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Abstract

This thesis presents an implementation of the recently developed stable revivals model 1Z in CSP- 
Prover, The stable revivals model is a new semantic model of the process algebra Communicating 
Sequential Processes (Csp). Bill Roscoe developed this new model o f Csp in 2005 in order to capture 
process properties essential for Component Based Systems Design. On the practical side, the model 7Z 
is developed to reason about responsiveness and stuck-freeness. These properties are vital for modular 
reasoning of Component Based Systems Design and other distributed systems.

CSP-Prover provides a deep encoding of the process algebra CSP in the generic theorem proving en
vironment Isabelle. CSP-Prover can be used to prove refinements on infinite state systems and generic 
in the underlying architecture. Currently, it fully implements the stable failures model and the traces 
model of Csp. In this thesis, we extend CSP-Prover by implementing the stable revivals model to pro
vide tool support for responsiveness and stuck-freeness. On the theoretical side, our implementation 
also yields a machine verification of the model TZ's soundness as well as of its expected properties.

We present a faithful and running implementation of the stable revivals model in the proof tool CSP- 
Prover. This requires certain changes with respect to Roscoe’s original model in the implementation. 
We also present an improvement to Roscoe’s model which allows to remove restrictions and imple
ment the improved model in CSP-Prover.
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Chapter 1

Introduction
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1.3 Thesis O u tlin e ................................................................... .......................................... 6

1.1 Introduction

Verification of concurrent systems is an area of major research in computer science. The task of 
verification is to guarantee that an implementation of a system satisfies its specification. Concurrent 
systems consist of a set of processes that communicate with each other to perform some common 
task. The mode of execution and the mode of communication may differ from one system to another. 
[CGP99]. Concurrent systems are ubiquitous: from train controllers to avionics; from modem home 
appliances to automobiles; in business domain over enterprise supply management systems to flight 
management systems; from telecommunication systems to web services on the Internet; in critical 
systems like heart pacemakers to nuclear reactor controllers.

Formal methods [Ros98] analyse systems using mathematically rigorous techniques. In formal meth
ods, specifications and implementations of systems are represented in notations that have clear se
mantics. It is then proved that the implementations meet their specifications using formal verification 
techniques. These kinds of techniques give assurance on the quality o f systems.

Concurrent systems are complex. Formal verification o f complex concurrent systems using mathemat
ically rigorous techniques is a time consuming, tedious, and error-prone process. Hence computer- 
based tool support is useful for making the task easier. There are broadly two different ways to verify 
systems: model checking and theorem proving.

In model checking, an implementation of the system to be verified is usually modelled as finite state 
systems and specifications are formalised by writing temporal logic properties. The reachable states 
of the systems are traversed in order to verify the properties expressed in specifications [CGP99]. 
Model checking is an algorithmic method to verify if a given implementation of the system satisfies

1



2 Chapter 1 Introduction

its specification. If the implementation satisfies its specification, it returns true. If the implementa
tion does not satisfy its specification, it produces a counter example for the failure. Model checking 
is fully automatic; however, most o f model checking tools can verify only systems that are finite 
states. Nowadays for model checking tools, models need not be finite states, and requirements can be 
specified in the variety of other languages. Moreover, model checking tools cannot verify very large 
systems due to the so-called state explosion problem that limits the application of model checking 
tools. FDR [Lim07], SPIN [Hol97], NuSMV [CCGR99], etc., are some examples of model checking 
tools. There have been many techniques to verify very large systems. Symbolic model checking is 
one of those techniques. In symbolic model checking, sets of states are represented by efficient data 
structures like Ordered Binary Decision Diagrams [Bry92]. It has been shown that symbolic model 
checking can be used in verifying industrial size systems. On the other hand, theorem proving can be 
used to verify infinite state systems. However, it can be automatic in restricted systems. In theorem 
proving, implementations and specifications are represented in some logic and then it is interactively 
proved that the implementations satisfy their specifications, hence theorem proving needs some skills. 
The latest advances in theorem prover make theorem proving easier and adds support for automatic 
proof generation. This thesis focuses on providing the tool support for the specifications of concurrent 
systems using theorem proving techniques.

Process algebra [Bae05, BPS01] is a formal method to specify and verify concurrent systems. Com
municating Sequential Processes (CSP) [Hoa85, Hoa06, RBH81, RSG+01, AJS05, Ros98], Calculus 
of Communicating Systems (CCS) [Mil89], 7r-calculus[3] [Mil99], the Algebra of Communicating 
Processes (A c p) [BK89] are well-known process algebras. C sp  was designed by C.A.R. Hoare. A  
theory for C sp  was later developed by C.A.R. Hoare, A. W. Roscoe and S.D. Brookes [RBH81]. C sp  
is a notation for describing systems of parallel agents that communicate by passing messages between 
them [RSG+01, Ros98]. CCS was developed by R. Milner. A primary goal in the original design 
of C cs was to design and codify a minimal set of basic primitive agents and operators, which are 
capable in combination of describing all the characteristic phenomena encountered in the study of the 
interaction of concurrent agents [Hoa06]. Csp  and C c s  influenced one another throughout their de
velopment [Fid]. 7r-calculus is a process calculus developed by R. Milner and others as a continuation 
of the body of work on the process calculus CCS (Calculus of Communicating Systems). 7r-calculus 
was developed to describe concurrent computations whose configuration may change during the com 
putation [Mil99]. A cp  [BK89] is fundamentally an algebra to reasoning about concurrent systems. It 
was developed by J. Bergstra and J. W. Klop to describe systems in terms of algebraic approach. In 
this thesis, we focus on C s p .

Over the last decades, many process algebras have been developed to reason about security protocols, 
biological process, mobile processes, etc. Even though the different process calculi are designed 
for different purposes, all the process algebra languages share the following three major properties 
[Bae05]:

•  Compositional modelling: Complex processes are built by combining basic primitive operators,

•  Operational semantics: Meanings of processes are defined using Plotkin-styled operational se
mantics that describes the processes in terms of the single executions of steps.

•  Behavioural reasoning via equivalences and preorders: Behavioural relation of processes can 
be related through process equivalence and processes refinement.

The meaning for process algebras can be defined in more than one way: algebraic semantics, demo- 
tational semantics or operational semantics. In algebraic semantics, which sometimes is also called
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axiomatic semantics, properties of operators are defined by axioms and laws. Acp follows algebraic 
semantics to define the meaning of the operators. Some of the basic laws in ACP are presented in 
the following where p\,  P2 and ps are processes in ACP, and +  denotes the non-deterministic choice 
operator.

Pi +  P2 =  P2 +  Pi Commutativ ity  
(Pi +  P2 ) +  P3 =  Pi +  (P2 +  P3 ) Associativity  

Pi +  Pi — Pi Idempotence

In operational semantics, processes are interpreted based on labelled transition systems. Equivalence 
and refinement are usually defined as bi-simulations and simulations. C c s  follows the operational 
semantics approach to assign the meaning to the processes.

In denotational semantics, processes are interpreted by mapping the processes to mathematical ob
jects. The collection of all mathematical objects in the denotational semantics is called the domain. 
Equivalence and refinements are defined by ordering relations on the domain. It is a general tenet 
of CSP to define semantics of processes using denotational semantics, but meaning can be assigned 
using operational semantics. In this thesis, we focus on embedding the denotational semantics o f a 
new model of CSP in a higher order logic.

Mike Gordon et al [BGG+ 92] states the benefits that we get in embedding a language in higher order 
logic:
“The general technique of embedding a conventional notation, such as a hardware description lan
guage, in a mechanised formal systems, such as HOL, offers several possible benefits:

•  formal definition of the semantics of various notation;

•  mechanised support for syntax and type checking;

•  a framework for establishing meta theorems about the notations (such as consistency);

•  support for formal proof about programs;

•  derivation of proof rules for notation (such as equational transformation);

•  verification of compilers.”

Thus embedding a process algebra in a theorem prover provides mechanical support for the defini
tion of semantics. Proving theorems about the process algebra can help to verify correctness of the 
process algebra itself and to verify systems designed in the process algebra. [BGG+ 92] classifies the 
embedding of a language in a mechanised formal system in two ways:

(i) shallow embedding and

(ii) deep embedding.

In a deep embedding, the syntax and semantics of a language are embedded in a mechanised formal 
system. The mapping from the syntax of a language to the semantics is defined as a function in the 
formal system. In a deep encoding, the user can specify the syntax of a language as a new datatype 
and then define the semantics of the language. CSP-Prover has a deep encoding of the process algebra 
Csp . Csp-Prover is a theorem-proving tool to analyse Csp processes and Cs p ’s properties. In this 
thesis, we embed a new semantic model of Csp in Csp-Prover. We will study deep embedding further 
when we discuss the architecture of Csp-Prover in Chapter 2.
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In a shallow embedding, only the semantics o f a language is defined in the formal system and the user 
provide a user-interface that parses the syntax of a language directly to the semantic structures. In a 
shallow embedding, we can only prove theorems in the embedded language [BG95].

Compared to a deep embedding, a shallow embedding saves cost as the syntactic component is not 
to be implemented. Also, in general it is assumed that in an shallow embedding theorems within the 
language are easier to prove. Experience with HOL-CSP (shallow encoding) and CSP-Prover (deep 
encoding) seems to indicate the opposite: Having the CSP-Syntax available, Csp-Prover allows for 
inductive proves along the syntactic structure. In the CSP context, this has shown to be a powerful 
and necessary proof principle. Furthermore, theorems on the language can only be achieved by a deep 
embedding.

The most notable difference between these two kinds of embedding is the interpretation of types 
in the language. In a shallow embedding, types in the embedding language are identified with the 
types of the formal system. Hence, the type correctness (well definedness of semantic) follows easily. 
In contrast, deep embedding identifies types in the language with types induced by the types in the 
formal system. In a deep embedding, this is quite difficult as the user has to prove well formedness 
and develop their own proof support, whereas in a shallow embedding, the semantics is defined in 
the logic of the theorem prover, and hence well formedness follows naturally. In a deep embedding, 
theorems about embedded languages are provable, but not in a shallow embedding.

1.1.1 Related Work

Mechanisation of process algebras in theorem provers is not a new work. Most o f the major process 
algebras have been formalised in some theorem provers from the early nineties of the last century. In 
this section, we discuss some of them. A subset o f the process algebra C cs is formalised by Nesi 
[Nes92] in Higher Order Logic (HOL) [NPW06]. The formal theories for observational congruence 
and for a slight extension of Hennessy-Milner modal logic over pures C cs (with no value passing) 
are embedded in the HOL logic to support verification and reasoning about processes specifications.

Camilleri [Cam90] mechanised the traces model of C sp  in HOL to reason about C sp  processes. 
Mechanisation follows a definitional approach to avoid inconsistency laws, hence the logic is extended 
conservatively. Later, he mechanised a variation of the failures-divergence model of CSP in HOL 
[Cam91]. In both implementations, the sequential operator of CSP is not included. This is one of the 
early mechanisation of a concurrent specification language in higher order logic.

In [TW97], Tej and Wolff formalised C sp  in Isabelle/HOL [NPW02]. It is a shallow embedding of the 
failures divergence model based on the C po  approach. Theories on C p o , continuity, Knaster-Tarski 
and fixed-point induction are formalised to reason about recursive CSP processes. The embedding 
included the sequential operator of CSP. The embedding revealed an error in the type correctness 
of the sequential operator. Like CSP-Prover, it allows to reason about infinite communication alpha
bets and unbounded non-determinism. A corrected model has been formally proven consistent with 
Isabelle/HOL.

Dutertre and Schneider [DS97] formalised the traces model o f CSP in P v s  [ORS92] to reason about 
authentication protocols. Recently, Wei and Heather [WH05] extended the formalisation to reason 
about the stable failures model of CSP in P v s . They have proved determinism and deadlock freedom 
of the asymmetric dinning philosophers problem with an arbitrary number of philosophers and have
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proved an example o f an industrial-scale application ’virtual network’ with any number of dimensions 
to be deadlock-free.

Very recently, Kammuller [Kam07] formalised the failures divergence model of Csp in Isabelle/HOL. 
Embedding uses many standard features of theorem prover like Tarski’s fixed-point theorem provided 
in Isabelle/HOL. It has been developed to keep the embedding lightweight and as simple as possible 
for teaching purpose and easy for modification.

1.2 Motivation of the project

Communicating Sequential Processes (C s p ) [Hoa85, Ros98, RBH81, RSG+ 01, AJS05] is one of the 
process algebras, which has widely been used to describe concurrent systems. By fixing one syntax 
and varying behaviours observed on the processes, we can get different model [RRS06, Ros98].

Mathematical models o f C sp  processes are constructed based on properties and behaviours that we are 
interested in. The traces model (T ), the failure divergences model (Af), and the stable failures model 
(T )  are some examples o f well-known and well-studied mathematical models in CSP. The traces 
model suits well to reason about safety properties. The failure-divergences and the stable failures 
model are developed mainly to reason about liveness properties in CSP. Recently, Roscoe [RRS06, 
Ros07] developed a new model called the stable revivals model 7Z to reason about responsiveness and 
stuck-freeness in distributed systems. Responsiveness and stuck-freeness are properties of modular 
reasoning or compositional reasoning in Component Based Systems. The aim of this project is to 
implement the newly developed model 7Z in CSP-Prover [IR07b, IR05].

Csp-Prover provides a deep encoding o f the process algebra C sp  in the generic theorem proving 
environment Isabelle. CSP-Prover can be used to prove refinement on infinite state systems. Currently, 
it implements the stable failures model and the traces model in C s p . In this thesis, we extend C s p - 
Prover by implementing the stable revivals model to provide tool support for this model. Errors found 
in the semantic function o f the sequential operator in the model N  [TW97] and algebraic laws in 
model T  [IR05] show that the mechanisation of CSP models can reveal errors in well-established 
theories. It shows that definition o f models will be ’complete’ [Ros06], once they have been defined 
in a mechanised theorem prover. To build a sound logical system, the semantics of the stable revivals 
model is implemented by a definitional approach similar to other models in Csp-Prover. The benefits 
of the project are as follows:

•  On the theoretical side, for the C sp  community, embedding allows one to verify mechanically 
the important properties in the stable revivals model. One of the major properties is mechanical 
verification o f the definition of semantics. Especially, the type correctness of the semantic 
clauses, continuity o f the semantic functions, validation of algebraic laws.

•  On the practical side, for the software engineering community, implementing the stable revivals 
model in Csp-Prover allows one to reason about responsiveness and stuck-freeness properties 
in a theorem-proving environment. Thus, this project delivers tool support for reasoning about 
responsiveness. Responsiveness says that in an interaction between two processes, one process 
will not cause another one to deadlock by not responding to it when expected. Stuck-freeness of 
a pair o f interacting processes means the combination terminates successfully without leaving 
one process hanging. Responsiveness has been identified as one of the key non-functional 
properties o f large-scale systems in the UK grand challenge problem [UKG08].
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•  It is shown in [Ros07] that some important algebraic laws like n-D-distributivity fail in the 
model. By embedding, we can mechanically prove algebraic laws in Csp in the Csp-Prover 
in a sound way. Manual verification of these algebraic laws is an error-prone, tedious, and 
complex task.

•  Our work extends Csp-Prover tool with yet another C sp  model. Thus it shows that Csp-Prover 
is a versatile tool and easily extendable.

1.3 Thesis Outline

In this thesis, we present an implementation of the stable revivals model in CSP-Prover. The imple
mentation of the model has the following steps in CSP-Prover proof infrastmcture:

1. Creating a new type to represent the domain of the model.

2. Proving that the domain of model is a complete partial order.

3. Encoding the semantic function of the model.

4. Proving the type correctness of the semantic functions.

5. Proving that the semantic function are continuous.

6 . Providing a proof infrastructure for recursive process.

7. Proving the basic algebraic laws (validating step laws).

The implementation o f the first three steps is given in Chapter 5 and the implementation of the next 
three steps is given in Chapter 6 . The validation of the basic algebraic laws is given in Chapter 7. 
First, we present the important results of this thesis and then outline the organisation of this thesis.

1.3.1 Mistakes Found

In Chapter 5, we will see that the definition of the domain of the stable revivals model needs to be 
added with a condition given in [RRS06]. This condition is needed to prove the type correction o f the 
hiding operator in Chapter 6 .

The implementation has revealed the following mistakes:

•  The step laws o f STOP and the external choice operator fail. Counter examples for the failure 
are given in Chapter 7. These mistakes are corrected by including a semantic clause in the 
definition o f deadlock of the prefix choice operator.

•  The step o f the renaming operator fails with the modified semantics of the prefix choice oper
ator. A counter example1 for the failure is given in Chapter 7. This mistakes is corrected by 
modifying the semantic clause of deadlock of the renaming operator.

•  The type correctness of the renaming operator fails when the renaming relation is infinite. A 
counter is given in Chapter 6 .

’This is found by Dr. Anton Setzer while discussing this problem.
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•  An improved stable revivals model is given in 8. The stable revivals model [Ros07] is given 
assuming E is finite. In the improved stable revivals, E can be infinite. We proved the type 
correctness and continuity for the both models.

1.3.2 Thesis organisation

This thesis is organised as follows.

Chapter 2 introduces Csp and Csp-Prover, explaining the syntax that we use in the thesis. We will 
discuss the models o f Csp , which come closest to the stable revivals model. In this chapter, we 
introduce the traces model and the stable failures model. We motivate each model using examples.

In Chapter 3, we study the motivation of the stable revivals model with some examples. In this chapter, 
we present the formal definition of stuckfreeness and responsiveness. In Chapter 4, we present the 
semantics of the stable revivals model and explain some of its properties.

Chapter 5 describes how we implement the stable revivals model in Csp-Prover. In this chapter, we 
explain the code of the implementation. In Chapter 6, we discuss the various properties proved in the 
implementation. We also discuss continuity and the type correctness of semantic functions. We give 
the proofs in detail and explain how they are implemented in Csp-Prover.

Chapter 7 focuses on various algebraic laws proved in this model. We present selected basic laws and 
selected step laws and prove to be correct them w.r.t. the stable revivals model using our implementa
tion. We also explain the step laws in detail.

Chapter 8 gives examples for running tool in the stable revivals models. Finally, in Chapter 9, we 
summarise our work, and conclude the thesis with future work.
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Chapter 2

Background

Contents
2.1 Syntax of CSP .
2.2 Semantics of CSP
2.3 I sa b e lle .............
2.4 Csp-Prover . . .

9
13
25
32

Csp is a language to describe concurrent systems. Processes in concurrent systems communicate with 
each other by engaging in events from an alphabet set E. The events occur instantaneously and are 
considered to be atomic. Processes communicate with other processes by means of synchronous or 
handshake communication where all the participating processes must agree on an event to happen. In 
this chapter, we explain about CSP and Csp-Prover.

This chapter is organised as follows. Firstly, we explain CSP and its syntax. Secondly, we discuss 
some semantic models of CSP. Thirdly, we focus on Isabelle theorem prover. Finally, we explain how 
Csp-Prover is implemented in Isabelle.

Many dialects o f CSP syntax are available in the literature. In this thesis, we use the syntax of CSPTP 
[IR07a] implemented in CSP-Prover, the subscript TP stands for Theorem Proving. In this section, we 
discuss the grammar of Csptp and explain its dissimilarity with the core CSP discussed in [Ros07]. 
We give an intuitive meaning of each operators. Appendix A .l shows the syntax of the core CSP 
language as given in [Ros07].

In CSPTP, alphabets o f communication events E can be arbitrary. The syntax for CsPtp is shown 
in Figure 2.1. C sPTp does not include the generalised internal non-deterministic choice operator [~|, 
instead it has replicated internal choice ! ! c  . C •  P ( c ).

Given an alphabet of communications E and the data type of natural numbers Nat,  we form the set 
Choice(Y,) =  P(IP(E)) i+J P (Nat ) ,  where l+J is a disjoint union of two sets. The replicated internal 
choice takes an index set C  E ChoiceiT ,) as its parameter, thus C  C P(E ) or C  C Nat.  The set of

2.1 Syntax of Csp

9
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processes is denoted by P roc^ j^ y  The replicated internal choice is restricted to run over an indexed 
set of processes

P (.)  : P (E ) l±! N at  => P toc^ e )

Another difference is that CSPjp includes the restriction operator ( |_) in the syntax.

SKIP %%
STOP %%
DIV %%
a ^ P %%
? x  : X  -> P( x) %%
P U P %%
P H P %%
!! c : C m P ( c ) %%
IF b THEN P  ELSE P %%
P \ X %%

P[[R]\ %%
p %p %%
P A P %%
P >  P %%
P  [ n %%
P \ [ X ] \ P %%
$p %%

successful terminating process
deadlock process
divergence
action prefix
prefix choice
external choice
internal choice
replicated internal choice
conditional
hiding
relational renaming 
sequential composition 
interrupt 
timeout
depth restriction 
generalized parallel 
process name

where X  C E, C G C7wnce(E), b G Bool, a e T , , R  G P(E x  E), n G Nat, and p G II(set o f  process nam es). 

Figure 2.1: Syntax of basic Csptp processes in Csp-Prover.

Csp processes are composed from basic primitive processes, atomic events E, and the natural num
bers Af. The primitive processes in the language are STOP, DIV, and SKIP. SKIP is a process that 
successfully terminates and does not perform any events from E. STOP is a process which does noth
ing and represents deadlock. Deadlock is the state of a process where no further action is possible. 
Thus, STOP turns out to be a model for deadlock. It might look useless, but is very useful in writing 
specifications. DIV is a process that engages in an infinite sequence of invisible actions. It is similar 
to STOP, however it performs internal actions that are not visible to its environment.

Given an event a and a process P ,  then a —> P  is a prefixing process that engages in the event a 
and then behaves like the process P.  The only way a process can communicate or interact with the 
environment is by communicating events.

If X  C E is a set of events, and P( x )  is a process for each event x in the set X , then ? x : X  —> P( x)  
is a prefix choice process that is initially able to perform an event a from X  and after engaging in a, 
it behaves as P( a) .  The prefixing process a —> P  can be represented as ? x  : {a }  —> P{a) .  The 
primitive process STOP can be defined in terms of ? x : 0 —> P{ x) .  This is also called the step law for 
STOP.

There are two forms of binary choice available in CSPTP. Given two processes P  and Q.  The external 
choice process P  □ Q  gives a choice to the environment to execute processes P  or Q based on the 
initial events of P  and Q.  The behaviour of the process (a —► P )  □ (b —► Q)  depends on the initial
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events from the environment. If a and b are same, then choice is resolved in a non-deterministic way. 
Another choice operator in C spTp is the internal choice operator.

The behaviour of the internal choice process P  n  Q does not depend on the environment. One of the 
processes is selected in a non-deterministic way. It is not possible to tell which choice will be made. 
No fairness condition is assumed. Given an index set C  €  Choice(E) such that a process P (c ) is 
defined for each element c e  C, then the replicated internal choice process ! ! c  . C •  P ( c ) selects 
one of processes P( c )  in a non-deterministic way and executes P (c ).

If b is a boolean expression, then IF b THEN P  ELSE Q is a conditional process. If b evaluates to 
True, then P  will be performed, else Q will be performed.

If P  is a process and X  is a set of events, then P  \  X  is a hiding process that makes the events X  in 
process P  unobservable to the environment. The process P  \  X  performs all the external events as 
P  does, except that the events in X  are performed as internal events. Hiding is useful in abstraction 
and prevents the environment from engaging in or observing. It is one source of non-determinism. In 
some process algebras like C c s , hiding is combined with other operators.

Another useful operator is the renaming operator. If R  C E x E is a relation over the alphabet and P  
is a process, P  |[ R]\ is a renaming process formed by renaming x to y  in P  for all ( x ,  y) G R. If an 
event a occurring in P  is not in the domain of R, then renaming behaves like the hiding operator.

If more than one event is mapped into a single event, then non-determinism is introduced. Given a 
process P  and a natural number n, the restriction operator ( P  [ n) is a process that performs like P  
for its first n events and then stops.

Given two processes P  and Q, then P  % Q  is a sequential process that behaves as P  until P  terminates 
successfully and after that the process P  % Q behaves like Q. The interrupt operator (A ) is similar to 
the sequential operator, the combined process P  A  Q behaves like P  until the environment interact 
one of its initial events of Q, and then P  A  Q stops performing like P  and starts behaving like Q. 
The timeout operator (P  >  Q) offers P  for a short time, and if none of the initial events of P  are 
offered it opts to behave like Q.

All the operators that we have so far seen allow describing sequential processes in a network. Allowing 
two or more processes to interact with each other makes concurrent processes and also makes our 
analysis complex and interesting. In an interaction between processes P  and Q, we usually want 
only some events to interact or synchronise, hence Csp gives freedom to specify a synchronised set 
explicitly. The generalised parallel process P  |[ X  ]| Q describes that all the events in the set X  C E  
must be synchronised and events outside X can proceed independently.

Csp has three more parallel operators derived from the generalised parallel operator. These operators 
differ on the synchronisation of events; the parallel operators varies from processes that do not syn
chronise at all to processes that synchronise all the events. The operator that does not synchronise any 
event is called the interleaving operator P  ||| Q. It can be defined as syntactic sugar of the generalised 
parallel operator

p h i Q =  p \ m  q .

In the interleaving operator P  ||| Q where no synchronisation is required, both the processes P  and Q 
perform all events completely independent of each other.

On other extreme, if all the events from E are synchronised then operator is called synchronised 
parallel operator ||. In the synchronised parallel process P  || Q, for an event to happen, both the
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processes P  and Q must synchronise on it. It can be defined as

P  || Q =  P  |[£ ] | Q.

Between the synchronised parallel operator and the interleave operator is the alphabetised parallel 
operator. In the alphabetised parallel process P  \ [X,  Y]\  Q,  the process P can communicate events in i 
X  and the process Q can communicate events in Y,  and both are synchronised on X  D Y . It can be : 
created by the generalised parallel operator by the following equation

p \ [ x  | y]| <3 = ( p |[£\^f]| SKIP) |[xn v ]| ( Q | [ s \  y]| s k i p ).

In the rest of the thesis, we focus only on the generalised parallel operator.

Up to now, process can describe only the finite behaviours. In order to deal also with infinite be- - 
haviours, we introduce now the concept of recursion using process names. In the syntax of C s Pt p , , 

process names are introduced. Process names are defined in the left hand side and used in the right t 
hand side. A process is defined as an equation o f the form

p ( x  i , x 2 . . . x k) =  P

where p( x i ,  £2 • ■ • is a process name, x\, X2 , . . .  x  ̂ are global variables and P  is a process whichh 
may include the process name p  as $p.  It enables us to define recursive processes which is useful fonr 
describing complex processes.

Consider for example the recursive process

A s =  a - +  $As □ b -> SKIP

$ As is a process which performs any number of a and then terminates with b.

There are two kinds of variables in CSPTp:
(i) Local variables, and
(ii) Global variables

Global variables are declared in the left hand side along with process names. Its scope is the wholtle 
right hand size of the equation. Consider for example the process

Count{n  : M )  =  (n —> P )  § Q(n)

In the above example, n is a global variable and its scope is the whole process (n  —► P)  § Q(n), ).  
Count is called a parameterized process. For local variables, CSPTp follows a declarative semanticcs 
like Csp described in [Ros98]: an identifier gets its value at the point where it is declared and keepps 
the same value throughout that scope. The scope of local variables x in the process x —> P\ Q i is 
within P  only. In the process In  : A  —> P; Q, the process creates a new identifier n and its scoppe 
is valid within P.  Each variable will be substituted by a concrete value by the time it performs thhe 
action.

We give the meaning of the process names while explaining the formal semantics of the Csp processees. 
The well-formed terms in the language without a process name are called the closed terms of  Csp c or 
the basic terms o f  Csp . The processes in the language which may also have process names are callded 
terms o f  CSP or Csp terms. CSP denotes the set of terms of CSP as defined in [Ros98].
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2.2 Semantics of CSP

Csp has well defined denotational semantics and operational semantics. For some Csp semantic mod
els, well-defined axiomatic semantics are available. A complete axiomatic semantics for the model 
f f  with bounded non-determinism over a finite alphabet is given in [Ros98]. In [IR05], a complete 
axiomatic semantics for the stable failures model with unbounded non-determinism over an alphabet 
of arbitrary size is given. The semantics of Csp is based on observation made on Csp processes. 
Observations of a process are usually events performed and not performed by the process. In some 
sophisticated models, internal events are also considered. This helps us to define and understand con
cepts like non determinism, livelock, etc., precisely. Each model has its own degree of complexity and 
expressiveness. In the following, we discuss the traces model and the stable failures model of Csp as 
these are closed related with the stable revivals model.

2.2.1 The Traces Model

The traces model is the simplest model of CSP and suites well for analysing safety properties. In 
the traces models T , we record finite sequences of events that can be performed by a process at any 
arbitrary time.

In the traces model, each process is identified by a set T  C E*/  that satisfies the following conditions, 
where E + / =  E* U { s  ~  ( />  | s €  E*}.

T l. T is nonempty;

T2. T is prefix-closed; i.e., s ^  t €  T,  then s e  T.

Thus, all the processes can perform the empty trace (). A trace is an element of E*^. First we 
introduce the domain of the traces model.

Definition 2.1: The domain of the traces model. Given an alphabet set E, the domain of the traces 
model do m {T )  is defined to be the set of all T  C E*^ satisfying the healthiness conditions T l and 
T2.

The denotational semantics of the traces model is given by a function tracesm - The function tracesm  
maps process CSP terms into subsets of E*^. The type of the semantic function tracesm  is given by

CSP  — Environment —> d o m (T )

The environment M  is a function from processes names into the domain of the traces model. This 
helps us to define the semantics of recursive processes.

The function tracesm  is defined inductively over the grammar which means the meaning of process 
is calculated by its sub processes. We define the following notations that will be used in semantic 
function.
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•  t\ |[ X  ]| t2 is inductively defined by:

(x) '" h \m \ ( x ) ~

cII U | u e t i \ [ X ] \  t2}
(x) ' " h M l t2 =  0
(x) ' " h M l 0 =  0

0 m i t2 =  0
0 M l 0 =  {(>}

<V) ~ t i M l

CII U | 1 |[X ]| (x) ~  t2}

(y) ' " h M l 0 =  { ( y)  ~ U | n e k  |[X ]| (>}
(x) ' " h M l <»>~

(II U 1 U G (x) ^  tl |[X  ]| t2}

0 M l ( v ) ~

(II U | u e { )  \ [ X] \ t 2}

<y) '"h M l ( y ' ) '

3(SII2̂> I u € ti \[X]\  (y') t2}
u{(y'>

s~\ u 1 u e { y ) ~ t i \ [ X ] \ t 2}

where £1, t2, u are traces, X  C £ ,  x, re' G X  U { / } ,  y,  y' £ X  U { / } ,  and x ^  x',

•  we lift a relation R  to traces over £*^  by defining relation [[R]\* as follows:

(s, t) €  p ] ] *  & s  =  t = ( )  V
s =  t =  { / >  V
j  =  ) « ) " s A i = ( i ) A s A ( a , l i ) € S A ( s 1t ) €  p ] ]*  

where R  C £  x  £ ,  5, t are traces, a , 6 G £

•  (£ \  X ) is inductively defined by:

0 \  *  = 0
( { x ) ' " t ) \ X  =  t \ X  ( i f x e X )
( { y ) ' " t ) \ X  =  ( y ) ~ ( t \ X )  ( i f y t X )

where £ is a trace, X  C £ ,

•  [[^]]_1(^ 0  is defined as:

[[flJJ-^X ) =  { a  | 3 b G X . (a, b) G R  V a =  b =  / }

where C (£  x  £ )  and X  is a set o f events.

•  Restriction functions T  [  n, where n is a natural number, are defined as follows:

T I n =  {£ G T  | |£| <  n}

where t  is a trace, \ t\ returns the length of the trace t and n G j V

The inductive definition of tracesm  on the process terms P  is given by Figure 2.2.

SKIP terminates by producing the special event /  where /  ^ £ . The traces of tracesm  (SKIP) is 
either the empty trace {) or the trace which performs the termination event ( / )  successful. Hence, 
it has only two traces; one is the empty trace () which denotes the trace before the engaging in 
the event /  in addition, the other is ( / )  the trace after the engaging in the event / .  Thie traces of 
tracesm  (STOP) does not perform any event. Hence it has only one trace, the empty trace (). Tlhe traces
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traces m  (SKIP 
traces m  (STOP 

traces m  (DIV 
tra c e sm {a  —» P 

tracesM (? £  : A —> P{x)  
traces m( P  1=1 Q 
tracesM  {P n  Q  

tra cesM (!! c : C • P(c)  
tra cesM { IF c THEN P  ELSE Q  

tracesM  (P |[ -X” ]| Q 
tr a c e s m (P  \  X  
tracesM  (P[[R]\ 
tr a c e sm {P  9 Q

tracesm ( P  A  Q  
tracesm {P  > Q 

tracesm {P  |_n 
tracesM (§P

« > , < / > }

{(>}
{()}
{ ( ) }  U { (a )  ^  t' | t' E t r a c e s M ( P ) }
{ ( ) }  U {(a:) ^  t'  j t'  E t race sM{P{x)),  x E A}  
t ra ce sM (P)  U t r ac e sM (Q )  
t ra ce sM (P)  U t ra ce s M{ Q)
(J{tracesM(P(c)) \ cE  C ]  U {()}
if c evaluates to True then tracesM {P ) else tracesM { Q )
{ t i  | [X] |  t2 | t \  E t race sM (P),  h  E t racesM { Q ) }
{ t  \  X  | t E t race sM(P)}
{ f  | 3 t' E t race sM(P) -  E [[i?]]*}
{ tracesm { P )  H E * )
U { i i  ^  h  | h  ^  ( / )  E t r a ce s M{ P ) ,  t2 E t r a c e s M { Q ) }  
t r ace sM (P )  U { s  ^  t \ s E t r a ce sM ( P)  fl E*, t E t r a c e s M { Q ) }  
t r ac e sM ( P)  U t r ace sM (Q )  
t racesM (P)  1 n 
M{ p )

where I  C E, C E Choice(E), c E Bool, a E E, R E P(E x E), n E Nat, and p E II(set of process
names). M  is an environment.

Figure 2.2: Semantic clauses for the model T  in CsPtp-

of tracesM (DIV) is same as the traces of tracesM (STOP) as it does not perform any event which is 
externally observable. DIV engages in an internal event continuously.

The traces of tracesM{& —> P) are either the empty trace () or traces which perform the event a 
followed the traces of P. A trace of tracesm ^ x : A  —> P )  is either a trace which does perform any 
event or perform the event a E A followed by a trace of P[ a/ x\ .  P[ a / x \  represents the substitution 
of the value a for all free occurrence of the local variable x.  The scope of the variable x is until P  
terminates.

The traces of tracesM ( P  n  Q)  are either the traces of P  or the traces of Q.  The traces of tracesM ( P  n  Q)  
and the traces of tracesM ( P > Q)  are calculated similar to tracesM ( P  1=1 Q)- Hence, the traces model 
does not distinguish between the internal choice and the external choice operator. The process

? x : A  U B  —* P{ x)

has the same behaviour as the process

? x : A  —> P{ x )  □? x : B  —> P{ x) .

The traces of the generalised parallel process P  |[ X  ]| Q are given by the set { t \  |[ X  ]| t2 \ t\ E 
tracesM {P)  A t2 € tracesM (Q)} -  A ll the traces in P  \ [X ]| Q  are a combination of traces of P  and 
Q such that events in X  are shared and the rest can happen independently. We look at some examples 
for it.

tracesM (a —*■ b —> Skip |[{a }]| a —> c —» Skip) =

{(),  (a), (a, 6>, (a, 6, c), (a, c), (a , c, 6), (a, 6, c, / ) ,  (a, c, 6, / ) }
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where
tracesM(a —► b —> Skip) =  {(),  (a), (a, 6), (a, 6, / ) } ,

tracesM(ci —> c —» 5fczp) =  {(), (a), (a, c ) ,  (a, c , / ) } .

In the example, the event a in the trace (a, 6, c , / )  comes from two traces (a, b, / )  and (a, c , >/).
/  is the special event on which all CSP parallel operators effectively synchronise and it denotes
distributed termination. For example, the process

a -> S K IP  |[0]| b -> S K IP

has the same behaviour as
a —> 6 —> S K /P  □  b -»• a -> S tf/P .

Consider for example in the alphabetised parallel operator, the process

a -> c P if /P  |[{a, c}  | {6, c}]|  c -► b -> PPT/P

has the same behaviour as the process a —> c —> 6 —> SK IP .  Initially, the event a from the left 
hand size is performed and then both communicating processes synchronise on the event c. Then, it 
performs the event b from the right side.

Consider for example, the process

a -> b -> S K IP  |[ {a , b}]\ a -► b -> SK IP .

Above process has the same behaviour as a —■» b —> SK IP .  Consider another example where pro
cesses do not synchronise, the process a —>■ S K IP  |[ {a , b} ]| b —> S K IP  has the same behaviour as 
ST O P .  This is because the events a and b do not synchronise.

The traces of tracesM (P  \  X )  is a set of all traces of P such that the events in X are removed from 
the traces sequences. It is best illustrated with an example:

tracesM (a -> b -> S K IP  \  { a } )  =  {(),  ( 6), ( 6, / ) }

where tracesM^a —► b —* S K IP ) =  {(),  (a), (a, 6), (a, 6, / ) } .

In more elaborate models than the traces model, the hiding can be the source for internal non
determinism. In the process

( (a -> P )  □ (b -> Q)) \ { a , b }  =  P \  {a , b}  n Q \  {a,  b}

non-determinism is introduced because we do not how whether the events a or b has happened.

The traces of t racesM(P[[R]})  is set of all traces of P such that the event x is replaced by the event 
y  for (x, y)  €  R. The number of traces in (P[[P]]) may be more than the number of traces in P . 
Consider for example,

tracesM {a  -  5T O P [[{(a , b), (a, c)}]]) =  {(>, (6), ( c » .

