later steps of the derivation.

The initial specification for Findp states that it must terminate in a state where the variable
t (a natural number) is in the domain of the array v, or t must store the value length v (that is,
the position immediately after the last in the array). Moreover, there must not exist any index
i in the domain of v that precedes t such that P(v[i]) holds. Formally, this is captured by the
following specification:

{t}: [true, post0] (6.1)

The derivation discussed in this section is composed of five transformations. The first
introduces and guarantee invariant (gi-stap) that requires t to store either the index immedi-
ately after the last in the array, or an index such that P(v[t]) holds. The second transformation
introduces and initialises a loop counter k (k:=0), and a guarantee invariant (gi-notp) that
requires that no index i (0 ≤ i < k) exists such that P(v[i]) holds. The third transformation
introduces a loop to increment k. The fourth transformation introduces a conditional, to
detect if P(v[t]) holds, and the last transformation updates the loop counter and the variable t

accordingly to the result of the conditional.

Initialising variable t

This refinement step initialises the variable t and introduces an invariant (gi-satp) to con-
strain updates to t. The step R1 splits [true, post0] into a sequential composition. For the
application of law 3.25 (Sequential) we choose q0 ≡ idset {t}, q1 ≡ gi-satp ′∧ post0 and

6.3 Findp: Sequential 175

mid ≡ gi-satp ∧ init. As these values can be visually extracted from the derivation chain, we
generally do not mention them. Apart from few exceptions, we omit the proof of side condi-
tions generated by the application of refinement laws. This is done to keep the discussion of
the derivations at a reasonable size. All details of the derivation, including the omitted proof
obligations can be find in Appendix A.1.

{t}: [true, post0]

R1 ≡ ⊑ by 3.25 (Sequential)

{t}: [true, idset {t} ∧ (gi-satp ∧ init) ′] ; [gi-satp ∧ init, gi-satp ′∧ post0] ▹

Step R2 distributes the frame ({t}) over the nested sequential composition. The first com-
ponent of the sequential composition ({t}: [true, idset {t} ∧ (gi-satp ∧ init) ′]) establishes
the invariant and is implemented by the assignment t:= len v.

R2 ≡ ⊑ by 4.13 (Distribute-Frame-Sequential), 3.113 (Assignment-Guarantee)

t:= len v;

{t}: [gi-satp ∧ init, gi-satp ′∧ post0] ▹

Step R3 strengthens the postcondition. Since law 3.19a (Consequence) is not aware of
the surrounding frame, we have to include the frame in the postcondition to strengthen
it, otherwise we end up with proof obligations that cannot be discharged. Following the
strengthening step, we use law 4.12 (Trade-Spec-Guarantee) to eliminate the frame from the
postcondition for the sake of clarity. Step R4 uses law 3.68 (Trade-Guarantee-Invariant) to
turn the invariant into a guarantee invariant. Step R5 widens the precondition by removing
the predicate gi-satp from it.

R3 ≡ ⊑ by 3.19a (Consequence), expanding post0

{t}: [gi-satp ∧ init, (t ′= length v ∨ satp(v, t ′)) ∧ notp(v, domain(v), t ′)]

⊑ by 3.19a (Consequence) and Definition 2.19 (Post-state notation)

{t}: [gi-satp ∧ init, (idset {t} ∧ gi-satp ′) ∧ notp(v, domain(v), t ′)]

∼ by 4.9 (Trade-Spec-Frame)

{t}: [gi-satp ∧ init, gi-satp ′∧ notp(v, domain(v), t ′)]

R4 ≡ ⊑ by 3.68 (Trade-Guarantee-Invariant)

{t}: guar−inv gi-satp · [gi-satp ∧ init, notp(v, domain(v), t ′)]

176 Applying the refinement calculus

R5 ≡ ⊑ by 3.19a (Consequence)

{t}: guar−inv gi-satp · [init, notp(v, domain(v), t ′)] ▹

The purpose of this transformation was to simplify the postcondition at the cost of
introducing a guarantee invariant. This kind of transformation is useful to prepare for the
introduction of loops, because it gives more flexibility to the user to be able to express a
postcondition through a loop invariant, as intricate parts of the postcondition can be moved
to a guarantee.

Introducing a loop counter

This step introduces a local variable (k) to iterate over the indices of the array. As we will
develop a program that searches the array upwards, we initialise the local variable to value 0.

The application of law 3.101 require us to prove that the variable k is unrestricted

in guar−inv gi-satp · [init, notp(v, domain(v), t ′)]. This is shown by using the inductive
rules for unrestriction given in Definition 2.81 (Unrestricted-Variable), and by invoking the
definition of depends-only and logical interpretation (⊢). Following the introduction of the
local variable k, the frame is pushed into the guarantee invariant.

R6 ≡ ⊑ by 3.101 (Introduce-Variable-Frame), 3.62c (Distribute-Guarantee)

var k

guar−inv gi-satp · {k, t}: [init, notp(v, domain(v), t ′)] ▹

Step R7 refines the body of the local variable block. It initialises the loop counter c with the
lowest index of the array v. Additionally, it introduces and establish an invariant (gi-notp),
which is turned into a guarantee invariant later. The motivation for the guarantee invariant
is to make the postcondition simpler, and thus facilitate the introduction of a while loop.
Appendix C.2 contains the proof of Proposition C.1, which is used to justify the proof
obligation raised by the application of law 3.25 (Sequential) in the refinement step R7. The
paper proof serves the purpose of illustrating how a non-trivial proof obligation can be
discharged using the laws we provided and laws to manipulate quantifiers. In general, we
omit the discussion of proof obligations in this chapter to keep the discussion focused on the
design decision behind the derivation. All details of the derivations, including the omitted
proof obligations can be find in Appendix A.1.

R7 ≡ ⊑ by law 3.25 (Sequential) and proposition C.1

6.3 Findp: Sequential 177

guar−inv gi-satp ·

{k, t}: [init, (k ′= 0) ∧ idset {k, t} ∧ (gi-notp ∧ init) ′];

[gi-notp ∧ init, gi-notp ′∧ post-dec ∧ idset {c, t}]

R8 ≡ ⊑ by 3.62a (Distribute-Guarantee), 3.113 (Assignment-Guarantee)

k:=0;

guar−inv gi-satp · {k, t}: [gi-notp ∧ init, gi-notp ′∧ post-dec ∧ idset {k, t}]

R9 ≡ ∼ by 4.12 (Trade-Spec-Guarantee), and 3.65 (Frame)

k:=0;

guar−inv gi-satp · {k, t}: [gi-notp ∧ init, gi-notp ′∧ post-dec]

R10 ≡ ⊑ by 3.68 (Trade-Guarantee-Invariant), 3.62c (Distribute-Guarantee)

k:=0;

guar−inv gi-satp · guar−inv gi-notp · {k, t}: [gi-notp ∧ init, post-dec]

R11 ≡ ⊑ by 3.19a (Consequence)

k:=0;

guar−inv gi-satp · guar−inv gi-notp · {k, t}: [init, post-dec] ▹

Introducing a while loop

This refinement introduces a while loop to search for the first element of v to satisfy the
property p. In step R13, we are required to show that w ≡ (0 ≤ t ′− k ′) ∧ (t ′− k ′< t − k)

is well-founded from states satisfying init. As discussed in Section 2.12.3, we did not succeed
in proving wellfoudness of relations in Isabelle/HOL. Thus, we take this proof obligation as
an assumption of the derivation. It is easy however, to provide a convincing argument of why
the relation w is well-founded: at each iteration, the gap between the variables k and t has to
decrease, either because t decreases or because k increases. As the relation w does not allow
t to become smaller than k, this process of reduction is finite and stops after, at most, t − k

iterations.

R12 ≡ ⊑ by 3.19a (Consequence)

guar−inv gi-satp · guar−inv gi-notp ·

{k, t}: [init, init ′∧ ¬c-while ′∧ w∗∗]

178 Applying the refinement calculus

R13 ≡ ⊑ by 5.32 (Sequential-Loop)

guar−inv gi-satp · guar−inv gi-notp ·

{k, t}: (while c-while do [init ∧ c-while, w])

R14 ≡ ⊑ by 3.62f (Distribute-Guarantee)

while c-while do

guar−inv gi-satp · guar−inv gi-notp · {k, t}: [init ∧ c-while, w] ▹

At this point, it is worth to look back at the remark added to law 3.112 (Rely-Loop) on
page 113. That observation makes easier for a novice to understand how to introduce loops
in programs, and also applies to law 5.32 (Sequential-Loop).

Introducing a conditional

This transformation introduces a conditional to assess if the position k of the array v satisfies
the property p. If it does, then it requires t to be updated with the value of k, which causes the
loop to terminate; otherwise, it requires k to be incremented by one. The increment allows
the next position of v to be assessed during the next iteration of the loop.

Before introducing the conditional we need to complement the syntax of concrete expres-
sions with an operator to read an indexed position of an array. Recall from Section 2.3.2
(Expression language) that unary and binary operators can be defined on demand. The
operator we need can be modelled via the type Exp⇒ Exp⇒ Exp.

The first argument taken by this operator is an expression that denotes an array. The
second argument is an expression that denotes the first index to be applied to the array. Thus,
to access the content at position k of an array v we write v[k]. Indexation is defined as4

e1[e2] ≡ BOp (λva vb. [[va]]a ! [[vb]]n, λva vb. [[vb]]n < length [[va]]a) e1 e2 (6.2)

This presentation style is the same used to discuss the encoding of modn on page 27. The
leftmost lambda expression formalises the underlying mathematical operator, that is, it returns
the indexed element of list denoted by the array. The second lambda expression introduces
the precondition for the underlying mathematical operation to succeed: the position to be
retrieved must be in the domain of the array. Recall from Section 2.3.3 (Definedness) on

4For convenience, we present this operator using the standard notation (e.g. A[i]) in this thesis, while in
Isabelle/HOL we use a different syntax (A ♯e i) to prevent ambiguity with the existing notation for lists.

6.3 Findp: Sequential 179

page 27 that if a binary expression fails to satisfy the precondition of its underlying binary
operator, then the evaluation results in undefined.

Refinement step R15 illustrates the introduction of a conditional. To discharge the proof
obligations involved in the application of law 5.31 (Sequential-Conditional) we are required
to prove, assuming the precondition to hold, that the condition (c-if) of the if-then-else

command is defined. Formally, we have to prove that

⊢ init ∧ c-while⇒ defined c-if

Expanding c-while, init and c-if, and applying defined (Definition 2.6) this becomes:

⊢ (t ≤ length v) ∧ (k < t)⇒ (k < length v)

This highlights the importance of recording and propagating knowledge about initialisation
of variables, as well as the importance of machine checked proofs. Had the precondition
not included init, we would not be able to prove that k is in the domain of the array v. The
pen-and-paper derivation [48] did not record and propagate such information.

R15 ≡ ⊑ by 5.31 (Sequential-Conditional)

guar−inv gi-satp · guar−inv gi-notp · ▹

{k, t}: if c-if then [init ∧ c-while ∧ c-if , w] else [init ∧ c-while ∧ ¬c-if , w] ▹

Aside. In the cases where a block is split over consecutive lines, and we are refining the

whole block, all lines are marked with ▹. This is done to prevent ambiguity, as explained on

Section 6.1.

Step R16 distributes the frame {k, t} to the branches of the conditional; reduces the frame
for each branch separately; replicates the frames inside of the postconditions; strengthens the
postconditions; and removes the frames from the postconditions.

R16 ≡ ⊑ by 3.62e (Distribute-Guarantee), 3.60a (Guarantee-Monotonic),

4.12 (Trade-Spec-Guarantee), 3.19a (Consequence)

if c-if then ▹

guar−inv gi-satp · guar−inv gi-notp · ▹

{t}: [init ∧ c-while ∧ c-if , t ′= k] ▹

180 Applying the refinement calculus

else ▹

guar−inv gi-satp · guar−inv gi-notp · ▹

{k}: [init ∧ c-while ∧ ¬c-if , k ′= k + 1] ▹

Introducing assignments

Step R17 is the last in the derivation. It implements the specifications in the branches of the
conditional using assignments. Again, we stress the importance of recording and propagate
information about the state. Had the precondition not included init and c-while, it would not
be possible for us to discharge the proof obligations of law 3.113 (Assignment-Guarantee),
used to introduce the assignment.

R17 ≡ ⊑ by 3.113 (Assignment-Guarantee)

if c-if then t:=k else k:=k+1

In the case of the then-branch, the lack of information about the initialisation of t and
its relationship to v leads to the situation discussed in the section Example: reasoning

compositionally about logical interpretation on page 38. In short, we cannot prove that
the assignment satisfies the guarantee invariant gi-satp if we do not record the relationship
between k, t and length v in the precondition.

In [48], the authors attempt to avoid this problem by flattening the nested guarantee
invariants: this is not a valid transformation, because nested guarantee invariants impose a
stronger requirement on its body than flattened guarantee invariants. See remark on law 3.69
(Distribute-Guarantee-Invariant) on page 92 for a comparison between flattened versus nested
guarantee-invariants.

6.3.3 Discussion

The derivation of the sequential version of Findp suggests that refraining from widening
preconditions in the course of a derivation may be a good practice, because to discharge
proof obligations one may depend on information encoded by preconditions. Additionally, a
too weak choice for mid in the application of law 3.25 (Sequential) may leave the subsequent
precondition without information about the preceding part of a program. In the derivation
of sequential Findp, the choice of mid in the first refinement step is decisive to allow the
introduction of the conditional. Thus, care should be taken to preserve the maximum of

6.3 Findp: Sequential 181

information in the course of a derivation. This is simple to follow in practice: (i) whenever
applying laws 3.25 and 3.84, the user should choose mid such that it transfers the maximum
of information from the postcondition of the preceding specification to the precondition
of the subsequent specification; (ii) whenever applying laws 3.111 and 3.112 to introduce
control structures, the user should choose b0 and b1 such that they encode the strongest stable
predicate that can be inferred from the condition of the control structure being introduced.

Although we had not experimented to develop a version of Findp considering the property
p to be undefined for certain elements of the array, it is not difficult to see what would be the
outcome of such modelling. It would impact on the introduction of the conditional, because
in step R15 we are required to prove from the precondition that the boolean expression tested
by the if-then-else is defined. To ensure that P(v[k]) is well defined, we would need to use
nested conditionals: the external to test if the property p is defined over the element v[k], and
the nested one to test if that element satisfies the property p.

Findp also serves to discuss how we pulled apart the notion of undefinedness of the
algebra from that of the underlying logic (Isabelle/HOL). For example, consider again
indexation over arrays (e.g. v[k]). The underlying mathematical representation for this
operator is indexation over lists in Isabelle, which is represented by exclamation mark (!),
and happens to be defined for empty lists in Isabelle/HOL. For example, in Isabelle/HOL
one can prove that the following equality holds, even if k is higher than the size of the list v.

v ! k = v ! k

Even though this expression is defined in the underlying logic, we cannot derive programs
that use it in a test or an assignment, for example. This is because the formal definition
given to the indexation operator does not allow the application of an index to an non-existent
position of an array. Thus, the attempt to refine a program which uses this expression as
a boolean condition would generate a proof obligation that cannot be discharged. It is the
user’s task when modelling operators to decide if she wants to reflect the underlying logic or
be more strict with respect to undefinedness, as we were in this case.

Finally, it is important to remember that our representation of states does not record the
dimension of variables. Perhaps, if we had used a richer representation for the state, we
would not need to care about recording as much information along the derivation as we have
to, because we would have at our disposal the type and dimension of variables to be used
when discharging proof obligations. For this example, though, a richer representation of the
state would not make a difference.

182 Applying the refinement calculus

v[0] v[1] v[2] v[3] v[4] ... v[n-1]

Evens

Odds

Figure 6.1 Index partitioning for concurrent Findp

6.4 Findp: Concurrent

The concurrent version of Findp illustrates the development of a non-trivial parallel search
algorithm involving relies, guarantees, parallelism, local variables, conditionals and iteration.
The key insight of this development is to partition the set of indices into even and odd
numbers and use two processes to perform the search, as illustrated in Figure 6.1. These
programs cooperate to determine the lowest index t to satisfy a property p. To prevent data
races in the access to t, each program maintains a local instance of t (et, ot), which is used to
update the value of the global t just before the algorithm terminates. These variables hold,
for each program, the lowest index known to satisfy p within its range of indices. Initially,
both programs assume that no element satisfies p (i.e. et = ot =length v).

Two local variables are used to iterate over the array, ek and ok. The search starts from the
lowest indices (ek = 0 and ok = 1) and move towards the last position of the array. Thus, if a
program finds an index such that the property p holds, it is surely the lowest index in the range
searched by that program. Before programs move to the next searching position, they consult
the local instance of t hold by their sibling. If that instance holds a value that is smaller than
the next position to be searched, then there is no need to continue searching: the lowest index
to satisfy p has been found by the sibling program and the search is interrupted, i.e. the
unsuccessful branch anticipates its termination. If the sibling program holds a higher value
for the local instance of t than the next position to be searched, then the search continues.

A relevant observation about the concurrent version of Findp is that each parallel program
is responsible for establishing its own termination. Programs can cooperate to terminate
earlier, but no individual program depends on actions of the environment to terminate (i.e.,
processes are wait-freedom). As it was discussed in Section 2.12.4, the algebra presented in
this thesis is not suitable for developing programs whose termination necessarily depends on
actions of the environment.

The issue involving initialisation of variables already discussed in Section 6.3 occurs in
the derivation of the concurrent version of Findp published in [48] as well. The derivation is
fixed following similar steps to those discussed.

6.4 Findp: Concurrent 183

6.4.1 Abbreviations

This section introduces definitions used to formalise the derivation of a concurrent version
of Findp. Most of the definitions are parameterised versions of those used in the derivation
of the sequential version of Findp. Parameterisation is useful to prevent duplication of
definitions that are common to the development of the parallel processes searching odd and
even numbers. For convenience, the definitions used in the sequential and concurrent versions
of Findp are presented side by side on Appendix C.3.2. We leave the comparison between
the development of the sequential and concurrent version to be discussed at the end of this
section. The representation as parameterised abbreviations serves to reinforce the symmetry
of the development of the odd and even-branch of the parallel composition and justify why
we have not included the full development in this chapter, but just the development of the
odd-branch.

TP(x) ≡ True
P(e) ≡ UOp (p, TP) e

notp(v, s, t) ≡ ∀ i∈s. i < t −→ ¬ p (v ! i)
domain(v,Φ) ≡ {x | x < length v ∧ Φ(x)}
satp(v, t, Φ) ≡ t ∈ domain(v,Φ) ∧ p (v ! t)

post0(x, y, Φ) ≡ ((min(x ′, y ′) = length v) ∨ satp(v, min(x ′, y ′), TP)) ∧
notp(v, domain(v,Φ), min(x ′, y ′))

gi-satp ≡ (min(ot, et) = length v) ∨ satp(v, min(ot, et), TP)

gi-notp(x, Φ) ≡ notp(v, domain(v,Φ), x) ∧ bnd(x, v) ∧ Φ(x)

Table 6.3 Abbreviations for concurrent Findp (Part I)

Table 6.3 introduces part of the abbreviations used in the derivation. The function TP(x)

states that the property p of Findp is defined for every element x in the searching array. The
unary operator P(e) encapsulates the property p using the type introduced Definition 2.3 on
page 26. The predicate notp(v, s, t) takes an array of natural numbers (v), a subset of the
domain of the array (s), and an index (t). It states that there is no index (i) in s, such that
i < t, for which p (v ! i) holds. The definition domain(v,Φ) takes two parameters: an array
of natural numbers (v), and a predicate over naturals (Φ). The predicate (Φ) is used to select
a specific subset of the domain; e.g. we start with an abstract specification where Φ = TP,
but during the split of the specification into a parallel composition we instantiate Φ to the
predicates odd and even. The predicate satp(v, t, Φ) states that v[t] satisfies the property
p, and t is within domain(v,Φ). The relation post0(x, y, Φ) is a generalised version of the

184 Applying the refinement calculus

homonymous relation used in the derivation of a sequential version of Findp, and is used
to define the top-level specification for the algorithm (Eq. 6.3). The parameters x and y in
this definition are variables, used to store the result of the main computation performed by
Findp. The predicates gi-satp and gi-notp(x, Φ) are used during the derivation to introduce
guarantee invariants, using the same strategy applied in the derivation of the sequential
version of Findp.

The predicate bnd(k, v) is a loop invariant that establishes a lower and upper bound for
the loop variable k. The predicate init(t) is used to record information about the initialisation
of t. The relation post-dec(x) is used to record what is left to be done once most of the
original specification is shifted into guarantee invariants. The well-founded relation w(t, k)

is used to ensure the termination of the loops used to iterate over the array. The boolean
expressions c-while(k) and c-if (k) are parameterised on a loop variable (k), and are used to
introduce a loop and a conditional, respectively. The predicates b0(k, t) and b1(k, ot, et) are
used for loop introduction in the context of an interfering environment (cf. law 3.111). The
predicate prew(k, t) is used to record the precondition of the body of a while loop.

bnd(k, v) ≡ 0 ≤ k ∧ k ≤ length v + 1
init(t) ≡ t ≤ length v

post-dec(x) ≡ min(ot ′, et ′) ≤ x ′

w(t, k) ≡ (0 ≤ t ′− k ′+ 1) ∧ (t ′− k ′< t − k)
c-while(k) ≡ k < ot ∧ k < et

c-if (k) ≡ P(v[k])
b0(k, t) ≡ k < t

b1(k, ot, et) ≡ (ot ≤ k) ∨ (et ≤ k)
prew(k, t) ≡ b0(k, t) ∧ init(t)

g(x, y) ≡ (x ′≤ x) ∧ idset {y}

Table 6.4 Abbreviations for concurrent Findp (Part II)

The relation g(x, y) plays two roles during the development. It represents both the
guarantee and rely conditions for the development of each branch. It states that the variable
taken as first parameter (x) decreases monotonically, while the second parameter (y) is kept
stable. Depending on the intended use, the parameters x and y are instantiated to appropriate
variables.

6.4 Findp: Concurrent 185

6.4.2 Derivation

The derivation is structured in six transformations. The main insight is to split the search
into two processes: one to search odd indices, and the other to search even indices. The first
transformation splits the result variable (t) in two local instances (ot and et); this is done to
prevent the need for synchronising access to the variable t. The second transformation splits
the (sequential) specification in a parallel composition of specifications. For conciseness,
the remaining transformations focus on the development of the odd branch. The third
transformation introduces a loop counter for the odd branch (ok); the fourth transformation
introduces a while loop to iterate over odd indices. The fifth transformation introduces a
conditional to checks if the current position of the array (v[ok]) satisfies the property p, and
the last transformation updates the loop variable and the the local copy of the result variable
(ot).

At the end of this section we discuss an alternative derivation path, which could be used
to justify the derivation using an argument based on syntactic restrictions over variables.

Preventing data races

The strategy to implement a sequential version of Findp was to use a local variable to search
the array upwards from the first position up to the max index, and upon identification of the
first element to satisfy the property p to update t with its index. Now that we will split the
search between two processes, there is a danger of competition (i.e. data-races) for accessing
the variable t. The purpose of this refinement step is to eliminate this danger.

The general idea is to split the global variable t in two local variables, et and ot. The
redundancy is used to prevent complications in the algorithm that would arise if we had to
synchronise the access to the variable t between the two processes. The abstract specification
(6.1) for this derivation is the equivalent to the one used to derive the sequential version, and
is provided next.

{t}: [true, post0(t, t, TP)] (6.3)

Since this specification is not nested into a rely command, we can use law 3.101 (Introduce-
Variable-Frame) to introduce local variables. Instead of following this path, we will take a
different one to illustrate a law that has not been exercised yet. Step R1 introduces a rely
condition, and step R2 applies law 3.102 (Introduce-Variable-Rely) twice to introduce the
local variables ot and et. This law uses the rely condition to record that local variables are
not subject to external interference. Each application generates a proof obligation involving

186 Applying the refinement calculus

unrestriction. For example, for the first application this proof obligation is

unrest(ot, rely idset {v, t} · [true, post0(t, t, TP)])

{t}: [true, post0(t, t, TP)]

R1 ≡ ⊑ by 3.81 (Rely-Idrel-Specification) and 3.87a (Rely-Monotonic)

{t}: rely idset {v, t} · [true, post0(t, t, TP)]

R2 ≡ ⊑ by 3.102 (Introduce-Variable-Rely)

var ot

var et

{t, ot, et}: rely idset {v, t, ot, et} · [true, post0(t, t, TP)] ▹

Step R3 reformulates the original specification in terms of ot and et.

R3 ≡ ⊑ by 3.19a (Consequence)

{t, ot, et}: rely idset {v, t, ot, et} · [true, post0(ot, et, TP) ∧ (t ′= min(ot ′, et ′))] ▹

The next design decision is to separate the algorithm into two phases: computation of the
final values of the local instances et and ot, and update of the global variable t. This is done
in step R4. Care is necessary when splitting a specification using law 3.89 (Rely-Sequential):
the composed specification must not be weaker than the original. To illustrate this point,
consider the refinement step R4 given next.