In the examples, a is mapped to b and c, hence we get two traces (b) and (c) from the single trace 
(a).  Consider for example the process

a S K IP  |[ { (a,  6), (a, c)}}\ =  b ^  S K IP  □ c -> SK IP .
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The traces of the sequential process P  % Q is the set of all traces of P  in which /  does not appear 
and the set of all traces of P  concatenated with the traces of Q such that /  is removed from traces of 
P.  Hence, /  from the process Q only appear at the end for terminating Q process. In the sequential 
operator, /  from the first process gets hidden and it will look as if  /  has not happened. P  % Q 
terminates only if Q terminates successfully. Consider for example the process

tracesM(o> —> Skip § b —> Skip) =  {(),  (a), (a, b), (a, 6, / ) }

where /  from a —> Skip is hidden. The traces o f the interrupt process P  § Q are the set of all traces of 
P ,  and the set of all traces of P  concatenated with the traces of Q such that the traces o f P  should not 
contain / .  Unlike the sequential operator, in the interrupt operator P  A  Q the complete traces of P  
is included as it is also necessary to prevent the transfer once the process P  has terminated. Consider 
the previous combined with the interrupt operator.

tracesM(a  —► Skip A  b —» Skip) =  {(),  (a), (a, / ) ,  (6), ( 6, / > ,  (a, 6), (a, b, / ) }

In this case, /  from a —> Skip is included in the interrupt operator.

The traces in the depth restriction process P  [_ n  is a set of all the traces o f the process P  such that 
length of the traces are less than or equal to n.

For all closed Csp term, the traces model allows us to calculate the meaning of processes. The 
meaning of process names (in CSP terms) is given by an environment M .  The semantic of the process 
name is tracesm($p) =  M( p) .

2.2.1.1 The domain of the Traces model and recursive processes

In this section, we discuss some properties of the domain T  which will be useful to give a semantics 
for recursive processes. We first give the formal definitions of complete lattice, which will also lay 
mathematical foundations for the thesis.

Definition 2.2: Partial Order. A set P  with a binary relation < C  (P  x P)  is called a partial order
{P> < ) if the relation <  has the following properties:
(i) reflexive: for all x 6 P ,  we have x <  x.
(ii) transitive: for all x G P,  y  €  P ,  z 6  P ,  we have x <  y A y <  z  =>• x <  z.
(iii) antisymmetric: for all x 6  P , y  6  P , we have x <  y A y <  x = >  x =  x.

Definition 2.3: Complete Lattice.

Let (P , < )  be a partial order. Let X  C P  be a set.

Upper Bound: X  has an upper bound a €  P  if  x <  a for all x E X .

Least Upper Bound: X  has a least upper bound (denoted as UX )  a if a is an upper bound and for all 
upper bounds x, a <  x.

Lower Bound: X  has a lower bound a 6  P  if a <  x for all x €  X .

Greatest Lower Bound: X  has a greatest lower bound (denoted as n X ) a if a is a lower bound and 
for all lower bounds x, x <  a.
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Lattice: (P , < ) is a lattice if every finite set X  C P  has a least upper bound UX and a greatest lower 
bound F\X.

Complete Lattice: (P , < )  is a complete lattice if every X  C P  has a least upper bound U X  and a 
greatest lower bound HX.

The following lemma is useful in proving a partial order is a complete lattice and a proof is given in 
Lemma A. 1.1 of [Ros98].

Lemma 2.4: Let (P , < )  be a partial order. If UX exists for every set X  C P , then FIX exists for 
every set X  C P .

Lemma 2.5: A partial order (P,<) is a complete lattice if every X C P  has a least upper bound UX.

Proof. By the lemma 2.4, we know that n X  exists for every subset X  of P , if every X  C P  has the 
least upper bound UX. Therefore, every subset X  of P  has both (~IX and UX. Hence (P , < ) is a 
complete lattice. □

The reverse direction is also true. Thus, to prove that a partial order is a complete lattice it is sufficient 
to prove that each subset has a least upper bound or each subset has a greatest lower bound. We give 
some definitions that will be used to calculate the meaning for recursive processes. To define the 
notion of complete partial order, we need to define the notion of a directed set.

Definition 2.6: Directed Set. Let (P , < ) be a partial order. Let S  C P  be a set. S' is a directed set 
under a relation <  if S  is non-empty and if for all x G S and y € S, there exits z  E S  such that x <  z 
and y <  z

For example, consider the partial order (Af,  < )  and the set of all natural numbers Af.  Then the set Af  is 
directed, however does not have a least upper bound. Thus, (Af, < ) is a lattice, however, not complete. 
The power set of a given set under inclusion relation is a directed set, a lattice and a complete lattice.

Definition 2.7: Complete Partial Order (C po ). (S, < ) is a complete partial order, if every directed 
set has a least upper bound.

Definition 2.8: Pointed Complete Partial Order (Pointed C po). (S, < ) is a pointed complete 
partial order, if (S, < ) is a complete partial order and S has a bottom element _L : for all £ E S,
_L <  x.

Definition 2.9: M onotonous. Let /  be a function. /  is said to be monotonic if x <  y  implies
f ( x )  < f ( y ) -

Definition 2.10: Continuous. Let P  and Q be two complete partial orders. Let /  be a function from 
P  to Q.  f  is said to be continuous if, whenever A  C P i s  directed, U{/(ar) | x E A }  exists and 
equals / ( UA).

The following lemma follows trivially from the above definitions.

Lemma 2.11: Every complete lattice (P , < ) is a pointed complete partial order with _L =  U 0 or
_L =  n P .
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Lem m a 2.12: If /  is continuous, then f  is monotonic.

Proof. Suppose x <  y. Since /  is continuous, U { f ( x ) , f ( y ) }  =  f ( y ) .  This implies / ( x )  < / ( » ) •  □

Lem m a 2.13: (d o m (T ), C) is a complete lattice.

Prao/ By Lemma 2.5, to prove that a partial order is a complete lattice it is sufficient to prove that 
each set has a least upper bound.

Suppose A  be an arbitrary non-empty subset of dom(T).
The least upper bound of A  in dom(T) is given by (J A  .
Let Y  =  ( U t g A  T)' We prove that Y  £ d o m (T )  and Y  is the least upper bound of A.

First, we prove that Y  is the least upper bound of A.
If t £  T  for some T  £  A , then t £  Y ,  hence Y  is an upper bound.
Suppose Y 1 be an arbitrary upper bound. We prove that Y  is the least upper bound of A.
Suppose t  £ Y  be an arbitrary trace, then, for some T , t  £ T. Since Y 1 is an upper bound, t £ Y 1. 
Since F I  is an arbitrary upper bound, Y  is the least upper bound.

Now we prove that Y  £ dom (T ).
Suppose t £ Y . Then, for some T  £  A , t £  T. Since T  is prefix closed, s' £  Y  for all s' such that
t =  s' ~  t'.
Y  is non-empty as () £ Y  by definition of Y .  Thus Y  is non-empty and prefix-closed. Thus
u a  =  U a - □

We have not discussed the trace semantics of recursive processes. The recursive processes can be 
defined as equations of the form P  =  S P ( $ P )  where P  is a process name, and S P  is a process 
expression possibly using P.  It says that the process P  has the same behaviour as the process SP( $P) .

We apply the Tarski fixed-point theorem to find solutions o f recursive processes. It guarantees that 
solutions exits to the equation

X  =  F ( X )

when F  is continuous. The Tarski fixed-point theorem is given below:

Theorem 2.14: Tarski Fixed point theorem [Tar55, Ros98].
If (P,  < )  is a Cpo and F  : P  —> P  is continuous then F  has a least fixed point, n F.  The least point 

of F  is given by f i F  =  L K - ^ W  I 0 ^  m }> 
where F ° ( ± )  =  _L and F ° ( ± )  =  F ( F n {.L)).

We have the necessary mathematical notions to assign the semantics of recursive processes. If SP( $ P)  
is a process with a process name P,  let F{. )  be the semantic function induced by the process SP( $P) .  
It follows from Theorem 8.2.1 [Ros98] that all the CSP operators are continuous with respect to the 
subset order relation over the traces model. We give some examples for induced semantic functions.

The meaning for the equation P  =  S P ( $ P )  can be defined by iterative unwinding of the recursive 
definition, starting with the minimal element _L in the domain as given by the Tarski fixed point 
theorem. From the below equation, it is clear that jj, P . F ( P )  =  \Jne^j-{(Fn (± ))  \ 0 <  n }  is the fixed
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points for the equation P  =  SP( $P) .

F(jmP . F{ P ) )  =  F (( U „€JV-{ (F ” (X)) | 0 <  n}))

=  Ung7v'{(-fn(^in(-L)) | 0 <  n} )  by continuity
=  Un€u { ( ( F n+1( ± ) ) \ 0 < n } )

=  p P . F ( P )

where F°{ . L) =  _L 
F n+1(_L) =  F { F n {.L)).

Thus the semantics of the equation P  =  SP( $ P)  is Unej \ fFn( ±)  where F(. )  is the semantic function 
induced by the process SP( $P) .

Consider for example the recursive process C L O C K  =  a —> %CLOCK  in the traces model. The 
induced semantic function F  (C L O C K )  o f a —> % C L O C K  is

{ (> }U{(a>  | t e  C L O C K }

The successive iterations F (C L O C K )  for this definition yields the following

F° ( X)  = ±  = {< »
F \ . L) = F ( J ’0( l ) )  =  {(a>,<>}
F 2( ±)  = F ( F 1( l ) )  =  { ( a , a ) , ( a ) , { ) }
F 3( ±)  = F ( F 2 ( ±) )  =  {{a, a, a), (a,  a),  (a),  (>}

Taking the union of all the values yields the semantics of the process. Thus the semantics of the 
equation C L O C K  =  a —> % C L O C K  is

U { F " ( l ) | n 6 jV}.

A similar construction can be used to find the solution o f mutually recursive equations such as

P  =  F ( $ P , $ Q )

Q =  G( $ P , $ Q)

even in some cases when the number of equations is infinite [RBH81].

We define a few processes which will be used later and have standard names in Cs p .

R U N a = ? x : A  —> $R U N a

The process R U N A will continuously engage-in the events from A. We define another operator which 
similarly to R U N A, but it may non-deterministically terminate any time. It is also defined recursively 
as follows:

CHAOSa =  STOP n 7x : A  -> % CHAOSA.

CHAOSA can perform any events in A  except diverge.

Definition 2.15: Divergent. A process P  is divergent if P  can perform infinite sequence of invisible 
actions.



2.2 Semantics o fC  SP 21

2.2.1.2 Traces Refinement

Refinement is a concept central to the design and verification of processes. In Csp, process refinement 
is a standard technique to compare processes. In the traces model, the process refinement O r  is 
defined by reverse containment of trace sets.

Definition 2.16: Refinement Relation ( O n ).

Let Spec and P  be processes. Spec Ot  P  if and only if  tracesM {P) Q tracesM (Spec)

It is read as P  is a refinement o f Spec or Spec is refined by P  or P  refines Spec in the model T . It 
says that all the possible traces of P  are also traces of Spec. Spec can be seen as a specification of the 
process P  and P  can be seen as an implementation of the process Spec, as P  does perform only the 
traces that are allowed by Spec.

Two processes are said to be equivalent if each refines the other. In the traces model, this is defined as 
below:

Definition 2.17: Equivalence Relation ( = 7-). Let Spec and P  be processes.
Spec —t  P  if and only if Spec O r  P  and P  C j  Spec.

It is read as P  is traces equivalent with Q. It is interesting to note that the refinement relation O r  
is a partial order. In terms of process algebra, the refinement Spec Ot  P  is equivalent to Spec = 7 -  

Spec n P .  It is proved in the below lemma.

Lemma 2.18: Spec Ot  P  iff Spec = r  Spec n P.

Proof. Spec [17- P  t r a c e s M  {P) Q t r a c e s M  (Spec) (by definition C7  ) 
t r a c e s M  (P )  U t r a c e s M  (Spec) = 7 -  t r a c e s M  (Spec)

<=> Spec n P  — t  Spec (by definition n) □

This says that Spec is less deterministic than P.  It guarantees that all the behaviours exhibited by 
the process P  should be exhibited by the process Spec. Starting from an abstract process, refinement 
relations helps us to move towards more deterministic processes in each step. Thus O r  suites well for 
stepwise refinement from specification to implementation. We can easily observe that P  Ot  STOP 
for all processes P.

It follows from Theorem 8.2.1 of [Ros98] that Ot  is monotonic: let F{. )  be a context built from Csp 
operators and constants; then

P \ Z T Q = ^ F ( P )  O r  F( Q) .

O r  is preserved after applying F(. ).  This can be proved by induction on structure of the syntax.

2.2.2 The Stable Failures Model

The traces model gives information only on the sequences of events that a process can engage in. This 
is useful to verify safety properties such as event fail does not appear in the traces of a process, event 
modified should appear after event start  and before event finished in any traces of a process, etc. 
Hence, the traces model gives information such as nothing bad will ever happen. Liveness properties
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such as good thing will happen can be specify in the stable failures model. For example, the process 
a —> S K IP  guarantees that if the environment is prepared to engage in the event a and then terminate, 
then it can engage in the event a and terminate successfully. However, a —► SK IP  n a —»■ S T O P  
does not guarantee that it can engage in the event a and terminate successfully if the environment is 
ready to engage in the event a and terminates. The traces model does not identify as both processes 
have the same traces, but one guarantees that it will terminate successfully, but the other does not 
guarantee. To capture this kind o f property, the stable failures model has been developed.

The stable failures model gives a finer information by distinguishing the above information. A failure 
of a process is a pair (s, X )  that says the process can perform the trace s and reach a state from which 
it can neither perform any event in X  nor any internal event. The set X  is called the refusal set; the 
process cannot perform any event in the set X  no matter how long it is offered. The stable failures are 
the key to distinguish non-deterministic processes. The stable failures model records stable failures 
and traces of the processes.

In the stable failures model, each process is modelled by a pair (T , F ) where T  C E*^ and 
F  C E*^ x IP(E^) satisfying the following healthiness conditions:

T l. T is non-empty and prefix closed. This condition is same as the healthiness condition of the the 
traces model.

T2. V s, X  . ( s } X )  G F  = >  s G T.  This says that all the traces performed by failures should be 
recorded in the traces component T.  This establishes consistency between the traces component 
and the failures component.

T3. V s, X  . s ^  ( / )  G T  ==> (s ^  ( / ) ,  X )  €  F.  If a trace V s. s ^  ( / )  terminates successfully by 
producing / ,  then it should refuse all events in at the stable state after s ^  ( / ) .

F2. V s, X  . (s,  X )  G F  A Y  C X  = >  (s, Y ) G F.  This says in a stable state if a set X  is refused, 
then any subset Y  of X  should also be refused.

F3. V s, X , Y  . ( s , X)  6  F  A V a e  Y  . s ^  (a) $  T  = >  (s, X  U Y )  G F.  This says that in a 
stable state if no event in Y  can happen in the next step, then the stable state should also refuse 
Y  besides X.

F4. V 5 . s a  ( / )  G T  =$■ (s, E) G F. This condition says any terminating trace s ^  ( / )  should 
refuse E at the stable state after s.

Definition 2.19: The domain o f the stable failures model. The domain of the stable failures model 
dom (F )  is the set of all (T , F)  that satisfies the healthiness conditions T l,  T2, T3, F2, F3, and F4.

The stable failures of a process P  can be calculated inductively over the syntax of P  as it is done for 
tracesM {P)-  The traces component of the stable failures model is same as the traces model.

The semantic definition o f failures is given in Figure 2.3. The semantic definition of the timeout and 
the interrupt operators are not given. The failures of the process SKIP is again two clauses: either 
/  has happened or not. At the empty trace, it refuses all events other than /  and after successful 
termination by producing /  it refuses all the events in E^. The failures o f the process STOP are that 
at the empty traces which refuses everything. The failures of the process DIV have no stable states, 
hence it has no failures.
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failuresM{Skip) = {((), X ) \ X  C E} U { ( ( / ) ,  X) ( I C E 7 } 
failuresm (Stop) = { (() ,X ) j X C E ^ }  
failures m (Div) = 0 

failuresm(a —► -P) = { (() ,X ) | a ^ X }
U { ( ( a )^ t ' ,X )  | ( t ' , X )  £ failuresm (P)}  

failuresM(? x \ A P ( x )) = {((), X) | >1 fi X  =  0}
U {((x) ^  X) | (£', X) € failuresm ( P ( x ) ) ,  x & A}  

failuresM(P a  Q) = {(<),Xf) | ((),X ) G failuresM(P) fl failuresM(Q)}
U {(t,X ) | ( t , X ) G f a i lu re s M( P )  U failures M ( Q ) , t  ^  ( ) }  
U {((),X ) | X C E, ( / )  G tracesM(P) U iracesM(Q)} 

f a i lu re s M (P  n  Q)  =  f a i lu r e s M( P)  fa i luresm(Q)  
failures^ ((!! c : C • P ( c )) = (JI/ai/wresMl-PCc)) | c G  C} 

f a i l u r e s M( i f  c then P else Q)  = if c evaluates to True then failuresm (P) else fai luresm(Q)  
failuresM(P\[X}\  Q) = { ( u , Y u Z )  \ Y  -  (X U { / } )  =  Z — (X U { / } ) ,

3 ti, t2. (ii, Y)  G failuresm(P),  (<2, £ ) G failuresM ( Q ), 
w G ii |[X]| t2}

f a i lu r e s M ( P  \  X )  = {(t \  X , V) | (i, Y  U X) G f a i lu r e s M ( P ) }
failuresm(P[[R]\) = { ( t , XtT) | 3 i'. (i', t) G (t7, i2_1(X)) G failuresm(P)}
failuresM(P § Q) = { (ti,X ) | ^ G E*, ( t \ ,X  U { / } )  G failuresm(P)}

U{(ti ^  t2, X )  | ti ^  ( / )  G tracesM(P),
(t2, X ) G failuresM (Q)}  

fa ilu resM (P  |_ = {(^  X)  G failuresM (P) \ |i| < n V (3 t'. t =  t' ^  ( / ) ,  \t\ — n)}
failuresM ($p) = snd (M(p))

where X C E, C G CTwnce(E), c G Bool, a G E, snd(a:, y) =  y, R £ P(E x E), n G Xat, and p G II(set of
process names). M  is an environment.

Figure 2.3: Semantic clauses for the model T  in CsPtp-

The failures o f the process a —> P  have two clauses: at the empty trace, it refuses all the events other 
than the event a, after engaging in the event a, it can refuse all the refusal set of the process P. A  
failure of the prefix choice process ?x : A  —» P  is either the stable state at which it has not performed 
any event and refuses all the events other than A, or after engaging in an event a from the set A, it 
refuses refusal set o f P [ a /x \ .

The failures of the internal choice P  n Q are union of failures of P  and Q. The failures o f external 
choice process P  □ Q  is again two possibilities. Before any events are performed and the choice is 
resolved, a refusal set should be refused by both the processes P  and Q. Once a choice is made, then 
the process will be behaved as the chosen process. Hence after a choice is resolved or made, all the 
failures of both the processes P  and Q are possible. This makes the external choice and the internal 
choice distinguish each others.

The stable failure o f P  \[A}\ Q is a failures (s, X  U Y )  such the trace s comes from the set t\ \[A]\ t2 
where t\ and t2 comes from traces in failures of P and Q respectively, and set X  and Y  comes from 
refusal set in failures of P  and Q respectively. The refusal sets X  and Y  should also satisfy the 
condition X  \  A ^  =  Y  \  A ^ .

The failures P  \  X  is stable if the corresponding state o f P  refuses the whole of X  and hence failures 
of P  \  X  is (s, Y  \  X )  for each failures (s, Y  U X ) o f P.  For each failures (s, R ~ 1(X ) )  o f P [[#]], 
the corresponding failures o f P  has to refuse every single event which renames to the set X . A stable
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failure of P  g Q is either a failures o f P  or a non terminating traces of P  followed by a failure of Q 
and the trace in failures of Q should be non-empty.

The failures of the depth restriction process P  [ n  is similar to the traces model. A failure of the depth 
restriction operator P  [ n  is a failures of P  such that length of the traces is lesser than n or terminating 
trace of length n. The meaning of process names (in Csp term) is given by environment M  which is a 
function from process names into the domain of the stable failures model. Hence, the type of semantic 
function is given by CSP —> Environment  —► domain(T).  The semantic meaning of the process 
name is given by fai luresM^p)  =  snd (M (p ) ) ,  where snd  returns the second element of the pair.

We need to assign semantics for recursive processes. A recursive process is defined by the equation 
P  =  SP ($ P ) .  The process S P ( $ P )  can be any process expression possibly involving the process 
name P.  Similar to the trace model, the meaning for the equation P  =  SP($P)  can be defined 
by iterative unwinding of the recursive definition, starting with the minimal process DIV as given 
by Tarski Fixed point theorem. Thus the semantics for the failures component of the equation P  =  
S P ( $ P )  is

U„s ^ ( F n ( ± ) .

where F(.)  is the semantic function induced by the process S P ($ P ) .  The semantic functions of the 
stable failures model induced by all CSP operators are continuous by subset order relation and it is 
proven in Theorem 8.4.2 [Ros98].

We look at some examples of Csp in the stable failures model. The process a —* Stop □ b —> Stop 
is represented as

({(>. <*)> <&)}> {((>- 0). « “>. X ) ,  ((b), X ) \ X C  { a , b, / } } ) .

The process a —» Stop (“1 6 —> Stop is represented as 

({<>. <«>- m ,  {(<>, n  ( 0 ,  Z),  (<«>, X ) ,  {(b), X )  I X  C {a ,  b, ✓ }, Y  C {a,  / } ,  Z  C {b,  / } } ) .

This example illustrates that both processes are the same in the traces model, but different in the 
stable failures model. This is because in the internal choice operator, if the environment offers to 
communicate the event a, the process a —> Stop n  i  Stop may non-deterministically offer only 
to communicate the event b. Hence, it refuses the event a after the empty trace (). Similarly it refuses 
the event b, however it cannot refuse both the events {a , b} at the empty trace (). The stable failures 
model thus distinguishes the internal choice operator from the external choice operator.

The stable failures refinement is defined similar to the trace refinement by reverse containment.

Definition 2.20: Refinement Relation (Cjr). Let Spec and P  be processes.
P  Qjr Q if and only if  t racesM(Q) Q tracesM(P ) and failuresm (Q)  Q failuresm (P)-

It is read as Q refines P  or P  is refined by Q in the model T .  We observe that P  Cjf DIV for all 
processes P.  The least-defined process is given by

C H AO Sz  =  (E*^, x P (E ^ )) .

C H AOS a is the most non-deterministic, divergent-free process with alphabets set A. We can note 
that Qjr satisfies reflexivity, transitive and antisymmetric properties and hence Cjr is partial order.
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The greatest lower bound of the empty set is given by TjF which is the maximal process
and represents the denotation for the process DIV.

Two processes are said to be equivalent if  each refines the other. In the stable failures model, it is 
defined as below:

Definition 2.21: Equivalence Relation (=jr). Let Spec and P  be processes.
Spec = j r  P  if and only if Spec Qjr P  and P  Cjr Spec.

2.3 Isabelle

In this section, we describe the theorem prover Isabelle that is used to implement the tool Csp-Prover. 
This section gives the information needed for the implementation of the stable revivals model in C sp- 
Prover. In this section, we first introduce the theorem prover Isabelle and then explain how to use it 
for our purpose. Secondly, we explain the important theories implemented in Csp-Prover. Finally, we 
focus on how the syntax and semantics of CSP that have been encoded in CSP-Prover.

2.3.1 Isabelle/HOL-Complex

Isabelle [NPW02] is a generic interactive proof assistant developed at Cambridge University and Tech
nical University o f Munich. Isabelle supports wide varieties of logics with a high level of automation. 
It implements the logics and formalisms as object logics using Isabelle’s meta logic. Isabelle’s meta 
logic itself is intuitionist higher order logic. It uses several ideas of Logic o f Computable Functions 
(LCF) [GorOO], so it is based on a small logical core guaranteeing logical correctness. Examples of 
object logic that are formalised in Isabelle are

•  Higher Order Logic (HOL)

•  HOL-Complex Extension of HOL with complex numbers.

•  Higher-Order Logic of Computable Functions (HOLCF)

•  First-Order Logic (FOL) (Many-sorted FOL)

•  Zermelo-Fraenkel set theory

•  Classical Computational Logic (CCL )

•  Logic of Computable Functions (L C F)

•  First Order Logic with Proof Terms (FOLP)

Creating a new logic in Isabelle means to define a new syntax for formulae and to give inference rules 
to perform proofs in the logic. Usually a logic consists of a collection of hierarchy of theories. Is
abelle is also a framework for formal specification and verification which has been used in proving the 
correctness of computer hardware or software and proving properties of computer languages and pro
tocols [Pau98]. Such a system is usually defined in one of the above logic and derived the correctness 
properties.

^
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Isabelle/HOL [NPW06] is a specialisation of Isabelle for HOL, a polymorphic version of Church’s 
Simple Theory of types. HOL can be seen as a polymorphic typed version of classical set theory. 
In HOL, typed lambda calculus term can be used as terms. HOL generalises the first order logic by 
allowing variables which can range over functions and predicates. Isabelle/HOL allows declarative 
style that means a new concept is introduced by definition. The syntax of HOL is similar to A- 
calculus and functional programming. Function application is curried. HOL-Complex [Doc06] is 
an Isabelle/HOL with extensions of rational, real, complex numbers. These extensions provide real 
division operation. The real and rational number are dense; moreover, real numbers are complete: 
every set of reals that is bounded above has a least upper number. Csp-Prover uses the logic HOL- 
Complex in Isabelle. For the implementing the complete partial order based approach, theories in the 
logic HOL are sufficient. In CSP-Prover, for implementing the complete metric space based approach, 
the logic HOL-Complex is used.

2.3.2 Theories in Isabelle

Theories in Isabelle are like modules in programming languages. The most basic theory in Isabelle 
is P u r e  which contains all the basic elements of Isabelle’s meta logic. Isabelle’s meta logic has 
meta-level implication ==> , universal quantifiers A, and equality ==. Types in Isabelle’s meta logic 
consists of basic types and function types of the form o  ==> r. The terms are those of typed A- 
calculus with the usual type constraints. We write a :: a  to mean ‘a has type cr’. Another commonly 
used theory is M a i n  which contains a collection of basic theories like arithmetic, lists, sets, etc.

HOL-Complex is based on theories of HOL. It has theories for least upper bound, greatest lower 
bound, sequence, series, rational number, real positive numbers, limits, continuity and differentiation, 
finite summation, infinite series, etc. All theories in Isabelle/HOL-Complex are described in [Doc06]. 
To use HOL-Complex logic, we use the theory C o m p l e x _ M a i n ,  not the usual theory M a i n  from 
HOL. Theories in Isabelle are organised hierarchically.

All the theories should be in a file whose name is the same as the theory name followed by .thy. In 
Isabelle, a theory is a named collection of types, functions, and theorems. The general format of a 
theory T  is

t h e o r y  T 
i m p o r t s  B1 . . .  Bn  
. b e g i n

d e c l a r a t i o n s
d e f i n i t i o n s
p r o o f s

e n d

Theories are built on extensions of other theories. Theories can be extended by the commands 
i m p o r t  and u s e _ t h y .  In the above format, theory T is created on the top of B 1 , . . .  Bn.  The
orems, types and functions in B l , . . .  Bn  are available in T. To distinguish the same identifiers in 
the different theories, identifier are qualified over theories like B l . a, T.a.  In the syntax of Isabelle, 
declarations and definitions are similar to functional languages like Haskell or ML, as Isabelle itself 
has been implemented in ML.

Isabelle has built-in datatypes like b o o l  representing the type of boolean values, i n t  representing
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the type of integers, n a t  representing the type of natural numbers. Isabelle has Peano-style natural 
numbers. A new datatype can be created using the keyword d a t a t y p e .  The type n a t  is a recursive 
datatype generated by the constructors zero and a successor. It is defined as follows:

datatype n a t  = 0 | Sue n a t

The datatype n a t  introduces two constructors 0 and S u e.

Nontrivial types are constructed using type constructors like l i s t ,  the type of list, s e t ,  the type of 
set, pair(ai, 0 2 ):: t \  x  7 2  where each a{ is of type r», tuples that are generated using the pairs. The 
functions f  s t  and s n d  are used to extract the individual component o f a pair. The function types => 
represents total functions only, t y p e  variables are denoted by ' a , ' b. These form polymorphic
types like ' a  => ' b.

All functions in Isabelle are total. Functions are declared using the keyword c o n s t  s .

consts
HC : : ! ' a  l i s t  s e t  => b o o l "

defs
HC_def "HC F == (EX s  . s  : 11m

In the above examples HC is a function which takes one argument F  o f type ' a  l i s t  s e t  and 
returns b o o l . HC returns T r u e  if the set F  has the empty list [ ] ,  else return F a l s e .  Functions 
are declared by keyword c o n s t s  and defined using the keyword d e f  s .  We can combine both the 
definition and declaration using the c o n s t d e f .

Types in Isabelle can be created from existing types using the type definition command t y p e d e f . It 
creates a new type from a subset of existing type. Every type in HOL is required to be non-empty. 
Hence the user is obliged to prove that the newly created type is non-empty by giving a witness. 
Consider an example to create a type e v e n .

consts
e v e n _ c h e c k :: "n a t  => b o o l "

defs
e v e n _ c h e c k _ d e f : " e v e n _ c h e c k  a == a mod 2=0"
typedef e v e n  = "{ n . e v e n _ c h e c k  n}"
a p p l y  ( r u l e _ t a c x  ="0" i n  e x l )
a p p l y  ( s i m p  add: e v e n _ c h e c k _ d e f )
d o n e

This also creates a set e v e n  which is a subset of n a t  s e t .  It generates the following constant 
functions and asserts that R e p _ e v e n  and A b s _ e v e n  are inverse of each other. We will see some 
more examples in 2.4.

e v e n  :: n a t  s e t
R e p _ e v e n  ::  e v e n  ==> n a t
A b s _ e v e n  ::  n a t  ==> e v e n

Types can be grouped by axiomatic type classes. Axiomatic type classes are similar to Haskell’s type 
classes, except that all the instance o f the type classes are required to satisfy axioms. Consider for 
example, axiomatic type class m o n o i d  below:
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consts
t i m e s  ::  " ' a  => ' a  =>’ 'a" ( i n f i x l  " [ * ] "  70)
o n e  ::  ' a

axclass m o n o id  < t y p e  
a s s o c :  11 (x  [*]  y )  [*] z = x  [*] (y [*] z)  "
l e f t _ u n i t :  "one [*]  x  = x"
r i g h t _ u n i t :  "x [*]  o n e  = x"

The axiomatic type class m o n o id  is a subclass of the predefined class t y p e  which is the class o f all 
HOL types. It has three axioms associativity, left and right unity. We declare n a t  and i n t  to be an 
instance of class m o n o id  by command i n s t a n c e

defs (overloaded)
t  i m e s _ n a t _ d e f : "x [*] y == x  + (y : n a t ) 11
u n i t _ n a t _ d e f : "one  == 0 : nat"

defs (overloaded)
t i m e s _ i n t _ d e f : "x [*] y = = x  * (y : i n t ) II
u n i t _ i n t _ d e f : "one == 1: i n t "

instance n a t  : : m o n o id
a p p l y  ( i n t r o _ c l a s s e s )
b y  ( u n f o l d  t i m e s _ n a t _ d e f u n i t _ n a t _ _ d e f , a u t o )

instance i n t  : : m o n o i d
a p p l y  ( i n t r o _ c l a s s e s )
b y  ( u n f o l d  t i m e s _ i n t _ .def u n i t _ i n t . - d e f , a u t o )

We also have to prove that n a t  and i n t  satisfies all axioms of monoid. The keyword o v e r l o a d  
indicates that definition intentionally define the type of given function.

Terms in Isabelle/HOL are formed by applying functions to arguments. Isabelle/HOL also borrows 
some constructs like conditional expression, evaluation of cases from functional programming to rep
resent terms. The syntax for terms is given below:

•  The conditional if-expression is given as i f  b  t h e n  t\ e l s e  ^  where b is of type textt- 
tbool and t\ and are of same type.

•  The syntax of let-expression is l e t  x  = t  i n  u  where u is a term which may have free 
variable. Multiple binding are separated by semicolons like l e t  x = t \ ; • • • ; xn =  tn .

•  The syntax for case-expression is c a s e  e  o f  c\ = >  e\ ••• c\ = >  e\

Formulae are terms of type bool with the usual connectives |, -> . Equality is available in the form 
of the infix function =  of polymorphic type 'a  => 'a  => b o o l .  Usual quantifiers are available 
and are written as ALL x . P, EX ! x . P, and EX x . P. EX ! x . P means that there 
exists exactly one x that satisfies P.

Isabelle has three kind of variables: bound, free and schematic variables. Schematic variables have ? 
as its first character. They are similar to free variables, but can be instantiated by another terms during 
proof steps.

One o f the important concepts in Isabelle is the inductively defined set. In an inductively defined set, 
for each element of the set we can construct a finite proof of membership using the inference rules 
given for the set. In Isabelle, we define inductively defined sets using i n d u c t i v e  command. In
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Isabelle inference rules are called introduction rules defined after the keyword i n t r o s .  We define 
the set of all odd numbers.

consts
odd  : :  " n a t  s e t "

inductive "odd"
intros
o n e :

"Sue 0: od d  "
s t e p :

" n : o dd ==> ( S u e ( S u e  n )) : odd"

Isabelle automatically generates and proves introduction, elimination, and induction rules. Introduc
tion rules are

(o d d . o n e ) Sue 0 G odd
(o d d .  s t e p )  n G odd = = >  Suc(Suc(n)) G odd.

The generated elimination rule for o d d  is o d d . e l im s :

[ |  ( ? a : : o d d ) ;  ?a = Sue ( 0 : : n a t )  ==> ? P : : b o o l ;
ALL n : : n a t  . [ | ? a = S u c ( Sue n ) ; n : odd | ]  ==> ? P | ]  ==> ?P

The generated induction rule for o d d  is o d d . in d u c t :

[ | ( ? x a : : n a t )  : odd;
( ? P : : n a t  => b o o l ) (Sue  0 ) ; ALL n . [ | n : odd ?P n | ]

n n V ••0 'd ( Sue  ( Sue n) ) | ] ==> ?P ?xa

We can prove that numbers of the form 2 x k +  1 are odd by the following lemma:

lemma ad d :  "2*k +1 : odd"
a p p l y  ( i n d u c t _ t a c  k) 
a p p l y  ( s i m p  add:  o d d . o n e )
b y  ( s i m p  ad d :  o d d . s t e p )

We will see more examples on inductively defined sets while discussing CSP-Prover.

Terms and types can be abbreviated using type synonyms and constant definitions respectively. Type 
synonyms are created using the keyword t y p e s .  This helps us to create understandable code. Con
sider for example

types ' a  s e q u e n c e s  = ( ' a  l i s t , n a t )

The above examples creates a type synonyms called ' a  s e q u e n c e s ,  a pair consisting of a list and 
its length.

The primitive recursive functions are defined using the keyword p r im r e c .

consts
s u b t r a c t : "n at  => n a t => n a t"

primrec
"s u b t r a c t m 0 = m"
"s u b t r a c t (Sue  m) (Sue  n) = s u b t r a c t  m n"
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The above code defines a recursive function to subtract one natural number from another.

Most of the recursive functions on types that are created using datatypes can be easily represented by 
p r im r e c .  To declare arbitrary total functions in Isabelle, we use the keyword r e c d e f . It gives full 
pattern-matching, and recursion need not to involve datatypes. However, the user has to prove that 
argument to recursive will become smaller and terminate.

consts q u i c k s o r t  ::  "nat  l i s t  => n a t  l i s t "
recdefq u i c k s o r t  " measu re  l e n g t h "

" q u i c k s o r t  [ ] • =  [ ]"
" q u i c k s o r t  ( x # x s )  = q u i c k s o r t ( f  (%y. y<=x)  x s )  @ [x] @

q u i c k s o r t ( f  (%y. x<y)  x s ) "

Here the user has to prove that the length of list decreases and terminates. It is defined by the keyword 
m e a s u r e  l e n g t h .  Here l e n g t h  denotes the function on l i s t  which returns size of the list. It 
recursively sort by separating that the elements lesser than or equal to the first element x and elements 
greater than x, and then combining all together in order. When the list is empty, the function returns 
the empty list [ 1.

2.3.2.1 Proof Methods

In Isabelle, proofs can be carried out in two different styles: Linear proofs and Structured proofs. 
Structured proofs resemble the mathematical style of proof. Isabelle/Isar [Wen06] provides a frame
work for carrying out structured proofs. Isabelle/Isar allows writing proofs in a concise language, 
which can be easily understood by humans. More details on Isabelle/Isar are available in [Wen06]. In 
this thesis, all proofs are done in linear style.

In linear style proof, theorems which need to be proved are represented as the initial goal of a proof. 
Theorems are proved using tactics and tacticals. In linear style, a proof is tactic script, consisting 
of commands that change the states of the proof state. Applying tactics to a goal results in a set of 
subgoals or the goal is proved. A proof state is a list of subgoals. A proof state G looks as follows:
G
1. Gi

n -  1. Gn - 1  

n. Gn

Each Gi has a list of assumptions and one conclusion. The assumptions are the local assumptions for 
this subgoal. A typical goal is a nested implication of the form

a i  = *  ( a 2 = * ■ ( • •  ■ ( a n  = >  4>) • • • ) ) •

The goal is an abbreviation of the form

[aq; a 2; • • • an] => (fr

it  represents the deduction tree of the proof
a i  oc2 . . .  a n

<fr
Methods change the proof state. Methods can take rules as the parameters. Rules are classified
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into three types. They are introduction, elimination and destruction rules. We briefly describe the 
application of a rule with methods. Let R  be a rule.

P i P 2 P 3 • • • ; P n
R --------------------------------------

Q

•  Method r u l e  suites well for introduction rules. The method r u l e  R unifies Q with the 
current subgoal, replacing it by n new subgoals which are instances o f P i, P 2 . . .  and P n. 
This is a backward reasoning method where the focus is on decomposing the goal into smaller 
subgoals. In Isabelle, it looks like

[[Pi; P2; ...Pn]]=s. Q.

•  Method e r u l e  suites well for elimination rules. The method e r u l e  R unifies Q with the 
current subgoal and simultaneously unifies with some assumption. If unification is successful, 
it eliminates P i and replace the subgoal with new instances o f P 2, P 3 . . .  and P n. Usually an 
elimination rule look like

[[Pi; [[P2; . . .  ; Pn]] ]] =* Q.