R4 ≡ ⊑ by 3.89 (Rely-Sequential)

{t, ot, et}: rely idset {v, t, ot, et} · [true, post0(ot, et, TP)]; ▹

rely idset {v, t, ot, et} · [true, (t ′= min(ot, et)) ∧ idset {ot, et}] ▹

If we had chosen a weaker q1, such as

q1 ≡ (t ′= min(ot, et))

we would end up with the next proof obligation

⊢ post0(ot, et, TP) ; q1⇒ post0(ot, et, TP) ∧ (t ′= min(ot ′, et ′))

6.4 Findp: Concurrent 187

The problem to discharge that proof is that the right-hand side of the implication constrains the
final value of ot and et, but q1 leaves the value of these variables unrestricted. Consequently,
the relational composition (post0(ot, et, TP) ; q1) also leaves these values unrestricted, and
therefore the implication does not hold. The choice we made was

q1 ≡ (t ′= min(ot, et)) ∧ idset {ot, et}

which states that ot and et remain unchanged. The next refinement step implements the
right-hand side specification using law 3.114 (Assignment-Rely-Guarantee).

R5 ≡ ⊑ by 4.13 (Distribute-Frame-Sequential), 3.87a (Rely-Monotonic) and

3.114 (Assignment-Rely-Guarantee)

{ot, et}: rely idset {v, ot, et} · [true, post0(ot, et, TP)]; ▹

t:=min(ot, et)

Refinement steps R6-R8 initialise the local variables et and ot. They differ from the
derivation published in [48] with respect to recording and propagating information about the
initialisation of variables. Likewise the sequential development, we use the relations init(ot)

and init(et) to record relevant information about the initial values of ot and et. The predicate
gi-satp will be used later to introduce a guarantee invariant. Its purpose will be to simplify
the postcondition, by shifting restrictions from the postcondition to the guarantee.

R6 ≡ ⊑ by 3.89 (Rely-Sequential) and 4.13 (Distribute-Frame-Sequential)

{ot, et}: rely idset {v, ot, et} · [idset {v} ∧ (init(ot) ∧ init(et) ∧ gi-satp) ′];

{ot, et}: rely idset {v, ot, et} · [init(ot) ∧ init(et) ∧ gi-satp, post0(ot, et, TP)]

R7 ≡ ⊑ by 3.89 (Rely-Sequential) and 4.13 (Distribute-Frame-Sequential)

{ot}: rely idset {v, ot, et} · [idset {et, v} ∧ ((ot ′= length v) ∨ satp(v, ot ′, odd))];

{et}: rely idset {v, ot, et} · [idset {ot, v} ∧ ((et ′= length v) ∨ satp(v, et ′, even))];

{ot, et}: rely idset {v, ot, et} · [init(ot) ∧ init(et) ∧ gi-satp, post0(ot, et, TP)]

R8 ≡ ⊑ by 3.59 (Introduce-Guarantee) and 3.114 (Assignment-Rely-Guarantee)

ot:=len(v);

et:=len(v);

{ot, et}: rely idset {v, ot, et} · [init(ot) ∧ init(et) ∧ gi-satp, post0(ot, et, TP)] ▹

188 Applying the refinement calculus

We continue the derivation strengthening the specification command to introduce the invariant
gi-satp and remove restrictions imposed by post0(ot, et, TP). The information encoded by
the rely and guarantee conditions is used to allow the strengthening of the postcondition
in a way that appears to be locally weakening the postcondition. Failure to include such
information in the postcondition leads the user to face proof obligations that cannot be
discharged, such as the one discussed in step R4.

R9 ≡ ⊑ by 3.19a (Consequence)

{ot, et}: rely idset {v, ot, et} ·

[init(ot) ∧ init(et) ∧ gi-satp, gi-satp ′∧ notp(v, domain(v,TP), min(ot ′, et ′)) ∧

(idset {v, ot, et} ∨ idset {ot, et})∗∗]

R10 ≡ ⊑ by 3.91 (Introduce-Rely-Guar-Invariant)

{ot, et}: guar−inv gi-satp · rely idset {v, ot, et} · ▹

[init(ot) ∧ init(et) ∧ gi-satp, notp(v, domain(v,TP), min(ot ′, et ′)) ∧ ▹

(idset {v, ot, et} ∨ idset {ot, et})∗∗] ▹

After introducing a guarantee invariant we apply law 3.93 (Trade-Rely-Guarantee) to
eliminate the closure of the information encoded by the guarantee and rely conditions from
the specification command.

R11 ≡ ⊑ by 3.67 (Distribute-Guarantee-Frame), 3.93 (Trade-Rely-Guarantee) and

3.19a (Consequence)

guar−inv gi-satp · {ot, et}: rely idset {v, ot, et} · ▹

[init(ot) ∧ init(et), notp(v, domain(v,TP), min(ot ′, et ′))] ▹

6.4 Findp: Concurrent 189

Introducing parallelism

This transformation is the epitome of rely-guarantee refinement. Step R12 splits the spe-
cification command into two parallel branches. Since the specification is nested within a
rely command, it would not be wise to apply law 3.95 (Introduce-Parallel-Spec) to intro-
duce parallelism, because this would lead to a program where a guarantee is nested into
the scope of a rely command. Instead, a law that takes into account the wrapping rely
command should to be used. We illustrate the introduction of parallelism via law 3.97
(Introduce-Parallel-Spec-Nested).

R12 ≡ ⊑ by 3.97 (Introduce-Parallel-Spec-Nested)

guar−inv gi-satp · {ot, et}: ▹

parallel ▹

guar g(ot, et) ∧ idset {v} · ▹

rely g(et, ot) ∧ idset {v} ∨ idset {v, ot, et} · ▹

[init(ot), notp(v, domain(v,odd), min(ot ′, et ′))] ▹

and ▹

guar g(et, ot) ∧ idset {v} · ▹

rely g(ot, et) ∧ idset {v} ∨ idset {v, ot, et} · ▹

[init(et), notp(v, domain(v,even), min(ot ′, et ′))] ▹

end parallel ▹

Following the introduction of parallelism, the guarantee invariant and frame are distributed
over the branches of parallel composition via step R13. Such distribution allows the user
to continue benefiting from the information contained in the frame and in the guarantee
invariants to strengthen postconditions. Moreover, it prevents the accidental introduction of
assignment without observing the guarantee invariant. Should this happen, the user needs to
expand the definition of assignment and distribute the guarantee invariant over it, showing
that the atomic update which composes the assignment respects the guarantee invariant, in
order to eliminate the guarantee invariant.

R13 ≡ ⊑ by 3.62b (Distribute-Guarantee), 3.87a (Rely-Monotonic),

3.62c (Distribute-Guarantee), 3.60a (Guarantee-Monotonic)

parallel

190 Applying the refinement calculus

guar−inv gi-satp · {ot, et}: guar g(ot, et) · ▹

rely g(et, ot) ∧ idset {v} · ▹

[init(ot), notp(v, domain(v,odd), min(ot ′, et ′))] ▹

and

guar−inv gi-satp · {ot, et}: guar g(et, ot) ·

rely g(ot, et) ∧ idset {v} ·

[init(et), notp(v, domain(v,even), min(ot ′, et ′))]

end parallel

Introducing loop counters

This transformation introduces two loop counters, one per each branch of the parallel compos-
ition. Without compromising the discussion, we focus on the development of the odds-branch.
The reason is because the development of the evens-branch mirrors that of the odds-branch.
Intermediate steps of the full-development can be seen in Appendix C.3.

Step R14 simplifies the specification by removing a variable from the frame and strength-
ening the guarantee condition. Each law and definition mentioned in this step is used twice:
the first time to unfold and merge the guarantee and frame; the second time to split the
simplified guarantee into a frame nested inside of a guarantee.

R14 ≡ ∼ by equivalence (idset {ot, et} ∧ g(ot, et) = idset {ot} ∧ (ot ′≤ ot)),

3.62c (Distribute-Guarantee) and 3.65 (Frame)

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

{ot}: rely g(et, ot) ∧ idset {v} · ▹

[init(ot), notp(v, domain(v,odd), min(ot ′, et ′))] ▹

The next transformation introduces a local variable, ok, used in later stages of the derivation
to iterate over the array v.

R15 ≡ ⊑ by 3.102 (Introduce-Variable-Rely)

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

var ok · {ok, ot}: rely g(et, ot) ∧ idset {ok, v} · ▹

[init(ot), notp(v, domain(v,odd), min(ot ′, et ′))] ▹

6.4 Findp: Concurrent 191

The next transformation distributes the guarantee, guarantee invariant and frame over the
local variable block. The distribution of these commands over the local variable block allows
the user to continue benefiting from the information encoded by them while strengthening
the postcondition.

R16 ≡ ⊑ by 3.62c (Distribute-Guarantee) and 4.11 (Dist-Guarantee-Var)

var ok

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

{ok, ot}: rely g(et, ot) ∧ idset {ok, v} · ▹

[init(ot), notp(v, domain(v,odd), min(ot ′, et ′))] ▹

The next step introduces a guarantee invariant. The guarantee invariant allow us to express the
postcondition in a simpler way at the cost of adding atomic restrictions to the implementation.

R17 ≡ ⊑ by 3.89 (Rely-Sequential),4.13 (Distribute-Frame-Sequential),

3.62a (Distribute-Guarantee) and 3.64 (Guarantee invariant)

guar−inv gi-satp · guar (ot ′≤ ot) ·

{ok, ot}: rely g(et, ot) ∧ idset {ok, v} ·

[init(ot), idset {v} ∧ (init(ot) ∧ gi-notp(ok, odd)) ′];

guar−inv gi-satp · guar (ot ′≤ ot) ·

{ok, ot}: rely g(et, ot) ∧ idset {ok, v} ·

[init(ot) ∧ gi-notp(ok, odd),gi-notp(ok, odd) ′∧ post-dec(ok) ∧

(idset {ok, ot} ∨ g(et, ot) ∧ idset {ok, v})∗∗]

R18 ≡ ⊑ by 3.64 (Guarantee invariant), 3.65 (Frame), 3.62c (Distribute-Guarantee),

3.93 (Trade-Rely-Guarantee), 3.114 (Assignment-Rely-Guarantee) and

3.91 (Introduce-Rely-Guar-Invariant)

ok:=1

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

guar−inv gi-notp(ok, odd) · ▹

{ok, ot}: rely g(et, ot) ∧ idset {ok, v} · [init(ot), post-dec(ok)] ▹

192 Applying the refinement calculus

Introducing a while loop

This transformation introduces a while loop to perform the search of the lowest index ot, in
the range of odd numbers, to satisfy the property P. The introduction of a loop requires the
specification command to be formatted into a predefined shape, specified by the left-hand
side of law 3.112 (Rely-Loop). This preparatory step is carried out in R19.

R19 ≡ ⊑ by 3.19a (Consequence)

guar−inv gi-satp · guar (ot ′≤ ot) ·

guar−inv gi-notp(ok, odd) · {ok, ot}: rely g(et, ot) ∧ idset {ok, v} ·

[init(ot), init(ot) ′∧ b1(ok, ot, et) ′∧ w(ot, ok)∗∗{ok, ot}]

R20 ≡ ⊑ by 3.112 (Rely-Loop)

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

guar−inv gi-notp(ok, odd) · {ok, ot}: ▹

while c-while(ok) do ▹

rely g(et, ot) ∧ idset {ok, v} · ▹

[prew(ok, ot), init(ot) ′∧ w(ot, ok)] ▹

The introduction of a loop in the previous step generates 13 proof obligations. Except for
one, these are just tedious. The exception is a proof to show that w(ot, ok) is well-founded on
init(ot). We did not succeed to prove this property in terms of definition 2.22 (Wellfounded-
Precondition), thus this property is taken as an assumption in this derivation. As w(ot, ok)

is essentially the same relation w used in the development of a sequential version of Findp,
the informal proof about well-foundedness is equally valid here. The next refinement step
distributes the frame, guarantee and guarantee invariants over the while loop, and also applies
law 3.19a (Consequence).

R21 ≡ ⊑ by 3.65 (Frame), 3.64 (Guarantee invariant), 3.62c (Distribute-Guarantee),

3.93 (Trade-Rely-Guarantee), 3.19a (Consequence),

3.87a (Rely-Monotonic) and 3.62f (Distribute-Guarantee)

while c-while(ok) do

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

guar−inv gi-notp(ok, odd) · ▹

{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot), w(ot, ok)] ▹

6.4 Findp: Concurrent 193

Introducing a conditional

This transformation introduces a conditional within the while loop, and distributes the
guarantee, guarantee invariant and frame over the conditional.

R22 ≡ ⊑ by 3.111 (Rely-Conditional)

if c-if-odd then ▹

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

guar−inv gi-notp(ok, odd) · ▹

{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot) ∧ c-if-odd, w(ot, ok)] ▹

else ▹

guar−inv gi-satp · guar (ot ′≤ ot) · ▹

guar−inv gi-notp(ok, odd) · ▹

{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot) ∧ ¬c-if-odd, w(ot, ok)] ▹

Introducing assignments

This transformation uses law 3.114 (Assignment-Rely-Guarantee) to implement the branches
of the conditional.

R23 ≡ ⊑ by 3.64 (Guarantee invariant), 3.62c (Distribute-Guarantee),

3.67 (Distribute-Guarantee-Frame), 3.114 (Assignment-Rely-Guarantee)

if c-if-odd then ot:=ok else ok:=ok + 2

The full intermediate programs, including both parallel branches for searching even and odd
numbers, can be seen in Appendix C.3 on page 278.

Alternative derivation

In this section, we exercise an alternative derivation path to introduce the conditional and
reach the implementation. The start point is the right-hand side of refinement R21. The
insight behind this derivation is to eliminate the rely context surrounding the specification
command at the cost of introducing syntactic restrictions in the development. This style of
development follows from the application of law 3.105 (Rely-Uses). The derivation discussed

194 Applying the refinement calculus

in this section illustrates the novel laws introduced in Section 3.11 (Restricting access to
variables).

R24 ≡ ⊑ by 3.105 (Rely-Uses)

guar−inv gi-satp · guar (ot ′≤ ot) ·

guar−inv gi-notp(ok, odd) ·

{ok, ot}: uses {ok, ot, v} · [prew(ok, ot), w(ot, ok)]

R25 ≡ ⊑ by 3.109 (Distribute-Uses)

uses {ok, ot, v} ·

guar−inv gi-satp · guar (ot ′≤ ot) ·

guar−inv gi-notp(ok, odd) · {ok, ot}: [prew(ok, ot), w(ot, ok)]

R26 ≡ ⊑ by 5.31 (Sequential-Conditional), 3.65 (Frame)

3.64 (Guarantee invariant) and 3.62e (Distribute-Guarantee)

uses {ok, ot, v} ·

if c-if-odd then

guar−inv gi-satp · guar (ot ′≤ ot) ·

guar−inv gi-notp(ok, odd) · {ok, ot}: [prew(ok, ot) ∧ c-if-odd, w(ot, ok)]

else

guar−inv gi-satp · guar (ot ′≤ ot) ·

guar−inv gi-notp(ok, odd) · {ok, ot}: [prew(ok, ot) ∧ ¬c-if-odd, w(ot, ok)]

R27 ≡ ⊑ by 3.64 (Guarantee invariant), 3.62c (Distribute-Guarantee),

3.67 (Distribute-Guarantee-Frame), 3.113 (Assignment-Guarantee)

uses {ok, ot, v} · if c-if-odd then ot:=ok else ok:=ok + 2

R28 ≡ ⊑ by 3.108 (Elimination-Uses)

if c-if-odd then ot:=ok else ok:=ok + 2

Step R28 concludes the derivation by eliminating the uses block. The application law 3.108
(Elimination-Uses) generates two proof obligations:

1. code (if c-if (ok) then ot:=ok else ok:=ok + 2)

2. ∃S. free (if c-if (ok) then ot:=ok else ok:=ok + 2) S ∧ S ⊆ {ok, ot, v}

6.4 Findp: Concurrent 195

These are trivial to discharge by applying the inductive definitions of code (Definition 3.106)
and free variables for code (Definition 3.107).

6.4.3 Discussion

Since we have developed both a concurrent and a sequential version of Findp, we may
wonder if the development of the sequential version of Findp was useful in guiding the
development of the concurrent version. Based on our experiments, we believe it was. A
simple comparison between the definitions used in the development of the sequential and
concurrent versions of Findp (see Appendix C.3.2) suffices to see that the sequential case
can be seen as a special case of the concurrent, where two process would be cooperating by
performing the exact same task. As this formulation would require additional memory for no
benefit, the development of the sequential version is not formulated as special case of the
concurrent version with two identical processes searching for the lowest index to satisfy p.

We noted that, the more generalised the definitions are, the more reusable the lemmas
about them become. Eventually, if we had provided fully parameterised definitions we would
expect to fully reuse the proof of one branch to prove the other branch. Currently, mirroring
is achieved by means of copy-and-paste. Little effort is required to systematically change
variable names in the proof script and adapt the initialisation of variables.

Even though we calibrated the mechanisation to enhance Isabelle’s support to automat-
ically discharge proof obligations, the derivation of Findp shows that there is considerable
room for fine-tuning the lemmas for reasoning about relations. Most of the proof obligations
involve logical interpretation (⊢), and the majority of them still requires user assistance to be
discharged. This proof effort accounts for most of the proof interaction necessary to carry
out the derivation of Findp. Although it does not impose any theoretical barrier to the use of
the mechanisation, it reduces the productivity by demanding the user to deal with details that
are sometimes just tedious.

Finally, an interesting observation about Findp is that it can be used to investigate laws
about reachable evaluations. To create the scenario where laws about reachable evaluations
can be validated, we need more than two processes cooperating. The initial split of the
indices of v into a set of even and odd indices leads to a situation where one branch needs to
consult the local copy of t hold by the sibling process in order to allow its early termination.
If we then decide to further split the sets of odd and even numbers using additional criteria,
we could split each of the local copies of t (ot,et) into further local copies (e.g. l-ot and r-ot).
Cooperation among the four processes would be achieved by means of early termination.

196 Applying the refinement calculus

For that, each process would need consult local instances of t hold by its siblings. The
burden is, the law for introducing a while loop can only handle expressions that have at
most a single reference to an unstable variable. In this case there would be multiple unstable
variables occurring in the test of a while. To work around this constraint, we could use
local variables to store copies of the unstable variables and use these copies to construct
the boolean condition for the while. An alternative approach to this development path is
to investigate the use of reachable evaluations to devise introduction laws for loops (and
conditionals) where the expression under test does not satisfy the single reference property.

6.5 Sieve

The sieve of Eratosthenes is an algorithm for computing the prime numbers in the range
S ≡ {2..maxn} by eliminating multiples of x ∈ 2..⌊

√
n⌋. The key aspect behind the parallel-

isation of this algorithm is that the parallel algorithm does not use locks to prevent data races.
Parallel programs compete to write to a shared variable, but all the data races actually attempt
to write the same value to the variable, and thus the concurrent writes are idempotent.

The derivation presented here is a reproduction of the partial derivation of Sieve published
in [65]. It serves the purpose of illustrating indexed parallelism with symmetric and non-
parameterised rely and guarantee relations, and also to discuss a mechanism to introduce
parallelism from a set rather than a list of indices.

6.5.1 Abbreviations

The first definition in Table 6.5 is formalised using definite description (THE). The expression
THE x. P x returns the value of x such that P x holds, provided there exists a unique such x;
otherwise, it denotes an arbitrary value whose type is the same as that of x. For the definition
of square root, the implicit type of the parameter n is IN. The remaining definitions on the
Table are straightforward.

6.5.2 Derivation

The initial specification requires that at the end of the derivation, the set s must contain no
composite numbers in the range of 2..maxn. Step R1 strengthens the postcondition. Step R2

introduces a guarantee and step R3 uses the fact that guar1 is reflexive and transitive to trade

6.5 Sieve 197

⌊
√

n⌋ ≡ THE r. r ∗ r ≤ n ∧ n < (r + 1) ∗ (r + 1)
rangen ≡ {i | 2 ≤ i ∧ i ≤ ⌊

√
maxn⌋}

c(i) ≡ {j ∗ i | 2 ≤ j ∧ i ∗ j ≤ maxn}
C ≡

⋃
{c(i) | i ∈ rangen}

post0 ≡ s ′= s − C
post1 ≡ s ′∩ C = /0
guar1 ≡ s ′⊆ s ∧ s − s ′⊆ C
guar2 ≡ s ′⊆ s

Table 6.5 Abbreviations for Sieve.

this relation out of the postcondition.

[pre0, post0]

R1 ≡ ⊑ by 3.19a (Consequence)

[pre0, guar1 ∧ post1]

R2 ≡ ⊑ by 3.59 (Introduce-Guarantee)

guar guar1 · [pre0, guar1 ∧ post1]

= by simplification as guar1 = guar1
∗∗

guar guar1 · [pre0, guar1
∗∗ ∧ post1]

R3 ≡ ⊑ by 4.12 (Trade-Spec-Guarantee)

guar guar1 · [pre0, post1] ▹

We will now introduce an indexed parallel composition, but before we can do that we
need to consider a small representation issue. Indexed parallelism is defined using lists of
indices, but in the table of abbreviations for Sieve we do not have such a list. Instead, we
defined rangen as a set of indices. To reuse this definition, we will introduce an operator that
converts a set into a list. This operator will be defined using Hilbert’s epsilon operator, that
in Isabelle is represented by the syntax SOME. Given a finite set S,

−→
S denotes an injective

list whose range is the set S. The order of the elements in
−→
S is left unspecified. Formally,

−→
S = (SOME l. set l = S ∧ |S| = length l) (6.4)

198 Applying the refinement calculus

The notation |S| denotes the cardinality of the set S. The rule we need to reason about
−→
S in

derivations is introduced next.

finite S

set
−→
S = S

(6.5)

Using this rule, the derivation continues as shown next.

R4 ≡ ∼ by 3.81 (Rely-Idrel-Specification)

guar guar1 · rely idrel · [pre0, post1]

R5 ≡ ⊑ by 5.10 (Introduce-Multi-Parallel5)

guar guar1 · (guar guar2 · ∥i∈ −−−−→rangen · rely guar2 · [pre0, s ′∩ c(i) = /0])

R6 ≡ ⊑ by 5.6 (Distribute-g-Parallel) and 3.62c (Distribute-Guarantee)

∥i∈ −−−−→rangen · guar guar1 · rely guar2 · [pre0, s ′∩ c(i) = /0]

Step R5 introduces an indexed parallel composition with non-parameterised and symmet-
ric rely and guarantee relations. Step R6 pushes the external guarantee command into the
scope of the indexed parallel composition and merges the nested guarantee commands. Note
that in the last step of the derivation the rely and guarantee conditions are not symmetric
anymore, as the overall guarantee becomes stronger.

We stop the derivation at this level of abstraction. In theory, it is possible to continue
the derivation by reifying the representation of s from set of naturals to an array of booleans
S, where (S [i] = True)⇔ (i ∈ s). Thus, the length of the array S could be the successor
of greatest number in s, considering that arrays in RG-WSL are zero-based. To delete an
element i from this concrete representation, it would be necessary to set S [i] to False. At
this level of representation, the body of the indexed parallel composition could be developed
using the refinement laws for introducing a loop to visit each element of c(i) and eliminate
those elements present in S.

6.5.3 Discussion

The key motivation for this example is to illustrate the introduction of indexed parallelism
using non-parameterised rely and guarantee conditions. Proof obligations in this (partial)
development are trivial to discharge using the mechanisation.

5We omit lambda expressions in the body of indexed parallelism, e.g. ∥i∈ S · F i means ∥ S · (λ i. F i). This
is in conformance with the conventions discussed Section 6.1 (Typographic conventions).

6.6 Floyd-Warshall algorithm 199

The derivation of Sieve can be used to reflect on relationship between data representation
and the realisation of guarantee conditions. The algebra does not distinguish between
concrete and abstract types, thus a user might continue the derivation using sets. In practice,
it is unrealistic to expect a programming language to offer this type, or even to offer atomic
operations to perform insertion and exclusion over a type representing a generic set of natural
numbers, such as allowed by RG-WSL. On the other hand, if we reify the representation
from a set of natural numbers to an array of booleans, we might expect the hardware to offer
a primitive to read and set each position of the array atomically. The change in the data
representation would affect the formulation of the specification. A putative specification
considering a representation of the set s using array of booleans is given next.

∥i∈ −−−−→rangen · var j · j:=2 ; (while i ∗ j ≤ maxn do)

where

guar1R ≡ ∀k≤maxn. S ′ ! k −→ S ! k ∧ (S ! k ∧ ¬ S ′ ! k −→ k ∈ C)

guar2R ≡ ∀k≤maxn. S ′ ! k −→ S ! k

To continue developing Sieve from this point, it becomes necessary to generalise the definition
of assignment to indexed positions of an arrays to allow the list of indices to contain expres-
sions. This would be necessary because the position to be indexed would be dynamically
determined by a loop counter, e.g.

∥i∈ −−−−→rangen · var j · j:=2 ; (while i ∗ j < maxn do S[j]:=False ; j:=j + 1)

The definition introduced in Section 5.4 fits situations where the indices to be applied to each
dimension of an array are statically determined. This is not the case here, because of the use
of a variable to determine the index.