•  Method d r u l e  is useful for destruction rules. It unifies P i with one of the assumptions, if 
successful, it replaces P i with Q and replaces the subgoal with new instances of P 2, P3 . . .  and 
P n. In this method, the matching assumption is deleted. Usually a destruction rule look like

[[Pi; [[P2; ; Pn]] ]] =►

•  Method f  r u l e  is like drule except that the matching assumption is not deleted.

A goal or subgoals can be proven using backward proof or forward proof. In backward proof, a goal 
is matched with the conclusion of the rule and the premises of the rule becomes subgoals of the goal. 
Consider a simple example below:

lemma e x a m p l e l  : " I | A ; B | ] ==> A & B"
a p p l y  ( r u l e  c o n j l )
a p p l y  ( a s s u m p t i o n )
a p p l y  ( a s s u m p t i o n )
d o n e

Here we would like to prove A  A B  assuming A  and B.  For the above lemma, initially Isabelle 
displays one goal as [| A  ; B  |] =>• A A B.
We apply the backward proof command a p p ly  ( r u l e  c o n j l )  which applies proof method r u l e  
with conjunction introduction rule c o n j  I .  The rule looks like

[|?P ; ? Q |] = ^ ? P A ? Q .

The question mark ? denotes that P  and Q are schematics variable or logical variables. These are 
instantiated by the terms during the proof process by Isabelle’s higher order unification. In the above 
example, A is unified with ?P and B is unified with ?Q. It matches the conclusion of the subgoal with 
the rule
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producing two subgoals
[M ; B |] =► A 

Then both subgoals are proved by the method a s s u m p t io n .

In forward proof, a goal is matched with the premises of rule, creating a new goal from the conclusion 
of the rule. It means deriving new facts from old ones, thus useful for going from the general term 
to the specific term. Applying the symmetry of equality through d r u le  mp is also a forward step. 
Usually proof scripts usually consists of both styles of commands.

Isabelle provides a set of tools for automatically proving goals and subgoals called classic reasoners 
and simplifier. They include

•  s  im p which simplifies a subgoal using rewriting and decision procedures like arithmetic deci
sion procedure.

•  s i m p _ a l l  which is similar to s im p  but tries to prove all subgoals.

•  b l a s t  which proves a subgoal using techniques like tableau methods. This is a powerful 
classic reasoner.

•  f a s t  which is similar to b i a s  t  but uses a few steps of heuristic only.

•  a u t o  which combines implication and classic reasoning to prove all subgoals. It leaves what it 
cannot prove.

•  f o r c e  which is similar to a u t o ,  but it proves one subgoal only. It either terminates success
fully proving a subgoal or terminates by failing to prove a subgoal.

•  c l a r i f y  performs obvious steps without splitting the subgoals.

2.4 CSP-Prover

CSP-Prover [IR05] is an interactive proof tool for CSP based on the generic theorem prover Isabelle. 
It currently fully supports the traces model and the stable failures model. It can be used to prove 
processes refinement and processes equivalence in these models. Proofs for processes refinement can 
be exploited using three different strategies:

•  Based on semantic proof.

•  Based on syntactical proof.

•  Based on semi-automatic syntactical proof.

A number of interesting properties have been proven using CSP-Prover in the traces model and the 
stable failures model. It has been extended by a framework for the deadlock-analysis of networks.

Figure 2.4 shows the architecture of Csp-Prover. CSP-Prover follows a generic approach: individual 
Csp models can be instantiated separately. It consists of three major packages : CSP, CSP_T and 
CSP—F. The package CSP contains a reusable package which independent of Csp models. CSP_T  
contains theories related to the traces model. CSP_F contains theories related to the stable failures
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Th9: Proof Infrastructure for ^

instantiated part

Ths: cpo

Figure 2.4: The theory map of CSP-Prover instantiated with the stable-failures model T .

model. The packages CSP_T and CSP_F can be instantiated separately. Both are implemented on 
theories in CSP. In this section, we explain the reusable part of CSP-Prover.

2.4.1 Reusable Part of CSP-Prover

The package Csp , the reusable part of Csp-Prover, contains important theories for Tarski’s fixed 
point theorem and the standard fixed point induction rule based on Complete Partial Orders (Cpo), 
and Banach’s fixed point theorem and the metric fixed point induction rule based on Complete Metric 
Space (CMS). Other important theories in the reusable part are the theory of traces, the theory for the 
hiding operator, the theory of pairs, the theory for the parallel operator, the theory for the renaming 
operator, the theory for the sequential operator. In this section, we explain the above theories in detail.

2.4.1.1 The Theory ‘Traces.thy’ in Csp-Prover

In the theory of traces, a new polymorphic type ' a  e v e n t  is created on a polymorphic type' a  and 
a distinguished element using the following type definitional command

datatype'a e v e n t  = Ev ' a  | T i c k

The distinguish element T i c k  is added to the polymorphic type ' a. It is a standard technique to add 
a value to any existing datatype. In terms of CSP, the constructor Ev ' a  represents elements of the 
alphabets set E and the constructor T i c k  represents the termination symbol / .  All the theories in 
CSP-Prover are build on this polymorphic type ' a  e v e n t .

The datatype ' a  t r a c e  is created on ' a  e v e n t  1 i  s  t  using the following command

typedef'a t r a c e  = " { l : : ( ' a  e v e n t  l i s t ) .  T i c k  s e t ( b u t l a s t  1 ) } "

The expression on the right hand side checks whether T i c k  appears in the set of all the elements of 
the list except the last element. This is done using function b u t  l a s t  1 which returns the tail of the 
list I. s e t  is a polymorphic function that converts elements in the list I in to sets. Each trace is a list 
of events and the event /  may appear only as the last event in the list. It is then proved that the new
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'a event  list  s e t

A b s - t r a c e

R e p - t r a c e

Figure 2.5: Trace representation

datatype is non-empty by giving a witness [ ] to Isabelle. The datatype ' a t r a c e  is a subset of type 
' a  e v e n t  l i s t  s e t .

Isabelle creates the following three constants to manipulate between the representations:

t r a c e  :: ' a  e v e n t  l i s t  s e t
R e p _ t r a c e ::  ' a  t r a c e  ==> a e v e n t  l i s t
A b s _ t r a c e ::  ' a  e v e n t  l i s t ==> ' a  t r a c e

It is pictorially represented as shown in the Figure 2.5. Isabelle construction also asserts that 
R e p _ t r a c e  is surjective on the subset of type ' a  e v e n t  l i s t  s e t  and asserts that R e p _ t r a c e  
and A b s _ t r a c e  are inverse of each other. It is shown by the following equations:

R e p _ t r a c e R e p _ t r a c e x  G t r a c e
R e p _ t r a c e _ i n v e r s e A b s _ t r a c e ( R e p _ t r a c e  x) = x
A b s _ t r a c e - i n v e r s e x  G t r a c e = >  R e p _ t r a c e  ( A b s _ t r a c e ( x ) ) = x

Isabelle creates other useful lemmas like injectivity of R e p _ t r a c e  and A b s _ t r a c e :

(R e p _ t r a c e _ i n j  e c t ) ( R e p _ t r a c e  x = R e p _ t r a c e  y)  = (x=y)
(A b s _ t r a c e _ i n j  e c t ) [| x  G t r a c e ; y  G t r a c e  |] ==>■

( A b s _ t r a c e  x  = A b s _ t r a c e  y)  =
(x=y)

To manipulate and prove properties on level of traces, we raise the level of abstraction by defin
ing required functions on t r a c e  for each analogous functions in the l i s t  via R e p _ t r a c e  and 
A b s - t r a c e .  The following functions and predicates are defined:

^054984383
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consts
a p p t  ::  " ' a  t r a c e  => ' a  t r a c e  => ' a  t r a c e "  ( i n f i x r  "b 65)
n i l t  ::  " ' a  t r a c e "  ("<>")
s e t t  ::  " ' a  t r a c e  => ' a  e v e n t  s e t "
l e n g t h t  ::  " ' a  t r a c e  => n a t"
n o T i c k  ::  " ' a  t r a c e  => b o o l "
h d t  ::  " ' a  t r a c e  => ' a  e v e n t "
t i t  ::  " ' a  t r a c e  => ' a  t r a c e "
l a s t t  ::  " ' a  t r a c e  => ' a  e v e n t "
b u t l a s t t  ::  " ' a  t r a c e  => ' a  t r a c e "

defs
n i l t _ d e f  : "<> == A b s _ t r a c e  [ ]"
s e t t _ d e f  : " s e t t  s  == s e t  ( R e p _ t r a c e  s ) "
l e n g t h t _ d e f : " l e n g t h t  s  == l e n g t h  ( R e p _ t r a c e  s ) "
n o T i c k _ d e f  : " n o T i c k  s  == ( T i c k  s e t t  s ) "
h d t _ d e f  : "hdt  s  == hd ( R e p _ t r a c e  s ) "
t l t _ d e f  : " t i t  s  == A b s _ t r a c e  ( t l  ( R e p _ t r a c e  s ) )"
l a s t t _ d e f  : " l a s t t  s  == l a s t  ( R e p _ t r a c e  s ) "
b u t l a s t t _ d e f  : " b u t l a s t t  s  == A b s _ t r a c e  ( b u t l a s t  ( R e p _ t r a c e  s ) )"

The concatenation of two traces is defined a p p t _ d e f . The traces s and t are first converted into list 
representation using R e p _ t r a c e  s  and R e p _ t r a c e  t  respectively and then perform the concentra
tion of those using list concatenations operator @ and then convert it back to its trace representation 
using A b s _ t r a c e . Syntactic sugar in Isabelle allows that ~  can be used instead o f a p p t .  The an
notation i n f i x r  means that ~  associated to the right and it can be used as infix notation as s ~  t. The 
empty trace () is represented as the empty list [] in list representation and it is defined by n i l t .  s e t t  
s  gives the events in the trace s . To find s e t t  s ,  we convert the trace s  into its list representations 
of the trace s  using R e p _ t r a c e  and find the elements in the list using s e t .

N o T ic k  s  checks whether the event T ic k  appears in the traces s or not using s e t t .  The initial 
event of the trace s is given by h d t  s . It is calculated by first converting the traces s  into its 
list representation R e p _ t r a c e  s  and then taking the first element in the list using hd. Similarly 
the last event in the traces s is defined by using l a s t t _ d e f .  To find the tail o f the trace s ,  its 
corresponding tail of list is found using t l  ( R e p _ t r a c e  s )  and then convert it back it to trace 
using A b s _ t r a c e .  Similarly, we find b u t l a s t t  s  which returns the same trace s except the last 
event of the trace s  is removed.

To work solely on t r a c e ,  sufficient properties of t r a c e  have been proved in the theory of traces.

2.4.1.2 The Theory ‘Prefix.thy’ in Csp-Prover

The theory of prefix extends the theory of traces:

theory P r e f i x  
imports T r a c e

A trace t is a prefix of a trace s, if there exist a trace u such that t ^ u  =  s. A set o f traces T  is 
prefix-closed if and only if for each s 6 T,  if £ is a prefix of s, then t €  T.  This is defined as follows:
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consts
p r e f i x  ::  " ' a  t r a c e  => ' a  t r a c e  => b o o l "
p r e f i x _ c l o s e d  ::  " ( ' a  t r a c e  s e t )  => b o o l "

defs
p r e f i x _ d e f :

" p r e f i x  s  t  == (EX u . t  = s  'u & ( n o T i c k  s  | u = <>) ) "
p r e f i x _ c l o s e d _ d e f  :

" p r e f i x _ c l o s e d  T == ALL s  t .  ( ( t  : T Sc p r e f i x  s  t )  - - >  s  : T)

Csp-Prover follows the definitional approach which means “taking an existing logic for granted, the 
new objects are represented in terms of existing concepts, and the desired properties are derived from 
the definitions within the system” [BW99]. This is a simple good example for conservative extension 
in CSP-Prover. The following lemma has been proved to establish this:

lemmap r e f  i x _ c l o s e d _ i f  f  :
"[| t  : T ; p r e f i x  s t  ; p r e f ix _ c lo s e d  T |] ==> s : T"

The proof directly follows from the definition of prefix and prefix closed. Mathematically it represents

V t, T,  s . t E T  A prefix s t A pref ix-dosed T  = >  s E T.

The following lemmas have been proved in this theory:

V 5. prefix s s 

It asserts that every trace is a prefix of itself.

V s t .( Notick s V t =  ()) =>• prefix s (s ^  t)

This says that s is a prefix of s ^  t  provided t is tickfree or /  does not appear in s.

V s t . (( NoTick t V u =  ()) A prefix s t ) =>• prefix s ( t ^  u)

This says 5 is a prefix o f t ^  u provided t is tickfree or u is ().

V s.prefix () s

says that the empty trace is a prefix of every trace. For more other properties, we refer to the theory 
file Prefix.thy.

2.4.1.3 The Theory ‘CPO.thy* in CSP-Prover

The theory for complete partial order contains Tarski fixed point theorem 2.14 and continuity def
initions. Many useful lemmas on continuity have been proved in this theory. In this theory, four 
axiomatic type classes are defined. Isabelle/HOL has a type class o r d  in theory M ain, o r d  is the 
type class of all types for which an ordering relation <  is defined, o r d  has two relations < =  and 
< . The functions m ono, m in  and max, and the LEAST operator are defined over ord . The first 
axiomatic class is given below:

axclass botO <  o r d e r
consts B ot : : " ' a :  :b o t0  " (* Bottom *)
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The above creates a new axiomatic subclass called b otO  which has a function B o t  of type a :: botO. 
It fixes an element o f type as the bottom element.

axclass b o t  <  botO
bottomJbot: "Bot  < =  (x: ' a : :b o t O )

The above code creates another new axiomatic called b o t  from b otO . b o t  is a subclass of b o t 0. 
The newly created class has an axiom which requires that B o t  to be less than all other elements in 
b o tO . This establishes that there is the minimum element in the datatype. An axiomatic type class 
c p o  is created as a subclasses of o r d e r  where the following axiom needs to hold. The new axiom 
says that every directed set has the least upper bound.

axclass c p o  <  o r d e r
c o m p l e t e _ c p o  : 11 ( d i r e c t e d  ( X : : ' a  : : o r d e r  s e t ) )  ==> X hasLUB"

Another axiomatic type class c p o  with minimum element called c p o _ b o t  is created as a subclasses 
of cpo and order using the below code:

axclass c p o _ b o t  <  c p o  , b o t

The definition of continuous function is defined as below:

constdef
c o n t i n u o u s  : : " ( ' a : :  c p o  = >  ' b : : c p o )  = > b o o l ”
c o n t i n u o u s _ d e f  : " c o n t i n u o u s  f  == ALL X. d i r e c t e d X ---- >

( ( f  ' X) hasLUB & LUB ( f  ' X) = f  (LUB X ) )"

The function /  is continuous if  for every directed set X ,  { f ( x )  \ x €  X  } has a least upper bound, and 
the least upper bound of is equal to f ( U X ) .  It is then proved that

V X.d irec tedX  =>•  3 x . (x =  U X  A f ( x )  =  U { f ( x ) . x  G l } )

Other important lemmas have also been proved in this theory are follows

V f  .continuous f  = >  mono f

It says if /  is continuous, then /  is monotonic as proved in Lemma 2.12.

V /  g. continuous f  A continuous g = >  continuous f o g .

It says the composition o f two continuous functions is also a continuous function.

V f  X  .continuous f  A d irec tedX  = >  directed { f  {x) \ x 6 X } .

This says that if /  is continuous and X  is directed set, then { f { x )  \ x 6  X }  is also a directed set. The 
important Tarski Fixed point theorem is proved in this theory.

V / .continuous f  ==> f  has a least fixed point.
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2.4.1.4 Production of CPO and Cpo pair

The theory C P O _ p r o d  has lemmas to show that infinite products of C pos are a Cp o . The theory 
C P O _ p a i r  provides theorems to show that a pair of Cpos  is a Cp o . It also has a continuity proof for 
functions on these spaces. Here we discuss only the theory on C P O _ p a i r  as a theory on C P O _ p r o d  
is similar. It is done by making the operator * (binary product) to be an instance of axiomatic type 
classes declared in Cp o .

instance*:: (b o t ,  b o t)  botO  
by ( i n t r o _ c l a s s e s )

There are no axioms in the axiomatic type classes b o tO , hence the proof obligation is completed by 
command
i n t r o _ c l a s s e s .  We overload element B o t by (B o t , B o t ). This is done by the following com
mand:

defs (overloaded)
p a i r _ B o t _ d e f  : "Bot == ( B o t ,  B o t ) "

Next, the operator * is declared as an instance of axiomatic type class b o t .  Here b o t  has an axiom. 
Hence, it is neccassary to prove that b o t  satisfies the axiom using the command b y  ( s i m p  a d d : 
p a i r _ B o t ).

instance * :: (bot, bot) bot 
a p p l y  ( i n t r o _ c l a s s e s )  
b y  ( s i m p  add:  p a i r _ B o t )

The command b y  (s im p  a d d : p a ir _ B o t )  discharges remaining proof obligation. Then it
is proven that a pair of Cpos is also a Cp o . This is done by making the operator * an instance of 
axiomatic type class cp o . Here b o t  has an axiom, which says every directed set has a least upper 
bound. The following does the above job:

instance * :: (c p o , c p o ) c p o  
a p p l y  ( i n t r o _ c l a s s e s )
b y  ( s i m p  add:  p a i r _ c p o _ l m  d e l :  s p l i t _ p a i r e d _ E x )

Similarly, * is declared is an instance o f axiomatic type class c p o _ b o t  which is an axiomatic type 
classes for pointed Cp o .

2.4.1.5 Syntax of Csp in Csp-Prover

In this section, we discuss how the syntax of Csp has been encoded in Csp-Prover. CSP-Prover 
follows a deep encoding; hence, the syntax is defined in HOL. In Csp-Prover, the syntax of Csp 
is defined in the reusable packages and the semantic function is defined in the individual packages 
for each models separately. The syntax of CSP is defined as a separate datatype ( '  p , ' a ) p r o c .  
where 'p is the type of process name and 'a is the type of communication alphabet S .
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datatype (’p,’a) proc =
STOP

| SKIP
j DIV
| A c t - p r e f i x  ” ’a” ” (’p,’a) proc ” (" ( 1_  / - >  _) 11 [ 1 5 0 , 8 0 ]  80)
| E x t _ p r e _ c h o i c e  ’ ’a set” ” ’a = >  (’p,’a) proc ”

(" (1? / - >  _) " [ 9 0 0 , 8 0 ]  80)
| E x t _ c h o i c e ” (’p,’a) proc ” ” (’p,’a) proc ”

(" ( 1_  / [ + ]  _) » [ 7 2 , 7 3 ]  72)
| I n t _ c h o i c e ” (’p,’a) proc ” ” (’p,’a) proc ”

( " ( 1_  / |  | _) " [ 6 4 , 6 5 ]  64)
| R e p _ i n t _ c h o i c e ” ’a sets_nats ” ” ’a aset_anat = >  (’p,’a) proc ” 

(" ( 1 ! !  . / _ )  " [ 9 0 0 , 6 8 ]  68)
[ I n t e r r u p t ” (’p,’a) proc ” ” (’p,’a) proc ”

(" ( 1_  / [ \  _) " [ 7 2 , 7 3 ]  72)
| T i m e o u t ” (’p,’a) proc ” ” (’p,’a) proc ”

(" ( 1_  / [ >  _) " [ 7 3 , 7 4 ]  73)
1 IF ” bool ” ” (’p,’a) proc ” ” (’p,’a) proc ”

(" (OIF _ /THEN _  /ELSE _) " [ 9 0 0 , 6 0 , 6 0 ]  88)
| P a r a l l e l ” (’p,’a) proc ” ” ’a set ” ” ( ’p,’a) proc ”

(" ( 1 _  / | [_] | _) " [ 7 6 , 0 , 7 7 ]  76)
| H i d i n g ” (’p,’a) proc ” ” ’a s e t ” (" ( 1_  / - -  _) "
[ 8 4 , 8 5 ]  84)
|R e n a m in g ” (’p,’a) proc ” ” (’a * ’a) set ”

( " ( 1 -  / [ [ _ ] ] )  " [ 8 4 , 0 ]  84)
|S e q _ c o m p o ” (’p,’a) proc ” ” (’p,’a) proc ”

(" (1 _  / ; ;  _) " [ 7 9 , 7 8 ]  78)
| D e p t h _ r e s t ” (’p,’a) proc ” ” nat ”

(" (1 _  / | . _) " [ 8 4 , 9 0 0 ]  84)
|P r o c _ n a m e ” ’p ” (" $_  " [ 900]  90)

The type of index sets in the replicated internal choice is defined by following command

types
’a sets nats = ” (’a set set, nat set) sum ” 
’a aset anat = ” (’a set, nat) sum ”

An index-set is disjoint union of subset of subsets of communications or a subset of natural numbers. 
Disjoint union set is defined in the theory I n f  r a _ f u n  as sum.

datatype ( ' a ,  ' b)  sum = t y p e l  " ' a "  | t y p e 2  " 'b"

Later, sending and receiving for the prefix operator is defined as
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consts
S e n d _ p r e f  i x :: " ( ' x  =>  ' a)  = >  ' x  => ( ' p , ' a )  p r o c  ==> ( ' p , ' a )  pr oc"

( " ( 1 -  ! -  / - >  - ) "  [ 9 0 0 , 1 0 0 0 , 8 0 ]  80)
N o n d e t _ s e n d _ p r e f  i x  :: " ( ' x  = >  7a) => ' x  s e t  =>

( ' x  => ( ' p , ' a )  p r o c )  => ( ' p , ' a )  proc"
R e c _ p r e f i x : :  " ( ' x  =>  ' a =>  ' x  s e t  =>

( ' x  => ( ' p , ' a )  p r o c )  => ( ' p , ' a )  proc "
defs
S e n d _ p r e f i x _ d e f :

"a ! x  - >  P == a x  - > P"
N o n d e t _ s e n d _ p r e f i x _ d e f " N o n d e t _ s e n d _ p r e f i x .  f  X Pf

== ! : ( f  ' X) - >  (%x. (Pf  ( ( i n v  f ) x) ) ) "
R e c _ p r e f i x _ d e f :
" R e c _ p r e f i x f  X P f  == ? : ( f  ' X )  - >  (%x. (P f  ( ( i n v  f ) x ) ) ) ”

By defining the syntax as a separate datatype, we can quantify over syntactic structures of Cs p . For 
example, we can prove the formula,

V p  €  ('p,' a) proc . p  □ p  =  p

2.4.1.6 Theory of the Renaming Operator ‘Trace_ren.thy’

The renaming operator in CSP takes a set o f relations. The set of all traces generated by this renaming 
relations is defined using inductive definition, so it takes a set of relation as parameters. The inductive 
definition is a function that yields sets. The inductive defined set of renaming relation is as follows:

consts
r e n x  ::  "( ' a  * 'b) s e t  => (' a  t r a c e  * 'b t r a c e )  s e t "

inductive
" r e n x  R"

intros
r e n x _ n i l : "( <>,  <>) : r e n x R"
r e n x _ n i l : " (<>,  <>) : r e n x R"
r e n x _ T i c k : " (< T ic k > , <T ic k >) : r e n x  RII

r e n x _ E v : " [ | ( s ,  t ) : r e n x R ; (a ,  b) R | ]
==> (<Ev a> ~ ~ s , <Ev b> t ) : r e n x  R”

The definition consists of three rules. The first two rules are obvious: renx_nil says () is renamed 
to () and renx_Tick says ( / )  is renamed to ( / ) .  The last rule renx_Ev says that if (s, b) £ R  and
(s, t ) €  renx R  then ( (Ev a) ^  s, (Ev b) ^  t) £ renx R

The above inductive definition generates the least closed set o f traces that satisfies the above three 
definitions. Isabelle also proves useful theorems about it. These theorems include introduction rule, 
and elimination rule. Isabelle generates introduction rules with the names specified in the declaration.

((), ()) £ renx R renx.renx_ni l
( / ,  / )  G renx R renx.renx_Tick
(s, t) G renx R A (a, b) G R) =>• ((Ev a) s, (Ev b) ^  t) G renx R renx.renx_Ev

It produces an induction rule (renx.induct),  and an elimination rule (renx.elims).  

The renaming of a trace is defined by the following function:
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consts
ren_tr :: " 'a trace => ('a * 'b) set = > 'b trace => bool "

( "(- [[_]]* _) " [1000,0,1000] 1000)
defs
ren_tr_def:" s [[r]]* t == (( s, t) : renx R) "

The code says s  is renamed by t  by the renaming r  if (s, t) G renx R. It also says [[R]\* is syntax 
sugar for renaming a trace. Hence, [[R]]* is the smallest set satisfying the following inference rules:

Tme=>  « ) , ( ) ) €  [[*]]*
Thie = » ( < / ) ,  < / ) ) € [ [ * ] ] *

(a, b) £ R A (£, £') G [[it!]]* {a ^  t, b ^  t') £ [[/?]]*

The inverse relation of R  is defined as follows:

defs
ren_inv_def:
"[[R]]inv X == ea. EX eb X . ea = Tick A eb = Tick |
(EX a b . (a ,b ) :R A ea = Ev a A eb = Ev b) "

2.4.1.7 Theory of the Hiding Operator ‘Trace-hide.thy’

Similar to the theory of the renaming operator, the theory of the hiding operator is defined using 
inductive definitions. The hiding operator P  \  X  takes a set as input. The code is shown below:

consts
h i d e x  :: ”’a set => (’a trace * ’a trace) set” 

inductive ’’hidex X” 
intros

h i d e x _ n i l : ”((), ()) : hidex X”
h i d e x _ T i c k :  ”((Tick), ( Tick)) : hidex X”
h id e x _ in : ”[| (s, t) : hidex X ; a : X |] ==> ((Eva) ~  s, t) : hidex X”
h id ex _ Q o t i n : ”[| (s, t) : hidex X ; a X |] ==> ((Eva) s, (Eva) t) : hidex X”

The first rule says that hiding of the empty trace by any set X  is the empty trace, denoted as () \  X  =  
(). The second rule says that hiding the trace ( / )  by any set X  results in the same trace ( / ) .  The 
third rule says that hiding a trace which has an element in X  results in removing the element from 
the trace. The last rule says that hiding an element which is not in the set X  results the same trace. 
The inductive definition generates a set of pairs such that the first element intuitive denotes the trace 
before hiding, and the second element denotes the traces after hiding the elements in X .  The hiding a 
trace is formally defined as

defs
hide_tr_def : "s --tr X == THE t. (s, t) hidex X"

Then existences and uniqueness are proved by the following lemmas
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lemma hidex_exists : "EX t. (s, t) : hidex X"
lemma hidex_unique:
"[| (s, t) : hidex X ; (s, u) : hidex X ] ==> t = u"

2.4.1.8 Theory of the Parallel Operator ‘Trace_par.thy’

The theory o f the parallel operator is also defined based on inductively definition set. Given traces s 
and t, s[[X]]t denotes the set of all traces such that event in X  must be synchronised for the traces s 
and t. It also takes an synchronisation events set X  and returns a set of triples. The code of inductive 
definition is given below:

consts
parx : "'a set => ('a trace * 'a trace * 'a trace) set"

1 inductive "p a rx  X"
2 intros
3 p a r x _ n i l _ n i l : "((}. ( )>(» : Pa r x  x ”
4 p a r x _ T i c k _ T i c k : " ( < T i c k > ,  < T i c k > ,  < T ic k > ) : p a r x  X
5 p a r x _ E v _ n i l :  "[ | (u,  s ,  <>) : p a r x  X ; a X | ]
6 ==> (<Ev a> <Ev a> s ,  <>) : p a r x  X"
7 p a r x _ n i l _ E v :  " [ | (u ,  <>,  t )  : p a r x  X ; a X | ]
8 ==> (<Ev a> u ; <>, <Ev a> t ) p a r x  X"
9 p a r x _ E v _ s y n c  " [ | (u,  S,  t )  : p a r x  X ; a : x  | ]
10 ==> (<Ev a> u, <Ev a> ^  s ,  <Ev a> t )
11 p a r x _ E v _ l e f t : 1[ | (u,  s , t ) : p a r x  X ; a X | ]
12 ==> (<Ev a> u,  <Ev a> s ,  t ) : p a r x  X"
13 p a r x _ E v _ r i g h t : " [ | (u,  s ,  t )  : p a r x  X ; a ~ : X | ]
14 ==> (<Ev a> "  u, s ,  <Ev a> t ) : p a r x  X

It generates a set of triples (it, s, t)  for an input X .  The trace u is the result of parallel composition 
o f the traces s and t. The first rule says that composition of two empty traces () results in the empty 
trace (). Line number 7 says that if (it, s, t) e  parx X  and a e  X , then
( {Ev a) ^  u, {Ev a) s,  {Ev a) ^  t) G parx X.
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In this section, we discuss the motivation for the stable revivals model. The stable revivals model was 
developed in response to work by Foumet et al [FHRR04] on conformance relations in CCS. On the 
application side, the stable revivals model suites well for reasoning about responsiveness and stuck- 
freeness. Responsiveness and stuck-freeness are important properties in Component Based Systems 
Design. In Section 3.1, we focus at Component Based Systems Design and its relation with respon
siveness and stuck-freeness properties. In Section 3.2 and Section 3.3, we give the definitions of 
responsiveness and stuck-freeness.

3.1 Component Based Systems

Component Based Systems Design is an approach in which existing components are plugged in or
der to build complex software. Components are reusable software programs that can be developed 
separately and assembled easily to create complex applications.

A widely accepted definition is given by Szyperski [Szy02]:

"A software component is a unit o f  composition with contractually specified interfaces and explicit 
context dependencies only. A software component can be deployed independently and is subject to 
composition by third parties

The definition says components can be composed. To compose, components should provide well 
defined interfaces. These interfaces act as a contract between components and environment. The 
properties of components are specified in component specifications. A Component is a self-contained 
description. A component specification has the following four aspects [LOOl]:

43
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1. Signature of component. This deals with the syntactical aspects of components. It is usually 
provided by specification of interface. In Component Object Model (COM) [Box97], Dis
tributed Component Object Model (DCOM) [Tha99], Common Object Request Broker Ar
chitecture (CORBA) [Gro08], interfaces are usually defined in their own Interface Definition 
Language (IDL). This also forms the basic of interaction.

2. Semantics of component. It deals with the semantic aspects of components. It is important for 
automatic testing o f components and to check whether the client code satisfies pre-conditions. 
The Object Constraint language (OCL) in the Unified Modeling Language (UML) [UML08] 
can specify semantic part of components. The signature and semantics of components charac
terise the components ability.

3. Packaging or Interaction. This deals with aspects of how components can be composed with 
each other. This discusses the protocol level properties of different communicating components 
or interoperability of components. Responsiveness and stuck-freeness discuss interactions of 
components in a larger system.

4. Quality attributes(illities). This deals with non-functional properties of components such as 
security, reliability, and performances.

The motivation for using components based systems is that they reduce the overall system devel
opment costs. Components can be bought or reused from already existing code instead of being 
developed from scratch. Individual components in the distributed system will need an assurance that 
the interacting components will not behave in an undesirable manner. Components need a proof of 
correctness before communicating with other components. Responsiveness and stuck-freeness are 
properties of this kind.

3.2 Definition of Responsiveness

A component Q is responsive to another component P  if the component Q will not cause the com
ponent P  to deadlock and furthermore, no refinement of Q causes any refinement of P  to deadlock. 
This is related to the question whether two processes deadlock when put in parallel. However, it is 
different in that we require that a specific process P  is not itself blocked by a plug-in Q when it 
could have otherwise have progressed [RRS04, RRS06]. [RRS06] defines R esp o n d sT o L iv e  and 
R esp o n d sT o  where the first fails to capture responsiveness. R esp o n d sT o  captures the intuition 
behind the notion that we are intended to have. More properties and examples on these definitions are 
given in [RRS06]. Below we explain examples similar to [RRS06].

3.2.1 First Definition on Responsiveness

We give the formal definition of responsiveness in Csp over the model T . We assume all processes to 
be divergence-free. Each process P  has its own alphabet a (P ) , but it might communicate only some 
of its events.

Let J  =  a ( P )  C\a(Q).  Let =  J U  { / }  be the set of shared events between process P  and process 
Q with the termination signal /  included. We can consider process P  as the requesting process which
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requires process Q to respond in a non-blocking manner. The definition R esp o n d sT o L iv e  [RRS06] 
is given below:

Definition 3.1: R e s p o n d s T o L iv e .  A process Q R esp o n d sT o L iv e  process P  on A  for A  C J S  
if for every trace 5 such that (s, A)  E fai luresM(P \[J]\ Q)  ==> (s, A)  E failuresM(P)  holds. We 
say Q R e sp o n d sT o L iv e  P  if A =  J^.

Q R esp o n d sT o L iv e  P  on A  means that if P  |[ J]\ Q  can reach a state after executing the trace s and 
A  is refused at that state, then the process P  will also refuse the event set A  after the same trace s. We 
illustrate R esp o n d sT o L iv e  by the below examples where J  =  a ( P )  =  a ( Q ) =  { req, repl, rep2}.

Example 3.2:
P  =  req —> (repl  —» SKIP □  rep2 —» SKIP)
Q =  req —> repl  —> SKIP

For the above example, failuresM of P  and Q are

failuresM (P)  =  {(() , X )  \ X  C {r ep l ,  rep2,  / } }  U {((req),  X )  \ X  C {req,  / } } U
{{{req, repl) ,  X ) ,  {{req, r e p 2 ) , X)  | X  C {req, repl ,  rep2}}U  
{({req, repl ,  / ) ,  X ) ,  ({req, rep2, / ) ,  X )  \ X  C {req, repl ,  rep2,  / } }

fai luresM(Q) =  { (() , X )  \ X  C {r ep l ,  rep2,  / } }  U {({req),  X )  \ X  C {req, rep2,  / } } U
{({req, repl ) ,  X )  \ X  C {req, repl ,  rep2}}U  
{({req, repl ,  / ) ,  X )  \ X  C {reg', repl, rep2, / } }  

fai luresM(P  |[«/]| Q) =  failuresm (Q)-

Consider the above example when A =  {req, repl,  rep2}. The event set A  is refused by P  |[ J  ]| Q 
after the two traces {req, repl )  and {req, repl,  / ) .  P  also refuses A  after the same traces. Thus for 
every traces s, we have

(s, A)  e  fai luresM(P  |[*/]| Q)  ==> (s, A)  E fai luresM(P)

Hence, Q R e sp o n d sT o L iv e  P  on A.

Consider the above example when A  =  {req, rep2}. A  is refused by P  |[ J  ]| Q after the traces in 
{(), {req), {req, repl ) ,  {req, repl ,  / ) } ,  but A  is not refused by P  after the trace (req). Hence,
Q R esp o n d sT o L iv e  P  on A is not true.

Consider the below examples where J  =  a ( P )  =  a ( Q )  =  A =  {rep} .

Example 3.3:
P  =  (rep -> SKIP) n  SKIP 
Q =  rep —> SKIP

failuresM (P)  =  {({) ,  X )  \ X  C { / ,  rep}}  U {( (rep) ,  X )  \ X  C {rep}}
{ ( ( /> ,  X ), ( ( r e p , / ) ,X )  | X C  { r e p , / } }  

failuresM (Q)  = { ( ( ) ,  X ) | X  C { / } }  U {((rep), X ) | X  C {rep}}U
{ ( ( r e p ,/ ) ,  X ) | X  C { r e p , / } }  

failuresM ( P  |[{rep}]| Q) =  { ( ( ) , X )  \ X  C { / ,  rep}} U failuresM (Q)
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{r ep }  is refused by P  |[ J  ]| Q after the traces (rep) and (rep, / )  when {rep }  is also refused by P  
after the same traces. Hence, Q R esp o n d sT o L iv e  P  on {rep} .  But P  R esp o n d sT o L iv e  Q is 
not true as ((), {rep} )  6  failuresM(P  |[ {r ep }  ]| Q) and ((), {rep} )  ^ failures m (Q)-  Here P  might 
non-deterministically terminate and can refuse to engage in {rep}  after ().

The definition Re sp o n d sToL ive captures the desired behaviour in most o f the cases, but Example
3.4 shows that it sometimes does not capture the intended behaviour.

Example 3.4:
P  =  rep —> STOP 
Q =  (rep -> STOP) n STOP

failuresM {P) =  { (() , X )  | X  C { / } }  U {((rep) ,  X )  \ X  C {rep,  / } }
failuresM(Q)  =  { ( ( ) ,X ) j X  C { r e p , / } }  U failuresm (P)
fai luresM(P  |[*/]| Q) =  failuresm (Q)

The examples satisfies Q R esp o n d sT o L iv e  P,  but Q does not engage in rep when P  engages in 
rep. This clearly violates the required definition of responsiveness namely that Q does not cause P  to 
deadlock. Consider another two processes P  and Q which are refinements of P  and Q respectively 
in the model T.

Example 3.5:
p '  =  rep -> SKIP 
Q' = STOP

failuresM (P')  = { ( ( ) ,  X )  \ X  C { / } }  U {((rep),  X )  \ X  C {rep,  / } }
failuresM (Q')  = { ( ( ) » X )  \ X  C { r e p , / } }
failuresM(P  |[*/]| Q ) =  failuresM(Q )

In the above example P'  R esp o n d sT o L iv e  Q' is not true as ((), { rep} )  G failuresM(P'  |[ J  ]| Q )
and ((),{rep }) ^ failuresm (P')-

Definition 3.6: Refinement-closed. Let 0  be a relation on specifications. 0  is refinement-closed if 
and only if, given P f Q  then for all P \  Q' such that P  Q P'  and Q C. Q' , it is the case that 
P f Q  =► P ' f Q ' .

Example 3.4 and Example 3.5 show that P  R esp o n d sT o L iv e  Q is not refinement-closed. 
R esp o n d sT o L iv e  has been defined as a predicate, and to verify it in a refinement checker like FDR 
[Lim07], we need to represent the predicate as a refinement relation. In [RRS04], R esp o n d sT o L iv e  
has been formulated as machine-checkable assertions suitable for verification in tools like FDR. We 
briefly explain it in Appendix A .3.