6.6 Floyd-Warshall algorithm

The Floyd-Warshall algorithm is a dynamic programming formulation to solve the all-pairs
shortest-paths problem on a directed, weighted graph that does not contain negative-weight
cyles. The algorithm iterates over the set of nodes to compute the weight of the shortest
path between the pairs of nodes. Prior to the first iteration, the weight of the shortest-paths
between nodes of the graph is given by an adjacency matrix; at each iteration k (0 ≤ k < n),

200 Applying the refinement calculus

the distance between each pair of nodes (vi, v j), 1 ≤ i,j ≤ n, is recalculated to account for
the inclusion of vk+1 in the set of nodes that can occur in the shortest path from vi to v j; the
iteration terminates when the full set of nodes has been considered.

The algorithm we are to develop operates on a directed graph G = (V, E), where
V ⊆ {v1, v2, v3, ..., vn} is an indexed set of vertices and E ⊆ V × V is a set of directed
edges. Weights are recorded by a n×n adjacency matrix W, defined as:

W [i, j] =

0, if i = j

the weight of the edge (vi, v j), if i ̸= j and (vi, v j) ∈ E

∞, if i ̸= j and (vi, v j) /∈ E.

(6.6)

To formalise the matrix of adjacency (W) in Isabelle, we use VNone to represent infinite (∞).
Thus, distances between nodes are vvalue of the form (VInt α) or VNone. Effectively, this
corresponds to modelling option types within vvalue using VNone as the distinguished value
None. Assuming that the graph G has no negative-weight cyles, let δ (i, j, k) be the weight
of the shortest-path in G from vi to v j using intermediate vertices only from {v1, ..., vk} if
such path exists in the graph represented by W. Otherwise, let δ (i,j,k) = ∞. Abstractly, we
can define δ as

δ (i,j,k) =

{
W [i, j], for k=0

min (δ (i, j, k−1), δ (i, k, k−1) + δ (k, j, k−1)), for 1 ≤ k.
(6.7)

To formalise δ we define addition and minimum over our representation of option types. For
addition (fsum), we define that adding infinite (VNone) to another value results in infinite.
Thus, if the shortest path from vi to v j using only intermediate nodes from {v1, ..., vk}
amounts to an infinite weight, any attempt of using this path to connect other nodes will also
result in a path of infinite weight. For minimum of two numbers, (fmin), we define that the
minimum between infinite and any value x is x. This is used to bias the choice of minimum
paths towards connected paths in the definition of δ .

fun fsum :: vvalue⇒ vvalue⇒ vvalue

where
fsum (VInt x) (VInt y) = VInt (x + y)

fsum x VNone = VNone

fsum VNone x = VNone

fun fmin :: vvalue⇒ vvalue⇒ vvalue

where
fmin (VInt x) (VInt y) = VInt (min x y)

fmin x VNone = x

fmin VNone x = x

6.6 Floyd-Warshall algorithm 201

The encoding of δ is given next. It takes a matrix of adjacency (w), a source node (i), a target
node (j) and a value (k) bounding the set of nodes allowed to appear as intermediate nodes in
the shortest path.

fun shortestPath :: vvalue × nat × nat × nat⇒ vvalue (δ - [91] 90)

where
δ (W, i, j, 0) = [[[[W]]a!i]]a!j

δ (W, i, j, (Suc k)) = fmin (δ (W, i, j, k)) (fsum (δ (W, i, (Suc k), k)) (δ (W, (Suc k), j, k)))

The functions fsum and fmin are the underlying mathematical representations used to define
the deep-embedded operators +∞n and min∞n. These operators are defined using the format
illustrated in the definition of modn on page 26. To prevent distracting the reader with minor
details of the actual encoding of Floyd-Warshall in Isabelle, we program anti-quotations to
print +∞n as +, and min∞n as min along the derivation of the algorithm. This allow us to
keep the discussion focused on the key aspects for this derivation.

6.6.1 Abbreviations

Table 6.6 presents abbreviations used along the derivation of a concurrent version of Floyd-
Warshall algorithm. Recall that exclamation mark is Isabelle’s native operator for list indexing.
Moreover, remember that we are omitting projection functions, e.g. we write M ! i ! j instead
of [[[[M]]a ! i]]a ! j. Note that the precondition (prec M) contains type-related information.
This unusual formulation is necessary because in RG-WSL the type of the variables is not
declared at the begin of a program, and knowledge about type and dimension of variables is
sometimes necessary in proofs to get rid of projection functions, such as [[_]]a.

The Index set contains the indices of cells (i, j) in the domain of the matrix M. The
predicate (type(M)) states that each cell of M is an integer or a distinguished value repres-
enting ∞. The predicate (null_diag(M)) states that the diagonal of M is null. The predicate
(no_nwc(M)) states that M has no negative cycles. The predicate (prec(M)) is the top-
level precondition for Floyd-Warshall. In particular, it assumes M to be square matrix of
dimension n.

The relation QD is the top-level postcondition for Floyd-Warshall. It requires the matrix
D to record the weight of the shortest path between the nodes of the graph whose matrix of
adjacency is W. The relation iter-QD is used to trade recursion by iteration, and provides a
non-recursive version of inv-QD

′. The parameterised relation QD-cell (i, j) is used to specify
the postcondition of individual processes, and comes on the scene in the refinement step that
introduces indexed parallel composition. The parameters taken by this relation represent the

202 Applying the refinement calculus

Index ≡ {(i, j) | (1 ≤ i ∧ i ≤ n) ∧ (1 ≤ j ∧ j ≤ n)}
type(M) ≡ ∀ i j. (i, j) ∈ Index −→ Type (M ! i ! j) (type-option type-VInt)

null_diag(M) ≡ ∀ i. (i, i) ∈ Index −→M ! i ! i = 0
no_nwc(M) ≡ ∀ i j. (i, j) ∈ Index −→

fmin(M ! i ! i, fsum(M ! i ! j, M ! j ! i)) = M ! i ! i
prec(M) ≡ dim(M, [n + 1, n + 1]) ∧ type(M) ∧ null_diag(M) ∧ no_nwc(M)

QD ≡ ∀ i j. (i, j) ∈ Index −→ D ′ ! i ! j = δ (W, i, j, n)
iter-QD ≡ ∀ i j. (i, j) ∈ Index −→ QD-cell(i, j)
inv-QD ≡ ∀ i j. (i, j) ∈ Index −→ D ! i ! j = δ (W, i, j, min(n, k))

QD-cell (i, j) ≡ D ′ ! i ! j = fmin(D ! i ! j, fsum(D ! i ! k ′, D ! k ′ ! j))
w ≡ k < k ′∧ k ′≤ n

g-cell (ci, c j) ≡ (∀ i. (i, i) ∈ Index −→ D ! k ! i = D ′ ! k ! i ∧ D ! i ! k = D ′ ! i ! k) ∧
(∀ i j. (i, j) ∈ Index ∧ (i, j) ̸= (ci, c j) −→ D ! i ! j = D ′ ! i ! j) ∧
idset {D} ∧ (prec(D)⇒ prec(D) ′)

r-cell (ci, c j) ≡ (∀ i. (i, i) ∈ Index −→ D ! k ! i = D ′ ! k ! i ∧ D ! i ! k = D ′ ! i ! k) ∧
(∀ i j. (i, j) = (ci, c j) −→ D ! i ! j = D ′ ! i ! j) ∧
idset {D} ∧ (prec(D)⇒ prec(D) ′)

Table 6.6 Abbreviations for Floyd-Warshall.

row (i) and column (j) of the cell where the indexed process operates. The well-founded
relation w states that k must monotonically increase between the before and after state, and
its value must not exceed n. This relation is used to establish the termination of the only loop
used in the derivation of Floyd-Warshall.

The parameterised relations g-cell (ci, c j) and r-cell (ci, c j) are the individual guarantee
and rely condition for the parallel processes. These relations are parameterised by the index
of the process. Thus, these relations are structurally similar to all processes, even though
each process instantiate (ci, c j) differently.

6.6.2 Derivation

For the derivation of Floyd-Warshall, we took inspiration from [32], where this algorithm
is developed also using a refinement calculus for shared variable. There, array indexing is
one-based. The development for zero-based indices requires adjustment on the definition of
the recursive function δ (Definition 6.7), as well in definitions where matrices are accessed.

6.6 Floyd-Warshall algorithm 203

For the sake of clarity, we simulate one-based index in this development. For this, we
embed a matrix of dimension n×n into a matrix of dimension (n+1)×(n+1), discarding
the top row and the leftmost column, as illustrated in Figure 6.2. The cost for simplifying
the derivation is additional space to store the matrix of adjacency and the result of the
computation. The additional space grows linearly with the dimension of the matrix of
adjacency.

0 ∞ -2 ∞

4 0 3 ∞

∞ ∞ 0 2

∞ -1 ∞ 0

a)

0 ∞ -2 ∞

4 0 3 ∞

∞ ∞ 0 2

∞ -1 ∞ 0

b)

Figure 6.2 Simulating one-based indexing from zero-based indexing. The matrix at the right
(b) shows the encoding of the matrix of adjacency (a) discarding the top row and the leftmost
column of the matrix in order to obtain the first relevant cell indexed as (1,1) instead of (0,0).

The initial specification for Floyd-Warshall algorirthm is {D}: [prec(W), QD]. This
specification requires the matrix D to record the weight of the shortest-path between the
nodes of the graph whose matrix of adjacency is W. For the purpose of discharging proof
obligations when making assignments to indexed positions of D, we need to know the
dimension and the type of the matrix of adjacency. This is recorded using the precondition
prec(W), which also records the fact that W has no cycles of negative weight (no-nwc M)
and that the distance from a node to itself is recorded as zero (null-diag M).

The derivation is structured in six transformations. The first insight is that for all
(i, j) ∈ Index, the computation of δ (W, i, j, k) can be achieved by means of iteration over
k. Thus, the first four transformations deal with the introduction of a loop counter (k), and
establishment of an invariant for the loop. For the last two transformations we use an example
to explain the insight behind rely and guarantee conditions used to introduce parallelism.

Duplicating matrix of adjacency and introducing a loop counter

This transformation prepares the specification for the introduction of a while loop. It
introduces and initialises the local variables k, which is used as a loop counter for iterating
over the set of intermediate nodes which can be used to construct the shortest path between any

204 Applying the refinement calculus

two arbitrary nodes i and j in the graph abstracted by the matrix of adjacency W. Additionally,
this transformation initialises the matrix D with a copy of the matrix of adjacency W. The
duplication of the matrix of adjacency is relevant for the formal development of the algorithm.
Although the original matrix of adjacency is not modified along the algorithm, its original
value has to be remembered because is used within an invariant introduced in this step
(inv-QD). This invariant correlates the loop counter k and the matrix D.

{D}: [prec(W), QD]

R1 ≡ ⊑ by 3.101 (Introduce-Variable-Frame)

var k

{k, D}: [prec(W), QD] ▹

The first refinement step introduces the local variable k via the application of law 3.101
(Introduce-Variable-Frame). The application generates a proof obligation for the user to
prove that k are unrestricted in [prec(W), QD]. This proof follows from the definition of
unrestricted variables (Definition 2.81 on page 61).

The next transformation introduces the invariant inv-QD ∧ prec(D), which state that: (i)
the dimension and type of the matrix D, used to store the result of the computation of the
shortest paths, remains constant along the program after initialisation of D; (ii) there are no
cycles with negative weight in D; (iii) the matrix D has a null diagonal; and (iv) the matrix D

holds the shortest paths between pairs of nodes, such that intermediate nodes can only be
drawn from {V1, ..., Vk}.

R2 ≡ ⊑ by 3.25 (Sequential) and 4.13 (Distribute-Frame-Sequential)

{k, D}: [prec(W), idset {k, D} ∧ (inv-QD ∧ prec(D)) ′];

{k, D}: [inv-QD ∧ prec(D), idset {k, D} ∧ ((inv-QD ∧ prec(D)) ′∧ (n ≤ k) ′)]

R3 ≡ ⊑ by 4.9 (Trade-Spec-Frame)

{k, D}: [prec(W), (inv-QD ∧ prec(D)) ′]; ▹

{k, D}: [inv-QD ∧ prec(D), (inv-QD ∧ prec(D)) ′∧ (n ≤ k) ′] ▹

The next transformation initialises the invariant introduced in R2. The initialisation is
achieved by setting k to zero and assigning the matrix of adjacency to D. First, step R4 splits
the left specification into two: the first initialises k, the second initialises D. Then, step R5

applies law 3.113 (Assignment-Guarantee) to both specifications to introduce assignments.

6.6 Floyd-Warshall algorithm 205

Recall that there is no formal distinction between arrays and scalar variables in RG-WSL6.
Although direct copy of arrays is supported by RG-WSL, it is not compatible with most
standard programming languages as they handle arrays via references (memory pointers).
It can be argued that a more conventional way of initialising arrays is to use a loop per
dimension of the array and initialise the cells separately. The issue with this approach is that
if we use a loop to initialise D we are not able to infer that W and D have the same dimension
at the end of the initialisation, and this has to be ensured by the invariant prec(D). To work
around this limitation we copy the array W as we would copy a normal scalar variable. To
remove this limitation from the algebra, the representation of the state (Definition 2.1) would
need to be extended to record the type and dimension of variables. Variables would also need
to be explicitly declared in programs.

R4 ≡ ⊑ by 3.25 (Sequential) and 4.13 (Distribute-Frame-Sequential)

{k}: [prec(W), (k ′= 0) ∧ prec(W) ′] ;

{D}: [prec(W), idset {k, W} ∧ (D ′= W)] ;

{k, D}: [inv-QD ∧ prec(D), (inv-QD ∧ prec(D)) ′∧ (n ≤ k) ′]

R5 ≡ ⊑ by 3.65 (Frame) and 3.113 (Assignment-Guarantee)

k:=0;

D:=W;

{k, D}: [inv-QD ∧ prec(D), (inv-QD ∧ prec(D)) ′∧ (n ≤ k) ′] ▹

Introducing a while loop

This transformation introduces a while loop using k as the control variable. The purpose
of the loop is to compute the all-pairs shortest paths by monotonically expanding the set of
nodes {V1, V2, ..., Vk} from where nodes can be draw to derive the shortest path.

The introduction of the loop uses law 5.32 (Sequential-Loop). Introduction of loops
requires careful thought about the encoding of a postcondition via a loop invariant and the
negation of the loop condition. A potential mistake for the uninitiated in refinement is to
attempt to encode the postcondition via the well-founded relation. In this application, the
loop invariant is inv-QD ∧ prec(D) and the expression chosen to be the loop condition is

6 Definition 2.1 (Basic types) on page 23 formalises arrays and scalar values using a single type (vvalue).

206 Applying the refinement calculus

k < n.

R6 ≡ ⊑ by 3.19a (Consequence)

{k, D}: [inv-QD ∧ prec(D), (inv-QD ∧ prec(D)) ′∧ (¬k < n) ′∧ w∗∗]

R7 ≡ ⊑ by 5.32 (Sequential-Loop)

{k, D}: while k < n do

[inv-QD ∧ prec(D) ∧ k < n, (inv-QD ∧ prec(D)) ′∧ w]

R8 ≡ ⊑ by 3.65 (Frame) and 3.62f (Distribute-Guarantee)

while k < n do

{k, D}: [inv-QD ∧ prec(D) ∧ k < n, (inv-QD ∧ prec(D)) ′∧ w] ▹

Step R6 strengthens the postcondition and leaves the specification command into the right
shape for the application of law 5.32 (Sequential-Loop). The expression ¬k < n corresponds
to the negation of the loop condition. The relation w ≡ k < k ′∧ k ′≤ n states that k monoton-
ically increases up to the value of n. For the application of law 5.32 in step R7 we assume
that w is well-founded on the predicate inv-QD ∧ prec(D). An informal proof of why w is
well-founded is simple to argue: at each iteration it reduces the gap between k and n, and
it does not allow k to become bigger than n, thus this relation can only be iterated a finite
number of times.

Replacing recursion by iteration

This transformation trades recursion by iteration and illustrates the key insight behind the
technique of dynamic programming [28]. This technique uses memory-based data structures
to store the result of recursive calls, typically indexing results based on the value of the
parameters passed to a recursive function. In this case, the recursive function used to solve
the all-pairs shortest path problem is δ . The motivation for using this technique is to prevent
re-computing the solution for the same problem (i.e. δ (W, i, j, k)) multiple times.

The invariant inv-QD is stated in terms of the recursive function δ , while the relation
iter-QD does not reference the recursive function δ (Definition 6.7). Instead, it refers to cells
of the matrix D whenever it needs to access the result of the computation of δ (W, i, j, k − 1).

6.6 Floyd-Warshall algorithm 207

R9 ≡ ⊑ by 3.19a (Consequence)

{k, D}: [inv-QD ∧ prec(D) ∧ k < n,

idset {k, D} ∧ (iter-QD ∧ prec(D) ′∧ (k ′= k + 1))]

R10 ≡ ∼ by 4.9 (Trade-Spec-Frame)

{k, D}: [inv-QD ∧ prec(D) ∧ k < n, iter-QD ∧ prec(D) ′∧ (k ′= k + 1)] ▹

Step R9 strengthens the postcondition and trades recursion by iteration and step R10 simpli-
fies the postcondition, eliminating the redundant frame from it.

Including node k + 1 on the computation of the shortest path

This transformation splits the specification in two parts, the first increments k and the second
establishes iter-QD. Step R11 uses law 3.25 (Sequential) to split the specification. Note the
replication of the frame and the introduction of the fact that k must be kept within the range
of relevant indices for each dimension of D, that is, (1 ≤ k ≤ n). Step R13 introduces an
assignment to k.

R11 ≡ ⊑ by 3.25 (Sequential) and 4.13 (Distribute-Frame-Sequential)

{k}: [inv-QD ∧ prec(D) ∧ k < n,

idset {k} ∧ (prec(D) ∧ (1 ≤ k ≤ n)) ′∧ (k ′= k + 1)];

{D}: [prec(D) ∧ (1 ≤ k ≤ n), idset {D} ∧ iter-QD ∧ prec(D) ′]

R12 ≡ ∼ by 4.9 (Trade-Spec-Frame)

{k}: [inv-QD ∧ prec(D) ∧ k < n, (prec(D) ∧ (1 ≤ k ≤ n)) ′∧ (k ′= k + 1)] ;

{D}: [prec(D) ∧ (1 ≤ k ≤ n), prec(D) ′∧ iter-QD]

R13 ≡ ⊑ by 3.113 (Assignment-Guarantee)

k:=k + 1

{D}: [prec(D) ∧ (1 ≤ k ≤ n), prec(D) ′∧ iter-QD] ▹

208 Applying the refinement calculus

Introducing indexed parallelism

This transformation illustrates the introduction of indexed parallelism to establish iter-QD.
The main insight behind the parallelisation of Floyd-Warshall is the observation that, for
every iteration of the while loop, there are a set of cells Sk in D that stay stable with respect
to the previous iteration. This set is composed of cells indexed by row k or column k. All
computations that modify cells in D depend only on cells in Sk. Thus, for any iteration,
computations can run in parallel. For the first iteration (k = 0), Sk stays stable with respect to
the matrix of adjacency W, used to initialise D.

To discuss the stability of Sk, Figure 6.3 on page 209 presents the computation of the
all-pairs shortest paths using δ for a simple graph with four nodes. The grey colour is used
to highlight cells in Sk for each value of k taken by the function δ . The reason why cells
in Sk are stable with respect to the previous iteration is because, for 1 ≤ k, the definition
δ (W, i, j, k) (Definition 6.7) expands to

fmin(δ (W, i, j, k − 1), fsum(δ (W, i, k, k − 1), δ (W, k, j, k − 1)))

and, when i = k or j = k, that is, the cell (i, j) is in the set Sk, this expressesion reduces to
δ (W, i, j, k − 1). Such reduction uses the fact that the distance from a node to itself is zero.
In Figure 6.3, the result of δ (W, i, j, k − 1) is stored in position (i, j) of the matrix D during
iteration k.

The first step of this transformation is to expand iter-QD, making explicit the universal
quantifier over QD-cell (i, j), for (i, j) in the domain of the matrix D.

R14 = by Definition of iter-QD (Table 6.6)

{D}: [prec(D) ∧ (1 ≤ k ≤ n), ▹

prec(D) ′∧ (∀ i j. (i, j) ∈ Index −→ QD-cell(i, j))] ▹

To parallelise Floyd-Warshall we will use n2 processes, one per each cell of the matrix of ad-
jacency. For this derivation, we will use rely and guarantee conditions that are parameterised
by an index. Processes will be indexed using a pair of naturals, the first corresponding to the
row, the second corresponding to the column of the cell that it updates. To introduce indexed
parallelism we will apply law 5.9 (Introduce-Multi-Parallel-Parameterised). Step R15 sub-
stitutes Index by (set

−−−→
Index) using property 6.5 (introduced on page 198). This change of

representation is akin to the one used in Sieve.

6.6 Floyd-Warshall algorithm 209

V1 V2 V3 V4

V1 0 ∞ -2 ∞

V2 4 0 3 ∞

V3 ∞ ∞ 0 2

V4 ∞ -1 ∞ 0

V1 V2 V3 V4

V1 0 ∞ -2 ∞

V2 4 0 2 ∞

V3 ∞ ∞ 0 2

V4 ∞ -1 ∞ 0

V1 V2 V3 V4

V1 0 ∞ -2 ∞

V2 4 0 2 ∞

V3 ∞ ∞ 0 2

V4 3 -1 1 0

V1 V2 V3 V4

V1 0 −1 -2 0

V2 4 0 2 4

V3 5 1 0 2

V4 3 -1 1 0

V1 V2 V3 V4

V1 0 ∞ -2 0

V2 4 0 2 4

V3 ∞ ∞ 0 2

V4 3 -1 1 0

V1

V2 V3

V4

4

3

-2

-1 2

a)

d)

b)

e)

c)

f)

Figure 6.3 Stability of Sk. The graph shown in (f) is encoded via the matrix of adjacency W
in (a). Nodes are labelled from V1 to V4 and missing edges are characterised by the value ∞

in the matrix of adjacency. Table (b) shows the result of the computation of δ (W, i, j, k) for
all i, j ∈ {1,2,3,4} and k = 1. In the tables, the leftmost column identifies the source node,
and the top row identifies the target node. Thus, the result of δ (W, i, j, k) is presented in
position (V i, V j). Tables (c), (d) and (e) shows the result of the computation for iterations
k = 2, k = 3 and k = 4, respectively.

R15 = by property 6.5 (on page 198)

{D}: [prec(D) ∧ (1 ≤ k ≤ n), ▹

prec(D) ′∧ (∀ i j. (i, j) ∈ set
−−−→
Index −→ QD-cell(i, j))] ▹

Before introducing indexed parallelism, we must choose the rely and guarantee conditions
for the individual processes. For this, we take inspiration from the example given in Figure 6.3.
On one hand, it is reasonable to propose that each process (i, j) should guarantee that it
does not change any cells apart from (i, j) during iteration k. Moreover, if i = k or j = k,
the content of (i, j) should be left unchanged. On the other hand, it is reasonable to expect
the environment to preserve the content of any cell in Sk, and do not change the content of
the cell (i, j). These rely and guarantee conditions are almost as accurate as the one used
in the mechanised derivation. In practice, we still need to include additional information to

210 Applying the refinement calculus

ensure that processes do not change the type and dimension of the matrix D. The introduction
of indexed parallelism is formalised in step R18. Steps R19 and R21 distribute indexed
parallelism over a guarantee invariant and frame, respectively. Since no specific laws to
handle these commands exist, their definitions have to be expanded and contracted to allow
law 5.6 (Distribute-g-Parallel) to be applied.

R16 ≡ ⊑ by 3.68 (Trade-Guarantee-Invariant)

{D}: guar−inv prec(D) ·

[prec(D) ∧ (1 ≤ k ≤ n), ∀ i j. (i, j) ∈ set
−−−→
Index −→ QD-cell(i, j)]

R17 ≡ ∼ by 3.81 (Rely-Idrel-Specification)

{D}: guar−inv prec(D) · rely idrel ·

[prec(D) ∧ (1 ≤ k ≤ n), ∀ i j. (i, j) ∈ set
−−−→
Index −→ QD-cell(i, j)]

R18 ≡ ⊑ by 5.9 (Introduce-Multi-Parallel-Parameterised7)

{D}: guar−inv prec(D) ·

∥(i,j)∈
−−−→
Index · guar g-cell (i, j) · rely r-cell (i, j) ·

[prec(D) ∧ (1 ≤ k ≤ n), QD-cell (i, j)]

R19 ≡ ⊑ by 5.6 (Distribute-g-Parallel) and 3.64 (Guarantee invariant)

{D}: ∥(i,j)∈
−−−→
Index · guar−inv prec(D) · guar g-cell (i, j) · rely r-cell (i, j) ·

[prec(D) ∧ (1 ≤ k ≤ n), QD-cell (i, j)]

R20 ≡ ⊑ by 3.62c (Distribute-Guarantee) and 3.60a (Guarantee-Monotonic)

{D}: ∥(i,j)∈
−−−→
Index · guar g-cell (i, j) · rely r-cell (i, j) ·

[prec(D) ∧ (1 ≤ k ≤ n), QD-cell (i, j)]

R21 ≡ ∼ by 5.6 (Distribute-g-Parallel) and 3.65 (Frame)

∥(i,j)∈
−−−→
Index · {D}: guar g-cell (i, j) · rely r-cell (i, j) ·

[prec(D) ∧ (1 ≤ k ≤ n), QD-cell (i, j)]

7We omit lambda expressions in the body of indexed parallelism, e.g. ∥i∈ S · F i means ∥ S · (λ i. F i). This
is in conformance with the conventions discussed Section 6.1 (Typographic conventions).