3.2.2 The Second Definition on Responsiveness

The previous examples show that the definition R esp o n d sT o L iv e  captures some false positives. 
Q R esp o n d sT o L iv e  P  on A  means that for every traces s either (5, A) ^ failuresm (P\[J]\Q) or 
(5 , A)  6  failuresM(P)  holds. In the first case, (s, A)  ^ failuresm (P\[J]\Q) means that the parallel
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process do not block each other on A. If (s, A) E failuresM(P)  means that a blocking on A  has 
been caused by process P.  In the second case if Q is considered as not blocking even if Q is the 
source o f blocking. Example 3.4 illustrates this problem clearly. It can be improved by adding more 
tighter constraints like refinement-closed on R esp o n d sT o L iv e . [RRS04] gave another definition of 
responsiveness R esp o n d sT o  which captures the required behaviour. In [RRS04], it is also proved 
that P  R esp o n d sT o  Q if and only if P'  R e sp o n d sT o L iv e  Q' for all the refinements P'  and Q'
of P  and Q respectively. We define some notations which will be used in the definition:
Let initials (P)  is the set o f all initial events in which P  may engage ;
P / s  is the process which behaves as P  would after execution of trace s; 
s \ A  is the sub-sequence o f s formed by restricting s to elements of set A.

Definition 3.7: R e sp o n d s T o . A Process Q R esp o n d sT o  process P  if and only if for all
s E ( a P  n  a Q )* ,  X  C , such that
(s r a P ,  X ) E fai luresM(P)  A ( J ^  fl in i t ia ls (P / s)) - 1 ^  { }  ==>
(s r a Q ,  { J ^  fl in i t ia l s (P / s)) — X )  £  failuresM (Q)  •

For any failures (s \ q P , X )  E failuresM(P),  the set ( J ^  fl in i t ia ls (P / s)) — X  {}  describes a
joint events in which P  wants Q ’s participation.

Example 3.4 does not satisfy the R esp o n d sT o  as ((), {} ) is afailure o f P  with f ] ini t ials (P/ s)) — 
{}  =  {r ep }  which satisfies the left hand side and fails in right hand side as {rep }  E failures m {Q)-

R esp o n d sT o  is the weakest refinement-closed strengthening of R esp o n d sT o L iv e  [RRS04]. In 
[RRS06], both R e sp o n d sT o  and R esp o n d sT o L iv e  have been formulated as machine-checkable 
assertions in the Csp model checker, FDR. We will give the definition for R esp o n d sT o  in the stable 
revivals model and illustrate its difference with the stable failures model in Chapter 4.

3.3 Definition of Stuckness

In this section, we give the definition of stuckness. The stuckness property is defined in C cs. To 
introduce stuckness, we briefly give the syntax and semantics of C cs in Appendix A.5.

3.3.1 Stuckness, and Conformance

In C cs, two processes communicate with each other through the rule Com3.  Handshake is an atomic 
communication in which a data value is sent by one process and received by another simultaneously. 
It is the basis for communication in CCS. The transition diagram for handshaking communication is 
given below:

A c t   ----- Act
a . P ^ P  a . Q ^ Q

Com3 ------------------ —----------------------------
a . P  | a.  Q  —> P  | Q

ReS ( a . P \ a . Q ) \ { a } ^ ( P \ Q ) \ { a }

Hence it is interesting to check whether the process P  \  X  terminates successfully or not. Informally 
for (P  | Q) \  X ,  checking whether interactions between P  and Q succeed or not for events in X.
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In other words, it is to check for sending messages that are never received or waiting for receiving 
messages that are never sent. The following definition captures stuck-freeness of a process.

Definition 3.8: Stuck. A process P  is stuck on X ,  if P  \  X  is an end-state, and P  —> for some 
A G X .  We refer to such A as a residual action

Definition 3.9: Stuck-free process. A process is called stuck-free on X ,  if there is no P  and a  such 

that with set  (a)  fl X  =  0, and P'  is stuck on set d, where set  (a)  returns the element in the
sequences a  as a set.

The restriction operator of CCS in the definition of stuckness and the condition set (a) D X  =  0 in the 
definition of stuck-free process implies that only internal events can happen on names in X .

In Definition 3.8, a process (P  \ Q) \  X  is stuck, if P  \ Q for some X e  X  means that interaction 
between P  and Q do not succeed. One of the processes from P  and Q is waiting for its co-action A 
to happen, but the other process never engages in A.

Let in i t (P)  =  { a  \ P  A } ,  and let denote the singleton sets of C together with the empty set,
£(°°) =  {{A} | A G C}  U {0}.

Definition 3.10: Refusal. If X  is a subset of C,  we say that P  refuses X  if and only if P  is stable 

and in i t (P)  ( 1 1  =  0. We say that P  can refuse X  if and only if there exists P'  such that P  ^  P  
and P  refuses X.

Definition 3.11: Readiness. If Y  G we say that P  is ready on T , if and only if P  is stable and

A G Y  implies P  Any stable process is trivially ready on 0.

Definition 3.12: Ready Refusal. If X  C C and Y  G we say that P  can refuse X  while ready 
on Y  if and only if P  can refuse X  from a state that is ready on Y ,  i.e.,  there exists P  such that

P  ^  P'  , P'  refuses X ,  and P'  is ready on Y.

Definition 3.13: Conformance Relation. A binary relation 1Z on processes is called conformance 
relation if and only if, whenever P  7Z Q,  then the following conditions hold:

C l .  If P  ^  Q' then there exists Q ' such that Q ^  P'  and P 1 Z Q ' .
C 2. If P  can refuse X  while ready on Y,  then Q can refuse X  while ready on Y.

Condition C2 is very similar to the stable failures refinement. We define composition of two con
formance relations Pl\ and TZ2 as H 1 0 H 2 =  {(jP, Q ) I 3 R . { P , R )  €  A (R , Q)  G K \ .  In 
[FHRR04], the following lemma has been proved:

Lemma 3.14: Let {7Zi } i e j  be a family o f conformance relations. Then
1. The relation U i s  a conformance relation.
2. For any i , j  G I,  the relation 7Z{ olZj is a conformance relation.
3. The identity relation on processes is a conformance relation

Using the above lemma 3.14, we can define the largest conformance relation <  by taking the union of 
all conformance relation.
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Definition 3.15: Stuck-free conformance < . The largest conformance relations is referred to as 
(stuck-free) conformance and is denoted <. We write P  < Q for (P , Q) e < ,  and we say that P  
conforms to Q.

In [FHRR04], it is proved that the conformance relation <  is reflexive and transitive. As an example 
for conformance relation we consider (P  =  a.O | 6.0) <  (Q =  (a .6 .0 )# (6 .a .0 ) ) .  Considered over 
the alphabet of names { a , 6}. The process ( a .6 .0 ) # (6 .a .0 )  refuses {a,  6, b} from the state it is ready 
on {a} ,  refuses {6, a, a }  from the state it is ready on {&}. After engaging in a, P  refuses (a ,  a, b} 
accepts {6},  and after engaging in b, P  refuses {6, b, a]  accepts {a} .  The process a .6.0 +  6.a.O 
refuses {a,  6} and is ready on both { a }  and {6}.  After engaging in a, P  refuses {a,  a, 6} accepts 
{6} ,  and after engaging in 6, Q refuses {6, 6, a} accepts {a} .  Similarly after engaging in a, Q refuses 
{a,  a, 6} accepts {6},  and after engaging in 6, Q refuses {6, 6, a}  accepts {a} .  Hence it satisfies (71 
and (72.

But the reverse direction ( Q =  (a . 6 .0 )# (6 .a .0 ) )  $£ ( P  =  a.O | 6.0) does not hold as (72 fails. P  
refuses {a,  6, 6} from the state that it ready on {a} ,  but Q does not refuse {a,  6, 6} from the state it 
is ready on {a} .

Let C range over contexts, which are process expression with a hole (written []) in them:

C  " =  0 I ( i 3 I 0 )  I ( 0  I I ( “ -D +  M )  I ( D )  \  *
C[P] denotes the agent that arises by substituting P  for the hole in C. In [FHRR04], the following 
three theorems have been proved.

Theorem 3.16: Pre congruence. P  <  Q  implies C ( P ) <  C(Q) .

It is similar to the refinement relation is monotonic in Csp. It says the stuck-free conformance is 
preserved by all contexts.

Theorem 3.17: Preservation. P  <  Q and P  is not stuck-free on X ,  then Q is not stuck-free on X.  

It says stuck-free conformance preserves the ability to get stuck.

Theorem 3.18: Substitutability. Assume P  ^  Q. Then C[Q] stuck free on X implies C[P] stuck 
free on X.

These properties are similar to that the stable revivals model is fully abstract with respect to condition 
responsiveness and stuck-freeness properties [Ros07].

3.4 Relation between Responsiveness and Stuck-freeness

The property R esp o n d sT o  is motivated by the need for proper operations of plug-in components in 
Component Based Systems Design. We captured R esp o n d sT o L iv e  and R esp o n d sT o  in the stable 
failures model. On the other hand, the stuck-freeness property is motivated to check whether in an 
interaction between two processes there is no unreceived message present or not. Stuckness is similar 
to deadlock in the stable failures model, but is more discriminative than Csp deadlock [FHRR04].
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Stuckness is directly observable in a labelled transition system. In the stable revivals model, we 
can capture stuckness property similarly to C c s . Conformance in C c s  is useful for reasoning about 
both deadlock and unreceived message in asynchronous systems. Stuck-free conformance extends the 
stable failures relations by requiring that a stable state fails to engaging events in set X  while being 
ready to engaging in event a.

R esp o n d sT o  is an asymmetric property. Two interacting processes which synchronise on their entire 
alphabets satisfy R esp o n d sT o  in both directions if and only if they are stuck-free on the entire 
alphabets [Ros07].
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In Chapter 3, we looked at the motivations for the stable revivals model, especially responsiveness 
and stuckness properties. We have also seen relationships between the responsiveness and stuckness. 
The stable revivals model is created to capture properties like responsiveness and stuckness in a more 
precise way than that it is possible in the stable failures model. In this chapter, we discuss the stable 
revivals model of Csp and its semantics. We will also present the semantics o f the stable revivals 
model. Finally, we present a definition of responsiveness and stuckness in the stable revivals model. 
It turns out that a new healthiness condition needs to be added in the definition of the domain and it is 
explained in Section 4.1.1.

4.1 The domain of the Stable Revivals Model

The stable revivals model is a finite observation model. Thus the stable revivals model records finite 
traces and other information detectable in a finite amount of time, including refusal events observable 
on some stable states. We give the definition of the finite observation model following [Ros07] in 
terms of the behaviours that can be observed on processes:
(i) behaviours of a process take a finite amount of time to observe,
(ii) behaviours only record things that can be seen on a single interaction with the process - they are 
linear, and
(iii) behaviours are restricted to what can reasonably be observed of a standard labelled transition 
system in which, from one state, one cannot “see ahead” to a range of behaviours that can follow its 
initial actions.

In the stable revivals model [Ros07], E is finite and each process P  is identified by a triple ( T, D, R ), 
where

51
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•  T  C E*^ consists o f all P ’s finite traces which P  can execute.

•  D C  E* consists of all traces after which P  can possibly deadlock. Since a successfully 
terminated trace (a trace with ending with / )  does not lead to a deadlock, /  does not appear in 
the deadlock traces.

•  P C  (E* x  V(  E) x E) consists of all revivals of P . A revival is a triple in which the first 
element is a trace of the process P , the second element is the refusal set in a stable state after 
the given trace and the third element is a non-tick event that the process P  can accept in the 
stable state after the trace. The third element is called “reviving event”. Thus in a stable state 
of revival, the process does not engage in /  or any internal events. Each revival ( s , X ,  a) 
represents that process P  can perform trace s, stably refuse X  and then it can accept the event 
a. Revivals are similar to failures in the stable failures model, but extended with a reviving 
event.

Each triple ( T , D , R )  should satisfy the following healthiness conditions:

T l. T is nonempty and prefix-closed; i.e. if s ^  t £ T,  then s £ T.

D l. P e r .  i.e. every trace that leads to deadlock is a possible trace.

R l. ( s , X ,  a) £  R  = >  {a} £  T.  This says that every trace implied by a revival should be in T.
This establishes that the traces and revivals components of a process are consistent.

R2. ( s , X , a )  £  R A Y  C X  = >  (s, Y , a) £ R  . This says in a revival, all subsets of the stable 
refusal event X  should also be refused. The refusal set of any revivals is subset closed.

R3. (s, X ,  a) £  R  A b £  E ==>> ((s,  X , a )  £  R V (s, X  U {&}, a) £ R).  This says that any event b 
should appear in the refusal set of the revival or in the acceptance set.

We also consider the following condition introduced in [RRS06]:

RRS05. (s, X ,  a) £  R  =>• a £  X .  This says the revival event a is not allowed to appear in the 
refusal set X.

Definition 4.1: The Dom ain o f the model 7Z.
The domain of the stable revivals model dom(1Z) is defined to be the set of all triples (T , P ,  R)  
satisfying the above healthiness conditions. Mathematically,

dom(7Z) =  { (T , P ,  R) \ (T ,  P , R)  satisfies T l, D l, R l, R2, R3 and RRS05.}

For example, ((), 0 ,0 ) is in the domain of 71 as it satisfies all the healthiness conditions. We give some 
more examples o f the process representation after giving the semantics for each operators in CSPTp.

4.1.1 Inclusion of the healthiness condition RRS05

Condition RRS05 has been separately given in [RRS06]. However it is not given in the definition 
of the domain of the model 7Z. Here we include it explicitly in the definition of the domain as it is 
necessary to prove the type correctness of the hiding operator in Csp-Prover in Page 86. We will focus 
on this later when proving the type correctness of the hiding operator in Chapter 6.

The full abstraction property [Ros98] in CSP asserts two things:
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Expressibility: The semantic function o f the model is surjective. Each element in the domain is 
represented by some processes.

Distinctiveness: There should be some contexts or criteria for distinguishing processes. It is proved 
in [Ros07] that the stable revivals model is fully abstract with respect to stuckness and respon
siveness.

Had we not included Condition RRS05 in the definition of the domain, then we would have had the 
following triple in the domain.

Let E =  {a } . Then

0 =  ({<>,<«>}, {},{«>■ M>«), (0. {}.«)})
C fulfils all the healthiness conditions except RRS05, but there is no process which represents the 
above triple. Hence, it would be a counter example in expressibility o f the full abstraction.

4.1.2 The Stable Revivals Refinement

The notion of refinement within the stable revivals model is defined by component-wise set inclusion 
similar to the stable failures model.

Definition 4.2: Refinement Relation (Qn)-
Let (T p , D p , R p )  be the denotational value of P  and (T q , D q ,  R q ) be the denotational value of Q 
in the model 1Z. P  Q n  Q  if and only if ( T q  C Tp) ,  (D q  C Dp),  and ( R q  C Rp).

P  Q n  Q is read as Q refines P  by the model 1Z. This says that the traces of Q are contained in 
the traces of P,  the deadlocks of Q are contained in the deadlocks of P,  and the revivals of Q are 
contained in the revivals of P . In the stable failures model, the refinement guarantees that the refined 
process will never refuse events that were not refusable by the specification. But, in the revivals, the 
refinement guarantees the same as in the failures, but also asserting that refined process will accept 
only the reviving events that are allowed by the specification. In the next section, we prove the domain 
is a Cpo on the component-wise set inclusion relation. Two processes are equal in the model 7Z if 
each refines other.

Definition 4.3: Equivalence Relation (=n)-
Let P  and Q be processes. Q =p,  P  if and only if Q P  and P  Q n  Q.

It is read as P  is equivalent with Q in 1Z. We can easily show that (dom(7Z),  C) is a partial order as 
the component-wise set inclusion satisfies reflexivity, transitivity and antisymmetric properties.

4.1.3 The Domain of the Stable Revivals Model is a Pointed Complete Partial Order

Here first we prove that ( dom(TZ), C) is a complete lattice. We know that (dom(lZ),  C) is a complete 
lattice implies (dom(1Z), C) is a pointed complete partial order. Hence we prove the stronger case that 
(dom(TZ), C) is a complete lattice and ({(>}, 0 , 0) is a bottom element. ({ ()} , 0 , 0) trivially satisfies 
the conditions T l, D l, R1-R 3 and RRS05. It is clear that {()}  C T,  0 C D,  and 0 C R,  for all
(T , D , R )  6 dom(TZ).
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Theorem 4.4: ( dom{JZ), C) is a complete lattice.

Proof. By Lemma 2.5, to prove that a partial order is a complete lattice it is sufficient to prove that 
each set has a least upper bound.

Suppose A  C dom(7l)  and A  is non-empty.

We define Y  =  (U(r,D,i?)eA U(T,£>,fl)eA ^  U(t,£>,.r)6A

We prove that Y  £  dom(JZ) and Y  is the least upper bound of A.

Suppose t £  T  where (T , D, R ) £  Y,  then there exists some X  =  (T' ,  IT, i?') £ A  such that T' 
is non-empty and prefix-closed, hence s' £ T  for all s' such that t — s' ^  t ' . T  is prefix-closed and 
non-empty. Hence Y  satisfies T l.

Suppose s £  D  where (T , D , R)  £  Y , then there exists some X  — ( T ' , D ' ,R ' )  £ A. We know that 
( T \  D R ' )  is healthy by assumption, this means that D'  C T' . By assumption we know that s £ T', 
therefore by the definition o f Y,  s £  T. Hence Y  satisfies Dl.

Suppose (s, X ,  a) £  R  where ( T , D , R )  £  Y,  we know that there is some X  such that X  =  
( T ' , D ' , R ' )  £ A  and ( s , X ,  a) £  R' . By assumption, we know that s ^  (a) £ f?', therefore by 
definition of Y, s ^  (a) £  R.  Hence Y  satisfies T l. The proof follows similarly for other conditions.

We now prove that Y  is an upper bound of A . We prove this only for the revivals component as the 
proof for other components is similar. Suppose r  £ R  where X  £ A  and X  =  ( T , D , R ) ,  then by 
definition of Y,  we know that there exists r £ R y  such that Y  =  ( T y ,  D y ,  R Y ). Hence Y  is an 
upper bound.

Now we prove that for all upper bounds Y'  =  (Ty>,  Dy>,  R y ) ,  that Y  =  ( T y , D y , R y )  is the least 
upper bound: i.e., ( T y  C Ty>), ( D y  C D y /), and (f?y C D Y>). We prove this only for revivals 
component.
Suppose r is an arbitrary revival in R y  where Y  =  ( T y ,  D y ,  R y ) ,  then by the definition of Y, we 
know that there exists X  such that X  =  ( T ' , D \  R') €  A and r  £ R ' . As Y'  =  (Ty>,  Dy>,  Ry>)  
is an upper bound of A , r £  Ry>.  Since r  is an arbitrary, we know that for all r £ R y ,  we have 
r £  R'Y . □

4.2 Semantics of The Stable Revivals Model

In this section, we discuss the semantic meaning for the Csp operators in the stable revivals model. 
The traces component in 7Z is identical to the traces model presented as in Chapter 2. Hence in 
this section, we focus mainly on the semantic functions for the deadlock component and the revivals 
component.

•  tracesM( SK IP) = { ( ) , ( / ) }
deadlocks m (SKIP)  = 0
revivalsM(S K IP) = 0

Since the terminating process SKIP does not contribute anything to deadlock traces, the dead
lock component of SKIP is the empty set. The only event that the process SKIP can produce 
is / .  As other processes can only observe the event / ,  there is no need for other processes
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to agree on it. Since reviving events cannot be / ,  the revivals component of SKIP is also the 
empty set.

•  tracesM  (STOP) = { ( ) }
deadlocksm  (STOP) = {()}
revivalsM (STOP) = 0

Since the non-terminating process STOP contributes to deadlock trace, the deadlock component 
of STOP has the empty trace (). The revivals component of SKIP is the empty set as STOP does 
not perform any events.

• traces m (T>JX) = { ()}
deadlocks m (VJN) = 0
revivals a/(DIV) = 0

DIV engages in internal events continuously and does not engaging in any external events. 
Hence both the deadlock and revival component of DIV are the empty set.

•  tracesM ( a P )  = . { ()}  U {(a ) ^  ^ I t' E tracesm ( P) }
deadlocksm (a —* P )  = { (a)  ^  t f \ t' E deadlocksm ( P ) }
revivalsM(a —> P )  = -[(<), a) |

{((fl) ^  t 1, X ,  b) | ( t ' , X  ,b)  E revivals m ( P) }

The process a —> P  engages in the event a and then behaves as the process P. The deadlock 
component is similar to the traces component, but it does not have the empty trace (). The 
revivals of the process a —> P  has two clauses: at the empty trace (), it refuses all events 
different from a, while ready to accept the event a. After engaging in the event a, it refuses all 
the refusal of P  while accepting reviving events of P.

• tracesM(? x : A  —> P( x) )  = { ()}  U {(x ) ^  t' \ t' E tracesm ( P ( x ) ) ,  x  E A}
deadlocksm (? x '■ A  —* P ( x )) = { (x ) ^  t' \ t' G deadlocksm ( P ( x ) ) , x  E A}
revivalsM(? x : A —> P( x) )  = { (() , X ,  a) | A fl X  =  0, a E A }  U

{((x ) ^  t f, X , b) | (t', X , b) E revivalsm ( P ( x )), x E A }

The deadlocks o f?  x : A —> P( x )  are ( x )  concatenated with the deadlocks of P( x) .  A  revival 
of the prefix choice operator ? x : A —> P( x )  is either at the empty trace it refuses all the events 
other than the events in A,  but ready to engage in the events in A or after engaging in an event 
from A,  it refuses refusal sets of P[ a/ x \ ,  but ready on reviving events of P[ a/ x\ .

•  tracesm (P  ^ Q) = tracesm(-P) U tracesm (Q)
deadlocksM(P n  Q) = deadlocksM(P)  U deadlocksM(Q)
revivalsM(P T\ Q) = revivalsM(P) U revivalsm (Q)

A deadlocks of P  n  Q is either a deadlocks of P  or a deadlocks of Q.  Similarly a revivals of 
P  n  Q is either a revivals o f P  or a revivals of Q.

•  tracesm (P  □ Q)  = tracesM(P)  U tracesm (Q)
deadlocksM(P 1=1 Q)  = ((deadlocksm (P)  U deadlocksm (Q))  H {5 | s /  ()})

U (deadlocksm (P)  H deadlocksm (Q))
revivalsm (P  4̂ Q ) = { ( ( ) ,X ,  a) | (0,-X") E fa i lure s^(P)  fl fa i lu res^(Q)

A ( ( ) ,X ,  a) E revivalsM(P)  U revivalsM(Q)}  U
{(s , X , a) | (s, X , a) E revivalsM(P)  U revivalsM(Q)  A s /  ()}
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failures\/j { P ) = { ( s ,X )  | X  C E A s £ deadlocksm (P ) }  U
{ ( s ,X )  | ( s ,X ,a )  £ revivalsjif(P)}

f a i l u r e s m( P )  records the failures o f P  from the stable states which do not terminate by sig
nalling with the /  or engage in any internal events.

The process P  □ Q will deadlock on the empty trace, when both the processes P  and Q
deadlock on the empty trace. When the trace is not the empty trace, only one of the sub
processes of P  and Q is required to contribute.

Similarly, when the trace is empty, the refusal set of a revival of P  □ Q must be from both 
fai lures^ { P ) and fai lures^ {Q) ,  and the reviving event of a revival comes from one of the 
revivals of P  and Q.  At the non-empty trace, only one of the processes of P  n  Q is required 
to contribute to any revivals o f P  □ Q.

tracesM( -  c :  C  •  P( c ) )  = (J{ tracesM(P{c)) \ c £  C7} U {()}
deadlocksM(!! c :  C  •  P{ c ) )  = \J{deadlocksM{P{c)) \ c £ C ]
revivalsM(!! c : C  •  P( c ) )  = U {revivalsM {P{c) )  \ c £ C}

The deadlocks of (!! c : C •  P{ c ) )  is the union of all deadlocks of P(c)  for each c £ C.  
Similarly the revivals of (!! c : C  •  P( c) )  is the union of all revivals of P(c)  for each c £ C.

tracesM (P  |M  ]| Q)  = M  |[^ ] | h  M l ^ tracesM(P) ,  h  € tracesM( Q )}
deadlocksM{P  |M ]| Q)  = {u  \ (s, Y )  £  failuresM(P), (t, Z) £ failuresM{Q) ■

V -  {X  U { / } )  =  Z -  { X U { / } )
A u £ s \ [X ]| t
A S /  =  Y  U Z j  

revivalsm (P  \ [X]\  Q)  = { ( u , Y \ j Z ) , a ) \
3 5, t . (s,  Y )  £  failuresm ( P ) A (i, Z) £ failuresM( Q)
A u £ s |[ X  ]| t fl Y*
A Y  - { X U  { / } )  =  Z  -  { X  U { / } )
A ((a £ X  A (s, Y,  a) £  revivals(P)  A

(£, Z , a) £ revivalsM(Q))
V a <$: X  A (s, Y ,  a) £ revivalsM {P)
V a £ X  A (t, Z, a) £ revivalsm {Q))))  }•

failuresM(P)  = { (s , X )  \ X  C A s £ deadlocksm (P ) }  U
{(s , X ) ,  (5, X  U { / } )  | (s, X , a) E r e v i v a l s M { P )} U
{(s , X )  | 5 ^  (()) £ t r a c e s M ( P )  A X  C E } U 
{ (s  ^  ( / ) ,  X )  | s ~ { {)) £  t r a c e s M {P) A X  C E / }

Unlike fa i lures^(P) ,  failuresM (P)  records the failures of P  from the stable states which do 
not engage in internal events only. This definition includes the event /  in the refusal sets like 
failures in the stable failures model. In Chapter 5, we discuss more about its properties. Calcu
lating the deadlock component for the generalised parallel operator is not direct, as a deadlock 
can occur in a parallel network when none of the processes is deadlocked. It is calculated indi
rectly by first finding failures of individual processes. A deadlock 5 of P  |[ X  ]| Q comes from 
the set {u  \ s |[ X  ]| t }  fl E* where (s, X )  £  fai luresM{P) , {t, Z) £ failuresM{Q) and X  U Z  
should be equal to E ^. X  \  and Y  \  should be equal. The clause for the generalised 
parallel operator has become a little more complicated as we have to deal with both cases in
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which reviving event o f the revival is, and is not in A. Any revivals will be combinations of its 
two processes.

•  t r a c e s M  (IF b THEN P  ELSE Q)  = if b evaluates to True then t r a c e s M  (P)
else tracesm {Q)

deadlocksM{IF b THEN P  ELSE Q)  = if b evaluates to True then deadlocksm  (P )
else deadlocksM{Q)

revivalsm  (IF b THEN P  ELSE Q)  = if  b evaluates to True then revivalsm  (P)
else revivalsm {Q)

If b evaluates to True,  then the revivals of IF b THEN P  ELSE Q are the revivals of P  otherwise 
the revivals o f IF b THEN P  ELSE Q are the revivals of Q. Similarly, it is defined for the traces 
and deadlocks clauses.

•  t racesM{P \  X )  = {7 \  X  \ t £  t racesM(P)}
deadlocksM{P \  X )  = {£ \  X | £ G deadlocksm { P) }
revivalsM{P \  X )  = { (s  \  X , Y ,  a) | (s, Y  U X , a) £  rev ivalsM(P)}

The deadlocks of P  \  X  are deadlocks of P  such that events from X  are removed from the 
deadlock traces. The revivals P  \  X  is stable if the corresponding state of P  refuses the whole 
of X .  A  revival (s, Y ,  a) is in P  \  X  if P  has a revival (s , Y  U X ,  a).

•  tracesm ( P  > Q)  = tracesm (P )U  tracesm (Q)
deadlocksM(P > Q)  = deadlocksM(Q)  U {s  G deadlocksm {P)  I 5 /  ()}
revivalsM(P > Q)  = revivalsM(Q)  U { ( s ,X ,  a) G revivalsM(P) \ s ()}

A deadlock of (P  > Q)  is either a deadlock of P  such that the deadlock should not be equal to 
() or a deadlock of Q.  If P  does not engage in any event initially, then it will eventually opt to 
engaging in as Q. Hence () from deadlocks(P)  does not contribute to deadlocks o f (P  > Q ). 
A revival (s, X ,  a) of ( P  > Q)  is either a revival o f P  such that the trace s should not be equal 
to () or a revival o f Q.

•  tracesM{P[[R]])  = { t  \ 3 t '  £  tracesM(P)- { t ' , t )  G [[P]]*}
deadlocksm (P[[R]]) = { t  \ 3 t' G deadlocksm (P)-  €  [[P]]*}
revivalsm {P\\R\[)  = { ( s ' ,X ,  a') | 3 s, a . sR*s' A a R a '

A (s, P  1 { X) ,  a) £ revivalsM{P)}

The deadlocks of P[[P]] are deadlocks of P  such that each event is renamed according to the 
relation P . For each revival (s, X , a) of P[[P]], the corresponding revivals of P  has to refuse 
every single event which renames to the set X  and should accept corresponding event that is 
renamed into the renamed reviving event.

•  tracesm {P  % Q)  = ( t racesM(P)  H £*) U
{£1 ^  h  I £1 ^  ( / )  €  t racesM{P), <2 €  t racesM(Q)}  

deadlocksM(P % Q)  = deadlocksM(P)  U
{ s  ^  t | s ~  ( / )  G tracesM(P)  A t £  deadlocksm(Q)}  

revivalsM(P 9 Q) = { ( s ,X ,a )  | {s, X , a) E revivalsm{P)}  U
{ (s  ^  X , a) | s ^  ( / )  £  tracesm {P)

A (£ ,X , a) £  rev ivalsM(Q)}

The deadlocks of P  § Q has two clauses: the deadlocks of P  before termination, and the 
terminating traces o f P  concatenation with deadlocks o f Q. A stable revival of P  § Q is either
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a revival of P  or a terminating trace of P  followed by a revival of Q.

•  t racesM(P  A  Q)  = tracesM(P)  U {s  ^  t \ s E tracesM{P)  H £*, t E t racesu iQ )}
deadlocksM {P  A  Q)  = { s ^  t \ s E tracesM (P)  H £*  A t E deadlocksm  ( Q) }
revivalsM(P  A  Q)  = { ( s ,X ,a )  E revivalsM(P)  I (0?^O £ fa i lures^(Q)}

U { (s ,X ,a )  | ( s , X )  E failuresbM(P)  A (< ),X ,a ) 6 revivalsM(Q)}  
U {(s ^  t , X , a )  \ s E tracesM(P)  fl £* A t ±  () A (t, X , a) e  revival

The deadlocks o f P  A  Q are the traces of P  concatenated with deadlocks of Q such that the 
traces o f P  should not contain / .  Only the deadlocks of Q  contribute to deadlocks of P  A  Q as 
the control will be transferred to Q if P  does not engage in any event. The revivals of P  A Q 
are three clauses: revivals of P  as long as failuresb (Q)  at the empty traces also refused the 
same refusal set o f P\  non terminating trace of P  followed by a revival of Q such that revival 
trace should not be equal to / ;  if an initial event of Q engage at any moment after the trace s, 
then the revival after the trace s should contain refusal set o f revivals of Q and of failuresb {Q)  
as the refusal event and the initial event as reviving event.

•  tracesM(P \_n) = { t  E tracesM^P) | length(t) <  n }
deadlocksM(P [ n) = { d  E deadlocksM^P) \ length(d) <  n}
revivalsM(P [ n )  = {(£, X , a) E revivalsm (P)  I length(t) <  n}

The depth restriction operator P  |_ n, which behaves exactly like P  until exactly n events have 
occurred. Hence, the traces and deadlocks of F  [ n are calculated by taking all the traces and 
deadlocks of length less than or equal to n respectively. For revivals clause, the length of the 
revival traces of P  [ n should be strictly lesser than n.

•  tracesM ($p) = f s t ( M( p) )
deadlocksM ($p) = s n d ( M( p ))
revivalsm ($p) = t h d ( M ( p ))

The meaning of process names (in CSP terms) is given by the environment M  which is a 
function from process names into the domain of the stable revivals model. Hence the type 
of the semantic function is CSP  —> Environment  —> domain(lZ).  The semantic meaning 
of the process name for the deadlocks component is deadlocksm ($p ) =  snd(M(p) ) ,  where 
snd  returns the second element of a triple. The semantic meaning of the process name for the 
revivals component is defined as revivalsM($P) — t hd( M(p) ) ,  where thd returns the third 
element of a triple.

4.3 Responsiveness and Stuckness in the Stable Revivals Model

In Chapter 3, we focused on the definition of responsiveness and stuckness in the stable failures model 
of CSP and in CCS respectively. In this section, we give the definition of responsiveness and stuckness 
in the stable revivals model which captures these definitions precisely. We also see relations between 
the definitions o f these properties in the stable revivals models and in the stable failures model.

The definition o f R esp o n d sT o  in the model 7Z is given in [Ros07] as

Definition 4.5: 1Z—R e s p o n d s T o . Let P,  Q be processes. A Process Q 1Z—R esp on d sT o process 
P  on J  if there does not exist (s, X , a) E revivalsM(P)  and (t,  Y )  E failuresM(Q)  with s \ J  =
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t  \ J  such that a €  J  and { X  fl J)  U Y  =  E ^.

This says that whenever a process P  wants co-operation from process Q an event a £  J,  then the
process Q  must not refuse it. We reproduce the following lemma given in [RRS06].

Lemma 4.6: Q 7 ^ -R e sp o n d sTo P  implies Q Re sp o n d sToL ive  P.

Proof. If parallel process P\[J]\ Q block each other on J ^ , then by definition of parallel composition, 
the failures must have been created by its sub-processes. If (s, J ^ )  £  failuresm(P\[J]\ Q)  is created 
by maximum failures of (s \ a P , X )  of P and (s \ a Q , Y ) o f Q. But the definition o f failuresM(P),  
( s \ a P ,  X )  of P  comes either from a deadlock trace s \ a P  of P  or a revival (s \ a P , X , 6) o f P  
with b £  J.  In the second case, by definition of healthiness condition of R2,  and 1Z—Re sp o n d sTo , 
we get J  C l ,  Hence in either cases we have, (s \ a P ,  J ^ )  £  failuresM(P)-  □

Q 1Z—R e sp o n d sTo P  says that reviving events happen in the same stable state whereas the old defi
nition in the stable failures model says that reviving events may not necessarily happen in the same sta
ble state [Ros07]. By this argument, it is clear that Q Re sp o n d sTo P  implies Q 1Z—Re sp o n d sTo 
P.

Definition 4.7: Deterministic process. A process is deterministic if it is divergence free, and after
any trace, cannot both accept and refuse the same event at the same time.

If Q is deterministic, then all the three conditions are same. Hence we can use of one of the definitions 
which are easier to check in the existing tool. The concept of /  in C sp gives a solution of stuckness 
as deadlock. The following definition gives the CCS style definition o f stuckness in C sp [Ros071.

Definition 4.8: 7£-stuck-free. A process N  is 7£-stuck-free with respect to a set of actions A provided 
it has no revivals of the form (s, E — A, a) with s G (E — A)* and a G A.

In C cs, P  | Q allows the processes to perform events asynchronous or to perform events synchronised 
in which case they are hidden and become r. This makes stuckness easier to define in CCS. In order to 
capture this notion of CCS in CSP, we rename all the processes in a network so that every synchronised 
event is mapped to both itself and a new event called stuck that is not synchronised. The renamed 
network is struck-free if it does not have the revival (s, E —{s tuck} ,  stuck)  for any s £  (E —{stuck})*  
[RRS06].

Consider for example the process

a -> S T O P  |[ {a , 6}]| b S T O P  

The process is stuck as we have ((), {a , 6}, stuck)  in the renamed process

a -> S T O P  □ stuck -► S T O P  |[{a , 6}]| b -> S T O P  □ stuck -> S T O P

In C cs, this process can be written as (a.O | 6.0) \  {a , 6}.
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4.4 Relationship between the Stable Revivals Model and other models

In this section, we discuss the stable revivals models in the hierarchy of Csp models. The models 
which come closest with the stable revivals model are

• The stable failures model T  captures a process P  in terms of (T ,  F)  where T  is same as in 
the first component of the stable revivals model and F  is a set of pairs (5, X )  with s a trace 
and X  a refusal set. If a process P  is represented as (T ,  D, R)  in the stable revivals model, 
we can get the F  value of P  from (T , D , R)  by the calculation given in Section 4.3, hence the 
stable revivals model is finer than the stable revivals model. The distinction between failures 
and revivals is that revivals guarantee acceptance of an event at a /-sta b le  state after trace s.
The stable failures model is useful to capture deadlock situations of a process.

•  The stable ready sets model A  in which a process is represented by (T , R)  where T is the same 
as in the first component of the stable revivals model and R  is a set of ready sets (5, X ). A  
ready set A  is a set of events that the process is ready to engage in. In a Labelled Transition 
System (LTS), a ready set can be calculated by taking union of all labels on the outgoing events 
from a stable node. The model A  is more discriminative than the models T  and Tl. Consider 
for example the processes

P  =  a -> STOP n b ^  STOP

Q =  a ^  STOP n b - >  STOP n (a -+ STOP □ b -> STOP)

The ready sets of P  are {(() , {a } ) , ((), {6 } )} , and for Q,  they are {((), {a } ) , ((), {6}), ((), {a , 6})}. 
The failures of P  and Q are identical, i.e., {(() , {a } ) , ((), {&})}• Similarly the revivals of P  
and Q are also identical, i.e., {(() , {a } , 6), ((), {b} ,  a)}.

•  The refusal Testing model TIT  is based on refusal testing in CCS. In this model, a process is 
identified by a finite alternating sequence of the form

(* 0 1 5 X \ , Q,\ , . . . , an, X n-f- x )

where each a* is a visible event and each X t is either a / -stable refusal observable at the 
appropriate time or a marker •  indicating no refusal has been observed.

In the rest of the section, we describe the relations between the above model for the core language of 
Csp in terms of congruence.  We closely follow the definitions as described in [Ros07]. We present 
only the results. Congruence is a notion of equivalence for processes that is compositional under all 
operators of a language. Each semantic model of Csp induces a congruence for Cs p . In a congruence, 
no context can map two equivalent processes to two in-equivalent ones [Ros07].