6.6 Floyd-Warshall algorithm 211

Introducing assignment

This transformation implements the assignment to indexed arrays cells and completes the
derivation. Its main purpose is to illustrate the usage of law 5.26 (Assignment-Array).

R22 ≡ ⊑ by 5.26 (Assignment-Array)

∥(i,j)∈
−−−→
Index · D[i, j]:=min (D[i][j], D[i][k]+D[k][j])

We succeed to discharge part of the proof obligations generated by the application of 5.26.
These included the proof that assignment to indexed arrays satisfies the following restrictions
imposed by the guarantee condition g-cell (i, j):

• Preservation of rows and columns if i = k or j = k;

• Non-updates to cells other than (i, j);

• Preservation of type constraints;

• Preservation of the dimension of the matrix D;

• Preservation of a null-diagonal.

One of the proof obligations we have not succeed to prove is to show that the assignment
does not introduce negative paths. In short, Isabelle demand us to prove

fmin(0, fsum(D ! i ! j, fsum(D ! j ! k, D ! k ! i))) = 0

from the premises

1 ≤ i,j,k ≤ n ∧ ⊢ dim(D, [n + 1, n + 1]) ∧ type(D) ∧ null_diag(D) ∧ no_nwc(D)

The failure in discharging this proof obligation hints at the possibility of the predicate no-nwc

to be weaker than it actually needs to be in order to formalise that the graph has no negative
paths. Instead of formalising notions of graphs for this particular problem, a better approach
would be to investigate the possibility of reuse an already existing formalisation of digraphs
for Isabelle/HOL, such as [86].

212 Applying the refinement calculus

6.6.3 Discussion

Floyd-Warshall provides a simple example to discuss indexed parallelism based on paramet-
erised programs and assignment to indexed positions of an array. This derivation is inspired
in the one proposed in [32]. The attempt of using the algebra to develop this example reveals
that the formulation of states as total functions from vname to vvalue is not ideal for practical
use of the theory. The lack of type information about variables makes refinement proofs more
tedious in practice, by requiring the user to prove type consistency along the derivation. In
fact, the problem goes beyond productivity: without a type system certain development paths
are eliminated too early. For example, in refinement step R5, the lack of information about
dimension of variables rules out the possibility of initialising the matrix D using a loop.

An exciting aspect about the formulation of Floyd-Warshall is that it suggests that rely-
guarantee may be useful to investigate concurrent versions of algorithms formulated using
dynamic programming, such as for example the Knapsack problem [28]. To the best of our
knowledge, there is no investigation that currently explores the potential of rely-guarantee to
verify such class of algorithms.

6.7 Discussion

The examples in this chapter illustrate the practical use of the algebra to derive sequential and
concurrent programs. We use them to highlight patterns that are quite common in derivations
using the new algebraic rely-guarantee style of [48], such as the replication of a frame
and rely condition in a postcondition to provide information that is sometimes essential to
discharge proof obligations, or the distribution of guarantees along the development to allow
the user to continue benefiting from information encoded by this command.

It can be argued that the frequency that these patterns occurs suggest that there is a
need for more tailor made laws. When designing a set of laws, one has a trade-off between
smoothing the learning curve for new users versus minimising the size of proof scripts. In
our view, the advantage of a reduced set of laws is that it exposes the reasoning patterns
and promotes user confidence. Such confidence is vital when proofs are not completed by
automated reasoning, since in these moments user interaction is necessary. Next we use a
few proof metrics to compare the main derivations presented at this chapter.

6.7 Discussion 213

Law Name Weight (wi)

3.19b Consequence 2
3.111 Rely-Conditional 7
5.31 Sequential-Conditional 1

3.112 Rely-Loop 10
5.32 Sequential-Loop 2
4.5a Substitution-Refinement 0

3.101 Introduce-Variable-Frame 1
3.68 Trade-Guarantee-Invariant 1

Table 6.7 Calibrating weight for measuring total of proof obligations

6.7.1 Proof metrics

In this section we compare the derivations of Findp, Sieve and Floyd-Warshall using four
proof metrics: (i) total of proof obligations; (ii) the total of refinement laws used; (iii) the
number of distinct laws used and (iv) the total of specification lines. The first three metrics
are extracted using the following formula8:

WTM(t) =
n

∑
i = 1

c (t, i)

where i is the identifier of a law, n is the total of refinement laws in the mechanisation, t is a
theory identifier, and c is some complexity function applied to laws in t. For the each metric
we instantiate the complexity function c differently, namely:

metric (i) c (i, t) = occurrences (i, t) ∗ w(i)

metric (ii) c (i, t) = occurrences (i, t)

metric (iii) c (i, t) = (if occurrences (i, t) ̸= 0 then 1 else 0)

The function occurrences returns the number of occurrences of the law i within the theory
t. The function w (weight) provides the total number of proof obligations related to logical
interpretation (or that indirectly involve logical interpretation: stability, unrestriction and
single reference property) and well-foundedness of relations. These specific proof obligations
were chosen because they are the most difficult to discharge, in our opinion. Table 6.7 shows
the weight we assigned to a few the mechanised laws for metric.

8WTM stands for weighted theorems per module (theory). The formula is taken from [4].

214 Applying the refinement calculus

It is important to note that each metric in isolation does not provide sufficient information
to compare the effort behind the mechanisation of distinct examples. Even the most elaborate
of our metrics, i.e. total of proof obligations, is quite fragile as it does not take into account
the complexity of a proof obligation. Table 6.8 presents the metrics (i)-(iv) for each of the
examples. In this table we differentiate between the derivation of Findp that uses the rely
command until implementing assignments, from the one that switches to the uses command
(Findp Uses). For the examples considered in the table, the most used law varies between
transitivity (law 3.18b) and substitution (law 4.5a).

Findp Seq. Findp Rely Findp Uses Sieve Floyd Warshall

Proof obligations 30 121 107 24 27

Applied laws 156 510 578 62 95

Distinct laws 30 40 47 27 28

Specification lines 536 1706 1830 299 744

Table 6.8 Proof metrics for mechanised examples

The first metric suggests that the derivation of a concurrent version of Findp requires up
to four times the effort involved in the derivation of its sequential version. We agree with the
first perception in part: the total of distinct laws applied in the derivation suggests that the
increase in the intellectual work does not grow linear with the increase in the number of proof
obligations. More tedious work is required, we agree with that; but it is mostly repetitive.
Still considering the first metric, it also suggests that Findp is the most laborious derivation
among those considered. For us, this does not necessarily reflect the reality, but might suggest
a direction for improving our encoding. The proof obligations in Floyd-Warshall are harder
to discharge than those involved in the derivation of a concurrent version of Findp because
of the use of type related information in the derivation. At this point, we believe that a
different representation of the state would simplify the derivation and make the information
on Table 6.8 better for comparison.

6.7.2 Bottlenecks

There are two main bottlenecks that hinder the application of the theory discussed in this
thesis to more complex examples. These are: (i) the representation of the state and (ii) the
level of automation provided by the mechanisation.

6.7 Discussion 215

A richer representation of the state may be necessary to apply the algebra to more complex
situations. Our derivation of Floyd-Warshall shows, for example, that dimension and type of
variables are relevant in proofs.

Our representation of relations poses no limitation to the use of the refinement algebra,
but it does not take full advantage of the facilities offered by Isabelle/HOL to increase
automation of the theory. The level of automation for reasoning about proof obligations
could be increased by lifting laws from HOL library to the type relation using the process of
pointwise lifting provided by Isabelle’s quotient package [57, 33]. This process requires the
setup of relations as an abstract type using the specification constructor typedef. Alternative
ways of representing states and relations are object of current exploration, and will feature in
a future paper describing the key aspects of this thesis.

For further exploration on fine-tuning the level of automation of the algebra, it might be
useful consider another examples already tackled in the literature, such as Mergesort [67] and
Union-Find [59], as a wider range of examples may prevent bias in the process of determining
the right attributes for automatically trigger the application of laws in Isabelle/HOL.

Chapter 7

Evaluation

You can design with quality in mind, but in many respects you can only measure

quality in retrospect, because then you can look back and say: "that was a good

choice!", "that was a bad choice!".

Ian Phillips, Where did all errors go? (EDCC 2014)

This chapter is concerned with the meta-story behind the mechanisation: the pitfalls
which are common in this kind of formalisation, the design decisions that turn out to be
unwieldy for handling proofs, the threats to the validity of this study, the lessons that can be
learned from this project, etc. It also describes the general structure of the mechanisation, so
that it can be adapted to fit user-specific purposes.

7.1 Quantitative summary

This section provides a quantitative summary of the mechanisation of rely-guarantee al-
gebra in Isabelle/HOL. The summary provides both an architectural description, as well as
quantitative information about each of the theories mechanised. The primary purpose of
the quantitative information is to permit a comparison of the mechanised theories among
themselves (in terms of size and structure), and clearly state the total of local assumptions
that are novel in the sense that are not published in the literature [5, 43, 48, 49, 62].

The mechanisation encompasses 12 theory files (plus examples from Chapter 6). These
form a predominantly linear hierarchy, shown in Figure 7.1. At the base of this hierarchy is
the formalisation of states (1), where the type of objects that program variables can record is
defined, together with the notion of states. Building immediately on top of (1) is a theory of
relations (2), where the type relation is introduced and the definitions given in Table 2.4 are

217

218 Evaluation

01_State

02_Relations

03_Language

04_Semantics

05_RG_Algebra

06_Basic_Properties

07_Guarantee_Command

08_Rely_Command

09_Introducing_Parallelism 10_Local_Variables 11_Control_Structures

12_Extensions

Figure 7.1 Hasse diagram of theories.

formalised together with laws to algebraically reason about relations, which were discussed in
Section 4.2.1. The syntactic encoding of RG-WSL is formalised in (3); the semantic related
definitions appear in (4); and the core of the algebra, that is, the local assumptions encoding
the lemmas from Chapters 2 and 3, are recorded in (5). Theories (6)-(8) encode derived laws,
whose organisation resembles their presentation in Chapter 3. To reduce the loading time of
the theories we take advantage of the independence between laws about the rely command
to split them into separate theories (9)-(11) that can be processed in parallel. Extensions,
such as indexed parallelism, assignment to indexed arrays and reachable evaluations are
added to the theory in (12), which serves as an user-interface. For derivation of examples, all
theories are merged into a single theory which is the only one that has to be imported by the
applications.

For a smooth introduction to the mechanisation, the recommended entry point is theory
03-Language, followed by theory 05-RG-Algebra. This entry point allows the user to explore
the theory in a forward and backward manner, delving into details on-demand. The last
theory to look should be 04-Semantics, which concerns the formalisation of the semantics
and forward simulation.

7.1 Quantitative summary 219

Theory Types Definitions Assumptions Laws Lines

01-State 3 0 0 0 120
02-Relations 1 16 0 114 802
03-Language 4 40 0 0 223
04-Semantics 4 25 0 36 1082
05-RG-Algebra 0 8 82 0 211
06-Basic-Properties 0 0 0 118 1170
07-Guarantee-Command 0 0 0 52 1039
08-Rely-Command 0 1 0 49 1346
09-Introducing-Parallelism 0 0 0 7 454
10-Local-Variables 0 0 0 5 87
11-Control-Structures 0 0 0 11 752
12-Extensions 1 9 2 14 1032

Total 13 99 84 406 8318

Table 7.1 Quantitative summary per theory file

For each theory, we provide five measures: i) total of new types; ii) total of definitions
(including abbreviations and constants); iii) total of local assumptions; iv) total of proved
theorems; and v) lines of specification (including comments). Table 7.1 presents these
measures separated by theory.

It can be noticed that local assumptions are centralised in two theories. This simplifies
the process of auditing local assumptions. Laws spread over several theories. Isabelle
automatically introduces theorems in the theory when a datatype or function is defined. For
counting purposes, we only considered theorems which are explicitly added by us. Thus,
theorems automatically created by Isabelle are left outside of the counting, since they are not
explicitly stated.

We compare our quantitative summary with the one provided by Amstrong [2], who
provides an algebraic characterisation of rely-guarantee based on Kleene algebra. There,
approximately a total of 10k lines of proof scripts are used, covering 993 laws and 110
definitions. Different from our work, Amstrong formalises a trace model and uses it to prove
the consistency of the underlying assumptions of his algebra. Interestingly, Amstrong reports
a situation similar to that we discussed in the derivation of the concurrent version of Findp,
where different cases of a proof share similarities. The largest of these situations in [2]
involves a proof about the semantics that has 9 cases and amounts to several thousand lines
of proof scripts. Like our observation in the discussion of Findp, they agree that the proof

220 Evaluation

Type Quantity Percentage

Trace equivalence 42 50%
Refinement 26 31%
Equality 8 9.5%
Others 8 9.5%

Total 84 100%

Table 7.2 Classification of local assumptions

Nature Quantity Percentage

Postulated 5 6%
Preexisting 79 94%

Total 84 100%

Table 7.3 Local assumptions

could be shortened by developing a proof engineering mechanism to extract the common
aspects of the cases, but the approach taken there is exactly the same taken by us to handle
this situation: the proof of the cases uses copy and paste proof segments where appropriate,
mutatis mutandis.

7.1.1 Local assumptions

We now turn our attention to the encoding of local assumptions (i.e. laws introduced without
proof) for the algebra. Table 7.2 shows that more than half of the local assumptions are
formed by equations which establish trace equality between its left and right-hand side. Then,
30.6% of the local assumption are refinement equations. The category “others” includes
mostly facts about termination, whose main symbol in the conclusion is logical interpretation
(⊢). Every local assumption is used at least once in the formalisation of the algebra, i.e.
there are no orphan local assumptions. All the assumptions used in the mechanisation were
introduced as lemmas in the previous Chapters1. In the mechanisation we identify local
assumptions by the initial prefix Ax.

1The only exceptions to this rule are Definition 3.86 (Unrestricted-Rely) and Definition 3.38 (Stops), which
are named in the thesis as definitions rather than lemmas. Not all lemmas discussed in the previous chapter are
taken for granted in the mechanisation: we proved about a dozen of them using stratified forward simulation.

7.1 Quantitative summary 221

Identifier Page Name

3.83 97 Distribute-Rely-Post-Assertion
3.46 83 Distribute-Stops-Sequential
3.108 111 Elimination-Uses
5.26 156 Assignment-Array
5.30 160 RE-Intended-Assignment

Table 7.4 Unproved local assumptions

The majority (94%) of the local assumptions is preexisting in the literature [5, 48, 49, 43];
however, a total of 5 local assumptions, representing 6% of the total of assumptions, remains
without a formal proof and is not discussed in the literature, and thus had to be postulated.
For better understanding these assumptions, we list them on Table 7.4. Next we revisit each
of these assumptions, and analyse them in retrospect.

7.1.2 Threats to validity

Algebraic characterisations are correct modulo the validity of their local assumptions. The
method of postulating the basis for a theory from a set of basic laws generally concerns
those who follow a model-oriented approach. There is a good reason for such concern: if
an inconsistency is postulated, then the algebra does not distinguish certain programs that
would be distinguished if a model-oriented approach had been used.

Most of the set of local assumptions taken in this work features in peer-reviewed publica-
tions in the literature that applies to the new algebraic style of rely-guarantee, such as [49, 65].
Exceptions exist, and are discussed one by one in this section.

Distribute-Rely-Post-Assertion (3.83) In order to prove or to get rid of this lemma, we
suspect that it will be necessary to replace the definition of the rely command. Insight
into the theory suggests that strengthening the termination condition for the rely command
(see Definition 3.119 on page 119) may be the right direction to go. One word of advice
though: trying to find a proof for this lemma may be a real red herring! We spent more than 1
man-month fiddling with the mechanisation, and many times we felt we were very close to
produce a proof for this lemma, just to find at the end of this period that more experimentation
was necessary.

222 Evaluation

Distribute-Stops-Sequential (3.46) This lemma was created to enable the proof of law 3.84
(Distribute-Rely-Sequential), which is key to allow the distribution of the rely command to
the components of a sequential composition. The lemma is implicitly used in [48], even
though it is never announced as a property. Refinement from right to the left is straight-
forward. On the other hand, the refinement from left to the right is more complicated than
intuition and does not follow from the definition of stops. We suspect that the best way to
cope with the proof of this lemma is to replace the definition of stops by that of weakest
predicate (Definition 3.118 on page 118) and tweak this definition to enforce that this lemma
holds by definition.

In our experience, proofs involving stops tend to be tricky, especially because of the
scarcity of laws to reason about this concept. We overcome such scarcity to a reasonable
degree to mechanise the laws from [48]; however, the inherent difficult in handling stops in
proofs suggests that the study of alternative characterisations for the rely command may be
well worthwhile. A reformulation of the rely command may reduce the effort necessary to
extend the algebra, and hopefully eliminate the reliance on properties such as lemmas 3.83
and 3.46. In [43], for example, Hayes introduces a notion of rely quotient: a binary command
that is inspired in the definition of division in integer arithmetic, but that applies to commands.
This command is then used to formulate the rely command as the weakest command that
behaves as its body when running in parallel with a program used to specify the environment.
Based on the reported paper proofs, that formulation appears to lead to simplification in the
development of the algebra.

Elimination-Uses (3.108) This is a fragile assumption. It formalises a strategy discussed
in [48] to eliminate the uses command from around an executable program. When we
introduced this lemma, we stated that we assume that once code is reached, the user will not
try to further refine code. This assumption is external to the mechanisation, but is important
because the traces of uses X · x:=e do not include program transitions that modify variables
outside of X, but if the user expands the definition of assignment and strengthens the atomic
command, then the refined program might modify variables outside of X. Currently, because
we do not have a denotational semantics, this cannot be used to exploit the algebra. The
way out of this situation is to change the classification of the uses constructor: rather than
a specification constructor, it might be better to consider it an implementation constructor.
Thus, at the moment of the compilation a syntactic check should be made to: i) confirm
that its body is code (Definition 3.106 on page 110), and ii) confirm that all free variables

7.2 Lessons learned 223

occurring in the body are indeed in X. If (i) or (ii) are violated, then the compiler should
refuse to proceed the compilation.

Assignment-Array (5.26) The proof of this lemma is likely to mirror the structure of
the proof of law 3.114 (Assignment-Rely-Guarantee). However, rather than proving this
simplified version, it may be worth to tweak the definition of assignment first. The problem
of the current definition is that indices have to be a list of naturals, but this only suffices to
describe algorithms where indexing of arrays is static, like in the derivation of Floyd-Warshall.
For situations where the position of a cell is dynamically determined, like within an iteration
over the cells of the array, the list of indices has to be relaxed to allow each dimension to
be indexed by an expression rather a natural number. Obviously, such flexibility would
introduce more complexity in the proof, but this complexity can be tamed by introducing
restrictions. A reasonable restriction is to require indices to not contain any shared variable.
This would force the user to read and store shared variables in local variables prior to their
usage to create expressions occurring in the indices of an array.

RE-Intended-Assignment (5.30) We expect the proof of this lemma to mirror the structure
of the proof of law 3.115 (Assignment-Single-Reference). This lemma does not play a
key role in the mechanisation: it is only used to discuss the general intuition behind the
abstraction of assignments in Section 3.8.1. In practice, in can be removed without damage
to the remainder of the theory.

7.2 Lessons learned

Many of the difficulties that arose in this mechanisation are common to works that involve
the formalisation of programming languages. We believe that some of our observations might
be useful to novice researchers in this area.

7.2.1 Isolate concepts

Before coming up with a generic mechanism to logically evaluate relations (⊢), we provided
an implementation of logical evaluation specifically designed for relational implication. The
reason for this decision was because in [48] the underlying notion of logical evaluation
always appears coupled with relational implication via the notation p V q. It was through
experimentation that we decided to decouple the concept of logical interpretation from that of

224 Evaluation

relational implication: when we attempted to formalise Definition 3.16 (Tolerate-Interference
on page 72) there was a need to nest relational implication. At this point, our approach was
to introduce an additional operator for relational implication without coupling it with logical
interpretation. Later we observed that [25] presents the concept of logical interpretation
decoupled from a particular relational operator. Thus, we decided to separate the concerns
and allow logical interpretation to be applied to any relation, instead of just implications.

Logical interpretation captures the evaluation independent of the pair of states. The
separation of concerns between relational operators and logical interpretation lead to a more
uniform treatment of the concept and facilitated the introduction of laws to decompose proofs
involving logical interpretation, such as law 4.2a (Log-Interp-Imp-Monotonic).

7.2.2 Favour usability

When encoding RG-WSL we had to decide how to represent expressions (e), pre (p) and
post conditions (q). At first, we were unsure how to best represent these entities. So, we
decided to characterise them using three distinct types. As the mechanisation evolved, we
observed an increasing number of redundant operators to handle pre, post condition and
their combination (e.g. p ∧p p, p ∧pr q, q ∧r p p, q ∧r q). It became clear to us that a better
representation was possible by unifying the type of pre and post conditions. The price for this
unification was the introduction of constraints: every local assumption that uses a relation
to represent a precondition had to be updated with an additional proviso to state that that
relation was a predicate.

While mechanising law 3.113 (Assignment-Guarantee) we discovered the need for
evaluating expressions as relations. This time we had the choice of unifying the types of
relations and expressions. This is an example of a modelling decision where there is no
right or wrong choice. In these occasions, it is important to consider the ultimate goal of the
mechanisation: in our case, to facilitate proofs in the new algebraic style proposed in [48].
Little thought is necessary to perceive that the unification of relations and expressions would
bound the expressiveness of relations by the expressiveness of the grammar of expressions.
Consequently, if we had decided to unify these types we would inflict on the user the burden
of extending the grammar of expressions whenever an unforeseen operator (e.g. universal
quantifier) is required in a specification. This, rather than facilitate the use of the theory,
would make it more complex to use in practice.

Our approach was to keep the type of relations and expressions disjoint. Thus, the user
only has to care about introducing binary or unary operators to represent those specification

7.2 Lessons learned 225

constructions that will be part of the implementation, e.g. the specification constructor length

to extract the size of list has to be encoded using the unary operator len that applies to arrays,
but the universal quantifier disappears on its way to the implementation, and thus does not
need to be part of the grammar of expressions.

7.2.3 Benefit from integrated proof tools

Interactive theorem provers such as Isabelle/HOL come with integrated tools to automatically
search for a proof for a given conjecture, and alternatively, search for counterexamples. In
the case of Isabelle/HOL, two tools come activated by default: the proof finder sledgeham-
mer [94], and the counterexample generator nitpick [10]. We discuss three situations where
a user can benefit from adopting these tools.

Use sledgehammer as a tutor

Initial expertise in proofs in this project was acquired by rewriting proofs originally found
by sledgehammer. In particular, a beneficial decision was to split larger paper proofs into a
collection of intermediate laws, each corresponding to a proof step of the paper proof. For
most cases, sledgehammer was able to automatically find a proof of these intermediate laws,
and also link them using laws of transitivity and substitution to reconstruct the larger proof
we were aiming for.

Our first step into proof interaction was to decompose one line proofs found by sledge-
hammer, whose purpose was to link the intermediate laws, into a proof script made of a
sequence of apply commands fed with transitivity and substitution laws. The second step
was to split the proof of the intermediate laws themselves into proof scripts. This approach
to reconstruct proofs not only serves to teach the user how to manually apply the algebra, it
also helps the user to identify the laws that are more frequently chosen by sledgehammer and
experiment to add attributes such as [simp] for increasing automation and proof reuse.

Use nitpick to find omissions in the encoding

When we decided to unify the type of pre (unary relation) and postconditions (binary relation)
as a single type relation, a few proofs suddenly stopped working. Running nitpick over the
broken proofs, we found a few intriguing counterexamples. We use the following law to
illustrate one of such counter-examples. This law was necessary before the unification to
reason about closure of relations.

226 Evaluation

{(s, s ′) | p s s ′−→ p s ′ s}∗ = {(s, s ′) | p s s ′−→ p s ′ s}

Running nitpick on this conjecture, where the type of p is a relation, it generated a
counter-example for p, presented as a lambda expression. At first, the counterexample looks
unintelligible, but after rewriting the lambda expression (which denotes a relation) as a set of
ordered pairs of states, its interpretation becomes clear. The counter-example as presented by
nitpick was:

p = (λx. -)(a1 := (λx. -)(a1 := False, a2 := False, a3 := True),

a2 := (λx. -)(a1 := True, a2 := True, a3 := False),

a3 := (λx. -)(a1 := False, a2 := True, a3 := False))

which is to interpret as the following relation:

p = {(a1,a3), (a2,a1), (a2,a2), (a3,a2)}

Looking back to the conjecture Closure-Implication, let us call R the set at the right of the
equality, i.e. R ≡ {(s, s ′) | p s s ′−→ p s ′ s}. Thus we have:

R = {(a1,a1), (a2,a2), (a3,a3), (a1,a2), (a2,a3), (a3,a1)}

Hence the left hand side expression, R∗, is:

R∗ = {(a1,a1), (a1,a2), (a1,a3), (a2,a1) (a2,a2), (a2,a3), (a3,a1), (a3,a2), (a3,a3)}

Using the set representation it becomes easy to understand what is going on here. The
counter-example tell us an instance of p such that R ̸= R∗. Therefore, we can either conclude
that the conjecture we are trying to prove is not valid, or that we have missed to include
restrictions on the relation p. We reject the chance that the conjecture does not hold, because
it was proved before the type unification, and investigate which restrictions can be made to
rule out the instance of p provided by nitpick. The restriction that is missing here is to say
that p must be a predicate. The problem is solved by introducing pred p in the premises of the
theorem. Before type unification such restriction was embedded in the type of p, therefore it
was transparent and overlooked when unifying the types.

This shows that our initial modelling via disjoint types for pre and postconditions actually
payed off in guiding the provability of the needed theorems. The unification of types, when

7.2 Lessons learned 227

justifiable, may require the introduction of explicit assumptions and restrictions that are
initially unclear in the earlier modelling due to distinction of types.

Learn to formulate satisfiability questions

This examples illustrates the application of sledgehammer to search for instances of quan-
tified variables that meet certain criteria. The insight behind this example is that for some
cases the user may be able to benefit from the interaction between Isabelle and SMT solvers
to find out suitable ways of eliminating quantifiers to proceed in a proof. Instantiations are
one of the most creative and difficult proof steps in proofs in general, and any assistance with
this type of step is therefore worthwhile.

To illustrate the usage of sledgehammer, we turn our attention to a sub-goal that raises
in the proof of law 3.100 (Rely-Test on page 107). To complete the proof we are required to
show

tol-interf (p, r∗∗ ∧ b0‘, r)

assuming p and b0 to be predicates, and the premises

P1: ⊢ r⇒ (p⇒ p‘)

P2: ⊢ p ∧ r⇒ (b0⇒ b0‘)

Expanding tol-interf (Definition 3.16 on page 72) we sub-divide the proof into three sub-
proofs:

(i) ⊢ r⇒ (p⇒ p‘)

(ii) ⊢ p ∧ (r ; r∗∗ ∧ b0‘)⇒ r∗∗ ∧ b0‘

(iii) ⊢ p ∧ (r∗∗ ∧ b0‘ ; r)⇒ r∗∗ ∧ b0‘

Subgoal (i) follows immediately from P1. Subgoal (ii) is trivial and solved expanding the
definitions involved. For (iii), given that (b0‘) holds before the relational composition, we
are able to strengthen the right-hand side of relational composition (_ ; _) by introducing b0.
This transformation leaves the goal (iii) in the shape:

(iii) ⊢ p ∧ (r∗∗ ∧ b0‘ ; b0 ∧ r)⇒ r∗∗ ∧ b0‘

228 Evaluation

We then apply law 4.2a (Log-Interp-Imp-Monotonic) to this goal to split the conjunction
in the conclusion. The implication of the left conjunct (r∗∗) is proved by expanding the
definitions involved, and using the property:

[[r∗∗ s s ′; r s ′ s ′′]] =⇒ r∗∗ s s ′′

which is natively available in the package of transitive closure distributed with Isabelle. The
sub-goal that remains is:

⊢ p ∧ (r∗∗ ∧ b0‘ ; b0 ∧ r)⇒ b0‘

We then enrich the set of assumptions with ⊢ r∗∗⇒ p⇒ p‘, which can be inferred from the
application of law 3.17a to assumption P1. Expanding the definitions we are left with the
following sub-goal in Isabelle (which includes the premises P1 and P2):∧

St St ′ s ′′.

pred p =⇒
pred b0 =⇒
∀St St ′. p St St ′∧ r St St ′−→ b0 St St ′−→ b0 St ′ St =⇒
∀St St ′. r∗∗ St St ′−→ p St St ′−→ p St ′ St =⇒
p St St ′=⇒ r∗∗ St s ′′=⇒ b0 s ′′ St =⇒ b0 s ′′ St ′=⇒ r s ′′ St ′=⇒
b0 St ′ St

From this point we take an unsafe2 path: weakening the premises by trading the universal
quantifiers by particular instances of them. The difficulty to complete the proof lies on the
fact that we do not know which values to use to replace the quantified variables, and neither
whether this strategy renders the goal unprovable. The heuristic we illustrate next was only
observed after failing a number of times to find suitable instances for the quantified variables.
We replace the quantified states using St1, ..., St4 as illustrated next:∧

St St ′ s ′′.

pred p =⇒
pred b0 =⇒
p St1 St3 ∧ r St1 St3 −→ b0 St1 St3 −→ b0 St3 St1 =⇒
r∗∗ St2 St4 −→ p St2 St4 −→ p St4 St2 =⇒
p St St ′=⇒ r∗∗ St s ′′=⇒ b0 s ′′ St =⇒ b0 s ′′ St ′=⇒ r s ′′ St ′=⇒
b0 St ′ St

2Recall from Section 1.6.4 on page 13 that Isabelle uses the terminology safe to refer to proof steps that
preserve provability, and unsafe to refer to those that can render a predicate unprovable.

7.2 Lessons learned 229

By applying safe rules, this goal is split into 12 sub-goals. We turn this collection of
sub-goals into a satisfiability problem and use sledgehammer to answer the question: (Q1)
are there any instances of St1, ..., St4 such that the 12 sub-goals are collectively satisfied?
Formally, this question takes the shape of the following goal∧

St St ′ s ′′.

pred p =⇒ pred b0 =⇒
p St St ′=⇒ r∗∗ St s ′′=⇒ b0 s ′′ St =⇒
b0 s ′′ St ′=⇒ r s ′′ St ′ =⇒ (∃ St1 St2 St3 St4.

(¬ r∗∗ St2 St4 −→ ¬ b0 St ′ St −→ p St1 St3) ∧
(¬ r∗∗ St2 St4 −→ ¬ b0 St ′ St −→ r∗∗ St1 St3) ∧
(¬ p St2 St4 −→ ¬ b0 St ′ St −→ p St1 St3) ∧
(¬ p St2 St4 −→ ¬ b0 St ′ St −→ r∗∗ St1 St3) ∧
(p St4 St2 −→ ¬ b0 St ′ St −→ p St1 St3) ∧
(p St4 St2 −→ ¬ b0 St ′ St −→ r∗∗ St1 St3) ∧
(¬ r∗∗ St2 St4 −→ ¬ b0 St1 St3 −→ b0 St ′ St) ∧
(¬ r∗∗ St2 St4 −→ b0 St3 St1 −→ b0 St ′ St) ∧
(¬ b0 St1 St3 −→ ¬ p St2 St4 −→ b0 St ′ St) ∧
(¬ b0 St1 St3 −→ p St4 St2 −→ b0 St ′ St) ∧
(b0 St3 St1 −→ ¬ p St2 St4 −→ b0 St ′ St) ∧
(b0 St3 St1 −→ p St4 St2 −→ b0 St ′ St))

In general, sledgehammer’s failure to find a proof represents an inconclusive answer
for the validity of a conjecture. On the other hand, the discovery of a proof tell us that the
conjecture (restriction) is valid (can be meet). For this conjecture, the fact that sledgehammer
found a proof tell us that the answer for question Q1 is positive, i.e. the proof strategy of
trading the quantifiers by specific values preserves the provability of the goal in iii. Knowing
this fact, however, does not help us to identify a suitable instantiation for St1, St2, St3 and St4.
To assist the search for particular instantiations, the theorem formulating Q1 is updated to
introduce constrains over St1..St4 which give away hints about potential instantiations.

The first hint we ask for, is if there is an instantiation satisfying St1 = St4. The answer
is positive. After re-examining the predicate we ask for another hint: can St1 be any of
the bounded variables St, St ′ and s ′′? The answer is positive. Using this strategy to extract
information from Isabelle we manage to discover that St1 = s ′′ and St2 = St, St3 = St ′ and
St4 = s ′′ is a suitable choice to eliminate the universal quantifier yielding a provable goal.

230 Evaluation

Fine-tune your proof assistants

Both sledgehammer [94] and nitpick [10] can take parameters when called, which allow the
user to customize their timeout, list of SMT solvers they interact with, list of lemmas they
are allowed to use, etc. By default these tools timeout after 30 seconds. This value is rather
short compared to the timeout we mostly used when calling these tools in this mechanisation,
which was 720 seconds. We reach this value empirically: sometimes we knew a proof exist,
because we had a paper proof available, and we just wanted to see if sledgehammer was able
to find that same proof. Thus, we called sledgehammer with increasing amounts of time, and
from our experience 720s suffice for most of the cases where sledgehammer in fact succeed.

Sometimes sledgehammer succeed by finding an alternative proof than the one we
want it to return. In such situations, we analysed the rationale of the alternative proof by
reconstructing the automatic proof via a stepwise application of the laws in Isabelle. To
explore the limits of sledgehammer in the cases where it found a proof that was not exactly
the one we wanted, we use some of its options to indicate the lemmas it should use, or then
to forbid specific lemmas from being used by it. The lemmas we forbid of being used were
those that were present on the alternative proof and absent in the proof we wanted. During
this experimentation we found that it is not much effective to provide sledgehammer with
a set of relevant lemmas that are suggestive of a given proof path. Instead, it appears to be
more effective to tell sledgehammer what it cannot use if we want it to return a specific proof.
The syntax for parameter passing for both sledgehammer and nitpick can be found in the
tutorials distributed with Isabelle [12, 11].

7.3 Related work

Next we compare our work to preexisting works that propose a refinement calculus for rely-
guarantee or provide mechanised support to reason about rely-guarantee in Isabelle/HOL.

7.3.1 Systematic parallel programming

Dingel [32] formalises a shared-variable and message-passing refinement calculus for rely-
guarantee based on a denotational semantics developed by Brookes [21]. Rely-guarantee
specifications are encoded as a tuple of four predicates, representing pre, rely, guarantee and
post conditions. Message-passing parallelism is emulated by treating a channel as a shared
queue: the read operation extracts and assigns the head of the queue to a specified variable,

7.3 Related work 231

whereas the writing operation writes the value specified in an expression to the specified
queue.

Dingel follows Brookes and describes parallel composition as a fair operator using a trace
semantics. This modelling decision allows the derivation of programs whose termination
depends on environment actions, and makes it possible to reason about busy wait programs
and liveness properties. Evaluation of expressions is not assumed to be atomic, but is assumed
that it always terminates (i.e. no treatment of undefinedness is given). In the algebra discussed
in this thesis we do not assume that the evaluation of expressions always terminate. Instead,
the provisos of the refinement laws are used to prevent the user from introducing undefined
expressions in programs.

Dingel also considers assignment to indexed arrays. Similar to our modelling, indices are
statically determined (i.e. the rule for introducing assignment to indexed arrays expects the
indices to be natural numbers instead of expressions). Different from our work, the theory
proposed in [32] has not been mechanised.

7.3.2 Formal analysis of concurrent programs

Amstrong [3, 2] introduces a Kleene algebra to model rely-guarantee and interference based
reasoning. All rules except the assignment axiom are derived within the algebra before
instantiating it for specific models of concurrency. Similar to [45], the rely command is
formalised using a concept that is related to parallel composition via a Galois connection (cf.
Definition 7.1):

(y ≤ x/z)⇔ (x ∥ y ≤ z)

The program x / z is the weakest program such that when placed with parallel with program
x, the parallel composition behaves as z. Rely and guarantee conditions are required to satisfy
a set of axioms that allow one to absorb, distribute and reason about interference. These
axioms are similar in intent to the lemmas 3.74 (Properties-Finite-Interference) and 3.75
(Distribute-Interference) in this work, and they imply that the rely and guarantee conditions
are reflexive-transitive. A rely-guarantee specification in [3, 2] has the following structure:

(pre · (rely ∥ c) ≤ post) ∧ (c ≤ guar)

This encoding of rely-guarantee specifications diverges both from the view of this thesis and
that of the more recent works by Hayes [43, 45] in the sense that it forces a program (c)

232 Evaluation

to unconditionally implement the guarantee condition (guar), even from states where the
precondition (pre) does not hold and the environment has failed to meet the rely condition
(rely).

An important aspect of [3] is that it has been applied to verify simple examples from
the literature, such as Findp. Amstrong echoes Nieto’s [97] view that even seemingly
straightforward concurrency verification tasks can be tedious and complex, and concludes
with the position that more work has to be done to manage the complexity of verification
proofs within interactive theorem provers. Between the publication of [3] and the time of
this writing, an extended discussion of the algebra has been published by Armstrong as a
PhD thesis [2]. In this more recent version, the author uses Eisbach, a new feature of Isabelle
that allows users to construct customised proof tactics. It is reported that the use of these
proof tactics reduced part of the tedious work involved in the verification of Findp.

7.3.3 The rely-guarantee method in Isabelle/HOL

Nieto [97, 82] provides the first formalisation of Owicki-Gries and rely-guarantee methods
in Isabelle/HOL3. The focus of the mechanisation is to provide means of reasoning about
implemented code via the backward application of proof rules, rather than support correction
by construction as aims the work in this thesis. The formalisation discussed by Nieto includes
a synchronisation primitive (await) which is used to model mutual exclusion algorithms.

Rely-guarantee specifications are represented as a tuple of four components: two binary
relations representing the rely and guarantee conditions, and two predicates denoting pre
and post conditions. Indexed parallel composition of an arbitrary number of programs is
supported. Interestingly, but not surprisingly, their assumptions for the indexed parallel
introduction rule coincide with ours for law 5.9 (Introduce-Multi-Parallel-Parameterised).
The main weakness of [82] is the restriction imposed in the language used to write programs:
it does not support nested parallelism. Our algebra does not have this limitation.

7.3.4 On the Mechanisation of Rely-Guarantee in Coq

Moreira et. al. provide mechanical support to a rely-guarantee program logic in Coq [77].
Their mechanisation follows closely the formalisation of Coleman and Jones [26], and
supports an simple shared-variable programming language extended with parallelism and
atomic blocks. Different from [26], and from the work in this thesis, expression evaluation

3The encoding discussed in Nieto’s thesis has been kept up-to-date with recent developments in Isabelle,
and is distributed in the folder of examples of the tool.

7.3 Related work 233

in assignments and conditions is assumed to be atomic, and postconditions are modelled
as predicates of a single state. Definedness is not discussed in their work, and indexed
parallelism is not investigated.

Inline with the work on this thesis, Moreira et. al. use total functions to represent states.
They model the co-domain of the state function using a datatype containing all possible
valuations for variables, in a similar way to our formalisation in Definition 2.1. Projections
functions are also used in their derivations, but they do not discuss the limitations inherent
with this modelling decision.

The main criticism of Moreira et. al. to the applicability of their proof system is that it
does not include proof rules to reason about the introduction of auxiliary variables in proofs.
Comparatively, we did not provide laws to eliminate auxiliary variables from a program,
but we do not consider this to be a major limitation to our approach. Auxiliary variables
introduced during a development can be easily identified in concrete programs, and can be
manually eliminated. Similar to the work on this thesis, Moreira et. al. models parallel
composition as an unfair operator. From our perspective, this causes major limitations than
the lack of a proof rule to eliminate auxiliary variables.

7.3.5 Generalised rely-guarantee concurrency

Hayes [43] develops a general algebra to reason about concurrency by means of rely and
guarantee abstractions. Departing from the usual relational view, processes are used to
characterise these abstractions. A surprising consequence of this decision is that one can
express rely and guarantee conditions that are not possible when one considers these ab-
stractions as relations, modulo the use of auxiliary variables. For example, compared to
the algebra discussed in this thesis, the algebra developed in [43] allows one to formalise
a guarantee condition such as ⟨idrel⟩⋆ ; ⟨g⟩ ; ⟨idrel⟩ω , that specifies that a state transition
satisfying g occurs exactly once, but allows any number of stuttering steps before and after
that transition4.

The key advantage of [43] over the algebra discussed in this thesis is the simplicity of
proofs behind the derivation of important laws, such as parallel introduction, distributive
laws and nesting of operators. The simplicity results from a combination of factors: (i)
formalisation of lattice theoretic properties involving the key primitive constructors; (ii)
dropping of the requirement of a rely command to terminate in presence of potentially infinite
interference (cf. Requirement 3.71); (iii) dropping of the notion of earlier termination of

4In retrospect, the characterisation of rely and guarantee as processes appears to be the right direction for
encoding the concept intermediate properties proposed in Section 5.8.2.

234 Evaluation

parallel processes at the semantic level (cf. rules 2.54 and 2.55); (iv) assumption that rely
and guarantee conditions are reflexive; etc.

Strict conjunction (named in [43] as weak conjunction) continues to provide the basis
for characterising the guarantee command. On the other hand, the rely command is given
a different and simpler formulation using the notion of rely-quotient. The new operator is
defined as:

c // i ≡
l
{d. (c ⊑ d ∥ i)} (7.1)

where i is a process encoding the rely condition and c is the body of the rely condition5. For
example, compared to the algebra discussed in this thesis, an approximation for rely (r, z) · c
would be

(c // ⟨r ∨r idrel⟩ω) // ⟨z ∨r idrel⟩ω

Algebraic properties that manipulate the notion of rely-quotient are simplified by the fact
that it does not demand the termination of d, while Definition 3.72 (Rely) requires the
termination of d. This simplification pays off in proofs: the proof of laws for distributing
the rely command over several commands including sequential composition becomes quite
simple.

Different from the algebra in this thesis, which includes the primitive state x 7→ v · c to
implement the notion of hiding of variables in the traces of a program, there is no discussion
of local variables in [43] nor in its mechanised version [35]. Inspecting the mechanisation,
it can be seen that it gives a semantic rather than a syntactic characterisation of the wide-
spectrum language, and thus avoids the syntactic problem we had in the characterisation of
RG-WSL. At the moment of this writing, no study has been published showing the practical
usage of the algebra in [43] to derive concrete programs.

7.3.6 An algebra of synchronous atomic steps

In [45], Hayes and colleagues develop an abstract algebra that can be instantiated to the
relational rely-guarantee from [43] (discussed above) as well as to different processes algebras
such as CSP [53] and CCS and SCCS [75].

The underlying programming language is defined in terms of very basic primitives: tests,
atomic steps, sequential composition, strict conjunction, parallel composition, demonic and

5An indirect definition for rely-quotient is provided by (c // i ⊑ d)⇔ (c ⊑ d ∥ i)

7.3 Related work 235

angelic non-determinism, fix point operators and special elements to represent the identities
for the language constructors. Many of the proofs rely on a key theorem that provides a
canonical representation for a command.

Guarantees are encoded based on the notion of strict conjunction and infinite iteration of
atomic commands (just like in [43]). Rely is given a novel formulation based on the strict
conjunction and the derived command (assume r), which behaves silently if the environment
transitions respect the relation r between its before and after state but aborts otherwise.
Interestingly, this formulation of the rely command leads to a nice feature of the algebra not
discussed in [45]: the intricate aspects that emerge as consequence of different arrangements
(nesting) of a rely and guarantee command disappear in the abstract algebra. This is because
a weak conjunction is associative and commutative, and a rely-guarantee specification in the
abstract algebra has the general shape:

{p} ; ((rely r) e (guar g) e [q])

Thus, one can apply commutative and associative laws to switch the arrangement of rely
and guarantee constructors. Common to the formalisation in this thesis, and the works
in [43, 45], is the fact that there is a clear separation of concerns between pre, rely, guarantee
and postcondition, allowing each of these components to be refined in isolation.

To the current author, the lack of practical examples is the main critic to [45]. Even
though it is reported that the abstract algebra was mechanised in Isabelle/HOL, several
practical issues are left open, such as details of the programming language which have to be
made more concrete before the abstract algebra can be put in action.

7.3.7 Algebraic Principles for Program Correctness Tools in
Isabelle/HOL

Gomes [39] formalises a KAT based algebraic framework to verify and refine non-deterministic
sequential programs, and extends the framework to support the verification of simple shared-
variable concurrent programs, as well as a separate extension to support reasoning about
sequential programs that manipulate pointers. To support concurrency, the language is exten-
ded with parallel composition. The semantics for parallel composition is given by an unfair
scheduler. The scheduler unfolds a concurrent program into a non-deterministic program
annotated with program counters which play the role as labels.

236 Evaluation

Although the parallel composition is assigned to an unfair semantics, the ability of
referring to program counters in assertions makes their algebra powerful enough to prove
simple facts such as progress in mutual exclusion algorithms, and absence of deadlock.
Proofs are interactive, though specialised tactics devised using Eisbach are provided to
simplify user interaction. The application of the framework to verify concurrent programs is
discussed using a mutual exclusion algorithm, and a fragment of code that is responsible for
the initialisation phase of a handshake protocol.

The main objective of [39] is to investigate the principles that should be considered in
order to build software verification tools where control flow laws and data-level laws are
formalised independently. Although such separation is not elaborated our work, we make
fewer assumptions with respect to atomicity of expression evaluation and language design.
For example, we account for interference during expression evaluation, and we support
nested parallelism. None of these is supported by the formalisation proposed in [39].

Chapter 8

Conclusion

We must not expect to find solutions to all of the problems presented by building

computer systems in standard mathematics. Nor — unless we are unbelievably

fortunate — will we always find beautiful mathematical solutions first time; but

publishing an attempt which does solve a problem could spur others to show the

way to a cleaner formulation. In any case, this is a more honest approach than

ignoring all aspects of a problem which do not fit our current formalism.

Cliff Jones, Some mistakes I have made and what I have learned from them, 1998

This chapter revisits the thesis proposition, and discusses how it was addressed it in the
context of the contributions presented in previous chapters. It also discusses limitations
of this research with respect to the architecture of recent processors. Finally, Section 8.4
discusses future works.

8.1 Summary and contributions

Recent investigations in formal derivation of concurrent programs have explored the in-
tegration of rely-guarantee into a refinement calculus, establishing a programming meth-
odology to derive code for shared-variable programs from specifications written in rely-
guarantee [48, 65]. In this thesis, we mechanised the refinement calculus proposed in [48] as
a refinement algebra because we were mainly interested in investigating practical aspects
of the application of the theory. In the course of the mechanisation we located and fixed
inconsistencies present in definitions and proofs from [48], and extended that theory with
concepts to enable the derivation of programs involving indexed parallelism and assignment
to arrays.

237

238 Conclusion

The earliest evidence of the benefit of using Isabelle/HOL in this project was the dis-
covery of a problem in the syntax of the programming language that went unnoticed in
the literature [47–49, 65]. The problem and its solution are discussed in Chapter 2, but the
solution we propose comes at the cost of introducing a conflict between the semantics and the
refinement laws assumed to hold in the characterisation of the algebra. This conflict and its
consequences are further explored in Chapter 4, where we discuss the methodology adopted
to mechanise the refinement calculus proposed in [48], and justify our design decision with
respect to alternative designs.

Chapter 3 introduces the laws and definitions that form the basis of the refinement calculus
discussed in [48]. This chapter also includes top-level refinement laws used in derivations or
to guide discussions in the next chapters, as well as contributions of our own. The latter are
carefully tagged with the keyword contrib.

Great care was taken during the encoding of the calculus to prevent redundancy of
concepts. The mechanised proofs resemble the algebraic style of pen-and-paper proofs [48],
modulo our preference for the procedural style in proofs for the sake of productivity. For
most laws, their application generates proof obligations born out of every verification task.
In Chapters 4 and 7 we discuss the infrastructure we developed to enable the user’s effort to
discharge proof obligations to be reduced.

Design decisions behind the mechanisation enable Isabelle/HOL to automatically take
care of some of the proof obligations via the use of automatically proof methods such as simp.
For the cases where proof obligations are not automatic discharged, the user can apply a
collection of laws to compositionally reason about logical interpretation and unrestriction (see
Chapter 2), as well as stability (see Chapter 3). Sometimes, the invocation of sledgehammer,
Isabelle’s proof finder, may suffice to discharge proof obligations. Ultimately, for proofs
involving expandable concepts, the user can unfold the definitions and call the simplifier. In
our experience, we found this latter strategy to be specially useful to explore proof obligations
before constructing a clearer proof. All design decisions we took cooperate to facilitate the
construction of proofs in the new refinement calculus in the style of [48]. Moreover, the
availability of built-in tools from Isabelle, such as find-theorems, can assist the user in the
selection of laws that can be applied at each stage of the development, by means of pattern
matching against goals. This contributes to increase the productivity and allows users to
assess the whole database of laws almost instantaneously.

The mechanisation exceeds the calculus proposed by Hayes et. al. in [48]. Extensions
are the subject of Chapter 5, which covers indexed parallelism, assignment to indexed
arrays, corrections in the operational semantics and additional abstractions to reason about

8.1 Summary and contributions 239

programs that constrain environment steps and approximate non-atomic evaluation using
relations. Each extension is illustrated at least once in Chapter 6. Some of our extensions,
such as indexed parallelism, are designed so that they facilitate rather than complicate the
representation of sophisticated algorithms. For example, previous formalisations of indexed
parallelism require indices of processes to be natural numbers [32, 82]. We break this
convention and allow indices to be of any type. As result, we simplify the representation
of algorithms that operate on non-linear data structures, such as Floyd-Warshall, where the
index of a cell of a matrix is used to identify a concurrent process. Had we not provided such
flexibility, the formalisation of Floyd-Warshall would involve nested parallelism.