If S is a nonempty collection of congruences, define a sub-S congruence to be one that does not 
distinguish any pair of processes equated by any member of S. If S is a singleton, we write sub-S. If 
X is sub-T, we write x  ^  T. The following important lemmas are proven in [Ros07].

Lemma 4.9: If M  is any sub-{7ZT,  A }  congruence then M.  ^  {7ZT,  A }  satisfies M  -< Tl.

It has also been proven that in the below sequence, any sub-7?, congruence that is strictly less abstract 
than any non-final member of the sequence.

Afucc, T, JF, n
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where AfUCC identifies all processes. The above result establishes the important result about the 
hierarchy o f CSP.

Theorem 4.10: For the core Csp, the only sub-{TIT, A ]  congruences are T , T ,  7I  and AfUCC.

In [Ros07], it is proven that the traces model, the stable failures model and the stable revivals model 
are successively more refined. Thus two processes which are equivalent in Tl are also equivalent in 
T .  It is also proven that there does not exist any model that refines the stable revivals model and more 
abstract the stable acceptance model and the refusal-testing model o f Csp. Hence, it has an important 
place in the hierarchy o f CSP models.
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In this chapter, we discuss the implementation of the stable revivals model. Firstly, we present the 
architecture of CSP-Prover with the new model. Secondly, we discuss the implementation o f the 
domain of the model and finally, we discuss the encoding of the semantic functions of the model in 
the CSP-Prover.

5.1 Architecture of the CSP-Prover

CSP-Prover is developed to have a generic architecture. CSP-Prover is designed to make it suitable 
to plug in various denotational semantics of CSP. It is envisioned that any new CSP model can be 
easily added without any major difficulty. Figure 5.1 shows the architecture of CSP-Prover with the 
stable revivals model. The reusable part contains Tarksi fixed point theorem and the standard fixed 
point induction rule based on complete partial orders (Cpo ). C po and pointed Cpo are defined as 
axiomatic type classes. It also has Banach’s fixed point theorem and the metric fixed point induction 
rule based on complete metric spaces (CMS).

For the stable revivals model, we implement the theory based on Complete Partial Orders (Cpo) to 
assign the meaning to recursive processes. We prove the domain o f the model 1Z is a CPO by making 
the domain of the model 7Z as an instance o f pointed Cpo, an axiomatic classes which is defined in 
the reusable part of CSP-Prover. The models T  and T  support both theories of CMS and Cpo.

The instantiated part for each model consists of theories for the domain of the model, the semantic 
functions of the model and the proof infrastructure. Hence the encoding of a model involves the three 
major parts. We briefly explain the elements of the instantiated part of T  as we will be using lemmas

63
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in this model frequently and we also follow the same strategy as used in this model. The type of 
domain of the traces model T  is 7 a  domT.

consts
HC_Tl ::  " ' a t r a c e  s e t => b o o l"

defs
H C _T l_def : "HC_T1 T === (T~= {} & p r e f i x _ c l o s e d  T ) "

typedef ' a  domT = "{ T :: ( ' a t r a c e  s e t ) .  HC_T1(T)}"
a p p l y  ( r u l e _ t a c  x  ="{()}" i n  e x l )
b y  ( s im p  add: H C _T l_def p r e f i x _ c l o s e d _ d e f )

The above code creates the type of domain ' a domT where ' a is a type variable. The predicate 
H C _ T l_ d e f checks the healthiness condition of the model T  i.e., whether a set of traces is non
empty or not and whether it is prefixed closed or not. This is defined in theory called Dom ain_T. 
D om ain_T  also contains lots of useful theorems such as the domain of the model T  is closed under 
union.

The semantic function for the model T  is defined in theory C S P _ T _ se m a n tic s  .

theory C S P _ T _ se m a n t ic s
imports C S P _ sy n ta x  Domain_T_cms

T r a c e _ p a r  T r a c e _ h id e  T r a c e _ r e n  T r a c e _ s e q

The theory C S P _ T _ s e m a n tic s  uses the theory of Csp syntax, the theories of the parallel opera
tor, the hiding operator, the renaming operator, and the sequential operator from the reusable part of 
CSP-Prover. It also uses theory on CMS through theory Domain_T_CMS in the above code. Hence 
it provides the option to the user to select Cpo theory or CMS theory. CMS theory guarantees unique
ness property for guarded processes, but CPO theory works for any processes without the uniqueness 
property. The uniqueness property guarantees the unique solution to the recursive definition.

The type of semantic function of the model T  is declared as below: 

consts
t r a c e s  ::  H( ' p , ' a )  p r o c  => ( ' p  => ' a  domT) => 'a  domT"

The semantic function is defined by primitive recursion over the process using the keyword p r im r e c  
as follows: type ( ' p ,  ' a )  p r o c .

primrec
" t r a c e s ( S T O P )  = (%M. { ( ) } t )  "
" t r a c e s  (SKIP) = (%M. { (), ( T ic k  ) } t )  "

The Csp traces semantic function is defined by translating processes into the domain of the model T  
using a constant function sem T f defined as follows:

consts
semTf :: " ('p, 'a) proc => ('p => 'a  domT) => 'a  domT" (" [ [_] ]Tf") 
semTf un :: " ( 'p => ('p,'a) proc) => ('p => 'a domT) => ('p => 'a  

domT)" ("[[_]]Tfun") 
defs

s e m T f _ d e f : " [ [ P ] ] T f == (%M. t r a c e s ( P )  M )"
sem Tf u n _ d e f  : " [  [P f ]  ] T fu n  == (%M. %p. [ [P f  p ] ] T f  M) "
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Figure 5.1: Architecture of the model R in CSP-Prover
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The definition of s e m T f  u n  binds process names to processes. The meaning of each recursive function 
is defined by s e m T f  i x .  Finally the proof infrastmcture of each model contains the step laws for 
operators, basic laws, distributive laws, fixed-point induction rules, and other laws which required to 
convert process terms into normal form. It also contains tactics that are required to simplify complex 
processes.

We implemented the domain of the stable revivals model using the implementation of the trace model 
in CSP-Prover. Similarly in the implementation of the semantic function of the model, we used some 
theories from the implementation of the stable failures model in CSP-Prover. Though we could have 
implemented it from scratch, but it would be reinventing the wheel (developing the code of around 
15K lines) as one of the component in the stable revivals model has the same property as the domain 
of the traces model. It also shows the versatile property of CSP-Prover implementation and establishes 
a close link between the models of Csp. We explain more about the exact theories that we reuse in 
the encoding of the domain and the semantics function of the model 7Z in the next sections.

5.2 Implementation of the domain of the model 7Z

We implement the domain of the model 7Z on the top of the domain of the model T.  The domain of 
the model T  is implemented in theory D o m a i n - T . We import the theory of the domain of the traces 
model in CSP-Prover using the following command:

theory Domain_R
imports S et_ D  S e t_ R  Domain_T

The above command also imports two more theories, namely, two theories that implement for the 
deadlocks and the revivals component. The hierarchy of theory files of the implementation is given in 
Figure 5.2.

5.2.1 Implementation of the deadlock component

The implementation o f the deadlock component is similar to the implementation of the domain of 
the model T . Since a deadlock in the deadlock component of the model 1Z is same as a trace except 
that events in deadlocks do not have J  at the end, we define a predicate to check this. The predicate 
HC—DO T checks whether the traces in the set of traces T  contains Tick or not. The below code 
shows the implementation o f HC_DO T.

consts
HC-DO ::  

defs
" ' a t r a c e s e t => b o o l"

HC_D0_def 
( s )  ) "

: "HC_D0 T = = (ALL s  . s  : T - - >  T ic k s e t t

We create a new type to represent the deadlock component using the following code:

typedef 'a  s e t D  = " ( F : : ( ' a t r a c e  s e t  ) HC_D0(F) }"
a p p l y ( r u l e _ t a c x  ="{()}" i n  e x l )
a p p l y ( s im p  add HCJD0_def )
done
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»  R oot
► Pure 
p  HOL
p  HOL-Complex
► CSP
P  CSP_T 
P  CSP_F

♦  CSP_R
► Set_D
► Set_R
► Domain_R  
p  Set_D _cpo  

p  Set_R_cpo
p  Domain_R_cpo 
p  CSP_R_Sem antics 
p  CSP_R_deadlocks
► CSP_R_revivals 
P  CSP_R_domain
P  CSP_R_continuous 
P  CSP_R

Figure 5.2: The domain and semantics encoding of the stable revivals model

The above code creates a set and a type with the same name ' a  s e t D  which contains all the traces 
set that satisfies the predicate HC_D0.

We could have implemented the deadlock component without using the definition of trace ' a  t r a c e  
by using '  a  l i s t ,  as values in the type definition of ' a l i s t  s e t  and ' a  s e t D  are the same. 
However we created ' a  s e t D  from ' a  t r a c e  s e t  for the following reasons:

•  We frequently need to compare deadlocks from the deadlock component with traces from the 
traces component in the stable revivals model. If we had created the deadlock component as

types ' a  s e t D  = ' a  l i s t  s e t

then we would not have been able to compare ' a  t r a c e  with ' a  l i s t  without any mod
ification. Even if we had written some comparison functions which do the above job, then in 
most of cases it is inevitable that we must prove most of theorems without condition similar to 
the predicate HC_DO.

•  Building up the deadlock component from scratch may need another 10000 lines of codes to

[Pure]

! [HOL] |

| [HOL-Complex] |

[CSP]

S e t  D Set  R [CSP T]

Set_D cpo Domain R S e t R c p o

Domain_R_cpo

CSP R S em an tics

CSP_R_deadlocks | | CSP_R_revivals

CSP R dom ain

CSP R con tin u ou s

rqp  r



68 Chapter 5 Implementation o f  the Stable Revivals Model

define theories for the parallel operator, the renaming operator, the hiding in terms of ' a  l i s t ,  
as all the theories have been implemented in terms o f ' a  t r a c e  in Csp-Prover.

The s e t ' a  s e t D  is a subset of the set ' a  t r a c e  s e t  s e t .  Isabelle creates the following three 
constants to convert to and fro between the abstract and deadlock representations:

s e t D  : :  ' a  t r a c e  s e t  s e t
R e p _ se tD  : :  ' a  s e t D  = >  ' a  t r a c e  s e t
A b s _ s e tD  ::  ' a  t r a c e  s e t  x=>  ' a  s e t D  ;

It also asserts that R e p _ s e tD  is suijective on the subset of type ' a  t r a c e  s e t  and asserts that 
R e p _ s e tD  and A b s _ s e tD  are inverse o f each other. These assertions are proven by the following 
lemmas: R e p _ s e tD , R e p _ s e t D _ in v e r s e ,  and A b s _ s e t D _ in v e r s e .

Isabelle creates other useful lemmas like injectivity o f R e p _ s e tD  and A b s _ s e tD . By declaring 
R e p _ s e tD  T using the attribute s im p , we allow Isabelle to apply simplification of R e p _ se tD  T 
: s e t R  automatically as follows:

declare R e p _ s e tD  [ s  imp ]

This simplification applies globally whenever we apply command a p p ly  sim p . We define the 
following constant definitions:

consts
memD:: " ' a  t r a c e  =>  ' a  s e t D  = >  b o o l"  ( " ( _ /  :d _)  " [ 50 ,  51] 50)  
C o l l e c t D  : :  " ( ' a  t r a c e  = >  b o o l )  =>  ' a  s e t D " ( " C o l l e c t D " )
UnionD  ::  " ' a  s e t D  s e t  = >  ' a  se tD "  ("UnionD [90]  90)
I n t e r D  : :  " 'a  s e t D  s e t  = >  ' a  se tD "  ( " I n t e r D  [90]  90)
empD ::  " ' a  se tD "  (" {}d " )
UNIVD ::  " ' a  se tD "  ( "UNIVd")

defs
memD_def : "x :d  D == x  : (R ep _ se tD  D ) "
C o l l e c t D _ d e f  : " C o l l e c t D  P == A b s _ s e tD  ( C o l l e c t  P ) "
U n io n D _ d e f  : "UnionD Ts == A b s _ s e tD  (U n ion  (R e p _ se tD  ' T s ) )"
I n t e r D _ d e f  : " I n t e r D  Ts == A b s _ s e tD  ( I n t e r  (R ep _ se tD  ' T s ) )"
empD_def : "{}d == A b s _ s e t D  {}"
UNIVD_def : "UNIVd == A b s _ s e t D  UNIV"

t  : d  D is syntactic sugar for memD t  D. memD t  D checks membership of an element t  in the
set D  which is o f type ' a  s e t D  i.e., whether trace t  is an element of the deadlock set R e p _ s e tD
D.

U n io n D  T s defines the union o f sets T s. Each element in T s is o f type • a  s e tD . We calculate 
U n io n D  T s by first converting each element in T s into ' a  t r a c e  s e t  representation using 
R e p _ s e tD  ' T s and then perform the union of those using the ' a  t r a c e  s e t  union operator 
U n io n  and then convert it back to its abstract representation using A b s _ s e tD . Similarly I n t e r D  
T s performs the intersection of the set T s which is of type ' a  s e tD .

empD returns the empty set in the type ' a  s e tD . The empty set in ' a  s e t D  corresponds to the 
empty set in ' a  t r a c e  s e t .  Similarly the universal set in ' a  s e t D  corresponds to the universal 
set in ' a  t r a c e  s e t .  We declare the type ' a  s e t D  to be an instance of Isabelle axiomatic type 
class o r d  using the following commands:
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instance s e t D  : :  ( t y p e )  o r d
b y  ( i n t r o _ c l a s s e s )

We overload the definition o f <  and < =  in terms of ' a  s e tD . This is done by converting ' a  s e t D  
representation into ' a  t r a c e  s e t  represent

defs (overloaded)
s u b s e t D _ d e f  : "T <=  S = = (R e p _ se tD T) < =  (R e p _ se tD  S ) "
p s u b s e t D _ d e f  : "T <  S = = (R e p _ se tD T) <  (R e p _ s e tD  S ) "

Similarly we declare the type ' a s e t D  to be an instance of axiomatic type class o r d e r .  Here we 
need to prove that it satisfies the following axioms of the partial order definitions defined in theory 
O r d e r in g s  in HOL.

o r d e r _ r e f l  [ i f f ] : "x < =  X "

o r d e r _ t r a n s : "x <=  y ii ii V A ii N =  =  >  X <=  z"
o r d e r _ a n t i s y m :  "x <= II II V A ii X  =  =  >

n
o r d e r _ l e s s _ l e : " (x  < y)  = (x  <= y  & x ~= y ) "

Now we prove the following useful general lemmas:

lemma s e t D _ D 0 : " [ | T : s e t D  ; s  : T | ]  ==>  T i c k  s e t t  s"
lemma memD_D01: "s :d  T ==> n o T ic k  s"

The first lemma states that if T  is in set s e t D  and trace s is in T,  then /  does not appear in the 
elements of the trace t. It shows that all the traces in T  does not contain / .  The second lemma also 
states the same but here it says that if T  is of type s e t D  and s is in Rep_domT T, then /  does not 
appear in trace s.

Then we prove that the union of (R e p _ s e tD  ' F s ) is in s e t D  by the following lemma:

lemma s e t D _ U n i o n _ i n _ s e t D : " (U n io n  (R e p _ se tD  ' F s ) ) : se tD "

where F s  is of type ' a  s e t D  s e t .  This states that the elements in the s e t D  are closed under the
union operation. This will be useful when proving the set s e t D  is a Cp o .

5.2.1.1 set_D is a pointed cpo

Theory s e t _ D _ c p o  implements the proofs that s e t _ D  is a pointed complete partial order (Cpo ). It 
imports two theories s e t _ D  and CPO using the below command:

theory S e t_ D _ c p o  = S e t_ D  +  CPO :

Recall that in Csp-Prover, to prove that s e t _ D  is a pointed cpo we need to prove that s e t _ D  is an 
instance o f axiomatic type class c p o _ b o t .  To prove s e t _ D  is an instance of axiomatic type class 
c p o _ b o t ,  we need to prove that s e t _ D  is an instance o f axiomatic type class c p o  and b o t .  Hence 
we show that it satisfies the following axioms of c p o  and b o t  respectively.

b o t t o m _ b o t  : "Bot <= ( x : : ' a : : b o t O ) ' '
c o m p l e t e _ c p o  : " ( d i r e c t e d  ( X: : ' a : : o r d e r  s e t ) )  ==> X hasLUB"
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We declare that s e t _ D  is an instance of b o t  0 and then overload the B o t element with the empty set 
of setD.

instance s e t D  ::  ( t y p e )  botO
b y ( i n t r o _ c l a s s e s )  
defs (overloaded)

b o t t o m _ s e t D _ d e f  : "Bot == {}d"

We prove the following important lemmas to satisfy the axiom c o m p l e t e _ c p o .

lemma U n ion D _isU B  : " (UnionD F s)  isU B  Fs"
lemma U nionD _isL U B : "UnionD Fs isLUB Fs"

The above lemmas establishe that U n io n D  F s  is the upper bound and is the least upper bound of set 
F s .  Finally we declare that s e t _ D  to be an instance of c p o  and c p o _ b o t .

instance s e t D  : : ( t y p e )  c p o
instance s e t D  : ( t y p e )  c p o _ b o t

5.2.2 Implementation of the Revivals component

The third component in the stable revivals model is implemented in theory file s e t _ R .  t h y .  Or
ganisation and proof methods are very similar to the deadlock component, however it is little bit 
complex as each revivals in the revivals component has three elements. It is implemented using the 
theory T r a c e s .  Recall that the signature of the revivals component is (E* x ? ( E ) x  E). We create 
a type synonym called ' a  r e v i v a l  to represent a revival in the revivals component without any 
restriction.

typ es ' a  r e v i v a l  = " ( ' a  t r a c e  * 'a  e v e n t  s e t  * 'a  e v e n t )  "
consts

F stR  :: " ' a r e v i v a l  =>  ' a  t r a c e  "
SndR :: " 'a r e v i v a l  = >  ' a  e v e n t  s e t  "
ThdR :: " ' a r e v i v a l  =>  ' a  e v e n t  "

defs
F s t R _ d e f • IIF s tR  == (%F. f s t ( F )  ) "
SndR _def II SndR == ( %F. f s t ( s n d ( F ) ) ) "
ThdR_def •  II ThdR == (%F. s n d  ( s n d ( F ) ))

Isabelle internally represent the triple (s, X , a) as (s, (X , a)). We use projection functions from 
the product constructor (*) to extract individual elements from a triple. The constant functions F s t R ,  
S ndR  and ThdR extract the first, second and third elements of a revival respectively. If (s, X , a) 6 R,  
then the trace s has no / ,  the refusal set X  does not contain / ,  and the event a is not equal to / .  We 
encode this condition with the following below constant predicates:
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consts
HC_RT :: a r e v i v a l s e t =>  b o o l"
HC_RF :: a r e v i v a l s e t =>  b o o l"

defs
HC_RT_def : "HC_RT F == (ALL f  . ( f  : F)

- - >  T i c k  s e t t ( F s t R ( f )  ) ) 11
HC_RF_def : "HC_RF F == (ALL f  . (  f  : F) - - >  T ic k S n d R( f )

Sc

s n d ( s n d ( f )) f s t ( s n d ( f ) )  Sc s n d ( s n d ( f ) ) ~= T ic k  )"

The constant predicate HC_RF also includes the condition HC_R3 which states that a £  X  for a 
revival (s , X , a). We also encode the healthiness conditions HC_R2 and HC_R3 in the revivals com
ponent as these conditions are related to the revivals component only. The healthiness conditions are 
given below:

consts
HC-R2 :: ' a  r e v i v a l s e t  => b o o l"
HC_R3 :: ' a  r e v i v a l s e t  =>  b o o l"

defs
HC_R2_def : "HC—R2 F == ALL s  X a Y ( ( S , X, a ) : F  Sc Y <= X Sc

T i c k  : X Sc n o T ic k  s - - >  ( s , Y ,  a)  : F  ) "

HC_R3_def : "HC_R3 F  = = ALL s  X b c ( ( s , X , b )  : F  Sc

T i c k  ~ : X Sc n o T ic k  s Sc c ~ = T ic k  - - >
( ( s , X , c ) F  | ( s , X  Un { C } , b)  : F  ) ) "

Below we summarise the conditions included in the revivals component:

•  HC_RT: V s X  a . ( s , X , a )  €  R = >  /  set t (s )

•  HCJRF: V s X  a . (s, X , a) £ R  ==> /  ^ I A  /  7̂  a A a ^ X

•  HC_R2: V s X  a Y  . ( s , X ,  a) e  R A Y  C X  = >  ( s , Y , a )  e  R.

•  HC_R3: V s X a b . ( s , X , a ) e R A b € E = ^  ((s, X , a) e  R  V (s, X  U {6 } , a) e  R).

HC_RF encodes the condition RRS05. In the below code, we define the type of the revivals component 
in the model 7Z by encoding the above conditions:

ty p e d e f 'a  s e t R  = "{ R : : ( ' a  r e v i v a l  s e t  ) . HC_RT(R) & HC_RF(R) &
HC_R2(R) & HC_R3( R) }"

a p p l y  ( r u l e _ t a c  x  ="{}" i n  e x l )
b y  ( s im p  ad d : HC_RT_def HC_RF_def HC_R2_def HC_R3_def)

We finish the proof by giving the witness {}  to show that the new type is non-empty.

Similar to the type s e t _ D ,  we create constant functions to check membership, to calculate the union 
of elements in the set s e t _ R ,  to return the empty set and the universional set in the type s e t _ R .  We 
declare the type s e t _ R  to be an instance of axiomatic type class o r d  and o r d e r  by the following 
commands:
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instance s e t R  : : ( t y p e ) o r d
b y  ( i n t r o _ c l a s s e s )
defs (overloaded)

s u b s e t R _ d e f  : "F <  = E == R ep _ se tR (F) <= R ep _ se tR  ( E ) "
p s u b s e t R _ d e f : "F < E == R ep _ se tR (F) < R ep _ se tR  ( E ) "

instance s e t R  : : ( t y p e ) o r d e r

We overload the definitions of <  and < =  in terms of ' a  s e tR . To declare s e t_ R  is to be an instance 
of o rd , and we prove that the set s e t _ R  is a partial order. A lot of useful lemmas have been proven 
in this theory file. Some of them are given below:

lemmamemR_RT: "r : r  R ==> T i c k  s e t t  ( F s t R ( r ) ) "
lemma s e tR _ R T : " [| R : s e t R  ; r  : R |] = = >  T ic k  s e t t  (F stR  (r)  ) 11
lemma setR _R F : " [ |  R : s e t R  ; r  : R | ]  ==> T ic k  SndR(r) &
s n d ( s n d ( r ) )  f s t ( s n d ( r ) )  & s n d ( s n d ( r ) )  ~=Tick"
lemma memR_RF: "r : r  R = = >  T ic k  SndR (r) & s n d ( s n d ( r )  )
f s t ( s n d ( r ) )  & ( s n d ( s n d ( r ) ) ~ = Ti c k
lemma s e t R _ R 2 : " [ |  R : s e t R  ; ( s , X , a )  : R ; Y <= X ; T ic k  X
; n o T ic k  s  | ]  ==>  ( s , Y , a )  : R"
lemmamemR_R2: " [ | ( s , X , a )  : r  R ; Y <=  X | ]  = = > ( s , Y , a )  : r  R"
lemma s e t R _ R 3 : " [ | R : s e t R  ; ( s , X , b )  : R ; T ic k  ~:X ; n o T ic k  s
; c ~ = T ic k  | ]  ==>  ( s , X , c )  : R | ( s , i n s e r t  c X , b)  : R"
lemma memR_R3: " [ | ( s , X , b )  : r  R ; c ~ = T ic k  | ]  ==> ( s , X , c )  : r  R |
( s , i n s e r t  c X , b)  : r  R"

All the lemma whose name starts with s e t R _ ,  indicates that if R  is in set s e t R ,  then the respective 
healthiness conditions hold. All the lemmas which names start with memR_ , states that if R  is of 
type s e t R ,  then healthiness conditions hold. For example, in the lemma s e tR _ R 2  if R is in set 
s e t R ,  (s, X ,  a) e  R, Y  C X ,  then (s, F , a) e  R. In the lemma memR_R2, If R  is of type s e t R ,  
(s, A , a) 6  R e p s e t R  R , and Y  C X ,  then (s, F , a) G R e p s e t R  R .

We prove that s e t R  is closed under union as stated in the following:

lemma s e t R _ U n i o n _ i n _ s e t R : " (U n io n  (R e p _ se tR  ' Fs) ) : setR"

This will be useful in proving s e t R  is a Cpo . That s e t R  is a pointed CPO is proved in theory 
s e tR _ c p o . The theory s e t R _ c p o  is extended as a successor of the theory s e tR . s e t R _ c p o  
declares that s e t R  is an instance of c p o  and c p o _ b o t . To prove it, we prove the following lemmas:

•  UnionR Rs is an upper bound of set Rs:

lemma U n ion R _isU B  : " (UnionR Fs) isU B  Fs"

•  UnionR Rs is the least upper bound of set Rs:

lemma U nionR _isL U B  : "UnionR Fs isLUB Fs"

•  The least upper bound of Fs is UnionR Rs:

lemma i s L U B _ U n io n R _ o n ly _ i f : "F isLUB Fs ==> F = UnionR Fs"
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The below code proves that s e t R  is a Cpo and a pointed Cp o :

instance s e t R  ::  ( t y p e ) c p o
a p p l y  ( i n t r o _ c l a s s e s )

instance s e t R  ::  ( t y p e ) c p o _ b o t
b y  ( i n t r o _ c l a s s e s )

5.2.3 Encoding the domain of the model 1Z

The domain of the model 7Z is implemented in the theory D om ain _R . The theory D o m a in _ R  is 
based on the theories D o m a in _ T ,  s e t _ R ,  s e t _ D .  The imported theories implement the individual 
components of the model 7Z.

To increase readability of the code, we create a type synonym called ' a  d o m T s e t D s e  t R  which de
notes a triple representing the domain of the trace component, the domain of the deadlock component 
and the domain of the revivals component. We also declare projection functions on the components 
of the triple.

types ' a  d o m T se tD se tR  = " ( ' a  domT * 'a  s e t D  * ' a  s e t R ) "
consts

F s t  : : I. , a d o m T se tD se tR = > ' a domT "
Snd : : ■i / a d o m T se tD se tR => ' a s e t D  "
Thd : : ■I / a d o m T se tD se tR = > ' a s e t R  "

defs
F s t _ d e f • nF s t  == (%F. f s t ( F ) ) II

S n d _ d e f • HSnd == ( %F. f s t  ( s n d ( F ) ) ) "
Thd_de f • >1Thd == (%F. s n d  ( s n d (F) ) ) "

We select the individual elements in the triple ' a  d o m T s e tD s e tR  by using projection functions 
f s t  and sn d . The constant functions F s t ,  Snd, and Thd return elements in the domain of traces 
component, the domain of deadlocks component and the domain of revivals component respectively.

We know that in the traces component, we implemented the healthiness condition HC_T1 and in 
the revivals component, we implemented the healthiness condition HC_R2, HC_R3 and HC_RRS. As 
we have already implemented the healthiness conditions HC_T1 , HC_R2, HC_R3, and RRS. Now 
we encode only the following two conditions in the domain which relate component with each other, 
namely HC_D1 deadlocks component with the traces component and HC_D1 revivals component with 
the traces component:

•  H C - D l  : D C T .

•  H C - R l :  ( s , X , a )  € (a) e  T.

The below code defines the constant definitions:
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consts
HC—D l :: ' a  d o m T se tD se tR  => b o o l  "
HC—R l :: ' a  d o m T se tD se tR  => b o o l  "

defs
H C _D l_def :

" HC—D l T == (R e p _ se tD  ( S n d ( T ) ) ) <=  (Rep_domT ( F s t ( T ) ) ) "
H C_Rl_def : " HC—R l T == ALL s X a .  ( ( s , X , a )  : r  Thd(T)

- - >  s ~ < a >  : t  F s t ( T )  ) "

The constant definition t r i p l e R  combines the individual components to form an element in the 
domain of the model 1Z. It is defined as below:

consts
t r i p l e R  :: " 'a  domT = >  ' a  s e t D  => ' a  s e t R  => 'a  domR"

defs
t r i p l e R _ d e f : " t r i p l e R  == %T D R. (Abs_domR ( T , D , R ) ) n

We define the following constant definitions to select the individual components in the domain.

consts
f s t R  :: " ' a domR = > ' a domT"
sndR :: ii / a domR = > ' a setD "
thdR :: ■I / a domR = > ' a setR "

defs
f s t R _ d e f " f s t R == F s t o Rep_domR"
sn d R _ d ef " sndR = = Snd o Rep_domR"
th d R _ d e f " thdR == Thd o Rep_domR"

We prove lemmas concerning the healthiness conditions for elements in the domain.

lemma FstR _SndR _ThdR _in_dom R [sim p] :
" ( f s t R  SF , sndR SF, thdR SF) : domR"

lemma FstR_SndR_ThdR_domR [ s im p ] :
" ( t r i p l e R  ( f s t R  SF) ( sndR SF) (thdR  SF) ) = SF"

We prove an important lemma to decompose the semantic function of the stable revivals model into 
the individual components. This directly follows from injectivity of the domain of the stable revivals 
model and the definition of pair-wise decompose.

lemma eq R _ d eco m p o : " (SF = SE) =
( f s t R  SF = f s t R  SE & sndR SF = sndR SE & thdR SF = thdR SE) "

We finish the theory by proving monotonic property of individual component.

5.3 Encoding the semantic functions

In the previous section, we have shown how the domain of the stable revivals model has been imple
mented in Csp-Prover. In this section we will explain the encoding of the semantic functions of the 
model in CSP-Prover. Our approach to the encoding is slightly different from the implementation of 
other models implemented in Csp-Prover. First we explain the reason why we are not able to directly
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implement it as the stable failures model in Csp-Prover. Then we explain the encoding by a method 
we called ‘two-phase construction’.

5.3.1 Problem in the encoding

In the stable failures model, the semantic functions o f traces (P)  and failures (P)  are defined sepa
rately. This paved the way for reusing the semantic function t races(P)  from the traces model. This 
also helps us to prove properties like the type correctness, continuity, etc easily. It also makes the code 
more readable.

We could have done the same for the stable revivals model by defining the semantic function separately 
as below:

consts
d e a d l o c k s  : : " ( 'p ,  ' a) p r o c  => ( 'p  => ' a  domR) = >  'a  se tD "
r e v i v a l s  :: " ( ' p ,  ' a)  p r o c  =>  ( 'p  =>  ' a  domR) => 'a  se tR "

The semantic functions deadlocks and revivals are declared as above. Both the functions are defined 
recursively as below:

primrec
" d e a d l o c k s  ( STOP) = (%M. {()}d) 11

primrec
" r e v i v a l s ( S T O P )  = (%M. ( } r )  "

If we implemented the code described as above we would get the following error:

C y c l i c  d e p e n d e n c y  o f  c o n s t a n t s :
*** " C S P _ D _ sem a n tic s  . d e a d l o c k s 11 - >  " C S P _D _sem an tics  . r e v i v a l s " - >  
" C S P _ D _ s e m a n t ic s . d e a d l o c k s "
*** The e r r o r ( s )  a b o v e  o c c u r r e d  i n  d e f i n i t i o n  
"r e v i v a l s _ p r o c _ d e f ":

As the definition of revivals(P)  uses deadlocks (P)  which in-tum uses the definition of revivals(P).  
This creates a problem called “cyclic dependency of constants” in the implementation. Hence we 
indirectly define a definition for each semantic function. In Isabelle, mutual recursion like this can be 
implemented by putting the recursive definitions in one p r im r e c  block1.

5.3.2 Two-Phase Construction

In this section, we explain how to encode the semantic functions of the deadlocks and revivals com
ponent separately. It is a two-phase construction. In the first phase, we encode definition of deadlocks 
and revivals simultaneously, as we are getting “cyclic dependency of constants” error if we define 
the semantic functions separately. In the second phase, we separate the definitions of deadlocks and 
revivals from the combined function defined in the first phase.

‘This was suggested by Dr. Christoph Liith during my viva.
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We implement the encoding of the semantic functions of the model 71 based on the theory of syntax, 
the theories on the parallel operator, the hiding operator, the renaming operator, the sequential operator 
from the reusable part of CSP-Prover. We also use the theory the domain of the failures component 
S e t_ F  from the stable failures model. We import the theories using the keyword im p o r t  in the 
following code:

theory C S P _R _S em an tics
imports C S P _ s y n ta x  Dom ain_R_cpo S e t_ F

T r a c e _ p a r  T r a c e _ h i d e  T r a c e _ r e n  T r a c e _ s e q  C S P _T _sem an tics

In the first phase, we define the definitions of deadlocks and revivals simultaneously as given below:

1. consts
2 . D e a d l o c k R e v i v a l s  ::

" ( ' p , ' a )  p r o c  =>  ( ' p  =>  'a  domR) => ( ' a  s e tD * ' a s e t R ) "
3. primrec
4. " D e a d l o c k R e v i v a l s ( STOP) = ( % M .  ( { ( )}d ,  { } r  ) )"
5. » D e a d l o c k R e v i v a l s ( S K I P )  = ( % M .  ( { } d ,  { } r  ) )"
6. " D e a d l o c k R e v i v a l s ( P  [+] Q) = ( % M .  (
7. { s  •
8. ( (  ( s  :d  ( f s t ( D e a d l o c k R e v i v a l s ( P )  M ) ) |

9. s  :d  ( f s t ( D e a d l o c k R e v i v a l s ( Q )  M ) ) )  & s  ~=()
10. | ( s  : d ( f s t ( D e a d l o c k R e v i v a l s ( P) M ) ) &
11. s  :d  ( f s t ( D e a d l o c k R e v i v a l s ( Q )  M ) ) )  ) }d ,
12. { r .  (EX Z a .
13. ii n CO P) &

14. ( ( ( ) ,  Z,  a)  : r  s n d  ( D e a d l o c k R e v i v a l s  P M) |
15. (() ,  Z, a)  : r  s n d  ( D e a d l o c k R e v i v a l s  Q M ) ) &
16. ((}.  z>
17. : { ( t ,  X) .
18. (EX a .  ( t ,  X,  a)  : r  sn d  ( D e a d l o c k R e v i v a l s  P M) ) |
19. t  :d  f s t  ( D e a d l o c k R e v i v a l s  P M) & X < = E v s e t
20. } &
21. ■ ((}.  z>
22. : { ( t ,  X ) .
23. (EX a .  ( t ,  X,  a)  : r  sn d  ( D e a d l o c k R e v i v a l s  Q M)  ) |

24. t  : d f s t  ( D e a d l o c k R e v i v a l s  Q M) & X < =  E v s e t
25. } )  1
26. (EX s . (EX X a .  r  =  ( s ,  X, a ) ) &

27. ( r  : r  s n d  ( D e a d l o c k R e v i v a l s  P M)  |

28 r  : r  s n d  ( D e a d l o c k R e v i v a l s  Q M) ) Sc s ~= ( ) )  }r )  ) 1

Line number 2 shows the combined semantic definition of deadlocks and revivals. Now we do not 
define the mutual-recursive definition functions fai lures^ (P)  and failuresM {P)  directly like:

r e v i v a l s ( P [+] Q) = (%M. . . .  ( s , Y)  : f  f a i l u r e s ( P )  & . . .  )

Line number 16 to 20 shows the definition of

failuresb (P)  =  { (s , X )  \ X  C E A s € D e a d (P ) }  U { (s , X )  | (s, X , a) (E R e v (P ) }  

in revivals(P[+\Q) .
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In the second phase, we separate the definition of revivals and deadlocks. We separate them with the 
following code using the product constructor functions f s t  and sn d .

consts
d e a d l o c k s  :: " ( ' p , ' a)  p r o c  => ( ' p  => 'a  domR) = >  'a se tD "
r e v i v a l s  ::  " ( ' p , ' a )  p r o c  => ' p => ' a  domR) = >  'a setR "
defs
d e a d l o c k s _ d e f :

" d e a d l o c k s (P) M == ( ( f . s t ( ( D e a d l o c k R e v i v a l s ( P ) M ) ) ) ) "
r e v i v a l s _ d e f :

"r e v i v a l s ( P )  M = =  ( ( s n d  ( ( D e a d l o c k R e v i v a l s ( P ) M ) ) ) ) "

We show the mutual semantic clauses for each operators as lemmas in terms of deadlocks and revivals. 
Below we show a lemma proved for the revivals component of the external choice operator. This also 
shows the use of failuresb definition in the lemma revivals_EXTERNAL :

’’lemma rev iva ls-E X T E R N A L  : r e v i v a l s  (P [ + ] Q) =
(%M.{ f .  ( EX Z a .  ( f  = ( < > , Z , a)  &

( ( ( ( ) , Z , a )  : r  r e v i v a l s ( P )  M | ( < > , Z , a )  : r  r e v i v a l s ( Q )  M) & 
( ( ( ) ,  Z) : { ( t ,  X ) .  (EX a .  ( t ,  X,  a)  : r  ( r e v i v a l s  P M) )  |
t  :d  d e a d l o c k s  P M & X < = E v s e t  }
&( ( ) , Z) : { ( t ,  X ) .  (EX a .  ( t ,  X,  a)  : r  ( r e v i v a l s  Q M )) |
t  : d d e a d l o c k s  Q M & X < = E v s e t  } ) ) ) ) |
( E X s X a .  f  = ( s , X ,  a)  Sc ( f  : r  r e v i v a l s  (P) M
| f  : r  r e v i v a l s  (Q) M) & s  ~= ( ) ) } r ) M

Henceforth, we can use the above lemma as the semantics for revivals(P  □ Q ). Similarly for other 
operators, we prove lemmas like above for both revivals and deadlocks components. From now on, 
we do not have to use the definition of D e a d l o c k s R e v i v a l s  .