Chapter 6 demonstrate the benefits of the careful balance between shallow and deep-
embedding of constructors in practice. The derivation of examples shows that the user
only has to care about the syntax of binary and unary operators that are required at the
implementation level (code). Together with the fact that states do not have to be formalised
prior to the derivation of examples, this minimises the setup phase that precedes formal
analysis in other mechanised theories, such as [82, 2]. There is a price to pay though for
skipping formalisation of the state: the notion of state offered by our mechanisation is weakly
typed. On one side, this provides flexibility to derive programs that are not type consistent,
but it can also bring complications to the derivation of algorithms where knowledge about
types is relevant in proofs, such as Floyd-Warshall.

On Chapter 7 we revisit the mechanisation and analyse the theories quantitatively. We
draw some general lessons that can be applied in future projects involving the encoding
of refinement algebras in Isabelle/HOL, and discuss the threats to the validity of our study.
The key weakness is the fact that the mechanisation is based on a set of assumptions that
are not verified against a semantic model within the mechanisation itself. Nevertheless, the
consistency of the set of laws taken for form the basis of the algebra has been verified by
manual proofs [48], and many of the fundamental laws from which we built upon has been
peer-reviewed [65]. Chapter 7 lists all the assumptions of the algebra for which a proof is
still unknown.

Revisited thesis proposition

At the introduction of this thesis we delineate our journey by setting three questions (Sec-
tion 1.4). The first question (Q1) asks if it the calculus proposed in [48] can be given
automated theorem proving support via the algebraic approach discussed in [54]. We answer
this question positively, using Chapter 4 to discuss how this can be achieved. The second
question (Q2) considers if the theory can be used to derive concurrent programs involving

240 Conclusion

parallelism and arrays. Similarly, the answer for this question is positive, and is supported by
the derivations discussed on Chapter 6. Finally, the last question concerns the prevention of
the introduction of undefined expressions in concurrent programs while retaining the ability
of extending the grammar of expressions on-the-fly. We propose a solution for this problem
in Chapter 2, by carefully combining shallow-embedding and deep-embedding in the design
of the grammar of expressions.

8.2 Takeaway message

This document is targeted to researchers and practitioners of formal methods who are willing
to explore the practical use and limitations of the rely-guarantee approach. We provide a
prototype in which program derivation experiments can be rigorously conducted. Our greatest
limitation is that we do not have laws to reason about fair parallelism. Many interesting
concurrent programs involve busy waiting and can only be proved correct if parallelism
is assumed to be fair. To a certain degree, auxiliary variables can be used to reason about
progress in programs subject to unfair parallelism, but this is not investigated in this thesis. It
is natural for us to think that the first step towards making the prototype more applicable is to
support fair parallelism, and then increase the level of automation of the mechanisation.

For the layman, the takeaway message of this thesis is that formal concurrent program
derivation can be done compositionally. Assumptions and commitments defined at top-
level specifications can be refined and distributed throughout the development of concurrent
programs; assumptions can be widened, and commitments can be narrowed – in the same
way that preconditions and postconditions can be manipulated. The rely-guarantee method
conquers compositionality by abstracting the code of the program and its environment using
binary relations: the guarantee and rely condition. For situations where interaction between
processes is limited, as illustrated in the derivations included in the thesis, the control-flow
of the environment can be fully abstracted away in the rely condition. However, for cases
where the environment’s control-flow is relevant to reason about correctness, one may need
the so-called auxiliary variables to incorporate the relevant part of the control-flow of the
environment into the rely-condition.

Any experienced programmer of a parallel platform knows that expression evaluation in
presence of interference is non-deterministic and does not observe the laws of mathematics.
This happens because variables can be sampled from different states. For this reason, one
has to be careful when designing the conditions used in control structures embedded in
concurrent programs. The calculus approaches this issue by imposing syntactic restrictions

8.3 Limitations 241

on expressions that can appear in concrete programs. Expressions can contain at most one
shared variable, and no more than a single reference to it. This restriction does not affect the
expressiveness of programs that can be derived using the calculus because expressions can be
decomposed into sub-expressions that are evaluated and stored in a portion of memory that is
protected from interference. We believe that this approach is useful even for programmers
who are unwilling to apply this refinement calculus because it breaks expression evaluation
into manageable pieces that are easier to debug.

The mechanisation provided with this thesis is an academic prototype, but it illustrates a
few principles that are applied more broadly to the construction of formal tools independent
of the theorem prover chosen as a platform, and the underlying theory being encoded. These
are: (i) isolation of concepts; (ii) user-centred development; (iii) support of automated proof
tools. These principles are at the heart of formal tools that trade expressiveness by automation,
such as Dafny [72], Infer [23] and Simulink Design Verifier1, that have been proved useful
in industry. In this sense, the study of our prototype serves to understand better how to make
design decisions in the process of constructing formal tools, but there is a long journey to go
before our prototype could become attractive for industrial application.

8.3 Limitations

The algebra discussed in this thesis departs from the refinement calculus proposed in [48],
and thus its scope is influenced by a mixture of previously taken decisions from [48] and
decisions taken along the mechanisation.

The main limitation of this work is that it does not provide a general method to check
the consistency of the assumptions of the algebra. Partially counterbalancing this limitation,
we implement a method for checking the consistency of few refinement laws via stratified
forward simulation (Section 2.10), and use it to reduce the number of assumptions that
have to be made to formalise the algebra. The extension of the mechanisation with a traces
semantics is left as future research.

Another limitation of this work is that it also does not reflect the architecture of current
processors. Nowadays processors are designed with the so-called weak memory models [90],
that establishes how each processor updates the memory and affect the shared state seen by
other processors. In this model, semicolon ceases to be a sequencing operator. From a formal
perspective, there is no guarantee that memory writes made by a process will be immediately
visible by other processes; instead, each process can hold a local writing buffer, that will

1https://uk.mathworks.com/products/sldesignverifier.html

242 Conclusion

f lag1 := 0;
f lag2 := 0;

f lag1 := 1;
if (f lag2 = 0) {

CR1

}

∥∥∥∥∥∥∥∥∥
f lag2 := 1;
if (f lag1 = 0) {

CR2

}

Figure 8.1 Dekker’s algorithm for critical region

be committed to the memory in the order that are emitted by the process. For single-thread
programs, and programs without data races, no difference in the behaviour is observable.
But for concurrent programs, where external observations to the shared state are relevant,
the memory does not reflect the writes made by a program until the local cache is flushed
into the shared memory. In order to enforce that the shared memory continues to obey a
sequentially consistent memory model, developers make usage of memory barriers, also
known as memory fences. These force the local buffer to be flushed to the shared memory.
In practice, the usage of memory barriers slow down the parallelism between processes by
several orders of magnitude, and developers try to use as fewer barriers as possible to reduce
loss of performance.

Without memory barriers, classical algorithms such as Hugo Simpson’s four-slot [103]
and Dekker’s algorithm for critical region, shown in Figure 8.1, are not guaranteed to work
as expected. In the case of Dekker’s algorithm, f lag1 and f lag2 in the conditional of the if
may not reflect the changes made by the environment on these variables.

We share Richard Bornat’s view [16] that the time spent on developing theories and
verifying algorithms under the assumption of a sequentially consistent model (SC) is not
wasted. Verification of concurrent programs is already a difficult task under the assumption
of a SC model, and research grounded on the assumption of these models can shed light
into research that is establishing the basis for program verification on weak memory models.
Additionally, we sustain the hope that the development of tools to automatically introduce
fences on code, such as [1] and [19], may allow researchers on program verification to
abstract away from such hardware details. In short, these tools decide if the SC semantics
coincides with the semantics on a weak memory model; if not, the tool synthesises a minimal
number of memory barriers that enforce robustness, thus hiding the weak memory model
from the programmer and providing the illusion of sequentially consistency. Obviously, since
too many fences slow down the performance, it might be the case that efficient algorithms

8.4 Future work 243

designed for SC models might not be efficient when transplanted into modern architectures.
Nevertheless, from a functional perspective they would still be correct.

8.4 Future work

Wellfounded relations As discussed in Chapters 2, we did not succeed in using the defin-
ition of well-founded relations formalised in this work to prove that the relevant relations
used in Chapter 6 are well-founded. This is not a limitation of this work, but a technical issue
that can be solved by further experimentation. In particular, it may be useful to investigate
how the termination of loops is proved in other mechanised works, such [82, 2].

Fair parallelism Many parallel algorithms need to assume fairness in order to achieve their
goals. For example, reasoning about programs whose termination depends on environment
actions requires one to model parallel composition as a fair operator: a program ensures
that it will achieve its postcondition as long as it will be given a chance to execute; in
turn, if it depends on a resource locked by the environment, it can only make progress if
the environment is given the chance to execute as well (assuming that the resource will
eventually become available). To derive this kind of programs using the algebra, one would
need to introduce a semantic characterisation of parallel composition as a fair operator.
Alternatively, in [43] the author suggests that it may be possible to reason algebraically about
fair parallelism even if the language does not have this operator, by introducing fair parallel
composition as a derived command that refines an unfair parallel composition. The set of
assumptions necessary for reasoning in this approach are not discussed in [43], but intuitively
it would include laws for example to introduce mutual exclusion schemes from a specification
command. Research in this direction might benefit from the refinement schemes discussed
in [32].

Alternative definition for the rely command As discussed in Section 7.1.2, lemma
Distribute-Rely-Post-Assertion (3.83) cannot be derived from the assumptions of the al-
gebra. The problem amounts to the termination condition for the rely command in presence
of potentially infinite interference. Directions for solving the problem include dropping this
requirement, as done in [43], or then strengthening the termination condition of the rely
command, as suggested in Definition 3.119. The last approach is open to experimentation.
The ultimate goal one should consider while working in this direction is to enable the proof
of law 3.84 (Distribute-Rely-Sequential).

244 Conclusion

Encoding states using records As noticed in the derivation of Floyd-Warshall in Set-
cion 6.6, the characterisation of states as a total function from variable names to values does
not provide sufficient information about the type and dimension of variables. The solution
proposed there was to include information about the type of the variables in the precondition
of the abstract specification. We believe that a better approach is possible by changing the
formalisation of the state, so that type and dimension are recorded. One direction for that is to
formalise the state as a record, as done in [82, 2]. Another approach is to use a total function
from variable names to a triple, containing the value, type and dimension of a variable. In
this direction, it might be necessary to extend RG-WSL with type declaration for variables.
We suspect that the usage of records may lead to a simpler solution, because it can be used
to ensure that relations are type consistent, while the use of total states would still require
the introduction of well-formed conditions to ensure that relations are type consistent. Extra
thinking would be necessary to model local variables using records, since local variables
might have the name of a preexisting variable but a different type and dimension.

Encoding of relations We suspect that the level of automation in proofs involving logical
interpretation can be improved by instantiating relations as a lattice (see Section 4.4). The
practical problem with this characterisation is that type synonyms cannot be used to instantiate
type classes. It appears necessary to first wrap the type relation using a datatype in Isabelle,
so that it can be instantiated as a lattice. Work in this direction can benefit from law Law 4.16
(Lattice-Exchange) that shows how the definitions involving binary relations can be mapped
to lattice operators.

Type constraints Currently, a number of proof obligations involving type constraints are
generated during the application of the algebra. We suspect that using Eisbach, Isabelle’s
proof method language, it may be possible to construct a method that behaves as the method
rule, except that it automatically identify type constraints involving predicate and eliminates
them automatically. In practice, this would allow the size of proof scripts to be systematically
reduced.

Proof metrics A recent study involving proof metrics in the context of the seL4 project
found out that there is a quadratic relationship between the size of the formal statement of
a property and the final size of its formal proof in Isabelle [74]. It would be an interesting
experiment to verify if the refinement proofs using the algebra mechanised in this thesis also
obey this relationship.

8.4 Future work 245

Proof of soundness The most relevant theoretical extension to this work is to investigate
the existence of a semantic model which validates the assumptions of the algebra. For this, a
denotational semantics has to be formalised. Recent investigation combining program algeb-
ras and rely guarantee has suggested that modelling the semantics of parallel composition
using the notion of shuffling [2] may be one alternative. Additionally, the trace semantics
provided by Hayes in [27] may be another alternative if the definition of rely command is
restructured in terms of the primitives of the language proposed there.

Bibliography

[1] Alglave, J., Kroening, D., Nimal, V., and Poetzl, D. (2014). Don’t sit on the fence:
A static analysis approach to automatic fence insertion. In Proceedings of the 16th
International Conference on Computer Aided Verification - Volume 8559, pages 508–524,
New York, NY, USA. Springer-Verlag New York, Inc.

[2] Armstrong, A. (2016). Formal Analysis of Concurrent Programs. PhD thesis, University
of Sheffield.

[3] Armstrong, A., Gomes, V. B. F., and Struth, G. (2014). Algebraic Principles for Rely-
Guarantee Style Concurrency Verification Tools, pages 78–93. Springer International
Publishing, Cham.

[4] Aspinall, D. and Kaliszyk, C. (2016). Towards Formal Proof Metrics, pages 325–341.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[5] Back, R.-J. J., Akademi, A., and Wright, J. V. (1998). Refinement Calculus: A Systematic
Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition.

[6] Ballarin, C. (2006). Interpretation of Locales in Isabelle: Theories and Proof Contexts,
pages 31–43. Springer Berlin Heidelberg, Berlin, Heidelberg.

[7] Barrett, C. and Tinelli, C. (2007). CVC3. In Damm, W. and Hermanns, H., editors,
Proceedings of the 19th International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer-Verlag.
Berlin, Germany.

[8] Berdine, J., Calcagno, C., and O’Hearn, P. (2006). Smallfoot: Modular automatic
assertion checking with separation logic. In de Boer, F., Bonsangue, M., Graf, S., and
de Roever, W.-P., editors, Formal Methods for Components and Objects, volume 4111 of
Lecture Notes in Computer Science, pages 115–137. Springer Berlin Heidelberg.

[9] Berghofer, S. and Wenzel, M. (1999). Inductive Datatypes in HOL — Lessons Learned in
Formal-Logic Engineering, pages 19–36. Springer Berlin Heidelberg, Berlin, Heidelberg.

[10] Blanchette, J. and Nipkow, T. (2010). Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In Kaufmann, M. and Paulson, L., editors,
Interactive Theorem Proving, volume 6172 of Lecture Notes in Computer Science, pages
131–146. Springer Berlin Heidelberg.

[11] Blanchette, J. C. (2016a). Hammering Away: A User’s Guide to Sledgehammer for
Isabelle/HOL. Technical report, Institut für Informatik, Technische Universität München.

247

248 Bibliography

[12] Blanchette, J. C. (2016b). Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL.
Technical report, Institut für Informatik, Technische Universität München.

[13] Blanchette, J. C., Böhme, S., and Paulson, L. C. (2011). Extending sledgehammer
with smt solvers. In Proceedings of the 23rd International Conference on Automated
Deduction, CADE’11, pages 116–130, Berlin, Heidelberg. Springer-Verlag.

[14] Blanchette, J. C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., and Traytel, D.
(2014). Truly Modular (Co)datatypes for Isabelle/HOL, pages 93–110. Springer Interna-
tional Publishing, Cham.

[15] Blass, A. and Gurevich, Y. (2008). Program termination and well partial orderings.
ACM Trans. Comput. Log., 9(3).

[16] Bornat, R. and Amjad, H. (2013). Explanation of two non-blocking shared-variable
communication algorithms. Formal Aspects of Computing, 25(6):893–931.

[17] Bornat, R., Calcagno, C., O’Hearn, P., and Parkinson, M. (2005). Permission accounting
in separation logic. SIGPLAN Not., 40(1):259–270.

[18] Bossi, A., Piazza, C., and Rossi, S. (2008). Action refinement in process algebra and
security issues. In King, A., editor, Logic-Based Program Synthesis and Transformation,
volume 4915 of Lecture Notes in Computer Science, pages 201–217. Springer Berlin
Heidelberg.

[19] Bouajjani, A., Derevenetc, E., and Meyer, R. (2014). Robustness against relaxed
memory models. In Software Engineering 2014, Fachtagung des GI-Fachbereichs Soft-
waretechnik, 25. Februar 2014, Kiel, Deutschland, pages 85–86.

[20] Boyland, J. (2003). Checking interference with fractional permissions. In Proceedings
of the 10th International Conference on Static Analysis, SAS’03, pages 55–72, Berlin,
Heidelberg. Springer-Verlag.

[21] Brookes, S. (1996). Full abstraction for a shared-variable parallel language. Information
and Computation, 127(2):145 – 163.

[22] Brookes, S. (2004). A Semantics for Concurrent Separation Logic, pages 16–34.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[23] Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.,
Papakonstantinou, I., Purbrick, J., and Rodriguez, D. (2015). Moving Fast with Software
Verification, pages 3–11. Springer International Publishing, Cham.

[24] Cavalcanti, A., Sampaio, A., and Woodcock, J. (2006). Refinement: an overview.
In Refinement Techniques in Software Engineering, volume 3167 of Lecture Notes in
Computer Science, pages 1–17. Springer Berlin Heidelberg.

[25] Coleman, J. W. (2008). Expression decomposition in a rely/guarantee context. In Veri-
fied Software: Theories, Tools, Experiments, volume 5295 of Lecture Notes in Computer
Science, pages 146–160. Springer Berlin Heidelberg.

Bibliography 249

[26] Coleman, J. W. and Jones, C. B. (2007). A structural proof of the soundness of
rely/guarantee rules. J. Log. and Comput., 17(4):807–841.

[27] Colvin, R. J., Hayes, I. J., and Meinicke, L. A. (2017). Designing a semantic model for
a wide-spectrum language with concurrency. Formal Aspects of Computing, pages 1–23.

[28] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition.

[29] de Moura, L. and Bjørner, N. (2008). Z3: An Efficient SMT Solver, pages 337–340.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[30] Dias, D. and Freitas, L. (2014). Designing an unbounded buffer in rely-guarantee.
Technical Report CS-TR-1431, Newcastle University.

[31] Dijkstra, E. W. (1976). A discipline of programming. Prentice-Hall Englewood Cliffs,
N.J.

[32] Dingel, J. (2000). Systematic Parallel Programming. Research paper. School of
Computer Science, Carnegie Mellon University.

[33] Dongol, B., Gomes, V. B. F., and Struth, G. (2015). A Program Construction and
Verification Tool for Separation Logic, pages 137–158. Springer International Publishing,
Cham.

[34] Dongol, B. and Hayes, I. J. (2012). Deriving Real-Time Action Systems Controllers
from Multiscale System Specifications, pages 102–131. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[35] Fell, J., Hayes, I. J., and Velykis, A. (2016). Concurrent refinement algebra and rely
quotients. Archive of Formal Proofs, 2016.

[36] for Aeronautics, R. T. C. (2011). DO-178C, software considerations in airborne systems
and equipment certification.

[37] Foster, S., Zeyda, F., and Woodcock, J. (2015). Isabelle/utp: A mechanised theory
engineering framework. In Naumann, D., editor, Unifying Theories of Programming,
volume 8963 of Lecture Notes in Computer Science, pages 21–41. Springer International
Publishing.

[38] Freitas, L. and Whiteside, I. (2014). Proof patterns for formal methods. In FM
2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014.
Proceedings, pages 279–295.

[39] Gomes, V. B. F. (2016). Algebraic Principles for Program Correctness Tools in
Isabelle/HOL. PhD thesis, University of Sheffield.

[40] Haftmann, F., Klein, G., Nipkow, T., and Schirmer, N. (2016). LATEX Sugar for
Isabelle Documents, distributed with the isabelle system edition.

[41] Harrison, J. (1998). Formalizing Dijkstra. In Proceedings of the 11th International
Conference on Theorem Proving in Higher Order Logics, pages 171–188, London, UK,
UK. Springer-Verlag.

250 Bibliography

[42] Havelund, K. and Pressburger, T. (2000). Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 2(4):366–
381.

[43] Hayes, I. J. (2016). Generalised rely-guarantee concurrency: an algebraic foundation.
Formal Aspects of Computing, 28(6):1057–1078.

[44] Hayes, I. J., Burns, A., Dongol, B., and Jones, C. B. (2013a). Comparing degrees of
non-deterministic in expression evaluation. The Computer Journal, 56(6):741–755.

[45] Hayes, I. J., Colvin, R. J., Meinicke, L. A., Winter, K., and Velykis, A. (2016). An
Algebra of Synchronous Atomic Steps, pages 352–369. Springer International Publishing,
Cham.

[46] Hayes, I. J., Jones, C. B., and Colvin, R. J. (2012). Refining rely-guarantee thinking.
Technical Report CS-TR-1334, Newcastle University.

[47] Hayes, I. J., Jones, C. B., and Colvin, R. J. (2013b). Reasoning about concurrent
programs: Refining rely-guarantee thinking. Technical Report CS-TR-1395, Newcastle
University.

[48] Hayes, I. J., Jones, C. B., and Colvin, R. J. (2014). Laws and Semantics for Rely-
Guarantee Refinement. Technical Report CS-TR-1425, Newcastle University.

[49] Hayes, I. J. and Meinicke, L. (2014). Invariants, Well-Founded Statements and Real-
Time Program Algebra, pages 318–334. Springer International Publishing, Cham.

[50] Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concur-
rency. J. ACM, 32(1):137–161.

[51] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580.

[52] Hoare, C. A. R. (1972). Towards a Theory of Parallel Programming. In Operating
Systems Techniques, volume 9 of A.P.I.C. Studies in Data Processing, pages 61–71.
Academic Press.

[53] Hoare, C. A. R. (1978). Communicating sequential processes. Commun. ACM,
21(8):666–677.

[54] Hoare, C. A. R., Hayes, I. J., Jifeng, H., Morgan, C. C., Roscoe, A. W., Sanders, J. W.,
Sorensen, I. H., Spivey, J. M., and Sufrin, B. A. (1987). Laws of programming. Commun.
ACM, 30(8):672–686.

[55] Hoare, T., van Staden, S., Möller, B., Struth, G., and Zhu, H. (2016). Developments in
concurrent kleene algebra. Journal of Logical and Algebraic Methods in Programming,
85(4):617 – 636. Relational and algebraic methods in computer science.

[56] Holzmann, G. J. (1997). The model checker spin. IEEE Transactions on Software
Engineering, 23(5):279–295.

[57] Huffman, B. and Kunčar, O. (2013). Lifting and Transfer: A Modular Design for
Quotients in Isabelle/HOL, pages 131–146. Springer International Publishing, Cham.

Bibliography 251

[58] Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning
About Systems. Cambridge University Press, New York, NY, USA.

[59] Jones, C. (1981). Development Methods for Computer Programs Including a Notion of
Interference. Technical monograph. Oxford University Computing Laboratory.

[60] Jones, C. B. (1983a). Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332.

[61] Jones, C. B. (1983b). Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596–619.

[62] Jones, C. B. (1990). Systematic Software Development using VDM. Prentice Hall
International, second edition.

[63] Jones, C. B. (2010). The role of auxiliary variables in the formal development of
concurrent programs. In Roscoe, A., Jones, C. B., and Wood, K. R., editors, Reflections
on the Work of C.A.R. Hoare, pages 167–187. Springer London.

[64] Jones, C. B. and Hayes, I. J. (2016). Possible values: Exploring a concept for concur-
rency. Journal of Logical and Algebraic Methods in Programming, 85(5, Part 2):972 –
984.

[65] Jones, C. B., Hayes, I. J., and Colvin, R. J. (2015). Balancing expressiveness in formal
approaches to concurrency. Formal Aspects of Computing, 27(3):475–497.

[66] Jones, C. B. and Pierce, K. G. (2011). Elucidating concurrent algorithms via layers of
abstraction and reification. Formal Asp. Comput., 23(3):289–306.

[67] Jones, C. B. and Yatapanage, N. (2015). Reasoning about Separation Using Abstraction
and Reification, pages 3–19. Springer International Publishing, Cham.

[68] Kernighan, B. W. (1988). The C Programming Language. Prentice Hall Professional
Technical Reference, 2nd edition.

[69] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S.
(2009). sel4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 207–220, New York,
NY, USA. ACM.

[70] Kozen, D. and Silva, A. (2016). Practical coinduction. Mathematical Structures in
Computer Science, pages 1–21.

[71] Krauss, A. and Schropp, A. (2010). A Mechanized Translation from Higher-Order
Logic to Set Theory, pages 323–338. Springer Berlin Heidelberg, Berlin, Heidelberg.

[72] Leino, K. (2010). Dafny: An automatic program verifier for functional correctness. In
Clarke, E. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and
Reasoning, volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer
Berlin Heidelberg.

252 Bibliography

[73] Lynch, N. and Vaandrager, F. (1995). Forward and backward simulations. Information
and Computation, 121(2):214 – 233.

[74] Matichuk, D., Murray, T., Andronick, J., Jeffery, R., Klein, G., and Staples, M. (2015).
Empirical study towards a leading indicator for cost of formal software verification. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,
pages 722–732.

[75] Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[76] Milner, R. (1999). Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press.

[77] Moreira, N., Pereira, D., and Melo de Sousa, S. a. (2013). On the Mechanisation
of Rely-Guarantee in Coq. Technical Report DCC-2013-01, Faculdade de Ciências da
Universidade do Porto.

[78] Morgan, C. (1994). Programming from specifications (2nd ed.). Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK.