The approached followed to assign the meaning to process names is similar to technique used in other 
models embedded in CSP-Prover. The definition of semantic function of the stable revivals model is 
given by sem R f using the semantic functions of the individual component.

consts
semRf :: "('p,'a) proc => ('p => a domR) => 'a domR"

(" [ [-] ]Rf")
semRfun :: "( 'p => ('p,'a) proc) => ('p => 'a domR)

= > ('p => 'a domR)" ("[[_]]Rfun")
defs
semRf_def:
"[[P]]Rf == (%M. (tripleR (traces P (fstR o M)) (deadlocks P M)
(revivals P M) ) ) "
semRfun_def:
"[[Pf]]Rfun == (%M. %p. [[Pf p]]Rf M)  "

The refinement and equivalence relation in the model are defined by the following predicates:
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consts
refR :: " ( ' p , ' a )  proc => ('p => 'a domR) =>

('q => 'a domR) => ('q, 'a) proc => bool"
(" ( 0_ / < = R [ _ , _ ]  / _ )  " [ 5 0 , 0 , 0 , 5 0 ]  50)  

eqR :: "('p,'a) proc => ('p => 'a domR) =>
('q => 'a domR) => ('q,'a) proc => bool"

(" ( 0_  / = R [ _ , _ ]  / _ )  " [ 5 0 , 0 , 0 ,  50]  50)
defs

r e f R _ d e f  : "Pi <=R[M1, M2]  P2 == [ [ P 2 ] ] R f  M2 <=  [ [ P l ] ] R f  Ml"
eq R _ d ef  : "Pi =R[M1,M2] P2 == [ [ P l ] ] R f  Ml = [ [ P 2 ] ] R f  M2"

The above definition gives the parameterized refinement and equivalence relation which takes an 
environment as argument for each process. Now we define the default refinement and equivalence 
relation.

The meaning for the process names are assigned by fix-point function sem R f i x  and it is defined as 
given below:

consts
s e m R f ix  ::  " ( 'p  => ( ' p , ' a )  p r o c ) => ( 'p => 'a  domR)"

(”[[-]]Rfix”)
defs

s e m R f i x _ d e f : [ [ P f ] ] R f i x  ==
" ( i f  (FPmode = CPOmode) t h e n  (LFP ( [ [ P f ] ] R f u n ) ) e l s e  t h e  N one)"

Csp-Prover has a special keyword called FPmode to distinguish the approach. The value CPOmode 
represents Cpo based approach. Other values CMSmode and M ixm ode represent the approaches 
where uniqueness is guaranteed for the solutions to recursive processes. Since we implement the CPO 
based approach only to assign the meaning to recursive process, we check whether FPmode is equal 
to CPOMode. If FMmode if equal to CPOMode, then we find the least fix point.

Csp-Prover has a special function called the process name function PN fun. The constant definition 
sem R f unbinds the process name P  into process P N funJri P  where P  € II and each process P  €  II 
behaves like PN fun_Q  (P)  . For the stable revivals model based on Cpo approach, an environment 
MR-II is assigned as

MR_II = LFP ( [ [P N fu n J I ]  ] R fu n

consts
MR : : "('p => 'a domR)"

defs
MR_def : "MR == [[PNfun]]Rfix"

The semantics of each process is given by semR using the environment MR  and it is defined as 
follows:

consts
semR :: "('p,'a) proc => 'a domR" ("[[_]]R")

defs
semR_def : "[[P]]R == [[P]]Rf MR"

MR is the fixed point o f the function [ [ P N fun  ( p ) ] ] R fun . In Chapter 6, after proving continuity o f  
the semantic function we will be able to prove that the semantics of process names is the fixed point 
process-name function, that is [ [ P f ] ] R f u n  MR = MR.
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Now the default refinement aiid equivalence relation is defined as below:

"PI <=R P2" == "PI <=R[MR,MR] P 2 "
"PI =R P2" == "PI =R[MR,MR] P 2 "

We prove some lemmas to simplify unfolding the definition o f semantic function and prove that two 
processes are equal if individual components of each process are equal.

lemma c s p R _ e q R _ s e m a n t i c s :
"P : p r o c R  Sc Q : p r o c R  ==> ( (P =R[M1,M2] Q) =

( ( t r a c e s  P ( f s t R  o Ml) = t r a c e s  Q ( f s t R  o M2) Sc

( d e a d l o c k s  P Ml = d e a d l o c k s  Q M2) Sc

( r e v i v a l s  P Ml = r e v i v a l s  Q M2) ) )"

The above lemma follows from the definition of semantic function and decomposing it. Similarly we 
prove a lemma c s p R _ r e f R _ s e m a n t i c s  for the refinement relation. We group these two lemmas 
into a single lemma as follows:

lemmas c s p R _ s e m a n t i c s  = c s p R _ e q R _ s e m a n t ic s  c s p R _ r e f R _ s e m a n t i c s

Similarly we prove another two lemmas where the definition of traces equivalence is applied and it is 
given below:

lemma c s p R _ c s p T _ e q R _ s e m a n t i c s :
" P : p ro cR  & Q : p r o c R  ==> (P =R[M1, M2]  Q) =

( ( P =T [ f s t R  O Ml, f s t R  O M2] Q) Sc 

( d e a d l o c k s  P Ml = d e a d l o c k s  Q M2) Sc 

( r e v i v a l s  P Ml = r e v i v a l s  Q M2) ) "

We prove a similar lemma for refinement relation and group into a single lemma as 
c  s p R _ c  s p T _ s  e m a n t  i  c  s .
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In this chapter, we explain some important properties proved in Csp-Prover. Firstly, we prove the type 
correctness problem or checking the healthiness conditions of the semantic functions with a restriction 
on the language C spTp in Section 6.1. Secondly, we discuss continuity o f semantic functions proved 
in CSP-Prover in Section 6.2. Finally, we focus on implementing a proof infrastructure for recursive 
processes using continuity of semantic functions in Section 6.3.

6.1 Type correctness property for semantic functions

As explained in the introduction chapter, one of the important uses of the encoding a language in a 
theorem prover is that it allows mechanical verification of the semantic functions. In this section, we 
explain it in detail. Informally, given the healthy denotations of processes P  and Q , we prove that the 
denotations of P  % Q, P  n  Q , P \ [ X ] \ Q , P \ X ,  etc., are also healthy. Here healthy means that 
the denotational semantics of P  satisfies all the healthiness conditions of the stable revivals model. In 
Csp-Prover, our aim is to prove that

We prove this by the structural induction on P.  The induction step for the external choice operator in 
Isabelle looks like:

( t r a c e s _ M ( P ) , d e a d l o c k s _ M ( P ) , r e v i v a l s _ M ( P) ) :  domR A 
( t r a c e s _ M ( Q ) , d e a d lo c k s _ M ( Q ) , r e v iv a l s _ M ( Q )  ) :  domR 
=> ( t r a c e s _ M (P D  Q ) , d e a d lo c k s _ M ( P □ Q ) , r e v i v a l s _ M ( P  □ Q ) ) :  domR.

(t racesM(P),  deadlocksM(P),  rev ivals(P))  : domR

81
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6.1.1 Counter example for the type correctness of the renaming operator

It turns out that the type correctness of the renaming operator cannot be proven without any restriction 
on the language CsPtp- We present a counter example given by M. Roggenbach. If we consider £  is 
finite, then this is not a counter example. In Csp-Prover £  can be arbitrary, hence we have to consider 
this.

Let £  =  M  U {a , b}. Now consider the triple C  =  ( T c , D c , R c )  —

({<),<«),<!>)}, 0, { « } , * ,  a), ( Q , X , b ) \ X e P fin( N ) } ) e d o m ( R . )  

where Vpn (Af) is the set o f all finite subsets of the natural numbers Af.

The triple C  is healthy: Trivially, it fulfils T l, D l, R l, and RRS. Concerning condition R2, let 
((), X ,  a) E R c , and let £  C X  be a subset of X.  As X  is finite, so is Y.  Therefore by definition 
((), Y ,  a) E Rc -  The same argument applies to sets of the form ( Q , X , b )  6  Rc-  Condition R3 
trivially is true for a, 6 6  £ .  Let n E A/\ Then ((), {n } ,  a) E R c  as { n }  is finite.

Now, consider the relation Rel  C £  x  £  with

Rel =  {(a,  a)}  U {(n , b) \ n E A/”},

i.e., a is renamed into a, all natural numbers n are renamed into b, and b is not in the domain of Rel.

Now consider the set C' =  Rc[[Rel]] =  {(<), 0, a)}, which is the revivals component of C  after 
applying our renaming Rel. We claim that the healthiness condition R3 does not hold for C'\ as 
( 0 , 0 ,  a) E C' and b E £  we need to obtain (0 ,0 ,  b) E C' or ((),{&}, a ) € &  * which both is 
not the case. This shows that we cannot prove the type correctness of renaming operator without any 
restriction on renaming relation.

If we forbid renaming from infinite elements into a single element or the renaming relation set to be 
finite, then we can prove the type correctness of the renaming operator. We have proved the type 
correctness of the renaming operator with an assumption that the renaming relation is finite. In CSP- 
Prover, it is proven as

lemma RENAMING_setR: " f i n i t e  r  - - >  ( r r .  EX s a  t  X a aa  . r r  = 
( t , X , a a )  & ( s a , [ [ r ] ] i n v  X, a )  : r  ( r e v i v a l s  (P) M) & ( s a  [ [ r ] ]* t )
& ( a , a a )  : E v e n t P a i r S e t  ( r : : ( ' a  ' a )  s e t )  } : se tR "

6.1.2 A proof for the type correctness of the semantic function

We first give the proof and then explain how we implement it in Isabelle in Section 6.1.3. First we 
prove two simple lemmas which we will use later in proving the type correctness.

Lemma 6.1: Let ( tracesM^P), deadlocksm (P) ,  revivalsM(P))  be a denotational value of P.
Let

failuresM(P) = {(s,  X ) ,  (s, X  U { / } )  | (s, X , a) E revivalsm { P ) }
U { ( s , X )  | X  C  £ ^  A s E d e a d lo c k sm ( P ) }
U{(s,  X )  j s  ^  ( / )  E t r a c e s M { P )  A l C £ }

U{(s  ~  ( / ) ,  X )  | s ~  ( / >  €  tracesM(P)  A l C ^ }
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If ( t racesM(P),  deadlocksm(P),  revivalsM (P) )  is healthy in the stable revivals model, then 
we prove V s , X ,  Y.  ( s , X )  G failuresM(P) A Y  C X  = »  (s, Y )  G failuresM^P)•

Proof  We prove this for the first clauses only as the proofs for the other clauses trivially follow from 
definition.
Suppose (5, X )  G failuresM(P)  such that (s, X , a) G revivalsM(P)  for some a.
Suppose Y  C X  be arbitrary. By assumption (t racesM(P),  deadlocksm(P),  revivalsM (P) )  satisfies 
R2. Since V s, X ,  a, Y.  ( s , X , a )  G revivalsM(P) A Y  C X  ==> (s , Y , a )  G revivalsM(R), we 
can conclude that (5 , L , a) G revivalsM(P)-  By definition o f failuresM{P),  we obtain 
(s, y )  G failuresM(P)-  □

The above lemma is embedded inside the following lemma in Csp-Prover, as one of healthiness 
conditions are closedness property of refusal set.

lemma f  a i l u r e s R _ s e t F :
" ( t , X )  . ( (EX s .  s  "  (Tick) : t  t r a c e s  (P) ( f s t R  0  M) Sc t  = s
(Tick) Sc n o T i c k  s )  | (EX a . ( t , X , a )  : r  r e v i v a l s  (P) M) | ( t  :d
d e a d l o c k s  (P) M) j (EX Y a . ( t , Y , a )  : r  r e v i v a l s  (P) M Sc a =
T i c k  Sc X  = i n s e r t  T i c k  Y) ) s e t F "

Lemma 6.2: Let (tracesM(P)i deadlocksm(R)> revivalsM{P))  be a denotational value of P.  

Let

fa i lure s^(P)  = { ( s , X )  | ( s , X , a )  G revivalsM^P)}
| X  C A s G deadlocksm(P)}

If ( tracesM^P), deadlocksm{P),  revivalsM(P )) is healthy in the stable revivals model, then 
we prove V s, X , Y .  ( s , X )  e  fa i lu res^(P)  A Y  C X  ==> (s , Y )  G failuresbM {P).

Proof  The proof is very similar to proof of the previous lemma. □

Theorem 6.3: The semantic functions for all the operators in Csp are healthy provided the renaming 
relation is finite in the renaming operator.

Proof  We prove the type correctness for the hiding and renaming operators here and proofs for some 
selected operators are available Appendix A.4. The proofs for other renaming operators are similar.

case: P \[R]\

Assuming that {tracesM^P), deadlocksm (P) ,  revivalsM(P))  is healthy,
we prove that ( t racesM{P  |[-̂ ]|)> deadlocksM( P \[R]\)> revivalsM( P \[R] \ )) are also healthy,
where

t racesm(P[[R}]) = {£ | 3 £' G t racesM{P)-  G [[-R]]*}
deadlocksm (P[[R]]) = {£ | 3 ^  G deadlocksm (P)-  £  [[R]]*}
revivalsm (P[[R]]) = { (s , Af, a) | 3 s, a . s 'R*s  A a'Ra A (s ' , R ~ l (X) ,  a') €  revivalsm ( P ) }

T1
We first prove tracesm (P[[R]]) is non-empty. () G tracesm (P[[R]]) as () G t racesM(P)  and 
((), ()) G [[R]]*. Hence, tracesm (P[[R]]) is non-empty.
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We prove that tracesm (P[[R]]) is prefix closed.
Suppose t  E tracesm (P[[R]]) where t =  (ai, a2, . . . ,  an). Then there exist t' — (61, 62, • • • > bn) 
with biRdi for 1 <  i <  n and t' E traces (P).

Suppose s is a prefix of t. Then s — (a i , 02, • • •, a*) such that k <  n. Since tracesm  (P)  is pre
fix closed, we know that (61, 62, • • •, h )  6 tracesM(P)-  Thus by definition of traces(,P[[jR]]) 
with biRai for 1 <  i <  k, s E iracesM(T,[[fi!]]). Hence, tracesm (P[[R}]) is prefix closed.

D1
Suppose s E deadlocksM(P |[ R]|). By definition we know that there exists s' with (s', s) E 
[[R]]* such that s' E deadlocksm (P)- By assumption, we know that s' E tracesM {P)-  By 
definition of tracesm (P[[R}]), s E traces m (P[[R]]).
Since s is an arbitrary, deadlocksm (P[[R]\) Q tracesm (P[[R]\)-

R1
Suppose (s, X , a) E revivalsM (P  |[R]|)- By definition we know that there exists s' and a' such
that (s', s) E [[R]]* , (o', a) 6 R, and (s', R - 1(X ), a') E revivalsM(P)- 
By assumption we know that s' ^  (a') E tracesM (P)-  Since (s', s) E [[R]]* , (a7, a) E R and 
s' ^  (a') E t racesM(P),  by definition of tracesM(-?[[-#]]), by definition of revivals it follows 
that s ~  (a) E tracesM(P[[R]])-
Since (s, X , a) E revivalsM(P  |[-ft]|) is an arbitrary element, P  |[ J?]| satisfies R l.

R2
Suppose (s, X , a) E revivalsM(P  |[ ■#]!)• Then there exist s' and a' such that (s', s) E [[R]]* , 
(a', a) E R, and (s', R _ 1(X ), a') E revivalsM{P)•
Suppose y  C X  to be an arbitrary set.
We know that y  C X  implies R ~ 1( Y )  C R _ 1(X ). It is clear that
(s', R - 1(X ), a') E revivalsM(P)  A R _1( F ) C R _ 1(X ) —̂ (s', R _ 1(F ) , a') E revivalsM(P)-
Therefore, (s', R - 1( y ) ,  a') E revivalsM(P)  which implies (s, F , a) E revivalsM{P |[R]|)- 
Hence, revivalsM{P  |[R]|) satisfies R2.

R3
Suppose (s, X ', a) E revivalsM{P |[ R}\)- Then there exist s', X , a 'w ith  (s', s) E [[R]]*, 
(a', a) E R and X  =  R - 1(X ') such that ( s ' ,X , a') E revivalsM{P)• Suppose & to be an 
arbitrary event in E.

We prove R3 by applying induction on the size of R.

Induction Base: | R |=  0, i.e., R =  0.
It is trivially true as there is no a’ such that (a', a) E R. Hence it is a contradiction.

Induction Base: | R |=  1,

Case  1 : 6 ^  d o m ( R ~ 1). Then R - 1(X ' U { 6'}) =  R - 1(X ') =  X , consequently 
(s, X ' U { 6}, a) E revivalsM(P |[ R]|). Hence R3 holds.

Case  2 : b E d o m ( R ~ 1). This mean there exists b' such that 6' E E and b' R b. Since 
(s', X , a') E revivalsM(P)  is healthy, we know that (s', X , 6') E revivalsM(P)  or 
(s', X  U 6', a') E revivalsM(P)-  By definition of revivalsM(P |[R]|), we know that
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(s, X ', b) G revivalsM{P |[-R]|) or ( s , X'  U b, a) G revivalsM(P  |[^]|)- 
Hence, it satisfies R3.

Induction step: | R \= n +  1,

Case 1 : 6 ^  d o m ( R ~ 1). Then R ~ 1(X '  U {&'}) =  R ~ 1( X /) =  X , consequently

(s, X '  U {&'}, a) G revivalsM{P |[-#]!)• Hence, R3 holds.

Case 2 : b G d o m ( R ~ 1). Then there exists at least one b' with b' R b ,  i.e. the set

B : = { b '  e  £  | b ' R b }

is non-empty.

Say B  =  {& i,. . . ,  } and k +  1 <  n. We consider the following two cases.

Case 2.1: 3 6o G B . (s', X , bo) 6  revivalsM{P),  then we know that 
( s ,X ' ,  b) G revivalsM(P  |[^]|)-

Case 2.2: V 6.6 G B  —> (s ' ,X , 6) ^ revivalsM(P)-

Consider R3 for 6*+1 and by induction hypothesis
(s', X  U (B  — {&fc+ i} ) ,  a') G revivalsM{P)-  As R3 holds for revivalsM(P) , we 
have that
(s', X 'u (.B —{6jfc+ i} ) ,  ftfc+i) G revivalsM(P)  V ( s ' ,X 'u 5 ,a ' )  G revivalsM{P)-

case 2.2.1: ( s ' ,X 'u ( .B  — {6^+ i} ) ,  6^+ i) G revivalsM{P)-  
By (s', X ' U (B  — {6fc+ i} ) ,  6/c+i) G revivalsM(P),  we have 
(s', X',  bk+ 1) G revivalsM{P)  by R2. Hence a contradiction.

case 2.2.2: ( s ' , I ' u 5 , q ' )  G revivalsM(P)
By definition of revivalsM{P ( s , X '  U {&}, a) G revivalsM(P  |[^]|)-

Hence R3 holds.
RRS05
Suppose (s, A ', a) G revivalsM(P  |[-R]|)- As (s, X ', a) G revivalsM(P  |[-R]|) satisfies R2 there 
exist s', a' with (s', s) G [[•#]]*, and (a', a) G i i  such that (s', i?_1(X '), a') G revivalsM^P)•

By assumption, we know that a' ^ # - 1 (X '). We have to prove that a £  X' .

By the definition of R ~ 1( X)  =  { a  | 3 b G X .  (a, b) G R  V a =  b =  / }  we consider two 
cases

case 1: a =  / .  By the definition of revivalsm (P)* we know that a / .  hence it is a 
contradiction.

case 2: Assume that a G X '. Then by the definition of J?- 1 (X '), a' G R ~ l (X' )  as 
(a', a) G .ft. This is a contradiction with the assumption. Hence a £  X '.

Therefore RRS05 holds for revivalsm(P  |[ R]\)-

case: P  \  X:

Assuming that (t racesM(P),  deadlocksm (P) ,  revivalsM(P))  is healthy,
we prove that ( tracesMi P \  X ), deadlocksM( P \  X ), revivalsM( P \  X  )) is also healthy,
where
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t r a c e s M  {P  \  X ) = {£ \  X  | £ G t r a c e s M  ( P) }
deadlocksM(P \  X )  = { t \  X  \ t € deadlocksm ( P) }
revivalsM{P \ X )  = { ( 5  \  X ,  F , a) | ( s , F U  X , a) G revivalsM(P)}

T1
First we prove that tracesM  (P  \  X )  is non-empty.
() G tracesM {P  \  X )  as () G tracesM {P)  and () \  X  =  (). Hence tracesM (P \  X )  is
non-empty.

Let t  G tracesM(P \  X )  where t =  (£1, £2, . . . ,  tn). Then there exists t' G tracesm(P)  with 
t1 =  xo ^  (£1) x\ ^  (£2) ^  X2 . . .  xn- \  ^  (tn) ^  xn where Xi G X*,  for 1 <  i <  n.

Let s =  (t \ , t2 . . .  tk) be a prefix of t,
then s' =  xo ^  {t i)  ^  x\ ^  (£2) ^  £2 ■ • • £/t-i ^  (£&) ^  is a prefix of t'.

As tracesM(P)  is prefix closed, s' G tracesM(P)-  By the definition of tracesM(P \  X ) ,
(s' \  X  =  s) G tracesM{P \  X) .
Since s is an arbitrary prefix o f t, tracesM(P \  X )  is prefix closed.

D1
Let s G d e a d lo c k sM ( P  \  X ) ,  then there exists s' G deadlocksM  (P)  with 
s =  s' \  X .
As (tracesm (P) ,  deadlocksm (P) ,  revivalsm (P))  is healthy, we have s' G tracesM(P)-  By 
definition, this implies that s G tracesm (P  \  X ) .
Therefore, D1 is fulfilled.

Hence D1 is satisfied.

R1
Suppose (s \  X , Y , a )  G revivalsM(P \  X )  such that ( s ,X  U F , a) G revivalsM(P)- 

We know by assumption that ( s ,X  U F , a) G revivalsM(P) ~ ► s ^  (a) G tracesM(P)• By 
definition of tracesM(P \  X ), we know that (s (a)) \  X  G tracesM(P \  X ) which is 
((s \  X ) ^  (a)) G t racesM(P  \  X ) as a ^ X . Therefore, (s \  X , F , a) G revivalsM(P \  X )  
implies ((s \  X ) ^  (a)) G tracesM(P \  X ).
Hence, R1 is satisfied.

R2
Suppose (s \  X , F , a) G revivalsM(P \  X ) and X C F . By definition we know that there 
exist (s, Y  U X , a) G revivalsM (P)-  We also know from hypothesis that 
(s, F  U X , a) G revivalsM(P)  A (X U X ) C ( F  U X ) —> (s, X U X , a) G revivalsM(P)-  
From hypothesis (s \  X , F  U X , a) G revivalsM(P \  X ) and X C F , it follows that 
(s \  X ,  X, a) G revivalsM(P \  X ).
Hence, revivalsm  (P  \  X )  satisfies R2.
R3
Suppose (5 \  X , F , a) G reviva lsm (P \  X ). Hence we know that there exist (s, F  U X , a) G 
revivalsM  (P)-  We also know from hypothesis that
(s, F  U X , a) G revivalsM(P)  A c G E -> (s, F  U X , c) G revivalsM(P)  V ( s ,X  U F  U 
{c} , a) G revivalsM(P)-  If (s, F  U X , c) G revivalsm (P) ,  then we know by the definition of 
revivalsm(P \  X )  that (5 \  X , F  U X , c) G revivalsM (P  \  X ).
If (s, X  U F  U {c} , a) G revival(P),  then we know by definition of revivalsM(P \  X ) that
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( s  \  X ,  Y  U { c } ,  a )  €  r e v i v a l s M ( P  \  X ) .
Hence, r e v i v a l s M ( P  \  X )  satisfies R3.

RRS05
We have to prove that V s, X  , a  . (s, Y ,  a )  e  r e v i v a l s M ( P  \  X )  —» a  ^ Y.  This directly 
follows from the assumption of RRS05 on process P  and the definition of r e v i v a l s m { P  \  X ) .

□

6.1.3 Implementation of the type correctness property

The approach followed to prove the type correctness property of the semantic function is similar 
to the implementation of the domain. We first prove the type correctness for the individual com
ponents and then we prove the type correctness for the domain. We have implemented the type 
correctness for the deadlock component in theory C S P _ R _ d e a d lo c k s  and the revivals component 
in theory C S P _ R _ r e v iv a ls .  The type correctness for the domain in theory is implemented in 
C SP_R _dom ain. The type correctness for the traces component follows from the traces model im
plemented in CSP-Prover.

We discuss the type correctness o f the revivals component only as it includes the two major health
iness conditions R2 and R3. The proofs presented in the previous section are similar to the proof 
implemented in CSP-Prover. Similarly T1 has been proved in the domain of the traces component. 
As we implemented the revivals component as data type ' a  s e t R , checking type correctness boils
down to checking membership like revivalsM  (P □ Q) : s e tR . We have implemented R2 and
R3 in the domain of the revivals component, proving revivalsM  (P □  Q) : s e t R  implies that the 
external operator satisfies the healthiness conditions R2 and R3 in the domain of the stable revivals.

For each operators we prove the type correctness o f the deadlocks and revivals components. The 
lemma for the prefix operator is given below:

lemma
PRE F IX _s e tD : " f .  (EX s .  f  = ( E v a ) /' /' s & s : d D ) :  se tD "
lemma PREFIX_setR:
" { f .  (EX X. f  = ((), X , Ev a ) & X <= Evset & Ev a ~:X ) | (EX s X
b. ( f  = ({ Ev a) s, X,b) & (s,X,b) :r P) ) } : setR"

While proving the process refinements, we frequently need to check ( f  :d  d e a d lo c k s  (a  ->  
P) M ). Hence we unfold the definition o f the prefix operator using P R E F IX _setD  as (EX s  . 
f  = ( E v a ) ~ /' s & s  :d  d e a d lo c k s  (P) M ). We group all the type correctness lemma 
for the deadlocks component in a single lemma in _ d e a d l o c k s .

lemmas i n _ d e a d l o c k s  = i n _ d e a d l o c k s _ S T O P  i n _ d e a d l o c k s _ S K I P
i n _ d e a d l o c k s _ D I V  i n _ d e a d l o c k s _ P R E F I X  . . .

Similarly we do for the revivals components in i n _ r e v i v a l s .

We are able to prove the type correctness when the renaming relation is finite. But the renaming 
relation in C sPtp can be arbitrary. One way is to modify the syntax in the reusable part by creating 
a process type which contains only processes whose renaming relation is finite. Another way is to 
create a subset of processes using inductively defined set. We follow the second approach by defining
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a subset o f processes which has only finite renaming relations. In this way, we can reuse all the 
previous lemmas in theory C S P _ S y n ta x . We start by defining a type of the subset of processes as 
p ro cR . It is defined as follows:

consts
procR :: "('p^a) proc set"

We declare the subset by the keyword i n d u c t i v e .  It consists of introduction rules.

inductive "procR"
intros
procR_STOP:
"STOP : procR"

procR_Renaming:
"[| P : procR ; finite r |] ==> (P [[r]] : procR"

Isabelle creates a fixed point definition for p ro cR  and proves some useful theorem. The introduc
tion rule procR _STO P states that the process STOP is in the set p ro cR  and provides the lemma 
p r o c R . procR _STO P.

STOP € p ro cR

The rule p ro cR _ R en a m in g  states that if P  is in p ro cR  and the renaming relation r is finite, then
( P [ [ r  ] ] ) is in p r o c R  and creates the theorem p r o c R . p ro cR _ R en a m in g

[[P G procR ; finite r  ]] ==> P[[r]] G p ro cR

Similarly for other operators are also defined without any restriction. All the lemmas are grouped in 
the theorem p r o c R . i n t r o s .  For convenience, we prove lemmas to show that processes belong to
the inductive set with attribute s  im p in order to apply implication automatically.

lemmaprocR_Renaming[simp] :
"[| P : procR ; finite r |] ==> (P [[r]]) : procR"

by (simp add: procR.intros)

The lemma for the type correctness of the external choice operator in the domain of the stable revivals 
model is

lemma EXTERNAL_domR :
"[|(traces ( P )  (fstR o M), deadlocks(P) M, revivals(P) M ) : domR 
; (traces(Q) (fstR o M), deadlocks(Q) M , revivals(Q) M ) : domR
N ==>
(traces(P [+] Q) (fstR o M), deadlocks(P [+] Q) M,

revivals (P [ + ] Q) M) : domR"

The type correctness for the renaming operator is given by the below lemma:

lemma RENAMING_domR: " [ | finite r ;
(traces(P) (fstR o M) , deadlocks(P) M, revivals(P) M ) domR
|]= = >
(traces(P [[r]]) (fstR o M), deadlocks(P [[r]]) M,

revivals(P [[r]]) M) : domR"
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In the above lemma, we also have the assumption “finite r”. The type correctness for process P  is 
proved by induction on P  in the below lemma:

lemmaproc_domR_lm[simp] :
"P : procR -->
(traces(P) (fstR o M) , deadlocks(P) M, revivals(P) M) : domR"

After applying the command a p p l y  ( i n d u e t _ t a c  P ) , we will have a subgoal for each operator. 
For the renaming operator, the subgoal is given as follows :

!Iproc set. proc : procR -->
(traces proc (fstR o M), deadlocks proc M, revivals proc M) : 
domR ==>
proc [[set]] : procR -->
traces (proc [[set]]) (fstR o M), deadlocks (proc [[set]]) M, 
revivals (proc [[set]]) M : domR

Then, after applying following commands:

apply (intro impl)
apply (simp)
apply (erule procR.elims)
apply (simp_all)

we will end-up with the following subgoal:

[|(traces P  (%u. • fstR (M u)), deadlocks P  M ,  revivals P  M)  : 

domR; proc = P  & set = r; P  : procR; finite r |]
==> (traces ( P  [[r]]) (revivals ( P  [[r]]) M) : domR

Now we can finish off the subgoal with the following command:

apply (rule RENAMING_domR, simp) 
apply (simp)

Similarly, we prove the other subgoals. Theory C SP_R _dom ain  also contains lemmas to project out 
the traces, the deadlock and the revivals component.

lemma thdR_semR[simp] : "P : procR -->
thdR [[P]]R = revivals(P) MR" 

apply (simp add: semR_def)
done

We also prove a lemma to decompose components of the semantic functions.

lemma semRf _decompo:
"P : procR --> (([[P ]]Rf M = S F )  = ((traces P  (fstR o M )  = fstR 
S F )  & (deadlocks P  M = sndR S F )  & (revivals P  M = thdR S F )  ) ) "
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6.2 Continuity of semantic functions

Another essential property proved in Csp-Prover is continuity of the semantic functions. It is needed 
in assigning semantics to recursive processes. It is proved in theory CSP_R_continuous. It 
is implemented on the top of theory CSP_R_domain which has lemmas for the type correctness, 
CSP_T_continuous which implements continuous property for the traces component, and 
Domain_R_cpo which has proofs to show that the domain of the stable revivals model is a CPO. 
The reusable part of Csp-Prover on continuity is imported through CSP_T_continuous.

theory CSP_R_continuous
importsCSP_R_domain Domain_R_cpo CSP_T_continuous

In the reusable part of Csp-Prover, it is proved that the definition of continuous given in Definition 
2.10 is equivalent to below:

Definition 6.4: Let P  and Q  be two complete partial orders. Let /  be a function from P  to Q. f  
is continuous if and only if whenever A  C P  is directed, there exists x such that £ =  |_| A  and 
U{/(z) I x 6 A}=/(LJA).

This is proved in the following lemma:

lemma continuous_if f :
"continuous f = (ALL X. directed X -->

(EX x. ((f x) isLUB (f X) & x isLUB X))) "

From now on, we use the above characterisation only. First we present the continuity proof for the 
prefix operators and then we discuss how we implemented this proof. The proofs for other operators 
are similar.

6.2.1 A Proof of Continuity

In the section, we present a proof of continuity of the prefix operator. The proofs for the other operators 
are very similar.

Lemma 6.5: If {tracesM (P) ,  deadlocksm {P) ,  revivalsM ( P )) is continuous, then 
( tracesM{a —> P ), deadlocksM{a> —> P ), revivalsM{o> —> P))  is continuous, 
where
tracesM{a —> P )  = { ()}  U { (a)  ^  t' \ t' G t racesM(P)}  
deadlocksm( cl —> P ) = { (a)  ^  t' \ t' £ deadlocksm{P)}
revivalsm (a —> P ) = {(()> X ,  a) \ a £  X }  U { ( (a)  ^  t ' , X , b) \ ( t f, X , b) £ revivalsm ( P ) }

Proof. We prove that the individual components are continuous. We consider only the deadlock 
component and the revival component as the proof for the traces component has already been proved 
in Csp-Prover.

Assuming d e a d l o c k s M ( P )  is continuous, we prove that d e a d lo c k s M ( a  —> P ) is continuous.
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Assuming that for all directed set A ,
if  deadlocks\j A (P)  =  \_\{ deadlocks m ( P )  | M g A } holds, 
then we prove that
deadlocks^ A (a  —> P )  =  [J{deadlocksm{a —* P )  \ M  G A } holds.

We know that the least upper bound of {deadlocksm (P)  \ M  €  A }  is
U{ deadlocksm (P)  \ M  G A }.

Suppose A  is an arbitrary directed and non-empty set.
Then by the definition of continuity we know that
deadlocks^ A (P)  =  U{ deadlocksm(P) \ M  G A }.

We prove that
deadlocks^ A (a  —> P )  =  U{deadlocksm(a  —* P )  \ M  G A }.

We consider two directions separately.

First, we prove deadlocks^ A (a —» P)  C U{deadlocksm  (a -+ P)  \ M  G A }.

Suppose t G deadlocks^ A (a —> P).
By definition o f deadlocks^ A (a —» P ),  we know there exist ta such that t =  (a) ^  ta and
ta G deadlocks^A ( P ) .
By assumption, we know that deadlocks^ A P  =  U{deadlocksm{P)  \ M  G A }).
By definition o f U {deadlocks m {P) \ M  G A }), we know there exists 5 such that S G A  and 
ta G deadlockss(P).

Consider the right hand side.
By definition o f U{deadlocksM(a  —> P)  | M  G A }, we know that 
3 M\ .t G deadlocks Mi (o> —*■ P)  A M\  G A.
Let M\  =  (5 in 3 Mj i  G d e a d l o c k s { a  —•► P)  A M i G A , 
then we know that t  G deadlockss(a —» P )  and 5 G A.
By definition o f t G deadlocks§(a —■> P ), 3 t ta.(a) ^  t ta =  t A tta G deadlocks$(P).
Let tta =  ta, in the above equation then we get ta G deadlockss{P).

Therefore, V t  . t  G deadlocks^A) (a —> P )  =>• t G U{dea<PocA;sM(a —> P ) | M  G A }.

Now we consider the reverse direction.
U{ deadlocksm{a —> P)  \ M  E A } C deadlocksM{a> —> P)  (|_| A ).
Suppose t G U{deadlocksm{a  —> P ) | M  G A }.
By definition of U{deadlocksm {a —> P ) | M  G A }, we know that there exists <5 such that
t G deadlockss(a —> P ) A 5 G A.
By definition o f deadlockss(a —> P ), there exist ta such that
(a) ^  ta G deadlocks$(a —> P ), t =  (a) ^  ta, and ta G deadlockss(P).

Now consider the right hand side
By definition o f deadlocksM(a  —> P),  3 t ta . t  =  (a) ^  tta  A t ta G deadlocks^ A ( P ) .
Let t ta =  ta, in 3 t ta . t t  =  (a) ^  tta A t ta G deadlocks^ A ( P ) . Then we know that 
t =  (a) ^  ta G deadlocks^ A (P).
By assumption deadlocks^ A P  =  U{dead/ocA:sM(P) | M  G A }), we know that 3^o -̂ o €  
A  A ta G deadlockssQ(P) .
Let <$o =  S in 3 .<5q G A  A ia G deadlocks§0 (P) ,  then we obtain
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8 G A  A ta G deadlockss(P).
Therefore V t . t  G U{deadlocksm(a —*• P)  \ M  G A } =>> t  G deadlocksM(a —* P)  (L I A). 

Now we prove continuity for the revivals component.
revivalM{a —> P )  = {(() , X , a) \ a £ X }  U {((a)  ^  t ' , X , b) \ ( t ' , X , b )  G revivalsm(P)}-

Assuming that for all directed set A ,
if revivals^a (P )  =  U {revivalsM (P)  | M  G A }) holds, 
then we prove that
revivals\j&(a —> P )  =  \_\{revivalsM(a —> P ) | M G A }) holds.

We know that the least upper bound of {revivalsM(P)  | M  G A } is U {rev ival sM(P)M  | M  G A }. 

We prove that revivals^ ^ ( a  —> P) =  U {revivalsm ( cl —> P) \ M  G A }.

Consider the first clause { (() , X , a) \ a £  X }. The first clauses is trivial as {((), X , a) \ a £
X }  C  r e v i v a l s ^ A ( a  —> P ) and { ( ( ) ,X ,  a )  \ a  (fc X }  C  U { r e v i v a l s M  ( cl —> P)  \ M  G A } as A  
is non-empty. Thus, r e v i v a l s ^ ^ ( a  —> P)  =  U { r e v iv a l s M  ( a  —» P) \ M  G A }.

Consider the second clause {((a ) ^  t', X , b) | ( t1, X , b) G revivalsm(P)}-

First we prove that revivals^j^(a —> P )  C U {revivalsM(a —> P ) | M  G A }.
Suppose r  G revivals^ A ( a —> P ).
By definition o f revivals^ A (a —» P ), we know there exist t, X , and b such that r =  ((a) 
£ ,X , 6), ((a) ^  £ ,X , 6) G remi>a/s|j A (a -> P ) and (£ ,X , 6) G rezm;aZs|j A(P).
By assumption, we know that revivals j j^P =  U{revivalsM (P) \ M  G A }).
By definition o f  U {revivalsM (P)  I M  G A }), we know there exists 8 such that 5 G A  and 
(t,  X , b) G revivals§(P).

Consider the right hand side, by definition of U{revivalsM (a —> P ) | M  G A }, we know that 
3 <5i .((a) ^  X , 6) G revivalss1(a —> P ) A G A.
Let J in 3 .((a) ^  £, X , 6) G revivalssl (a —» P ) A G A.
By definition of ( (a) ^  t, X , 6) G revivalss(a —*• P ), we obtain (£, X , 6) G revivalss(P).  
Therefore V r  . r G revz?;a/s|j A (a  —> P ) ==> r G U{rewi>a£sM(a P ) | M  G A }.

Now we consider the reverse direction.
U{revivalsM(a  —► P ) | M  G A } C rem m /sy A (a  —» P ) .
Suppose (£, X , 6) G U{nemvaZsAf (a —► P ) | M  G A }.
By definition of U{rewi>aZsM-(a -»  P ) | M  G A }, we know that there exists 8 such that 
( t , X , 6) G revivals$(a —» P ) A 8 £  A.
By definition o f revivalss(a —> P ), there exist ta , X  and b such that
((a) ^  X , 6) G revivalss(a —► P ), t — (a) ^  ta, and (ia , X , 6) G revivals§(P).

Now consider the right hand side
By definition o f revivals^ A (a —► P ), we know that
3 t ta Xo bo.(t ,Xo, bo) G TTemuaZsjj A (P ) A t =  (a) A tta.
Let Xo =  X ,  t ta =  ta and &o =  & in the above equation, 
then we get that ((a) ^  t a , X , 6) G remi'aZsjj A (P).
By assumption rew ua/syAP  =  U{rem>a/sM(P) | M  G A }).
By definition o f U{revivalsm(P)  \ M  G A }),
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we know that 3 £0 .So G A  A (ta, X , b) G revivalss0(P).
Let £o =  S in 3 <5o .<5o € A  A ( t a) X , b) G revivals$Q(P) ,  then we get <5 G A  A (ta,  X , a) G
revivalss(P).
Therefore V r  . r  €  U{revivalsM (a —> P ) | M  G A } = »  r G rewvaZsjj A (a —► P).

□

6.2.2 Implementing Continuity of the Semantic function in CSP-Prover

In this section, we explain briefly about implementing continuity of the semantic function of the
stable revivals model in CSP-Prover. First we prove that a triple is continuous if and only if each of 
the individual components are continuous.

lemma continuous_domR_decompo:
"ALL x. (f x, g x, h x) : domR ==>
continuous (%x. (tripleR (f x) (g x) (h x))) =
(continuous f & continuous g & continuous h)"

We prove the above lemma using the following two lemmas which proves that each direction implies 
another. We need only one direction to prove the continuity of the semantic function. We generalise 
the lemma by proving equivalence.

lem m a continuous_domR:
"[| ALL x. (fx, g x ,  hx): domR ; continuous f ; continuous g

; continuous h |]
==> continuous (%x. (tripleR ( f x) (g x) (h x)) »

lem m a continuous_domR_decompo_only_if:
"[| ALL x. (f x, g x, h x) : domR; continuous (%x. ( tripleR
(f x) (g x) (h x) ) ) | ]
= = > continuous f Sc continuous g Sc continuous h"

The above two lemmas follows by the lemma pair_continuous which is proved in reusable . 
theory CPO_pair and continuous property of the domain functions Abs_domR.
We also have to prove that the induced component failuresR is continuous when proving continuity 
of the semantic functions of the individual components. We prove deadlocks, revivals and failuresR 
components are continuous simultaneously as we need to assume deadlocks and revivals are contin
uous to prove the parallel operators are continuous.

This is proved in the below lemma:

lemma continuous_failuresR:
"P : procR --> continuous (failuresR P) Sc continuous (revivals 

P) Sc continuous (deadlocks P) "

We prove continuity of the induced component failuresR for each operator separately like,

lemma continuous_failuresR_Parallel:
"[| continuous (revivals P) ; continuous (revivals Q); 

continuous (deadlocks P); continuous (deadlocks Q) |] ==> 
continuous (failuresR (P |[X]| Q))”
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We prove the semantic function is continuous by the following lemma:

lemma c o n t i n u o u s _ s e m R f : "P : p ro cR  = = >  c o n t i n u o u s  [ [ P f ] ] R f "
a p p l y  ( s im p  add:  s e m R f _ d e f )
a p p l y  ( s im p  add:  c o n t in u o u s_ d o m R _ d e c o m p o )

Applying the above two commands will produce the goal as

1.  P : p r o c R  ==>  
c o n t i n u o u s  (%M:: ' a  =>  ' b  domR. t r a c e s  P ( f s t R  o M)) & c o n t i n u o u s  

( d e a d l o c k s  P) & c o n t i n u o u s  ( r e v i v a l s  P)

We prove that the traces component is continuous by using continuity property of the traces model. 
Now we finish the proof using the lemma c o n t i n u o u s _ f a i l u r e s R b y  the following commands:

a p p l y  ( s im p  add:  c o n t i n u o u s _ t r a c e s _ f s t R )
b y  ( s im p  add:  c o n t i n u o u s _ f a i l u r e s R )

Then continuity property of process function is proven by the following lemma:

lemma c o n t i n u o u s _ s e m R f u n : " (ALL i  . P f  i  : procR)  ==>
c o n t i n u o u s [ [ P f ] ] R f u n "

In the next section, we will look how continuity property will be used in providing proof a infrastruc
ture for the recursive processes.

6.3 Proof Infrastructure for Recursive processes

In this section, we explain the implementation of a proof infrastructure for recursive processes. Re
cursive processes are central to reason about any non-trivial process. We have seen in Chapter 2 that 
if a function /  is continuous, then the function /  has solutions using Tarski Fixed Point theorem. The 
implementation of Tarski Fixed Point theorem is available as a reusable part of CSP-Prover in theory 
CPO. We use the continuity property proved in the previous section and theory CPO to assign the 
semantics to recursive processes.

The important theorems required for recursive processes are unwind laws and lemmas to simplify the 
substitution o f the process name by another process in CSP. These are two important lemmas which 
are more often used in proving the refinement and equivalence relation involving recursive processes. 
The unwind law is

V p  <E n  . [$p]R =  [PNfunu (p)]R

In CSP-Prover, the type of $p is ( '  p ,  'a )  p r o c ,  the type of p  is ' p and II is a set of process 
names.

The substitution of process name p  which is of type ' p\  by a process f  (p ) is done by the operator 
« .  In CSP-Prover, /  is a function of type f  : :  ' p \  ==> { ' P 2 , 'a )  p r o c .  It is implemented
in theory C S P _ S y n ta x . Another important lemma that needs to be proven is

V / . ( V p .  [ (PNfunp)  «  f ] R  =  \ f p \ R  = >  [$p]/2 C \f p]R
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In the rest of this section, we see how the above two important lemmas have been proven for the stable 
revivals model in CSP-Prover and a small example to understand its application. The implementation 
is similar to the other models embedded in CSP-Prover, but the proofs are slightly different as for 
every process P  membership in set p r o c R  is assumed. First, we look at the unwind law.

The existence o f the least fixed point for process-name function follows directly using Tarski fixed 
point theorem from theory CPO and continuity property of the semantic functions. It is proven in the 
lemma

lemma se m R _ h a sL F P _ c p o :
"(ALL i  . P f  i  : p roc R )  & P f  = PNfun ==> [ [ P f ] ] R f u n  hasLFP"

That the semantic meaning for process names are equal to the least fixed point of process-name func
tion are proven by the following two lemmas:

lemma semR_LFP_cpo:
"[| Pf = PNfun ; (ALL i  . Pf i : procR); FPmode = CPOmode |]

==> [ [ $ p ] ] R  = LFP [[Pf]]Rfun p"

lemma semR_LFP_fun_cpo:
"[| Pf = PNfun ; (ALL i  . Pf i : procR); FPmode = CPOmode |]
==> (%p. [ [ $P1]R) = LFP [[Pf]]Rfun"

We need to assume that for all process names p, P f  p  is in the set p ro cR . The proof follows from the 
definition of fix-point function sem R f i x  and the semantic definition of process names. The unwind 
law for CPO based approach is proven by the following lemma:

lemma A L L _ c s p R _ u n w in d _ cp o :
" [ | P f  = PNfun ; (ALL i  . P f  i  : p r o c R ) ; FPmode = CPOmode | ]

==> ALL p .  ($p =R Pf  p ) "

lemma c s p R _ u n w i n d _ c p o :
" [ | P f  = PNfun ; (ALL i  . Pf  i  : p r o c R ) ; FPmode = CPOmode | ]

==> $p =R P f  p"

We prove the above lemmas using fix-point function sem R f i x ,  and using existence and definition of 
the least fixed point from theory CPO.

We often need to replace a process name by another process while proving the refinement and equiv
alence relation involving recursive processes. First, we prove that

lemma s e m R _ s u b s t :
" (ALL i  . f  i  : p r o c R  ) & P : p r o c R  & P < < f  : p r o c R  ==>
[ [ P « f ] ] R  = [ [P] ] Rf  ( %q. [ [ f  q] ] R) "

lemma s e m R _ s u b s t _ s e m R f u n :
"(ALL i  . f  i  : p r o c R  ) & (ALL x .  ( ( P f  x)  : p r o c R ) )  & (ALL x .
( ( P f  x)  < <  f )  : p ro cR )  ==>

(%q. [ [  ( P f  q ) « f  ] ] R) = ( [ [ P f  ] ] Rfun (%q. [ [ f  q ] ] R ) ) "

We prove this by induction on the structure of the syntax. The proof follows directly from the defi
nition of << and semantic definition of the individual components. For all the induction step which 
does not have a process name, the proof follows trivially from the definition of « .  For the step which
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has a process name, the proof follows from the semantic definition of individual components. To 
understand a process which has a process name, consider the example

[ $P «  g  ]R = [ $P ] R f  (g P) .

After the substitution of the process $P  by definition of « ,  we get [g P ] R  =  [ $ P ] R f  ( g  P) .  By 
definition of [ $P ]R f  ( g  P ) ,  [ g P  ] R, and semantic definition of the individual compo
nents, both sides are equal. Hence the proof for the first lemma follows. Then we prove the second 
lemma which follows from the first lemma.

We prove an introduction rule for fixed point induction to replace the process name on the right hand 
side.

lemma c s p R _ f p _ i n d u c t _ c p o . _ r e f _ r i g h t :
11 [ | P f  = PNfun ; FPmode = CPOmode ; Q <=R f  p;

!!  p .  f  p <=R ( P f  p) < < f ; (ALL i  . Pf  i  : procR)  ; (ALL i  .
f  i  : p r o c R ) ; (ALL x . ( (Pf  x) < <  f ) : pro cR)  | ] ==> Q <=R $p"

c s p R _ f p _ i n d u c t _ c p o _ r e f - r i g h t  is useful to prove the refinement relation which has process 
name on the right hand side. Similarly c s p R _ f p _ i n d u c t _ c p o _ r e f _ l e f  t  is useful for process 
name on the left hand side.

To prove equivalence relation which has process name, the following substitution lemma is proven.

lemma c s p R _ g r e a t e s t _ c p o :
" [ | Pf  = PNfun ; (ALL i  . Pf i  : p r o c R ) ; FPmode = CPOmode ;
(ALL i  . f  i  : p r o c R ) ;
(ALL x .  ( ( P f  x)  < <  f ) : p r o c R ) ; ALL p . (P f  p) «  f  =R f  p | ]
==> f  p <=R $p"

The proof follows from the definition of the least fixed point of function and the substitution of process 
names by processes. If we had implemented the Complete Metric Space (CMS) based approach, then 
we would have got [ f  p  ] R = [ $p ] R instead of [ $ P ] R C [ f  p  ] R.

Consider an example o f process which has process name to illustrate the unwind law 
c sp R _ u n w in d _ cp o . Let E =  { a ,  6} and II =  {P , Q} .  Let

P  =  a ^  b -» STOP n a -> c -> STOP

and
Q =  a -> (& _► STOP n c -> STOP).

We prove that P =R Q. In CSP-Prover, II and E should be declared before it is used. It is declared 
by the following commands:

datatype E v e n t  = a  | b | c  
datatype Name = P | Q

Process names P  and Q are defined by the function p r o c P f  un  using the keyword p r im r e c  below:

consts
p r o c P f u n : "PName=> (PName, E v e n t )  p roc"

primrec
" p r o c P f u n P = a - >  b  - >  STOP ~| a - >  c - >  STOP"
"procQ fun Q = a  - >  (b - >  STOP |~| c  - >  STOP) "
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The function p r o c P f u n  is defined to be the process name function P N f u n  using o v e r l o a d  key
word by the following command. The keyword o v e r l o a d  tells Isabelle that p r o c P f u n  is an in
stance of the declared type ' p  => ( '  p , ' a ) p r o c  of P N f u n .

defs (overloaded)
set_procPfun_def [simp]: "PNfun == procPfun"

To compare two processes P  and Q,  we map process name P  to process $(5 and it is defined by 
function m a p _ P p r o c _ to _ P p r o c  using the keyword p r im r e c .

consts
map_Pproc_to_Pproc : "PName => (PName, Event) proc"

primrec
"map_Pproc_to_Pproc P = $Q"

defs
FPMode_def [simp]: "FPmode =- CPOmode"

We now give the constant definitions for processes $P  and $ Q  as

consts
procP :: "(PName, Event) proc"

defs
procP_def : "procP == $P"

consts
procQ :: "(PName, Event) proc"

defs
procQ_def : "procQ == $Q"

Now we prove that p ro cQ  =R p r o c P  by the following lemma:

[| ALL i::PName. procPfun i : procR; ALL i ::PName.
map_Pproc_to_Pproc i : procR |] ==> procQ =R procP

Applying the definition o f p ro cQ  and p r o c P , we get the following subgoal:

[| ALL i::PName. procPfun i : procR; ALL i ::PName.
map_Pproc_to_Pproc i : procR |] ==> $Q =R $P

To apply the unwind law on the left hand side of the equation, we separate it by the command
a p p l y  ( r u l e  c s p R _ r w _ le f  t ) . We get the following two subgoals:

1 .  [ | ALL i : : PName. p r o c P f u n  i  : p r o c R ;  ALL i : : PName.
m a p _ P p r o c _ t o _ P p r o c  i : p r o c R  |] = = >  $Q =R ? P 2 .0

2 . [ | ALL i : : PName. p r o c P f u n  i : p r o c R ;  ALL i: : PName.
m a p _ P p r o c _ t o _ P p r o c  i : p r o c R  |] = = >  ? P 2 . 0  =R $P

Now we apply the unwind law using the commands a p p l y  ( r u l e  c s p R _ u n w i n d _ c p o ) 
and a p p l y  s i m p _ a l l ). We get the following subgoal:

[| ALL i::PName. procPfun i : procR;
ALL i ::PName. map_Pproc_to_Pproc i : procR | = = >
a -> b -> STOP |~| a -> c -> STOP =R $P

Similarly after the unwind law on the right hand side for $P,  we get
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[| ALL i::PName. procPfun i : procR; ALL i::PName.
map_Pproc_to_Pproc i : procR |] ==>
a -> b -> STOP |~| a -> c -> STOP =R 
a -> (b -> STOP |~| c -> STOP)”

Now the subgoal is proved using the semantic definition of the stable revivals model. In the next 
chapter, we will discuss another example involving recursive processes which uses process names.
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In Chapter 6, we looked at the implementation of the semantic functions of the stable revivals model 
and properties proved in CSP-Prover. In this chapter, we demonstrate how to prove algebraic laws and 
refinements involving recursive processes using the properties proved in Chapter 6. In Section 7.1, we 
prove and disprove some algebraic laws. In Section 7.2, we give an example for recursive processes 
to demonstrate the application of our implementation.

The step laws for stop, the external choice operator, and the renaming operator fail. Counter examples 
for these step laws are given in Section 7.1.2. By modifying the semantics for the prefix choice 
operator and the renaming operator, we prove the step laws for the failed operators.

7.1 Algebraic Laws

All the Csp models support reasoning about processes through denotational semantics. Algebraic 
laws can be proved from the semantic functions o f these models. An algebraic law is the statement that 
two expressions, involving some operators and identifiers representing arbitrary processes are equal 
[Ros98]. We can prove equivalence between Csp processes induced by various denotational models 
of Cs p . For some models of Csp , it is also possible to prove the equality and refinement between 
processes without using denotational semantic function this means that we can prove whether any 
two processes are equivalent or not using algebraic laws only. Algebraic laws capture the algebraic 
properties of operators. They can be used to measure the relative strengths of models in C sp and acts 
as a sanity test for any proposed semantic model.

Csp laws also play an important role in verification of systems. It is also useful in simplifying complex 
processes before being used in model checking tools. Tools, like FDR, exploit the CSP laws to reduce 
the specification to a normal form before embarking on a proof of correctness of an implementation 
[Hoa06]. We can classify the equality laws into two types

99
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•  basic laws, and

•  step laws.

In CSP-Prover, algebraic laws are derived from the semantic functions and hence proving these laws 
in a sound way. In the first section, we explain the basic laws which we have proved and then we 
explain the important step laws proved in the stable revivals model.

7.1.1 Basic laws

In this section, we briefly explain the steps involved in proving basic laws in the stable revivals model. 
Basic laws include idempotent, associativity, distributivity, symmetry and commutativity of CSP op
erators. These laws are shown to be equal by the denotational semantic function and are easy to prove 
in CSP-Prover. We verified in CSP-Prover all the laws shown Figure 7.1. In the figure, we left out the 
condition P : p r o c R  intentionally. For example, the idempotence of the external choice operator

P U P  = 71 P  ( □  - i d e m )

is proved as
P  : p r o c R  = >  P O P  = n  P

by the proof shown in Figure 7.2.

The basic law O - i d e m  holds mostly in all the Csp models except the stable ready model. As an 
example, we prove that P O P  = n  P.  The proof is similar to the semantic proof as described in 
the CSP-Prover user manual. We need to prove that the denotation of process on the left hand side is 
equal to the denotation of process on the right hand side. In Csp-Prover for the stable revivals model, 
the lemma for the idempotent law of the external operator is given below:

lemma cspR_External_choice_idem_p:
"P : procR ==>(P [+] P) =R[M,M] P"

First we prove the above lemma, and then we prove P : p r o c R  = = > P [ + ] P =R P. Figure
7.2 shows the screen-shot of the lemma. We need to assume that P  is in the set of processes p ro cR . 
It takes the same environment M  as argument on both sides. After applying definition of =R and 
decomposing the triple using the command a p p l y  ( s i m p  a d d :  c s p R _ c s p T _ s e m a n t i c s ) ,
we get the following:

1. P : procR = = > deadlocks (P [ + ] P) M = deadlocks P M &
revivals (P [+] P) M = revivals P M

In the traces model, P [ + ] P = T [ f s t R  o M , f s t R  o  M] P is already proven and hence, it 
is proven automatically and not displayed. We prove that individual components are equal. First we 
prove that ( d e a d l o c k s  (P  [ + ] P) M = d e a d l o c k s  P M ) . By applying anti-symmetric 
rule using the commands a p p l y  ( r u l e  o r d e r _ a n t i s y m ) , we get the two subgoals for 
( d e a d l o c k s  (P [+ ] P) M = d e a d l o c k s  P M )  as

1. P : procR = = > deadlocks (P [ + ] P) M <= deadlocks P M
2. P : procR = = > deadlocks P M <= deadlocks (P [ + ] P) M
3. P : procR = = > revivals (P [ + ] P) M = revivals P M
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" c s p R _ b a s ic "

P U P = n P (□-idem)

p n p = n p (n-idem)

P U Q = n Q U P □-sym

P n Q = n Q V \ P n-sym

P \ [ X ) \ Q = n Q \ [ X ] \ P (IMI-sym)

P D ( Q n R ) = n ( P D Q ) D R (□-assoc)

P  n { Q n R)  = n  { P  n Q)  n R (n-assoc)

( P  n  Q)  □  R  = n  ( P  □  R)  n (P  □ R) (□-n-dist)

STOP \ [X]\  STOP = n  STOP (ST O P -M )

? x  : A  —»■ (P { x ) n  Q( x) )  = t z  (? x : A  —► P( x) )  n (? x : A - ■* Q( x) )  (prefix-choice-dist)

((? x  : A  —► P ( x ) )  n (? x : B -  >  Q( x) ) )  = n
? x : A  -> (IF (x E A  H B)  THEN P( x )  n Q(x)  

ELSE (IF x E A  THENP( x )  ELSE Q{x) ) )
n

? x : B  -*  (IF (x E A  n  B)  THEN P( x )  n Q( x)  
ELSE (IF x E A  THENP{ x )  ELSE Q(x) ) ) (generalised-fl -dist)

Figure 7.1: C sp Basic laws
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Figure 7.2: Screen-shot: Proof for Idempotence law of the external choice operator
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By applying the command a p p ly  ( r u l e ) to the first goal, we get

1 .  ! ! s : : ' b  t r a c e .  [ |  P : p r o c R ;  s  :d d e a d l o c k s  (P [+] P) M | ]
==>  s  :d  d e a d l o c k s  P M

Now we apply the command a p p ly  ( s  im p a d d : i n _ d e a d l o c k s ) to unfold the definition of
d e a d l o c k s  (P [ + ] P) M and prove the subgoal using set theory. i n _ d e a d l o c k s  is proved 
in theory C S P _ R _ d e a d lo c k s . We prove the reverse direction:

!! s::'b trace. [[ P : procR; s :d deadlocks P M ] ]  ==> s :d
deadlocks (P [+] P) M

Similarly, we prove equivalence between the revivals component of processes P [ + ] P and P using 
a p p l y  ( s i m p  a d d :  i n _ r e v i v a l s ) . i n _ r e v i v a l s  is proved in theory C S P _ R _ r e v i v a l s
We then prove the default equivalence relation by the following lemma:

lemma cspR_External_choice_idem: " P : procR = = > P [ + ] P =R P"
apply (simp add: cspR_External_choice_idem_p)

Given processes P, Q and R,  we prove that the external choice operator distributes over the internal 
choice operator by the following lemma:

lemma ExternalDistributesOverlnternal:
" P : procR & Q : procR & R : procR ==> (P |~| Q) [+] R =R[M,M]
(P [ + ] R) | ~ |  (Q [ + ] R) •"

The proof is not as easy as idempotent of internal choice operator.

It is observed in [Ros07] that almost all of the standard algebraic laws of CSP hold and the internal 
choice operator does not distribute over the external choice operator (□-[—l-dist).

( P  □ Q)  n R  (P n R)  □ { P  n R)  (n -  □ - dist)

By the definition of semantic function for the revivals component, we get
revivalsM {(a STOP □ b -*  STOP) n STOP) =  {((), { } , a), ((), { } , &)}.

On the right hand side, we find failuresb to understand it
failures*1 ((a  -  STOP) n  STOP) =  {((), {a ,  b}) ,  ((), { a } ) .  ({), M ) ,  «>, { } ) ,
((a),  {a , 6}), ((a ). {a } ) , ((a ), {6 } ) , «o>, { } )}  and
failures* ((b -> STOP) n  STOP) =  {((), {a ,  b}),  ({), {a } ) , « ) ,  W ) ,  ( 0 ,  { } ) ,
((»>, {a, 6}), «4>, {a}),  «»>,{&}),«»>,{})} .

By the definition of semantic functions for the revivals component, we obtain
revivalsM ((a  -*  STOP) n STOP) =  {((), {&}, a), ( ( ) ,{ } ,  a )}  and
revivalsM {(b -4  STOP) n STOP) =  {((), {a } , 6), ((>, {} , 6)}.
The revivals component for the right hand side is {(() , {6}, a), ((), {} , a), ((), {a } , 6), ((), {} , 6)}. 
Thus (P □ Q)  n R  (p  n R)  □ (p  n R).

We prove this by defining a lemma which says that revivalsm  (P ) is not equal to revivalsm  (Q)  if and 
only if there is a revival r  such that r £ revivalsM(P ) and r ^ revivalsjifiQ) or r  g  revivalsM(P)  
and r 6  revivalsm {Q)- It is proven as
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lemma n o t e q _ r e v i v a l s :
" ( r e v i v a l s ( P )  M ~= r e v i v a l s ( Q )  M) = ( ( E X  r .  (r  : r  r e v i v a l s  P

M Sc r  ~ : r  r e v i v a l s  Q M) ) | E X  r . (r ~ : r  r e v i v a l s  P  M Sc r  : r
r e v i v a l s  Q M ) ) ) "

We have verified that (P  □  Q)  n R  {P  n R)  □ (P  n R)  in our implementation by giving 
witness such that ((), { b}, a) E revivalsM^P n R)  □ (P  n R)  and ((), {&}, a) ^ revivalsM{(P 0  
Q ) n R).  It is proven in the below lemma

lemma I n t e r n a l D i s t r i b u t e s O v e r E x t e r n a l C o u n t e r E x a m p l e : "a~=b  - - >
~( (a - >  STOP [ + ] b  - >  STOP) | ~ |  STOP =R[M,M] (a - >  STOP | ~ |
STOP) [+] (b - >  STOP | ~ |  STOP) ) "

In [Ros07], two weaker versions of (□-n-dist) are given. For any set of events A, and if P( x)  and 
Q( x)  are processes for each x E A,  then the internal choice operator is distributive with respect to the 
prefix choice operator prefix-choice-dist is given as

? x : A  —► (P( x)  n Q(x) )  = ti (? x : A -*  P( x) )  l"l (? x : A —> Q(x) )

This says that an event in A  followed by an internal choice is the same as the internal choice made
before the event. The stable revivals model has no memory whether the events in A  has happened 
before or after the internal choice was made. A generalised version of distribution is given below

{ { I x  : A  —> P( x) )  n ( ? x : B - >  Q(x) ) )
? x : A -> (IF (x E A  Pi B)  THEN P( x)  n Q(x)  ELSE (IF x E A THENP(x) ELSE Q(x) ) )  
n
? x : B  -> (IF (x E A  n B)  THEN P{ x)  fl Q{x)  ELSE (IF x E A  THENP(x) ELSE Q (x)))

and we verified it in the below lemma.

lemma M o d i f i e d l n t e r n a l D i s t r i b u t e s O v e r E x t e r n a l - G e n e r i s e d :
" ( ( (  ALL a .  P a :  pr ocR  ) & ( ALL a .  Q a : p r o c R  ))  ==>
( ( ?  a :A - >  P a) | ~ |  (? a : B  - >  Q a ) )  =R[M,M]
( ( ?  a : A - >  ( IF  (a : A & a : B) THEN P a  | ~ |  Q a ELSE IF (a :

A) THEN P a  ELSE Q a) ) | ~ |  (? a :B  - >  ( IF  (a : A & a : B) THEN
P a  | ~ |  Q a  ELSE IF (a : A) THEN P a ELSE Q a ) ) ) ) "

7.1.2 Step laws

Step laws are the core of algebraic laws which holds in all the standard models of Csp . It helps us to 
calculate the first actions of the processes and also plays an important role in the normalisation of a 
process. The step laws for some operators are given in Figure 7.3.

We have found that the step laws for Stop, the external choice operator, and the renaming operator fail. 
We modify the semantics for the deadlock component of the prefix choice operator and the renaming 
operator and prove the step laws.

7.1.2.1 The step law for Stop and the external choice operator

The step laws [Ros98] for STOP fails. The step laws of STOP is given below:
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" csp R _. s t e p "

STOP = n  ? x : 0 P( x) (stop-step)

a ^  P = n  I x  : {a }  -> P (prefix-step)

( I x :  A ^ P ( x ) ) D ( ? x : B ^ Q ( x ) )
= n ? x ( A \ J B ) - +  (IF (x G A n  B)  THEN P( x )  n  Q( x)

ELSE IF(® G A)  THEN P(z)ELSE Q( x) )  (D-step)

( I x :  A ^ P (x ) ) [ [ r ] ]
= n ^ x [ x  | 3 a G A.  (a, x) G r} —>

(! a : { a  G A \ ( a , x)  G r }  •  (P(a)[[r]})) ([[r]]-step)

( I x :  A -> P( x) )  g Q = n  ? x : A  -> ( P( x)  g Q) (g-step)

( I x :  A -> P( x) )  [ (n +  1) = n  ? x : A  -> ( P( x)  [ n) ( L"steP)

Figure 7.3: Csp Step laws

STOP ? x : ® —> P ( x )  ( s t o p - s t e p ) .

It fails because we have deadlocksm (S T O P )  M  =  { ()} , but we do not have
deadlocksM  (? : {}  —> Q f ) M  =  {}. We have also found a counter example for the step law of the
external choice operator if we use the old definition. It is proved in the below lemma

lemma cspR_Ext_choice_step_counter_example:
" ~ ( ( ( ?  x :  {a}  - >  STOP) [ + ] (? x :{ }  - >  STOP)) M =R (? x : ( { a }  Un
{})  - >  ( I F  (x  : {a}  & x  : { } )  THEN (STOP | ~ |  STOP) ELSE IF (x :
{a}) THEN STOP ELSE STOP)) M)"

By modifying the semantic function of deadlocks as

deadlocksmW x  : A —> P{ x) )  =  {(a;) ^  t' \ t' G deadlocksm ( P ( x ) ) , x G A }  U { ( < >  | A — { }} .

We have verified all the laws given in Figure 7.3. In Figure 7.3, we left out the condition P : p r o c R  
intentionally. For example, the step law for the sequential operator

(? x : A —> P( x) )  g Q = n  ? x : A —► ( P( x)  g Q)

is proved as

Q : procR  & V a. P f  a : procR = = >  (? x : A  —> P( x) )  § Q = tz ? x : A —> (P ( x ) g Q)

In CSP-Prover, it is proved as

lemma cspR_Seq_compo_step:
" ( ( ALL a. Pf a : procR & Q : procR) = = >
(? :X -> Pf) ;; Q =R[M,M] ? x: X -> (Pf x ;;Q ))"
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7.1.2.2 The step law for the renaming operator

We have also found that the step laws for the renaming operator fails with new semantic definition of 
deadlocksm  (7x : A  —> p{x)) .  However the old semantic definition of deadlocksm (?z : A —> p(x) )  
is wrong and hence we correct this problem by modifying the semantics of deadlock of the renaming 
operator.

The below is a counter example where E =  {a , b}

Ix  : a —> Skip[[(b, 6)]] = ? z  : {} —» Skip

The left hand side process is not a deadlock process as deadlocksm (?x : a —> Skip[[(b, 6)]]) =  {} , 
but the right hand side process is a deadlock process as deadlocksm (?z : {} —* Skip) =  { ()} .

The new semantics for the deadlock component of the renaming operator is defined in a way similar 
to the semantics of the parallel operator: calculating the semantics for the deadlocks component from 
the failures component.

The new semantics for the renaming operator is

deadlock (P[[R]\) = { s' | 3 s . s R * s '  A (s, f?- 1 (E / )) € fa ilures(P)}

Using the above semantics, we have proven the step law for the renaming operator.

Consider the above example. As the semantics for the deadlocks component does not affect the re
vivals and traces component, we consider only the revivals component. In the example P _ 1 (E ^) =  
{&, / } ,  thus we have ((), {&, Tick})  : failures(?x : {a }  —» Skip).  By definition of deadlocks m  (P[[R))) 
and deadlocksm  (?x : A  —» p(x) ) ,  we get {()}  in both sides for the deadlock component.

7.2 An example for recursive process

In this section, we are going to look at an example of how recursive processes are defined and used 
in the stable revivals model. Since we have proved the type correctness for a restricted language of 
Csp tp  where renaming relation r is finite, we need to assume each process P  is in procR.  Consider 
a event set E =  {a , b}.  We consider two processes P  and Q.  These two are processes defined in 
terms of themselves.

P  =  a - > $ P D 6 - >  STOP

Q =  a - > $ Q n b - ^  STOP

P  is a deterministic process which offers the event a indefinitely but terminates by offering the event 
b at any time. Q is a non-deterministic process which performs the event a indefinitely but terminates 
by performing the event b and internal non deterministic choice is made at any time.

The denotational semantic o f P  is given below

({()> (a)> (a i &)> (a > a)> (a,  a, b) , . . . } ,
{(6> ,(o , 6), (a, a, 6) , . . . } ,

{ « > ,{ } ,  < 0 ,(0 , 0 , * ) ,
((a), {} , a), ((a ), { } , 6),
((a, a), {} , a), ((a , a), {},& ),
((a, a, a), {} , a), ( ( a , a, a), {} , &),
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})

The denotational semantic of Q  is given below

( { ( ) >  ( b ) >  ( a ) >  < a > b ) ,  ( a > ° ) ,  ( a > a ,  b ) >  • • • } »

{ (6 ), (a, 6), (a, a, 6>,. . . } ,
{ « > , { } , “ ), « > , { > ,  &),«>,{&},  a ) , « > ,  { a } ,  6),
( ( a)> {}> a)> ( (a), { } , &), ((a ), W ,  a), ((a ), {a } , 6),
((a , a), {} , a), ((a , a), {} , 6), ((a , a), {6}, a), ((a , a), {a } , 6),
((a , a, a), { } , a), ((a , a, a), { } , 6), ((a , a, a), {6}, a), ((a , a, a), {a } , 6),

})

It is clear that Q is refined by P  by the model R ( Q Q n  P ) as every trace o f P  is a trace of Q,  every 
deadlock o f P  is a deadlock of Q,  and every revival o f P  is a revival o f Q.

We verify this using our implementation. In Csp-Prover the communication alphabet E and the pro
cess names II should be declared before use as in Isabelle. We declare using the keyword d a t a t y p e  
below:

datatype Event = a | b 
datatype PName = P 
datatype QName = Q

Recursive processes in Csp-Prover should be declared along with the functions which will be made 
as an instance o f process name function by overloading later. We declare for the process name $ P  
using the function p r o c P fu n .

consts
procPfun :: "PName ==> (PName, Event) proc"

primrec
"procPfun P = a -> $P [+] b -> STOP"

Processes involving process names are declared as an equation. A new process name is introduced on 
the left hand side; on the right hand is that a process expression involving process name with dollar 
symbol attached in prefix is defined as a  ->  $P [ + ] b  - >  STOP. The function p r o c P f u n  is 
defined to be the process name function P N f u n  using o v e r l o a d  keyword by the following com
mand:

defs (overloaded)
set_procPfun_def [simp]: "PNfun == procPfun"

We define the process $P  separately as a constant definition

consts
procP :: "(PName, Event) proc"

defs
procP_def : "procP == $P"

Similarly we do for the process name Q and declare CPO_mode approach.
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consts
p r o c Q f u n  :: "QName ==> (QName, E v e n t )  p roc"

primrec
"pr ocQf un  Q = a - - >  $Q | ~ |  b - - >  STOP"

defs (overloaded)
s e t _ p r o c Q f u n _ d e f  [ s i m p ] : "PNfun ==> procQfu n"

consts
pr ocQ :: " (QName, E v e n t )  proc"

defs
p r o c Q _ d e f  : "procQ == $Q

defs
FPMode_def [ s i m p ] : "FPmode ==CPOmode"

We relate processes to compare P  and Q by mapping process name P  to process $ Q by the following 
command:

consts
m a p _ P p ro c_ to _ Q p ro c  :: "PName ==> (QName, E v e n t )  proc"

primrec
"m ap_ Ppr oc_to_Q pro c  P = $Q"

Now we define the refinement relation Q Q n  P  by the following lemma:

lemma ref inment: "[| ALL i. (procPfun i) : procR ;
ALL x . (procPfun x) < <  map_Pproc_to_Qproc : procR
ALL i. map_Pproc_to_Qproc i: procR;
ALL i. (procQfun i) : procR ; |] ==> procQ <=R procP"

We need to assume that functions p r o c P f u n  and p r o c Q fu n  are in set procR.  We also have to 
assume process map function m a p _ P p ro c_ to _ Q p ro c  and its substitution (p r o c P fu n  x )  << 
m a p _ P p ro c_ to _ Q p ro c  are in p ro cR . After unfolding the definition of p ro cQ  and p r o c P , we 
get the following subgoal:

[| ALL x::PName. (procPfun x) << map_Pproc_to_Qproc : procR;
ALL i ::PName. map_Pproc_to_Qproc i : procR;
ALL i ::PName. procPfun i : procR; ALL i ::QName. procQfun i :

procR|] ==> $Q <=R $P

Since we are mapping process name P  to process $Q  and process $P  appear on the right hand of re
finement relation, we convert $Q <=R $Pinto$Q  <=R m a p _ P p ro c_ to _ Q p ro c  P bypassing 
process map function as an argument to introduction rule c s p R _ f p _ in d u c t _ c p o _ r ig h t .  By the 
definition of m a p _ P p ro c_ to _ Q p ro c  P = $Q, it trivially follows that $Q <=R $Q.

Now we need to prove the following important subgoal:

!!p ::PName. [| ALL i ::PName. procPfun i : procR; ALL i::QName.
procQfun i : procR;
ALL i::PName. map_Pproc_to_Qproc i : procR;
ALL x:: PName. (procPfun x) << map_Pproc_to_Qproc : procR |]
==> map_Pproc_to_Qproc p <=R (procPfun p) < <  map_Pproc_to_Qproc

This we prove the goal by structural induction on p  as PNames is defined by keyword p r im r e c .  
After applying the command a p p ly  ( in d u e  t _ t a c  p ) yields the following:
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!!p ::P N a m e. [|ALL i::P N a m e. p ro cP fu n  i  : procR ; ALL i::Q N am e.
procQ fu n  i  : procR ;
ALL i::P N a m e. m ap_Pproc_to_Q proc i  : procR ;

ALL x : : PName. (p ro cP fu n  x) «  m ap_Pproc_to_Q proc : procR  |]
==> m ap_Pproc_to_Q proc P <=R (p ro cP fu n  P) < <  m ap_Pproc_to_Q proc

We know that m a p _ P p r o c _ to _ Q p r o c  P is equal to %Q.  By definition of p r o c P f u n ,  it follows 
that ( p r o c P fu n  P) = a  - >  $P [ + ] b  ->  STOP.