[79] Morris, J. M. (1987). A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287 – 306.

[80] Mosses, P. D. (2004). Modular structural operational semantics. The Journal of Logic
and Algebraic Programming, 60:195 – 228.

[81] Nielson, H. R. and Nielson, F. (1992). Semantics with applications: a formal introduc-
tion. John Wiley & Sons, Inc., New York, NY, USA.

[82] Nieto, L. P. (2002). Verification of Parallel Programs with the Owicki-Gries and
Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München.

[83] Nipkow, T. (1998). Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing, 10(2):171–186.

[84] Nipkow, T. (2002). Hoare Logics for Recursive Procedures and Unbounded Non-
determinism, pages 103–119. Springer Berlin Heidelberg, Berlin, Heidelberg.

[85] Nipkow, T. and Klein, G. (2015). Concrete Semantics: With Isabelle/HOL. Springer
International Publishing.

[86] Noschinski, L. (2015). A graph library for Isabelle. Mathematics in Computer Science,
9(1):23–39.

[87] Obua, S. (2006). Partizan Games in Isabelle/HOLZF, pages 272–286. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[88] OHearn, P. W. (2007). Resources, concurrency, and local reasoning. Theor. Comput.
Sci., 375(1-3):271–307.

[89] Oheimb, D. v. (2001). Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München.

Bibliography 253

[90] Owens, S., Sarkar, S., and Sewell, P. (2009). A better x86 memory model: x86-tso.
In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors, Theorem Proving in
Higher Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 391–407.
Springer Berlin Heidelberg.

[91] Owicki, S. and Gries, D. (1976a). An axiomatic proof technique for parallel programs
I. Acta Informatica, 6(4):319–340.

[92] Owicki, S. and Gries, D. (1976b). Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5):279–285.

[93] Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: a prototype verification system.
In Proceedings of the 11th International Conference on Automated Deduction: Automated
Deduction, CADE-11, pages 748–752, London, UK, UK. Springer-Verlag.

[94] Paulson, L. (2012). Three years of experience with sledgehammer, a practical link
between automatic and interactive theorem provers. In Schmidt, R. A., Schulz, S., and
Konev, B., editors, PAAR-2010: Proceedings of the 2nd Workshop on Practical Aspects of
Automated Reasoning, volume 9 of EPiC Series in Computing, pages 1–10. EasyChair.

[95] Philippaerts, P., Mühlberg, J. T., Penninckx, W., Smans, J., Jacobs, B., and Piessens,
F. (2014). Software verification with VeriFast: Industrial case studies. Sci. Comput.
Program., 82:77–97.

[96] Pierce, K. G. (2009). Enhancing the Usability of Rely-guarantee Conditions for
Atomicity Refinement. PhD thesis, University of Newcastle upon Tyne.

[97] Prensa Nieto, L. (2003). The rely-guarantee method in Isabelle/HOL. In Proceedings
of ESOP 2003, volume 2618 of LNCS. Springer-Verlag.

[98] Roscoe, A. W., Hoare, C. A. R., and Bird, R. (1997). The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[99] Sampaio, A. (1997). An Algebraic Approach to Compiler Design, volume 4 of AMAST
Series in Computing. World Scientific.

[100] Sangiorgi, D. and Rutten, J. (2011). Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, New York, NY, USA, 1st edition.

[101] Schirmer, N. and Wenzel, M. (2009). State spaces – The locale way. In 4th Interna-
tional Workshop on Systems Software Verification (SSV 2009), volume 254 of Electronic
Notes in Theoretical Computer Science, pages 161–179. Elsevier Science B.V.

[102] Schlossnagle, G. (2003). Advanced PHP Programming. Sams, Indianapolis, IN, USA.

[103] Simpson, H. (1990). Four-slot fully asynchronous communication mechanism. Com-
puters and Digital Techniques, IEE Proceedings E, 137(1):17–30.

[104] Stirling, C. (1988). A generalization of Owicki-Gries’s Hoare logic for a concurrent
while language. Theor. Comput. Sci., 58(1-3):347–359.

[105] Stirling, C. (1998). The joys of bisimulation, pages 142–151. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

254 Bibliography

[106] Stølen, K. (1991). Development of parallel programs on shared data-structures.
Technical Report UMCS-91-1-1, University of Manchester, UK.

[107] Vafeiadis, V. (2008). Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory.

[108] van Staden, S. (2015). On rely-guarantee reasoning. In Mathematics of Program
Construction - 12th International Conference, MPC 2015, Königswinter, Germany, June
29 - July 1, 2015. Proceedings, pages 30–49.

[109] Wenzel, M. (2016). The Isabelle/Isar reference manual.

Appendix A

Rely-guarantee algebra in Isabelle/HOL

The Isabelle mechanisation is provided digitally as print out would be about 300 pages. That
includes the source theory files (*.thy) and additional material that is relevant to the use of
the mechanisation in Isabelle. The .thy files were produced using the latest stable version of
Isabelle available at the moment of writing (Isabelle 2016-1). Isabelle can be downloaded
free of charge from the website https://isabelle.in.tum.de. The most recent release of Isabelle
at the time of this writing can be obtained also from the folder Isabelle in the CD-ROM
attached to this thesis.

A.1 Mechanisation

See CD-ROM attached to the thesis. For a general view of the theory files, see discussion in
Section 7.1 on page 217.

255

256 Rely-guarantee algebra in Isabelle/HOL

A.2 Precedence and associativity

Precedence level Name Syntax Associativity

90 Finite iteration _⋆ -
90 Infinite iteration _∞ -
90 Omega iteration _ω -
90 Frame _: _ -
90 Assignment _:=_ -
80 Sequential composition _ ; _ Left
75 Rely rely (_, _) · _ -
70 Parallel composition _ ∥ _ -
70 Strict conjunction _ e _ -
70 Binary non-determinism _ ⊓ _ Right
70 Uses uses _ · _ -
70 State state _ 7→ _ · _ -
70 Eguard eguard _ -
65 Guarantee guar _ · _ -

Table A.1 Precedence and associativity for commands

Precedence level Name Syntax Associativity

1000 Transitive closure _∗∗A -
reflexive on given subset

999 Reflexive-transitive closure _∗∗ -
90 Post-state notation _‘ -
75 Relational conjunction _ ∧ _ Left
72 Relational disjunction _ ∨ _ Left
70 Relational implication _⇒ _ Right
75 Relational composition _ ; _ Right
40 Relational negation ¬ _

Table A.2 Precedence and associativity for remaining operators

A.3 Revised paper proofs 257

A.3 Revised paper proofs

While mechanising the theory from previous chapters we found three kind of issues: i)
misspellings of mathematical formulas or symbols, e.g. missing parenthesis, equalities where
there should be an implication, etc; ii) redundant assumptions and missing laws to justify
transformations between proof steps; iii) incorrect proofs, which could not be fixed via
introduction of new laws. Issues of the first kind (i) are easy to fix, and of second kind (ii)
we discovered the redundant assumptions and missing laws by inspecting the proof state of
corresponding propositions with issues. In this section we discuss issues of the third kind
(iii), which required us to take different proof paths from those discussed in [48].

Law 3.79 (Distribute-Rely) This law is originally presented as an equivalence in [48].
The reason for the difference in our presentation, which only establishes a refinement, is that
we discovered a mistake in the original paper proof. To illustrate the problem, we reproduce
part of original paper proof. To fit the terms on one line, we omit the acset constructor after
d

.

rely (r0, z ∨ r1) · (rely (r1, z) · c)

= expanding the external rely command by Definition 3.72 (Rely)
d
{ d | {stops(rely (r1, z) · c, z ∨ r1)} ; (rely (r1, z) · c) ⊑[z ∨ r1] d ∥ ⟨r0 ∨ idrel⟩⋆

∧ ⊢ stops(rely (r1, z) · c, z ∨ r1)⇒ stops(d, z ∨ r1 ∨ r0)}

= by law 3.77 (Rely-Stops)
d
{ d | {stops(c, z)} ; (rely (r1, z) · c) ⊑[z ∨ r1] d ∥ ⟨r0 ∨ idrel⟩⋆∧

⊢ stops(c, z)⇒ stops(d, z ∨ r1 ∨ r0)}

∼ by laws 3.82 (Distribute-Rely-Precondition) and 3.76 (Rely-Refinement)
d
{d | ({stops(c, z)} ; c ⊑[z] (d ∥ ⟨r0 ∨ idrel⟩⋆) ∥ ⟨r1 ∨ idrel⟩⋆ ∧

⊢ stops(c, z)⇒ stops(d ∥ ⟨r0 ∨ idrel⟩⋆, z ∨ r1)) ∧

⊢ stops(c, z)⇒ stops(d, z ∨ r1 ∨ r0)}

The problem in the proof sketch above is the application of law 3.82 (Distribute-Rely-
Precondition). This law cannot be applied, because it requires the command c inside of
the rely block to be guarded by the precondition {stops(c, z)}. The way to circumvent the
problem is to weaken the precondition {stops(c, z)} to {true}, allowing the precondition

258 Rely-guarantee algebra in Isabelle/HOL

command to be eliminated. The fixed proof is shown next. It continues from the second step
above, and thus replaces the third step previously presented.

d
{ d | {stops(c, z)} ; (rely (r1, z) · c) ⊑[z ∨ r1] d ∥ ⟨r0 ∨ idrel⟩⋆ ∧

⊢ stops(c, z)⇒ stops(d, z ∨ r1 ∨ r0)}

⊑ by laws 3.19c (Consequence), 3.29a (Zeros-and-units)
d
{d | rely r1 · cz ⊑[z ∨r r1] d ∥ ⟨r0 ∨r idrel⟩⋆ ∧

⊢ stops(c, z)⇒ stops(d, z ∨ r1 ∨ r0)}

⊑ by laws 3.78 (Rely-Environment) and 3.76 (Rely-Refinement)
d
{d | ({stops(c, z)} ; c ⊑[z] (d ∥ ⟨r0 ∨ idrel⟩⋆) ∥ ⟨r1 ∨ idrel⟩⋆ ∧

⊢ stops(c, z)⇒ stops(d ∥ ⟨r0 ∨ idrel⟩⋆, z ∨ r1)) ∧

⊢ stops(c, z)⇒ stops(d, z ∨ r1 ∨ r0)}

⊑ by laws 3.74a (Properties-Finite-Interference), 3.50 (Term-In-Context)

and 3.39a (Term-Monotonic)
d
{d | ({stops c z} ;c c ⊑[z] (d ∥ ⟨r0 ∨r r1 ∨r idrel⟩⋆ ∧

⊢ stops c z⇒r stops d (z ∨r r1 ∨r r0)}

= by Definition 3.72 (Rely)

rely (r0 ∨ r1, z) · c

Proof of law 3.90 (Strengthen-Rely-In-Context).

rely (r, z) · c ⊑[rx] rely (rx ∧ r, z) · c

By Definition 3.72 (Rely) and law 3.28a (Monotonic-WSL) one as to show that

∃b. {stops(c, z)} ; c ⊑[z] b ∥ ⟨r ∨ idrel⟩⋆ ∧ ⊢ stops(c, z)⇒ stops(b, z ∨ r) ∧ b ⊑[rx] d

A.3 Revised paper proofs 259

from the premises

P1: {stops(c, z)} ; c ⊑[z] d ∥ ⟨rx ∧ r ∨ idrel⟩⋆

P2: ⊢ stops(c, z)⇒ stops(d, z ∨ rx ∧ r)

Choose b to be (d e (eguard rx ∨ idrel)). This instantiation of b generates three subgoals:

G1: {stops(c, z)} ; c ⊑[z] (d e (eguard rx ∨ idrel)) ∥ ⟨r ∨ idrel⟩⋆

G2: ⊢ stops(c, z)⇒ stops(d e (eguard rx ∨ idrel), z ∨ r)

G3: d e (eguard rx ∨ idrel) ⊑[rx] d

For the first sub-goal (G1):

{stops(c, z)} ; c

⊑[z] assumption P1

d ∥ ⟨rx ∧ r ∨ idrel⟩⋆

⊑ by 5.15 (Refinement-Eguard) and on the left branch

and 4.14 (Omega-Star-Atomic) on the right branch

(d e (eguard rx ∨ idrel)) ∥ (⟨rx ∨ idrel⟩ω e ⟨r ∨ idrel⟩⋆)

∼ by law 5.14 (Conjunction-Parallel-Eguard)

(d e (eguard rx ∨ idrel)) ∥ ⟨r ∨ idrel⟩⋆

For the second sub-goal (G2), the application of 5.15 (Refinement-Eguard) and 3.38 (Stops)
to assumption P2 allow us to derive assumption P2’:

P2’: {stops(c, z)} ; ⟨true⟩⋆ ⊑ d e (eguard z ∨ rx ∧ r ∨ idrel)

Similarly, applying 5.15 (Refinement-Eguard) and 3.38 (Stops) to G2, it becomes G2’

G2’: {stops(c, z)} ; ⟨true⟩⋆ ⊑ (d e (eguard rx ∨ idrel)) e (eguard z ∨ r ∨ idrel)

This can be proved as follows

{stops(c, z)} ; ⟨true⟩⋆

⊑ by assumption P2’

260 Rely-guarantee algebra in Isabelle/HOL

d e (eguard z ∨ rx ∧ r ∨ idrel)

⊑ by 5.12 (Strengthen-Eguard)

d e ((eguard rx ∨ idrel) e (eguard z ∨ r ∨ idrel))

∼ by law 3.26c (Assoc-Comm-Dist)

(d e (eguard rx ∨ idrel)) e (eguard z ∨ r ∨ idrel)

The proof of G3 follows immediately from law 5.15 (Refinement-Eguard).

Law 3.112 (Rely-Loop) Whilst mechanising the version of this law presented in [48] we
noticed that the assumption ⊢ p ∧ r⇒ w∗∗X was not strong enough to justify the following
proof step, which uses law 3.19a (Consequence) to strengthen a postcondition.

(rely r · [p, w++ ∧ p‘] ⊓ skip) ; (rely r · [p, p‘ ∧ b1‘ ∧ w∗∗X])

⊑ by lemma 3.19a (Consequence) as ⊢ p ∧ r⇒ w∗∗X

(rely r · [p, w++ ∧ p‘] ⊓ skip) ; (rely r · [p, r∗∗ ∧ b1‘])

To make this refinement possible, we replaced r by its reflexive-transitive closure, leaving
the assumption in the shape ⊢ p ∧ r∗∗⇒ w∗∗X.

Law 3.115 (Assignment-Single-Reference) In the purpose of this proof is to show that
for a predicate p, relations r and q, variable x, and expression e,

rely r · [p, q] ⊑ x:=e

from the premises:

P1: tol-interf (p, q, r)

P2: ⊢ p⇒ defined e

P3: SRF (e, r)

P4: tol-interf (true, λ s s ′. [[e]]v s = [[e]]v s ′, r)

P5: ⊢ p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x} ⇒ q

A.3 Revised paper proofs 261

From law 3.28c (Monotonic-WSL) and Definition 3.12 (Assignment), we must show that

rely r · [p, q] ⊑ [[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩

By law 3.76 (Rely-Refinement), this refinement proof is equivalent to the next two sub-goals

G1: ⊢ stops([p, q], idrel)⇒ stops([[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩, idrel ∨ r)

G2: {stops([p, q], idrel)} ; [p, q]

⊑[idrel] [[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆

For the first sub-goal (G1):

⊢ stops([p, q], idrel)⇒ stops([[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩, idrel ∨ r)

= by 3.40b (Term-Equivalences) and 3.4 (Derived commands)

⊢ p ∧ stops([q], idrel)⇒ stops([[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩, idrel ∨ r)

= by 3.41 (Term-Postcondition)

⊢ p⇒ stops([[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩, idrel ∨ r)

This implication follows from laws 3.52 (Term-Sequential-Special-Case), 3.44 (Term-Test),
3.43 (Term-Atomic) and assumptions P1 and P2. For the second sub-goal (G2), we first
weaken the environment of the refinement relation from idrel to true using law 3.18c
(Refinement-Preorder), and then proceed the refinement proof from the left-hand side.

{stops([p, q], idrel)} ; [p, q]

⊑ by 3.19c (Consequence)

[p, q]

⊑ by 3.25 (Sequential)

[p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗] ;

[true, (r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}) ; r∗∗]

At this point, the proof that remains to be done is

[p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗] ;

[true, (r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}) ; r∗∗]

262 Rely-guarantee algebra in Isabelle/HOL

⊑ [[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆

To prove this refinement we will apply law 3.99 (Test-Single-Reference), which distributes
interference over the test command ([[_]]). In order to do that, we need first to distribute
interference on the program at the right-hand side of the refinement symbol. For this we use
law 3.75 (Distribute-Interference) as follows

[[N v = e]] ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆

∼ by 3.75 (Distribute-Interference)

([[N v = e]] ∥ ⟨r ∨ idrel⟩⋆) ; (⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆)

After the substitution, the proof that remains to be done is

[p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗] ;

[true, (r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}) ; r∗∗]

⊑ ([[N v = e]] ∥ ⟨r ∨ idrel⟩⋆) ; (⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆)

By monotonicity of sequential composition (;c), we split the proof into the next two sub-
proofs.

G1.1: [p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗]

⊑ [[N v = e]] ∥ ⟨r ∨ idrel⟩⋆

G1.2: [true, (r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}) ; r∗∗]

⊑ ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆

For the first sub-goal (G1.1), we apply law 3.99 (Test-Single-Reference) to trade this sub-goal
by an equivalent where interference is distributed over the test commannd.

[p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗]

⊑ ⟨r ∨ idrel⟩⋆ ; [[N v = e]] ; ⟨r ∨ idrel⟩⋆

This refinement is proved by refining the left-hand side until reach the right-hand side, as
shown next.

[p, (r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel) ; r∗∗]

A.4 Additional material 263

⊑ by 3.25 (Sequential)

[p, r∗∗ ; p ∧ (λ s s ′. [[e]]v s = v) ∧ idrel] ; [true, r∗∗]

⊑ by 3.25 (Sequential) and 3.19a (Consequence)

[true, r∗∗] ; [defined (N v = e), [[N v = e]]r ∧ idrel] ; [true, r∗∗]

⊑ by 3.1 and 3.4 (Derived commands), 3.29a (Zeros-and-units)

4.1c (Relation-Properties), 3.35 (Iteration-Properties), and 3.98 (Introduce-Test)

⟨r ∨ idrel⟩⋆ ; [[N v = e]] ; ⟨r ∨ idrel⟩⋆

For the second goal (G1.2), the proof follows similar structure.

[true, (r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}) ; r∗∗]

⊑ by 3.25 (Sequential)

[true, r∗∗ ; (λ s s ′. s ′ x = v) ∧ idset {x}] ; [true, r∗∗]

⊑ by 3.25 (Sequential) and 3.19a (Consequence)

[true, r∗∗] ; [true, (λ s s ′. s ′ x = v) ∧ idset {x}] ; [true, r∗∗]

⊑ by 3.1 and 3.4 (Derived commands), 3.29a (Zeros-and-units), 3.21 (Make-Atomic)

4.1c (Relation-Properties), and 3.35 (Iteration-Properties)

⟨r ∨ idrel⟩⋆ ; ⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ; ⟨r ∨ idrel⟩⋆

∼ by 3.74c (Properties-Finite-Interference)

⟨(λ s s ′. s ′ x = v) ∧ idset {x}⟩ ∥ ⟨r ∨ idrel⟩⋆

The problem in the proof of this law in [48] is that the conclusion of law 3.99 (Test-Single-
Reference) is misinterpreted as

[[e]] ∥ ⟨r ∨ idrel⟩⋆ ⊑ ⟨r ∨ idrel⟩⋆ ; [[e]] ; ⟨r ∨ idrel⟩⋆.

A.4 Additional material

A.4.1 Compiled PDF of the theory

The file document.pdf in /RG-laws/output/ is generated from the *.thy source files of the
mechanisation and includes comments along the theory.

264 Rely-guarantee algebra in Isabelle/HOL

A.4.2 Uncountability of RG-WSL

RG-WSL contains program constructors that take arguments that are formalised as relations,
e.g. the postcondition and precondition commands. Any attempt to count programs in
RG-WSL, therefore, requires one to establish a mechanism to count relations. However,
relations are just functions to booleans, and the space of functions is uncountable. Therefore,
RG-WSL is also uncountable.

This argument may be easier to understand if we analyse a simple (hypothetical) language
(TimedSquash) with two constructs: (i) bounce and , (ii) delay IR TimedL. The first construct
(bounce) is a terminal command, and the second is a composite command that takes a real
number representing a delay to be waited for before executing action defined in the second
argument. The language TimedL is uncountable because any attempt to count programs in
this language would demand a strategy to count real numbers, but such strategy does not
exist.

A.4.3 Uncountability of the set used to define the rely command

This section proves that the set used to define the rely command is uncountable. For
convenience, the definition of the rely command given on page 94 is repeated below.

Definition 3.72 (Rely). Let r and z be relations and c a command,

rely (r, z) · c ≡
l

acset

{
d

∣∣∣∣∣ ({stops(c, z)} ; c ⊑[z] d ∥ ⟨r ∨ idrel⟩⋆) ∧
(⊢ stops(c, z)⇒ stops(d, z ∨ r))

}

Assume the set used in the definition of the rely command to be countable. For brev-
ity, we shall refer to this set as S. Thus, for any relations r and z and command c, there
must be an enumeration of programs d, such that rely (r, z) · c is defined as the countable
choice over programs d, that is, S = {d0, d1, ...}. Let us now consider the concrete in-
stance rely idrel · [true]. Our purpose is to show that there exists an uncountable amount
of programs that can refine this rely command, therefore, S must contain an uncountable
amount of programs as well. For that, we will make an arbitrary choice of d using law 3.28b
(Monotonic-WSL on page 78).

rely idrel · [true] =
l

acset

{
d

∣∣∣∣∣ ({stops([true], idrel)} ; [true] ⊑[idrel] d ∥ ⟨idrel⟩⋆)
∧ (⊢ stops([true], idrel)⇒ stops(d, idrel))

}

A.4 Additional material 265

For the application of law 3.28b we will choose the concrete program [q], where q is an
arbitrary relation. Thus, the set used to construct the rely command must include at least,
all programs [q] for all concrete instances of q. But it is not possible to enumerate relations
(q0, q1,...). Consequently, there exists no possible enumeration of the programs ([q0], [q1], ...).
This contradicts the assumption that the set S is countable. Thus, S is not countable in the
general case (arbitrary parameters z, r and c in the definition of the rely command).

A.4.4 Font extension

To see the symbol for strict conjunction (e) correctly, we extended the Isabelle font with an
additional glyph. The extension of fonts is explained in the file Font-Extension.pdf available
in the directory RG-laws/.

Appendix B

Summary of laws and definitions used in
Chapter 6

Lemma 3.19 (Consequence). For any predicates p0 and p1, and relations q0 and q1,

⊢ p0⇒ p1 ∧ ⊢ p0 ∧ q1⇒ q0 =⇒ [p0, q0] ⊑ [p1, q1] (3.19a)

Law 3.25 (Sequential). For any predicates p and mid, and relations q, q0 and q1, such that

⊢ p ∧ (q0 ∧ mid‘ ; q1)⇒ q,

[p, q] ⊑ [p, q0 ∧ mid‘] ; [mid, q1]

Law 3.59 (Introduce-Guarantee). For any relation g and command c,

c ⊑ guar g · c

Law 3.60 (Guarantee-Monotonic). For any relations g0 and g1, and command c,

⊢ g0⇒ g1 ∨ idrel =⇒ guar g1 · c ⊑ guar g0 · c (3.60a)

Law 3.62 (Distribute-Guarantee). For any predicate p, relations g, g0, g1 and q, boolean

expression b, commands c and d, and variable x, the following hold.

guar g · c ; d ∼ (guar g · c) ; (guar g · d) (3.62a)

guar g · c ∥ d ∼ (guar g · c) ∥ (guar g · d) (3.62b)

guar g0 · (guar g1 · c) ∼ guar g0 ∧ g1 · c (3.62c)

267

268 Summary of laws and definitions used in Chapter 6

guar idset {x} · var x · c ∼ var x · c (3.62d)

guar g · (if b then c else d) ∼ if b then guar g · c else guar g · d (3.62e)

guar g · (while b do c) ∼ while b do guar g · c (3.62f)

Definition 3.64 (Guarantee invariant). Let p be a predicate and c a command,

guar−inv p · c ≡ guar p⇒ p‘ · c

Definition 3.65 (Frame). Let x be a set of variables and c a command,

x: c ≡ guar idset x · c

Law 3.67 (Distribute-Guarantee-Frame). For any relation g, set of variables X and com-

mand c, the following hold.

guar g · X: c ∼ X: (guar g · c)

Law 3.68 (Trade-Guarantee-Invariant). For any predicates p and p0 and relation q, such that

⊢ p0⇒ p,

[p0, p‘ ∧ q] ⊑ guar−inv p · [p0, q]

Definition (contrib.) 3.86 (Unrestricted-Rely). Let z and r be relations, x a variable, and c

a command,

⊢ depends-only (r, {x}) ∨ ⊢ r⇒ idrel

⊢ depends-only (z, {x}) ∨ ⊢ z⇒ idrel unrest(x, c)

unrest(x, rely (r, z) · c)

Law 3.87 (Rely-Monotonic). For any relations r, r0 and r1, such that ⊢ r0⇒ r1 ∨ idrel, and

command c

rely (r0, z) · c ⊑ rely (r1, z) · c (3.87a)

269

Law 3.89 (Rely-Sequential). For any predicates p and mid, and any relations r, q0 and q1,

such that ⊢ p ∧ (q0 ∧ mid‘ ; q1)⇒ q,

rely r · [p, q] ⊑ (rely r · [p, q0 ∧ mid‘]) ; (rely r · [mid, q1])

Law 3.91 (Introduce-Rely-Guar-Invariant). For any predicate p and relations r and q, such

that ⊢ r⇒ p⇒ p‘ and ⊢ p0⇒ p,

rely r · [p0, p‘ ∧ q] ⊑ guar−inv p · rely r · [p0, q]

Law 3.93 (Trade-Rely-Guarantee). For any predicate p, relations g, r and q,

guar g · rely r · [p, q] ∼ guar g · rely r · [p, q ∧ (g ∨ r)∗∗]

Law (contrib.) 3.95 (Introduce-Parallel-Spec). For any predicates p, p0 and p1, and relations

q, q0, q1, g0 and g1, such that ⊢ p⇒ p0 ∧ p1 and ⊢ p ∧ (q0 ∧ q1)⇒ q,

[p, q] ⊑ (guar g0 · rely g1 · [p0, q0]) ∥ (guar g1 · rely g0 · [p1, q1])

Law 3.97 (Introduce-Parallel-Spec-Nested). For any predicates p, p0 and p1, and relations

q, q0, q1, g0, g1 and r, such that ⊢ p⇒ p0 ∧ p1 and ⊢ p ∧ (q0 ∧ q1)⇒ q,

rely r · [p, q] ⊑ (guar g0 · rely g1 ∨ r · [p0, q0]) ∥ (guar g1 · rely g0 ∨ r · [p1, q1])

Lemma 3.101 (Introduce-Variable-Frame). For any variable x, set of variables Y, and

command c, assuming x is not in Y and is unrestricted in c,

Y: c ⊑ var x · ({x} ∪ Y): c

Law 3.102 (Introduce-Variable-Rely). For any relations z and r, variable x and set of

variables Y, such that x is not in Y and is unrestricted in rely (r, z) · c, then

Y: (rely (r, z) · c) ⊑ var x · ({x} ∪ Y): (rely (idset {x} ∧ r, z) · c)

Law 3.105 (Rely-Uses). For any predicate p, relation q, and set of commands X, such that

[p, q] tolerates interference idset X,

rely idset X · [p, q] ⊑ uses X · [p, q]

270 Summary of laws and definitions used in Chapter 6

Lemma (contrib.) 3.108 (Elimination-Uses). For any command c, which consists only of

code, and set of variables X, such that all free variables of c are in X,

uses X · c ⊑ c

Law (contrib.) 3.109 (Distribute-Uses). For any sets of variables X and Y, relation g,

predicate p and command c,

guar g · uses X · c ⊑ uses X · (guar g · c) (3.109a)

guar−inv p · (uses X · c) ⊑ uses X · guar−inv p · c (3.109b)

Y: (uses X · c) ⊑ uses X · Y: c (3.109c)

Law 3.111 (Rely-Conditional). For any predicates p, b0 and b1, relations r and q, such

that [p, q] tolerates interference r, and boolean expression b, such that b satisfies the single

reference property with respect to r and ⊢ p ∧ [[b]]r ⇒ b0 and ⊢ p ∧ r⇒ (b0⇒ b0‘), and

⊢ p ∧ [[¬b]]r ⇒ b1 and ⊢ p ∧ r⇒ (b1⇒ b1‘), and ⊢ p⇒ defined b,

rely r · [p, q] ⊑ (if b then rely r · [p ∧ b0, q] else rely r · [p ∧ b1, q])

Law 3.112 (Rely-Loop). For predicates p, b0 and b1, relations r, w and q, and set of variables

X, such that p is preserved by r and w is well-founded on p and ⊢ depends-only (w, X) and

⊢ p ∧ r∗∗⇒ w∗∗X and boolean expression b, such that b satisfies the single reference prop-

erty with respect to r and ⊢ p ∧ [[b]]r ⇒ b0 and ⊢ p ∧ r⇒ (b0⇒ b0‘), and ⊢ p ∧ [[¬b]]r ⇒ b1,

and ⊢ p ∧ r⇒ (b1⇒ b1‘) and ⊢ p⇒ defined b,

rely r · [p, p‘ ∧ b1‘ ∧ w∗∗X] ⊑ while b do rely r · [p ∧ b0, p‘ ∧ w]

Law 3.113 (Assignment-Guarantee). For any predicate p, relation g, variable x and ex-

pression e such that ⊢ ((p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x})⇒ (q ∧ (g ∨ idrel))) and also

⊢ p⇒ defined e,

guar g · [p, q] ⊑ x:=e

Law 3.114 (Assignment-Rely-Guarantee). For any variable x, expression e, set of variables

X, predicate p and relations g and q, such that [p, q] tolerates interference idset X, and

271

⊢ p⇒ defined e, and ⊢ ((p ∧ (λ s s ′. s ′ x = [[e]]v s) ∧ idset {x})⇒ (q ∧ (g ∨ idrel))), and

free-exp e ∪ {x} ⊆ X,

{x}: (guar g · rely idset X · [p, q]) ⊑ x:=e

Law (contrib.) 3.81 (Rely-Idrel-Specification). For any predicate p and relation q,

(rely idrel · [p, q]) ∼ [p, q]

Law 4.9 (Trade-Spec-Frame). For any predicate p, relation r and set of variables X and Y,

such that Y ⊆ X,

X: [p, q] ∼ X: [p, idset Y ∧ q]

Law 4.11 (Dist-Guarantee-Var). For any variable x, program c and relation g, such that

⊢ depends-only (g, {x}),

guar g · var x · c ∼ var x · (guar g · c)

Law 4.12 (Trade-Spec-Guarantee). For any predicate p and relations g and q,

guar g · [p, g∗∗ ∧ q] ∼ guar g · [p, q]

Law 4.13 (Distribute-Frame-Sequential). For any set of variables Y, Y1 and Y2, such

that Y1 ⊆ Y and Y2 ⊆ Y, and commands c, c ′, d and d ′, and relation r such that c ⊑[r] c ′

and d ⊑[r] d ′,

Y: (c ; d) ⊑[r] Y1: c ′ ; Y2: d ′

Law 5.6 (Distribute-g-Parallel). For any context function F and relation g,

(guar g · ∥Idx · F) ∼ (∥Idx · (λc. guar g · F c))

Law 5.9 (Introduce-Multi-Parallel-Parameterised). For any predicate p, injective list of

indices Idx1, non-parameterised relations Q and R, and parameterised relations g, r and q

1Injective lists do not contain repeated elements.

272 Summary of laws and definitions used in Chapter 6

such that ⊢ g i⇒ r j for all i, j ∈ set Idx satisfying i ̸= j, and ⊢ R⇒ r i ∨ idrel for all i ∈ Idx,

and ⊢ (λ s s ′. ∀ i∈set Idx. q i s s ′)⇒ Q,

rely R · [p, Q] ⊑ ∥Idx · (λ i. guar g i · rely r i · [p, q i])

Law 5.10 (Introduce-Multi-Parallel). For any predicate p, list of indices Idx, non para-

meterised relations g, r, R and Q, and parameterised relation q such that ⊢ g⇒ r and

⊢ R⇒ r ∨ idrel, and ⊢ (λ s s ′. ∀ i∈set Idx. q i s s ′)⇒ Q,

rely R · [p, Q] ⊑ ∥Idx · (λ i. guar g · rely r · [p, q i])

Lemma 5.26 (Assignment-Array). For any array x, list of natural numbers l, expression e,

predicate p and relations g, q and r, such that

1. [p, q] tolerates interference r; and

2. ⊢ p⇒ defined e; and

3. ⊢ p ∧ (λ s s ′. s ′ x = (s x)[l←[[e]]v s]) ∧ idset {x} ⇒ q ∧ (g ∨ idrel); and

4. e is preserved by r, that is, ⊢ p ∧ r⇒ (λ s s ′. [[e]]v s = [[e]]v s ′),

the following holds,

{x}: (guar g · rely r · [p, q]) ⊑ xl:=e

Lemma 5.30 (RE-Intended-Assignment). For any predicate p, relations g, r and q, variable

x and expression e such that

1. ⊢ p⇒ defined e; and

2. p is stable under r; and

3. ⊢ r⇒ idset {x}; and

4. ⊢ p ∧ x .
=[r] e ∧ idset {x} ⇒ q ∧ (g ∨ idrel),

the following holds,

{x}: (guar g · rely r · [p, q]) ⊑ x:=e

273

Law 5.31 (Sequential-Conditional). For any predicate p, relation q and boolean expression

b, such that ⊢ p⇒ defined b,

[p, q] ⊑ (if b then [p ∧ [[b]]r, q] else [p ∧ [[¬b]]r, q])

Law 5.32 (Sequential-Loop). For any predicate p, boolean expression b and relation w that

is well-founded on p, such that ⊢ p⇒ defined b,

[p, p‘ ∧ [[¬b]]r‘ ∧ w∗∗] ⊑ while b do [p ∧ [[b]]r, p‘ ∧ w]

Appendix C

Applying the refinement algebra
(sources)

C.1 Findp Sequential

C.1.1 Derivation

The table of abbreviations is reproduced at the last page of the section.

Algorithm 1 Findp S0

{t}: [true, post0]

Algorithm 2 Findp S1

t:=len(v);
{t}: guar−inv gi-satp · [init, notp(v, domain(v), t ′)]

Algorithm 3 Findp S2

t:=len(v);
var k

k:=0;
guar−inv gi-satp ·
guar−inv gi-notp · {k, t}: [init, post-dec]

275

276 Applying the refinement algebra (sources)

Algorithm 4 Findp S3

t:=len(v) ;
var k

k:=0 ;
while c-while do

guar−inv gi-satp ·
guar−inv gi-notp · {k, t}: [init ∧ c-while, init ′∧ w]

Algorithm 5 Findp S4

t:=len(v);
var k

k:=0 ;
while c-while do

if c-if then
guar−inv gi-satp ·
guar−inv gi-notp · {t}: [init ∧ c-while ∧ c-if, init ′∧ (t ′= k)]

else
guar−inv gi-satp ·
guar−inv gi-notp · {k}: [init ∧ c-while ∧ ¬c-if, init ′∧ (k ′= k + 1)]

Algorithm 6 Findp S5

t:=len(v);
var k

k:=0 ;
while c-while do

if c-if then
t:=k

else
k:=k + 1

C.2 Proof obligations 277

C.2 Proof obligations

Proposition C.1 (Proof obligation for R7). The next statement holds.

⊢

init ∧ ((k ′= 0) ∧ idset {k, t} ∧ (gi-notp ∧ init) ′ ; gi-notp ′∧ post-dec ∧ idset {k, t})

⇒r

notp(v, domain(v), t ′)

Proof.

init ∧ ((k ′= 0) ∧ idset {k, t} ∧ (gi-notp ∧ init) ′ ; gi-notp ′∧ post-dec ∧ idset {k, t})

⇒ by law 4.1m (Relation-Properties)

(k ′= 0) ∧ idset {k, t} ∧ (gi-notp ∧ init) ′ ; gi-notp ′∧ post-dec ∧ idset {k, t}

⇒ by laws 4.2c (Log-Interp-Imp-Monotonic), 4.1l and 4.1m (Relation-Properties)

idset {k, t} ; gi-notp ′∧ post-dec ∧ idset {k, t}

⇒ by laws 4.2b, 4.2c and 4.2d (Log-Interp-Imp-Monotonic)

idset {v} ; gi-notp ′∧ post-dec ∧ idset {v}

= expanding (idset {v}), gi-notp and post-dec

(v ′= v) ; (notp(v, domain(v), k) ∧ bnd(k, v)) ′∧ (t ′≤ k ′) ∧ (v ′= v)

= expanding notp and the post-state notation (Def. 2.19)

(v ′= v) ; (∀ i∈domain(v ′). i < k ′−→ ¬ p (v ′ ! i)) ∧ bnd(k ′, v ′) ∧ (t ′≤ k ′) ∧ (v ′= v)

= expanding the relational composition and eliminating its existential quantifier

(∀ i∈domain(v ′). i < k ′−→ ¬ p (v ′ ! i)) ∧ bnd(k ′, v ′) ∧ (t ′≤ k ′) ∧ (v ′= v)

⇒ monotonocity of ≤

∀ i∈domain(v). i < t ′−→ ¬ p (v ! i)

= contracting notp

notp(v, domain(v), t ′)

278 Applying the refinement algebra (sources)

C.3 Findp Concurrent

C.3.1 Derivation

Algorithm 7 Findp C0: Initial specification
{t}: [true, post0(t, t, TP)]

Algorithm 8 Findp C1: Preventing data races
var ot ·
var et

ot:=len(v) ; et:=len(v);
guar−inv gi-satp ·
{ot, et}: rely idset {v, ot, et} · [init(ot) ∧ init(et), notp(v, domain(v,TP), min(ot ′, et ′))];
t:=min(ot, et)

Algorithm 9 Findp C2: Introducing parallelism
var ot ·
var et

ot:=len(v) ; et:=len(v);
parallel

guar-inv gi-satp ·
{ot, et}: guar g(ot, et) ·
rely g(et, ot) ∧ idset {v} · [init(ot), notp(v, domain(v,odd), min(ot ′, et ′))]

and
guar-inv gi-satp ·
{ot, et}: guar g(et, ot) ·
rely g(ot, et) ∧ idset {v} · [init(et), notp(v, domain(v,even), min(ot ′, et ′))]

end parallel;
t:=min(ot, et)

C.3 Findp Concurrent 279

Algorithm 10 Findp C3: Introducing loop counters
var ot ·
var et

ot:=len(v) ; et:=len(v);
parallel

var ok
ok:=1;
guar−inv gi-satp ·
guar ot ′≤ ot ·
guar-inv gi-notp(ok, odd) ·
{ok, ot}: rely g(et, ot) ∧ idset {ok, v} · [init(ot), post-dec(ok)]

and
var ek

ek:=0;
guar−inv gi-satp ·
guar et ′≤ et ·
guar-inv gi-notp(ek, even) ·
{ek, et}: rely g(ot, et) ∧ idset {ek, v} · [init(et), post-dec(ek)]

end parallel;
t:=min(ot, et)

280 Applying the refinement algebra (sources)

Algorithm 11 Findp C4: Introducing a while loop
var ot ·
var et

ot:=len(v) ; et:=len(v) ;
parallel

var ok
ok:=1 ;
while c-while(ok) do

guar−inv gi-satp ·
guar ot ′≤ ot ·
guar-inv gi-notp(ok, odd) ·
{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot), w(ot, ok)]

and
var ek

ek:=0 ;
while c-while(ek) do

guar−inv gi-satp ·
guar et ′≤ et ·
guar-inv gi-notp(ek, even) ·
{ek, et}: rely idset {ek, et, v} · [prew(ek, et), w(et, ek)]

end parallel;
t:=min(ot, et)

C.3 Findp Concurrent 281

Algorithm 12 Findp C5: Introducing a conditional
var ot ·
var et

ot:=len(v) ; et:=len(v) ;
parallel

var ok
ok:=1 ;
while c-while(ok) do

if c-if (ok) then
guar−inv gi-satp ·
guar ot ′≤ ot ·
guar-inv gi-notp(ok, odd) ·
{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot) ∧ c-if(ok), w(ot, ok)]

else
guar−inv gi-satp ·
guar ot ′≤ ot ·
guar-inv gi-notp(ok, odd) ·
{ok, ot}: rely idset {ok, ot, v} · [prew(ok, ot) ∧ ¬c-if(ok), w(ot, ok)]

and
var ek

ek:=0 ;
while c-while(ek) do

if c-if (ek) then
guar−inv gi-satp ·
guar et ′≤ et ·
guar-inv gi-notp(ek, even) ·
{ek, et}: rely idset {ek, et, v} · [prew(ek, et) ∧ c-if(ek), w(et, ek)]

else
guar−inv gi-satp · guar (et ′≤ et) ·
guar-inv gi-notp(ek, even) ·
{ek, et}: rely idset {ek, et, v} · [prew(ek, et) ∧ ¬c-if(ek), w(et, ek)]

end parallel;
t:=min(ot, et)

282 Applying the refinement algebra (sources)

Algorithm 13 Findp C6: Implementing assignments
var ot ·
var et

ot:=len(v) ; et:=len(v);
parallel

var ok
ok:=1 ;
while c-while(ok) do

if c-if (ok) then
ot:=ok

else
ok:=ok + 2

and
var ek

ek:=0 ;
while c-while(ek) do

if c-if (ek) then
et:=ek

else
ek:=ek + 2

end parallel;
t:=min(ot, et)

C
.3

Findp
C

oncurrent
283

C.3.2 Abbreviations for Findp

TP(x) ≡ True

P(e) ≡ UOp (p, TP) e

notp(v, s, t) ≡ ∀ i∈s. i < t −→ ¬ p (v ! i)

domain(v) ≡ {x | x < length v}

satp(v, t) ≡ t ∈ domain(v) ∧ p (v ! t)

post0 ≡ (t ′= length v ∨ satp(v, t ′)) ∧

notp(v, domain(v), t ′)

gi-satp ≡ (t = length v) ∨ satp(v, t)

gi-notp ≡ notp(v, domain(v), k) ∧ bnd(k, v)

bnd(k, v) ≡ 0 ≤ k ∧ k ≤ length v

init ≡ t ≤ length v

post-dec ≡ t ′≤ k ′

w ≡ (0 ≤ t ′− k ′) ∧ (t ′− k ′< t − k)

c-while ≡ k < t

c-if ≡ P(v[k])

TP(x) ≡ True

P(e) ≡ UOp (p, TP) e

notp(v, s, t) ≡ ∀ i∈s. i < t −→ ¬ p (v ! i)

domain(v,Φ) ≡ {x | x < length v ∧ Φ(x)}

satp(v, t, Φ) ≡ t ∈ domain(v,Φ) ∧ p (v ! t)

post0(x, y, Φ) ≡ ((min(x ′, y ′) = length v) ∨ satp(v, min(x ′, y ′), TP)) ∧

notp(v, domain(v,Φ), min(x ′, y ′))

gi-satp ≡ (min(ot, et) = length v) ∨ satp(v, min(ot, et), TP)

gi-notp(x, Φ) ≡ notp(v, domain(v,Φ), x) ∧ bnd(x, v) ∧ Φ(x)

bnd(k, v) ≡ 0 ≤ k ∧ k ≤ length v + 1

init(t) ≡ t ≤ length v

post-dec(x) ≡ min(ot ′, et ′) ≤ x ′

w(t, k) ≡ (0 ≤ t ′− k ′+ 1) ∧ (t ′− k ′< t − k)

c-while(k) ≡ k < ot ∧ k < et

c-if (k) ≡ P(v[k])

b0(k, t) ≡ k < t

b1(k, ot, et) ≡ (ot ≤ k) ∨ (et ≤ k)

prew(k, t) ≡ b0(k, t) ∧ init(t)

g(x, y) ≡ (x ′≤ x) ∧ idset {y}

Table C.1 Abbreviations for sequential and concurrent Findp (side by side). Left: sequential, right: concurrent

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Formal verification and refinement
	1.3 Need for tool support
	1.4 Thesis proposition
	1.5 Contributions
	1.6 Literature review
	1.6.1 Program logics
	1.6.2 Refinement-based approaches
	1.6.3 Data refinement
	1.6.4 Isabelle/HOL

	1.7 Structure of the thesis

	2 Foundation
	2.1 Programming language
	2.2 Formalisation of the state
	2.3 Encoding the programming language
	2.3.1 Shallow and deep-embedding
	2.3.2 Expression language
	2.3.3 Definedness
	2.3.4 Encoding RG-WSL

	2.4 Relations
	2.4.1 Predicates
	2.4.2 Satisfiability
	2.4.3 Post state notation
	2.4.4 Wellfounded relations

	2.5 Relational interpretation of expressions
	2.6 Logical interpretation of relations
	2.6.1 Example: reasoning compositionally about logical interpretation

	2.7 Operational semantics
	2.7.1 Expression evaluation
	2.7.2 Small-step semantics
	2.7.3 Big-step semantics

	2.8 Denotational semantics
	2.9 Refinement
	2.10 Forward simulation
	2.11 Unrestricted variables
	2.12 Discussion and summary of contributions
	2.12.1 Alternative approaches to formalise states
	2.12.2 Semantics
	2.12.3 Well-founded relations
	2.12.4 Unfair parallelism

	3 Rely-guarantee refinement calculus
	3.1 Derived commands
	3.1.1 Precedence and associativity

	3.2 Stability
	3.2.1 Single reference property

	3.3 Basic refinement laws
	3.3.1 Associativity, commutativity and distributivity
	3.3.2 Monotonicity
	3.3.3 Zeros and units
	3.3.4 Pre and post-conditioned assumptions
	3.3.5 Iteration
	3.3.6 Termination

	3.4 The guarantee command
	3.4.1 Properties of strict conjunction
	3.4.2 Refining the guarantee command
	3.4.3 Guarantee invariant and frames

	3.5 The rely command
	3.5.1 Properties of interference
	3.5.2 Fundamental properties of rely
	3.5.3 Refining the rely command

	3.6 Arranging rely and guarantee commands
	3.7 Trading postconditions with rely and guarantee
	3.8 Introducing parallelism
	3.8.1 Example: nested parallelism

	3.9 Expressions and tests
	3.10 Local variables
	3.10.1 Example: shadowing

	3.11 Restricting access to variables
	3.12 Control structures and assignment
	3.13 Discussion and summary of contributions
	3.13.1 Intricate aspects of using the R/G refinement calculus
	3.13.2 Stronger definition of rely command

	4 Rely-guarantee in Isabelle/HOL
	4.1 Methodology
	4.1.1 Naming conventions
	4.1.2 Encoding lemmas
	4.1.3 Proof style

	4.2 Proof engineering
	4.2.1 Relational operators
	4.2.2 Single reference property
	4.2.3 Monotonicity and substitution
	4.2.4 Shortening proofs
	4.2.5 Representation issues

	4.3 Conflicts between semantics and local assumptions
	4.3.1 Semantic encoding
	4.3.2 Stratification
	4.3.3 Justifying design decision

	4.4 Discussion and summary of contributions

	5 Extensions to rely-guarantee algebra
	5.1 Indexed parallelism
	5.1.1 Monotonicity and substitution
	5.1.2 Introducing indexed parallelism

	5.2 Eguard
	5.3 Revised abortive conditions
	5.4 Assignment to indexed arrays
	5.5 Reachable evaluations
	5.5.1 Example: parallel assignments
	5.5.2 Discussion

	5.6 Sequential laws
	5.7 Type system
	5.8 Discussion and summary of contributions
	5.8.1 Contributions
	5.8.2 Further extensions

	6 Applying the refinement calculus
	6.1 Typographic conventions
	6.2 Reading advice
	6.3 Findp: Sequential
	6.3.1 Abbreviations
	6.3.2 Derivation
	6.3.3 Discussion

	6.4 Findp: Concurrent
	6.4.1 Abbreviations
	6.4.2 Derivation
	6.4.3 Discussion

	6.5 Sieve
	6.5.1 Abbreviations
	6.5.2 Derivation
	6.5.3 Discussion

	6.6 Floyd-Warshall algorithm
	6.6.1 Abbreviations
	6.6.2 Derivation
	6.6.3 Discussion

	6.7 Discussion
	6.7.1 Proof metrics
	6.7.2 Bottlenecks

	7 Evaluation
	7.1 Quantitative summary
	7.1.1 Local assumptions
	7.1.2 Threats to validity

	7.2 Lessons learned
	7.2.1 Isolate concepts
	7.2.2 Favour usability
	7.2.3 Benefit from integrated proof tools

	7.3 Related work
	7.3.1 Systematic parallel programming
	7.3.2 Formal analysis of concurrent programs
	7.3.3 The rely-guarantee method in Isabelle/HOL
	7.3.4 On the Mechanisation of Rely-Guarantee in Coq
	7.3.5 Generalised rely-guarantee concurrency
	7.3.6 An algebra of synchronous atomic steps
	7.3.7 Algebraic Principles for Program Correctness Tools inIsabelle/HOL

	8 Conclusion
	8.1 Summary and contributions
	8.2 Takeaway message
	8.3 Limitations
	8.4 Future work

	Bibliography
	A Rely-guarantee algebra in Isabelle/HOL
	A.1 Mechanisation
	A.2 Precedence and associativity
	A.3 Revised paper proofs
	A.4 Additional material
	A.4.1 Compiled PDF of the theory
	A.4.2 Uncountability of RG-WSL
	A.4.3 Uncountability of the set used to define the rely command
	A.4.4 Font extension

	B Summary of laws and definitions used in Chapter 6
	C Applying the refinement algebra (sources)
	C.1 Findp Sequential
	C.1.1 Derivation

	C.2 Proof obligations
	C.3 Findp Concurrent
	C.3.1 Derivation
	C.3.2 Abbreviations for Findp