We have also declared m a p _ P p r o c _ to _ Q p r o c  P = $Q. By definition o f « ,  we get 
a  - >  $P [ + ] b  ->  STOP «  m a p _ P p r o c _ to _ Q p r o c  = a  - >  $P [ + ] b  ->  STOP. 
After applying the command a p p l y  ( s im p ) , we get the following subgoal:

[ | ALL i::P N a m e. p ro cP fu n  i  : procR ; ALL i::Q N am e. procQ fu n  i  
: procR ;
ALL i::P N a m e. m ap_Pproc_to_Q proc i  : procR ;
ALL x : : PName. (p ro cP fu n  x) < <  m ap_Pproc_to_Q proc : procR  |]
==> $Q <=R a - >  $Q [ + ] b - >  STOP

After applying unwind laws and simplification using the below commands:

a p p ly  ( r u le  c s p R _ r w _ le f t ) 
a p p ly  ( r u le  cspR _unw ind_cpo) 
a p p ly  ( s im p _ a ll)  
a p p ly  (sim p)

We obtain the following goal:

[ | ALL i::P N a m e. p ro cP fu n  i  : procR ;
ALL i::Q N am e. procQ fun  i  : procR ;
ALL i::P N a m e. m ap_Pproc_to_Q proc i  : procR ;
ALL x :  : PName. (p ro cP fu n  x) < <  m ap_Pproc_to_Q proc : procR  |]
==> a - >  Q |~ |  b - >  STOP <=R a - >  $Q [ + ] b - >  STOP

Then by applying the definition of semantic function, we can prove the above goal easily. Figure 7.4 
shows screen-shot o f the proof in CSP-Prover.
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File Edit View Cmds Tools Options Buffers Proof-General X-Symbol Isabelle He

m ifninaiiiff
r » r « t  XftnKt tmrfo Ut* Goto I M  fowwrf Stop M O T  tnfo Help

CSP_fp.thy I
leinma refinement: ”[ ALL i. (procAfun i) : procR ; 
ALL i. (procBfun i) : procR ;
ALL i. map_Aproc_to_Bproc i: procR;
ALL x . (procAfun x) «  map_Aproc_to_Bproc € procR 1 
procB <=R procA"
apply(simp add: procA_def procB_def) 
apply ( rule cspR_fp_induct_cpo__r ight 
[ of _ _ Mmap_Aproc_to_Bproc"]) 
apply(simp_all) 
apply(induct_tac p) 
apply(simp)
apply(rule cspR_rw_left) 
apply (rule cspR_unwind_cpo)
apply (simp_all) •
apply (simp add: cspR_semantics) 
apply (intro conjl) 
apply (rule)
apply (simp add: in_traces) 
apply (rule)
apply (simp add: in_deadlocks) 
apply (elim conjE exE disjE) 
apply (rule disjll) 
apply (rule_tac x ="sa" n exl)
apply (simp_all) 
apply (rule) 
apply (simp add: in_revivals) 
apply (elim conjE exE disjE) 
apply (simp_all) 
done|
ISO0 ZF*_xEm a c s : CSP fp. thy " (Isar s c r i p t  XS : i s a b e l l e /
lemma

refinement:
|[Vi::AName. procAfun i € procR;
Vi::BName. procBfun i e procR;
Vi::AName. map_Aproc_to_Bproc i € procR; 
Vx::AName .

(procAfun x) «  map_Aproc_to_Bproc € procRl 
procB cR procA

Figure 7.4: Refinement relation having recursive process
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In this chapter, we present an improved stable revivals model given by Y. Isobe. The improved model 
is same as the stable revivals model except that one of the healthiness conditions of the stable revivals 
model is replaced by a new healthiness condition. In this chapter, firstly, we explain the need for 
an improvement to Roscoe’s stable revivals model. Secondly, we define the improved stable revivals 
model. Finally we conclude the chapter by explaining the implementation of the improved model in 
CSP-Prover.

8.1 Need for an Improved model

Consider again the counter example given in Section 6.1.1 to show another problem:

c  =  ({(>, (a),  (6 )}, 0, {({), X , a), ((), X , b ) \ X e  Vfin(M)})

C fulfils all the healthiness conditions of the model 1Z. However, there is no process which represent 
the denotation C.  This example is also a counter example for the full abstraction property when E is 
infinite.

In [Ros07], the full abstraction property is proved assuming E is finite. This assumption has been 
made to prove the full abstraction property of the stable revivals model. In CsPtp, E can be infinite. 
We have restricted the language of Csptp to use the stable revivals model proposed in [Ros07] and 
proved all the properties mentioned in the previous chapters and verified some algebraic laws. We 
have used the language CspTp by restricting that the renaming relation to be finite in the renaming 
operator. This restriction has complicated the proofs. As we have to assume that all processes satisfy 
this restriction. Consider a small example which explains the problem. We have proved that the 
external choice operator is idempotent by assuming P  is in the restricted language of C sptp as given 
below:

111
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lemma External-Idem: " P : procR ==> (P [ + ] P) =R P "

Similarly, we have proved the type correctness of the semantic function of the stable revivals model 
and the semantic function of the stable revivals model is continuous by assuming this restriction as 
follows:

lemma continuous-semRf: "P : procR ==> continuous [[P]]Rf" 
lemmaproc_domR_lm[simp] : "P : procR ==>
(traces(P) (fstR o M) , deadlocks(P) M, revivals(P) M) : domR"

All the proofs which used these properties should have this restriction. Hence it has complicated the 
implementation. We need another improved model which removes the restriction and also satisfying 
all the properties of the stable revivals model.

8.2 Improved model

In the previous section, we explained the need for an improved model which removes the restriction 
that renaming relation is finite and also satisfies all the properties of the stable revivals model. In this 
section, we define the extension of the stable revivals model and explain its relation with the old one.

We are unable to prove the type correctness of the renaming operator as it does not satisfy R3 without 
any restriction. Y. Isobe proposed a condition R3' replacing old R3. The new healthiness condition is 
given below:

R3' ((s, X , a) e  R  A Y  C E A (V b.b e  Y  = >  (s, X , b) <£ R)) = >  (s, X  U Y,  a) e  R.

This says that all events which would not happen in the next step will be refused.

This condition is similar to the following healthiness condition in the stable failures model. However 
we do not need to use the traces component to find the next acceptance event.

F3. ((s, X ) €  fai lures(P)  A V a 6  Y . s ^ ( a ) ^  t races(P))  = >  (5, X  U Y)  E failures(P).

This says that all the events which does not happen after the traces s, should be refused.

We can also observe that R3' implies R3.  This gives rise to two different semantic domains. They are 
d o m ( n )  which fulfils T l ,  D l, R l, R2, R3, and RSS05 and do m(n ')  which fulfils T l, D l, R l, R2, 
R3', and RSS05. Clearly, domn{'R!) C dom{JZ) as R3; implies R3. We also verified in Isabelle by 
the following lemma:
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lemma R 3 p r i m e I m p l i e s R 3  :
"( ALL s  X a Y. ( s ,  X , a )  : r  ( r e v i v a l s  P M) & Y < =  E v s e t  Sc

(ALL b .  b  : Y  - - >  ( s ,  X , b )  ~ : r  ( r e v i v a l s  P  M )  )

- - >  ( s ,  X Un Y , a )  : r  ( r e v i v a l s  P M) ) ==>
(ALL s  X b  c .
( s ,  X, b) : r  ( r e v i v a l s  P M) & T i c k  X & n o T i c k  s  Sc c  ~= T i c k
—  >
( s ,  X, c )  : r  ( r e v i v a l s  P M )  | ( s ,  i n s e r t  c X, b) : r  ( r e v i v a l s  P

M) ) "
a p p l y  ( i n t r o  a l l I  i m p l )
a p p l y  ( e l i m  c o n j E  exE d i s j E )
a p p l y  ( d r u l e _ t a c  x=" s"  i n  s p e c )
a p p l y  ( d r u l e _ t a c  x = MX M i n  s p e c )
a p p l y  ( d r u l e _ t a c  x="b" i n  s p e c )
a p p l y  ( d r u l e _ t a c  x = " { c }" i n  s p e c )
a p p l y  ( a u t o  s im p  ad d:  E v s e t _ d e f )
d o n e

We now give the proof that revivals(P)  satisfies R3'.

Lemma 8.1: Assuming that P  satisfies R3', we prove that (P[[-R]]) satisfies R3'

Proof. Suppose P  satisfies R3; which says

((s, i T ^ X ) ,  a) e  Revivals (P)  A R ~ 1( Y )  C E A 
V b . b e  R ~ 1( Y ) = »  (s, R ~ 1(X ) ,  b) $  Revivals(P))

= >  (s , R ~ l ( X ) u R - 1( Y ) , a ) e  Revivals (P) .

We prove that (P[i?]]) satisfies R3' that is

( s ' , X ,  a1) e  Revivals(P^R1̂) A Y  C E A 
V b'. b' E Y  = >  (s', X ,  b') £  Revivals (P^R]\)

= >  ( s ' , X  U Y ,  a') e  Revivals (P^RJ).

Suppose (s', X ,  a') €  Revivals(P^R^),  Y  C E, andVfr'. b' e  Y  = >  ( s ' , X , b ' )  ^ Revivals(P^R^).  
By definition of Revivals (P^RY),  for some s and a,

(s R s'), (a, a') e  R  and (s, i?- 1(X ), a) e  Revivals(P).

At first, we prove that V 6. b e  R ~ 1( Y )  = >  (s, R ~ 1(X ) ,  b) ^ Revivals(P).  Let b e  R ~ 1(Y ) .  
Since R ~ 1( Y )  =  {b  | 3 b' e  Y .  (b =  b' =  /  V (b, b') e  R ) } ,  we consider the following two 
cases.

•  case i: b =  /
By the definition of R ~ l , /  €  Y.  But we know that Y  C E. Hence contradiction.

•  case ii: b /
By the definition of R ~ l , there exists b' e  Y  such that (b, b') e  R.  From b' e  Y  and the
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assumption (V b'. b' 6  Y  = >  ( s ' , X ,  b') £  Revivals(P^R]])),  we have

( s ' , X , b f) £ Revivals (P^R^).

By definition of Revivals (P^R^),  for all s" and b",

not  (s' 'Rs') V ( b", b ' ) < £ R V  (s", R ~ \ X ) ,  b") i  Revivals(P).

Now set s" =  s and b" =  b. In this case, we already have (s R s') and (b, b') G R . Hence we 
necessarily have (s, R ~ x(X ) ,  b) £  Revivals(P).

Consequently, V 6. b G R ~ 1( Y )  ==► (s, R _1(X ) ,  6) ^ Revivals(P).

Next, since P  satisfies R3', we have (s , i?_ 1(X ) U i?_1( Y), a) G Revivals(P)  because
(s, i?_ 1(X ), a) €  Revivals(P)  and i?- 1 ( Y) C S . Finally, by the definition of Rewva/s(P[[/2]), we
have (s', I U 7 ,  a') e  Revivals(P^RJ).  Hence it completes the proof. □

This proof enables us to prove the type correctness without any restriction. This is the only modi
fication which needs to be done. In the next section, we briefly discuss the implementation of this 
improved model.

8.3 Implementation of Improved Model

We have implemented the improved model in CsP-Prover similar to the approach we followed in 
the previous chapters. All of the properties which we have verified in the previous chapters follow  
directly. Encoding of most of the implementation is similar to the previous implementation. Hence 
we just describe the results which require modification. We do not need to do any modification for the 
deadlock and traces components or semantic definitions of any component.

Like the previous implementation, we encode the new healthiness condition R3' in the domain of the 
revivals component. It is defined as follows:

consts
HC_R3 :: II ' a  r e v i v a l  s e t  => b o o l "

defs
HC_R3_def " HC_R3 F == (ALL s X a Y. ( ( s ,  X, a) : F &

n o T i c k  s  & Y <= E v s e t  & (ALL b . b : Y - - >  ( s ,  X, b) F) - - >
( s ,  X Un Y, a) : F) ) 11

We create a new type for revivals component using t y p e d e f  command in theory s e t_ R  as follows:

typedef 'a setR = 11 { R : : ('a revival set ) .
HC—RT(R) & HC—RF(R) & HC_R2(R) & HC_R3(R)}” 

a p p l y  ( r u l e _ t a c  x  ="{}" i n  e x l )
b y  ( s im p  ad d:  HC_RT_def HC_RF_def HC_R2_def HC_R3_def)

This creates a set of all revivals and we finish the proof by showing that the set is non-empty by giving 
the empty set as a witness. We make the newly created type to be instance of the axiomatic type class 
c p o _ b o t  in theory s e t_ R _ c p o .
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instance s e t R  : : ( t y p e )  c p o _ b o t
a p p l y  ( i n t r o _ c l a s s e s )

We implement the domain of the stable revivals model in theory D om ain . This does not require any 
modification as all the changes have been done in theory s e t _ R  itself. We prove the type correctness, 
for the revivals component in the theory C S P _ R _ r e v iv a ls .  We prove the type correctness of the 
renaming operator for revivals component and the domain of the extended model in the below lemmas:

lemmaRENAMING_setR: " { r r .  EX s a  t  X a a a  . r r  = ( t , X , a a )  &
( s a ,  [ [ r ] ] i n v  X , a )  : r  P & ( s a  [ [r ]  ] * t ) Sc

( a , a a )  : E v e n t P a i r S e t  ( r : : ( ' a x a) s e t ) } : s e tR "

lemma RENAMING—domR:
"(traces(P) (fstR o M), deadlocks(P) M, revivals(P) M ) : domR
==> (traces(P [[r]]) (fstR o M), deadlocks(P [[r]]) M, 

revivals(P [[r]]) M) : domR"

In the previous version, we have implemented both the lemmas as follows:

lemma RENAMING_setR: "finite r -->
{rr. EX sa t X a aa . rr=(t,X ,aa) & (sa,[[r]]inv X ,a ) :r P & 
(sa [[r]]* t) &
(a,aa) : EventPairSet (r:: ('a x 'a) set) } : setR"

lemma RENAMING-domR: "[| finite r ;
(traces(P) (fstR o M), deadlocks(P) M, revivals(P) M ): domR |] 
==> (traces(P [[r]]) (fstR o M), deadlocks(P [[r]]) M, 

revivals(P [[r]]) M) : domR"

The type correctness and continuity of semantic function o f the improved model is proved in the 
below.

l emmapr oc_do mR_lm [ s im p]  :
" ( t r a c e s ( P )  ( f s t R  o M ) , d e a d l o c k s ( P )  M, r e v i v a l s ( P )  M) : domR" 

lemma c o n t i n u o u s _ s e m R f : " c o n t i n u o u s  [ [ P ] ] R f "

In the previous implementation, we have proved the above lemmas as 

lemma p r o c _ d o m R _ l m [ s i m p ] :
" P : p r o c R - - >  ( t r a c e s ( P )  ( f s t R  o M) , d e a d l o c k s ( P )  M, r e v i v a l s ( P )
M ) : domR"

l e m m a c o n t i n u o u s _ s e m R f : "P : p r o c R  ==>  c o n t i n u o u s  [ [ P ] ] R f "

These are the major benefits that we get in the improved model. This also reduces nearly 1000 lines of 
code. The code compiles faster then the previous implementation. Consider the example of recursive 
process which we have proved in the previous chapter. In the new improved model, the lemma is 
given as

lemma r e f  i n e m e n t : "procB <=R procA"
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In the previous implementation, the lemma looks like

lemma ref inment: " [ | ALL i. (procPfun i) : procR ;
ALL i. (procQfun i) : procR ;
ALL i. map_Pproc_to_Qproc i: procR;
ALL x . (procPfun x) < <  map_Pproc_to_Qproc : procR | ]
==> procQ <=R procP"

Figure 8.1 shows the screen shot of the proof.
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File Edit View Cm ds T ools O ptions B uffers Proof-G eneral X-Symbol ]s:

C-X)
State

co H]1
Context Retract

[3j 0J_aas J
11 s
Um I Goto

WAFind § 0 1
Stop Restart info a, «*teJJ

CSP_R_fp.thy[

consts map_Aproc_to_Bproc ::
"AName => (BName, Event) proc” 

primrec "map_Aproc_to_Bproc A = $B"
defs FPMode_def [simp]: "FPmode ==CPOmode"
lemma refinement: "procB <=R. procA"
apply(simp add: procA_def procB_def) 
apply ( rule cspR_fp_induct_cpo_right

[ o f  _ "map_Aproc_to_Bproc " ] ) 
apply(simp_aliy 
apply(induet_tac p) 
apply(simp)
appljjjjrule cspR_rw_left) 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
apply 
done
{ISOS----- XEmacs: CSP R fp.thy (Isar script XS : i|
lemma refinement: procB eR procA 2

(No changes need to be saved)

rule cspR_unwind_cpo)
simp_all) ______
simp add: cspR_semantics) 
intro conjl) 
rule)
simp add: in_traces)
rule)
simp add: in_deadlocks) 
elim conjE exE disjE) 
rule disjll)
rule_tac x ="sa" in exl) 
simp_all) 
rule)
simp add: in_revivals) 
elim conjE exE disjE) 
simp all)

Figure 8.1: Refinement relation in the new extension model
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In this chapter, we summarise the work done in this project and outline future work. As noted in the 
introduction chapter, our main reason for implementing the model was to provide theorem proving 
support for the stable revivals model, and to verify the type correctness and continuity of the semantic 
function of the stable revivals model. We summarise the work done in this project and conclude the 
chapter with a discussion o f some of the properties still to be implemented.

9.1 Summary

In this project, we studied the newly developed model, the stable revivals model 1Z. We presented a 
faithful and running implementation of the stable revivals model in the proof tool CSP-Prover. This 
requires certain changes with respect to Roscoe’s original proposed model in the implementation.

•  Inclusion o f healthiness condition RRS05 in the definition of the domain.

•  Change of a semantic clause in the definition o f d e a d lo c k s m (? x  : A —> ( P ( x ) ) ) .

•  Modification of the semantic function for the deadlock component of the renaming operator.

•  Restriction of the language CSPTp to finite renaming relations.

We have implemented two versions of the stable revivals model:

•  Roscoe’s original model with the changes as described above, and

•  An improvement of this model as described in Chapter 8.

Currently this initial phase of the work is concentrating on encoding the semantic function o f the 
stable revivals model and proving the important properties like the type correctness and continuity of 
semantic functions. Though the proof ideas implemented in the stable revivals models is similar to the

119
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previous models implemented in Csp-Prover, the proof does not follow directly in most of the cases 
as we have to restrict the language CspTp.

In this project, we have also demonstrated the potential of our implementation:

•  By proving a number o f algebraic laws. We have mainly proved the step laws of the some 
selected operators.

•  A refinement example including recursive processes.

The tool support for the stable revivals model will encourage those working in industry to use this 
implementation for practical applications. We have also presented an amendment to Roscoe’s model 
which allows removing restriction on the language CSPTp. However the theoretical implication of the 
proposal are beyond the scope of this project.

9.2 Future Work

In this section, we outline and give a direction to the future work of this project.

•  This work has provided the basic infrastructure for the verification of practical applications. 
To successfully demonstrate our implementation in practical applications, a major case study 
of the implementation is needed. A good example would be on-line shopping example given 
in [RRS06]. We have seen that responsiveness and stuckness property can be captured in this 
model; hence it is interesting to verify these properties.

•  We have proved some algebraic laws in Chapter 7. The stable failures model in Csp-Prover 
has more than 80 laws which allows to prove a complete axiomatic semantics for the Csp 
stable failures model. It is interesting to do the same for the stable revivals model. Proving 
more algebraic laws will be helpful to the user of the tool. Currently we can verify the proofs 
using semantic functions. Following the lines of the previous implementations in CsP-Prover, 
it is useful to develop tactics to prove refinement and equivalence proofs by semi-automatic 
methods using the algebraic laws.

•  Implementing complete metric based (CMS) approach to reason about recursive processes. This 
will allows us to find the unique fixed point solution for the recursive equations.
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A.l The Syntax of the core CSP

The below figure gives the syntax o f the core CSP language.

SKIP %%  successful terminating process
STOP %% deadlock process
DIV %%  divergence
a —> P %%  action prefix
I x  : X  -> P(x ) %%  prefix choice
P U P %% external choice
P H P %%  internal choice

n s %%  the generalised internal non-deterministic choice
IF b THEN P  ELSE P %% conditional
P | [ A ] |P %% generalized parallel
P  \  X %%  hiding

PUR]] %%  relational renaming
P  s P %% sequential composition
P A P %% Interrupt operator
P > P %% Time out operator

where X  C E, b G Bool, a G S, R G P(E x  £), and S(a. set of processes).

A.2 The Semantic functions of the core CSP

The below figures give the semantic function for each individual components in the stable revivals 
model.
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revivals^ S K IP ) = {} 
revivals(STOP) = {} 

revivals (DIV) = {} 
revivals ( a —> P) = { ( ( ) , X , a) \ a ^ X}

U {{(a) ^  t ' , X , b) | ( t ' , X, b)  e  revivals(P)} 
revivals(? x : A ^  P(x))  = {((), X)  \ A fl X  =  0}

U {((x) ^  t X, 6 ) | (£', X, 6 ) G revivals (P(x)),  x G A}  
revivals(P n Q) = revivals(P) U revivals(Q)
revivals(P □ Q) = { (() ,X , a) | (() ,X ) G failuresb(P) fl failuresb(Q)

A (() ,X , a) G revivals(P) U revivals(Q)}
U{(5 , X,  a) | (s , X, a) G revivals(P) U revivals(Q) A s 7  ̂ (}} 

rem’a/s((- | 5 )  =  U{rem>a/.s(.s) | s G 5 }  
revivals(P |[X]| Q) = {(«, y  U Z ), a) |

3 s , £ .(s , y )  G failures(P) A (£, Z ) G failures(Q)
A M G «  G s I J p f l E *
a y -  (x u {/}) = z - ( i u {/})
A ((a  G X  A ( 5 , y ,  a) G revivals(P) A (£, a) G revivals(Q))

V a ^ X A (s , y ,  a) G revivals(P)
V a ^ X A (£, Z, a) G revivals(Q)))) }.

revivals(IF  6 THENP ELSE Q ) = if  6 evaluates to True then revivals(P) e lse  revivals(Q)
revivals (P[[R]]) = { (s ',X , a') | 3 s ,a . s P * s 'A  a R a' A ( s ,P - 1 (X),a) G revivals(P)} 
revivals(P % Q) = { (s ,X ,  a) | (s , X,  a) G revivals(P)}

U { ( s  ^  t , X , a )  | ( / )  G traces(P) A (t , X, a) G revivals(Q)}
revivals(P A  Q) = { (s ,X ,  a) G revivals(P) | (() ,X ) G failures1 (Q)}

U {(s ,X ,a )  | (s, X) G failuresb(P) A ((), X , a) G revivals(Q)}
U{(s ^  i ,  X, a) | s G traces(P) fl E* A t ^  () A ( i ,  X, a) G rew u a /s(Q )}

revivals(P > Q) = revivals(Q) U {(s ,X ,  a) G revivals(P) | s ^  {)}
where X C E, 6 G Bool, a G E, P G P (£  x  S), and P(set of processes). M  is an environment

Let P  be denotational represented as ( Tr(P) ,  Dead(P) ,  Rev (P)) ,  then

failures(P) = { (s , X ) | X  C E 7  A s G D e a d (P ) }
U {(s, X ), (s, X  U { / } )  | (s, X , a) G R e v ( P ) }
U { ( 5 ,  X ) | 5 ~  ( (»  G T r(P) A X C S }
U {(s ~  ( / ) ,  X )  | s ~  {()> 6  Tr(P)  A I C E ' ' }

failuresb(P)  =  { (s , X )  \ X  C £  A s e  D ea d (P ) }
U {(5,X )  | ( s ,X ,a )  6  R e v ( P ) }

The semantic function for the deadlock component is given below:
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deadlocks(S KIP) = {}
deadlocks (STOP) = {()}

deadlocks(DIV) = {}
deadlocks(a —► P)  = { ( a )  ^  t' \ t' G deadlocks(P)}

deadlocks(? a; : A —> P ( a : ) )  =  { (a ;)  ^ P j P G deadlocks (P(x) ) , x  G 4̂}
deadlocks(P n Q) = deadlocks(P) U deadlocks(Q) 
deadlocks(P □ Q) = ((deadlocks (P) U deadlocks(Q)) f l  {s | s ^  ()})

U(deadlocks(P) fl deadlocks(Q)) 
deadlocks(["] S) = (j{deadlocks(s) | s G S}  

deadlocks(P |[2T]| Q) = {u \ (s, T ) G failures(P), (t , Z ) G failures(Q) .
Y  - ( X \ J { / } )  =  Z  ~ ( X \ J { / } )
A u G s |[X  ]| t
a e ^ f u ^}

deadlocks(IF  b THENPELSE Q ) = if  6 evaluates to True then deadlocks(P) e lse  deadlocks(Q) 
deadlocks(P \  X )  = { t  \  X  | t G deadlocks(P)}
deadlocks(P[[R]\) = {£ | 3 P  G deadlocks(P). ( t ' , t )  G [[P]]*}
deadlocks(P % Q) = deadlocks(P) U { 5  ^  t \ s ^  ( / )  G traces(P), t G deadlocks(Q)} 
deadlocs(P A  Q) = { s  ^  t \ s G traces(P) D E* A t G deadlocks(Q)} 
deadlocs(P > Q) = deadlocks(Q) U { s  G deadlocks(P) \ s 7  ̂ ()}

where X  C E, b G Bool, a G E, P  G P(E x E), and P(set of processes). 

The semantic function for the traces component is given below:

traces (SKIP 
traces (STOP 

traces (DIV 
traces (a —> P  

traces(? a: : >1 —> P(a:) 
traces(P □ Q 
traces (P n Q 

traces (f"| S' 
traces (IF  b THEN P  ELSE Q 

traces (P \[X ]| Q 
traces(P \  X  
traces(P[[R]] 
traces(P § Q

traces (P A Q 
traces(P > Q

{<>,</>}
{()}
{ ( ) }
{()} u { (a) ^  t' I t' G iraces(P)}
{()} U {(a:) ^  P j t' G traces(P(x)), a: G 4̂} 
traces(P) U traces(Q) 
traces(P) U traces(Q)
(J{fraces(s) | s G S } U { ( ) }  
if b then traces(P) else traces(Q)
{ ti  |[X]| t2 | h G traces(P), t2 G iraces(Q)}
{f \  X | t G fraces(P)}
{f | 3 t' G traces(P). ( t ' , t )  G [[r]]*}
(traces(P) fl E*)
U{fi ^  t2 | P ^  ( / )  G traces(P), t2  G fraces((5)} 
traces(P) U {s ^  t \ s G traces(P) fl E*, £ G fraces(Q)} 
traces(P) U traces(Q)

where I C E , 6 G Bool, a G E, P  G P(E x E), and S^set of processes).

A.3 Machine Verifiable Responsive

To verify Q R e spo n d sToL ive  P  on J, we have to check for every trace s, whenever (5,  J) G
ja i lures(P  |[ J ]| Q)  is true, (s, J ) G fai lures(P)  is also true.

Let L Q  =  (Q  |[E — J]\ C H A O S ^ - j ) )  \  (E — J)  be a lazy abstraction of Q with repect to E — J.  This 
removes events which are not in J  from the alphabets of Q. LQ  behaves like Q except that whenever 
Q can perform an event from E — J, L Q  has the choice of either not doing the event or making the
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event invisible.
Let R j  be a relation such that it maps each element a of J  to both itself and a new element N E W  e  E. 
Let N E W S T O P  be a process such that it can perform any event in E, but when it performs N E W ,  
then it deadlocks.

N E W S T O P  =  (N E W  -> STOP) □ (x : (E — { N E W }  -> N E W S T O P )

Let T R E F j ( P )  can perform any trace of P  with the additional possibility of performing the event 
N E W  after which it deadlocks.

TREFj(P)  =  (P[[flj]]) |[E -  {NEW}) \  (CHAOS(s . {NBW}) |[E]| NEW STOP )

T R E F j ( P )  can perform any trace o f P,  but it can also perform N E W  when P  can do an event from 
J, after which it deadlocks. It refuses N E W  when P  can refuse the whole of J.

Q Respo n d sToLive P  on J

if and only if

T R E F j ( P )  Cjr T R E F j ( P  |[J]| LQ)

The above refinement will be true, if P  |[ J]| Q] can refuse all of J  then P can refuse all of J. TR E Fj  ( P  |[ 
J  ]| LQ)  refuse N E W  when P  |[ J  ]| Q ] refuses J.

Consider an example to illustrate responsiveness of

Q =  a —> Q 

P  =  a —» b —> P

Q Re spo n d sToL ive P  on {a } , but Q Respo n d sToL ive P  on {a, b} is not true.

A.4 Type correctness

case: STOP
( tracesM (STOP), deadlocksM (STOP), revivalsM (STOP)) =  ( { ( ) } ,{ ( ) } ,  {}) trivially satisfies the con
ditions T l, D l, R1-R3, RRS05. Hence (tracesM (STOP), deadlocksM (STOP), revivalsM  (STOP)) is 
healthy.

case: SKIP
(tracesM  (SKIP), deadlocksM  (SKIP), revivalsM  (SKIP)) =  ({(), ( / ) } ,  {}, {}) trivially satisfies the 
conditions T l, D l, R1-R3, RRS05.

case: ?% : A  —» P
Assuming (tracesm { P { x )), deadlocksm ( P ( x )), revivalsM (P(x)) )  is healthy for all a: G A, we prove 
that
( t racesM^x  : A —> P(x ) ) ,  deadlocksm(?£ : A —> P(x) ) ,  revivalsm (7x : A —> P(x) ))  is also
healthy,
where
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t races i l  x : A  —► P { x ) )  = { ()}  U {(x ) ^  t' \ t' £ tracesm (P (x ) ) ,x  G A}
deadlocks^? x : A —» P { x ) )  = {(x ) ^  T | t' £  deadlocksm ( P { x ) ) , x £ A }
revivalsM(? x : A —> P (x ) )  = {(() , X , a) | A f l X  =  0 A a £ A }

U {((x ) ^  T, X , 6) | (£', X , 6) £  revivalsM(P(x ) ) , x £  A}

Tl
By definition o f t racesM^x  : A. —> P (x )) , we have () € tracesm (^x : A —> -P(x)). Hence 
t racesM(?x : A —► P { x ) )  is non-empty.

We prove that tracesM(?x : A —> P (x ))  is prefix closed.
Suppose (a) ^  t  £ t racesM^x  : A —> P (x ))  such that £ €  tracesm { P ( a))  and a £  A.
Suppose s is a prefix o f (a) ^  £ .

We consider below two cases.

case 1 : If s ' =  (), then by definition of t racesM^x : A  —» P (x )) ,
() £  tracesm (Jx : A —> P{x)) .

case 2 : If s' ^  ()»then s' has the form (a) ^  s" and s" is a prefix o f t ' . As tracesm { P (a)) is prefix 
closed, we have s £  traces m {P  {cl)). Therefore by definition of
t racesM^x  : A —► P (x )) , (a) ^  s £  t racesM^x : A  —> P{x )) .

Hence it satisfies T l.
Dl
Suppose (a) ^  t  £  deadlocksM(?x : A —> P {x ) ) ,  then t  £  deadlocksm ( P (a)) and a £  A.
By assumption, we know that V s . s £  deadlocksm ( P { cl)) —> s £  tracesm { P { cl)). Thus 
t £  traces m {P  { cl)).
By definition o f tracesM(?x : A —» P (x )) , (a) ^  t £  tracesM f t x  : A —> P (x )) .
Hence it satisfies D l.
R1
We consider the two clauses separately.

case 1 : Suppose ( ( ) ,X ,  a) £ revivalsM^x : A  —> P(x ) ) ,  then a £  A and X  fl A 7  ̂ 0. By 
definition of t racesM^x  : A —> P (x ) ) ,  we know that (a) £  tracesm(^x : A —> P (x ) )  as 
() £  t racesm {P {0) )  and a £ A.

case 2 : Suppose {(a)'~'t', X , 6) £  revivalsM(?x : A —> P (x )) , then (£', X , 6) £  revivalsM{P(a)) 
and a £  A. By assumption we know that £ ^  (b) £  tracesm { P (a))-' By definition of 
t racesM((?x : A —> -P(x)), we know that (a) ^  t ^  (b) £  t racesM(?x : A —» P{x)) .

Hence it satisfies i? l.

R2
We consider the two clauses separately.

case 1 : Suppose ({), X , a) £  revivalsm(?x : A —» P (x ) ) ,  then a £  A and X  fl A /  0. Suppose 
y  C  X . y  C  A  implies that ((), y ,  a) £  revivalsM^x : A —► P (x )) , as a ^ A and
y  n  a  7  ̂ 0 .

case 2 : Suppose ( (a ) ^ t r, X , 6) £  reviva ls m(^x  : A —» P (x ) ) ,  then (£', X , 6) £ reviva lsm { P ( a ) )  
and a £  A. Suppose y  C  X . By assumption ((a) ^  £', y ,  6) £  reviva lsM {P(a)) .  By 
definition o f revivalsM  (?x : A —> P {x )) ,  it follows that 
((a) ^  £', y ,  b) £  reviva lsM (?x : A —> P (x )) .
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Hence it satisfies R2.

R3
We prove that V s, X , a, b . ( s ,X ,  a) E revivalsM^ x '■ A —> P ( x )) A & 6
((5, X , a) E revivalsM(?z  : -4 —> P (x ) )  V (s, X  U {6}, a) E revivalsM(?£ : A —> P(x))).
We consider two clauses separately.

case 1: Suppose ((), X , a) E revivalsM^x  : A —> P(a:)), then a X  and X  (~) A ^  ft.

If b €  A,  then ((), X , 6) E revivalsM(fix : 4̂ —> P(x)) .

If b £  A,  then ((), X  U {6}, a) E revivalsM(?z : -<4 —> P(x)) .

case 2: Suppose ((a) ^  f', X , 6) E revivalsM x : A —> -P(^)), then (£', X , 6) E revivalsm{P(a))  
and a E A. Suppose c E E. By assumption, we know that (£', X  U {c} , a) E revivalsm ( P (a)) 
or ( f ' ,X , c) E revivalsm(P(a))-  By definition of revivalsM (?x : A —> P (x ) ) f this leads to 
((a) A f , X U  { c}, a) E revivalsM(?z : A —> P(a;)) or 
((a) ^  £;, X , c) E revivals m(J% : A —> P(x)) .

Hence it satisfies f23.

RRS05
We prove that V s, X  , a .(s, X ,  a) E revivalsM^x : A —> P (x ) )  —> a £  X .

We consider two clauses separately.

case 1 : Suppose ( ( ) ,X ,  a) E revivalsm (?2; : A —> P{x)) .  Then a E A and X  D A ft. This 
implies that a ^ X .

case 2 : Suppose ( (a )^ f ' ,  X , 6) E revivals m  f i x  '• A —» P(x)) ,  then (£', X , 6) E revivals m (P  (a))  
and a E A  By assumption, it follows that b £ X.

Hence it satisfies R R S 05.

case: P  □ Q
Assuming that ( t racesM{P), deadlocks m (P) ,  revivalsM (P) )  and ( tracesM ( Q ) , deadlocksm (Q) ,  revivalsM\ 
are healthy, we prove that (tracesM (P  □ Q), deadlocksM {P  1=1 Q), revivalsM (P  1=1 Q))  is healthy 
where

traces(P O Q) = tracesm (P)  U tracesm (Q)
deadlocks(P □ Q) = ((deadlocksm (P ) U deadlocksm (Q))  fl {s | s 7  ̂ ()})

U(deadlocksm (P)  H deadlocksm (Q))  
revivalsM(P  n  Q)  = { ( ( ) ,X ,  a) | ((), X ) E fa i lures^(P)  n  fa i lures^(Q)

A ((), X , a) E revivalsm(P)  U revivalsm(<5)} j
U {(s, X , a) | (s, X , a) E revivalsM(P)  U revivalsM(Q)  A s ^  ()}

where

failuresjlf(P) = { ( s ,X )  | X  C E A s E deadlocksm (P ) }
U { (s ,X )  | (s, X , a) E revivalsM(P)}

Tl, Dl
This follows trivially from assumption.
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R1
We consider two clauses separately

case 1 : Suppose ( ( ) ,X ,  a) E revivalsM(P □  Q)- By definition, we know that ( ( ) ,X , a) E 
revivalsM(P)  or ((), X , a) E revivalsM (Q)-  By assumption, we know that (a) E tracesM(P)  
or (a) E tracesM(Q)-  By definition of t races(P  □  Q), (a) E t racesM(P  a  Q )■

case 2 : Suppose ( s ,X ,a )  E revivalsM(P  n  Q)  and s ±  (). By definition, we know that 
( s , X , a )  E revivalsM(P)  or ( s , X ,  a) E revivalsjif(Q)- By assumption, we know that 
s ^  (a) E tracesM(P)  or s ^  (a) E tracesM{Q)-  By definition of traces{P  □  Q),  
s ~  (a) E t racesM(P  d  Q)-

Hence it satisfies R l.

R2
We consider two clauses separately.

case 1 : Suppose ( ( ) ,X ,a )  E revivalsM {P  n  Q)- Suppose Y  C X .  By definition, we know 
that ((), X , a) E revivalsM (P)  or ((), X ,  a) E revivalsM (Q)-  By assumption, we know that 
((), F , a) E revivalsm ( P)  or ((), Y,  a) E revivalsM ( Q ) • By definition o f revivalsM { P  E 
Q ), we have ((), X )  E failures\d {P)  and ((), X )  E fa i lures^(Q) .  Since P  and Q are healthy, 
by Lemma 3.2, ((), Y )  E failuresbM (P)  and ((), Y )  E failuresbM (Q).  Therefore, ((), F , a) E 

revivalsm { P  d  Q).

case 2 : Suppose ( s ,X ,  a) E revivalsM{P D Q)  and s ^  (). Suppose Y  C X .  By definition, we 
know that (s, X , a) E revivalsM.(P) or (s, X , a) E revivalsM(Q)-  By assumption, we know 
that ((), Y ,  a) E revivalsm(P)  or (), Y ,  a) E revivalsM(Q)-  
Therefore, ({), Y ,  a) E revivalsm{P  n  Q)-

Hence it satisfies R2.

R3
We prove that V 5, X  , a, b .(s, X , a) E revivalsM(P  n  Q)  A b E £  —>
(s ,X ,  b) E r e v i v a l s M { P  n  Q)  V ( s , X  U { 6}, a)  E r e v i v a l s M { P  n  Q ).

We consider only the first clause as the proof for the second clause follows trivially from the assump
tion.
Suppose ((), X , a) E revivalsM{P  n  Q).  By definition, we know that ((), X , a) E revivalsM(P)  or 
((), X ,a )  E revivalsM{Q)-

With out loss of generality, consider ((), X , a) E revivalsM (P)  case only. By definition of revivalsM (P  
Q),  we also know ((), X ) E failuresbM {P)  and ((), X ) E fa i lures^(Q) .

Suppose b to be an arbitrary event in E.

By assumption, we know that ((), X , b) E r e v i v a l s M ( P )  or ((), X  U { 6}, a) E r e v iv a l s M ( P ) -  Hence 
we consider two cases.

case  1: ( ( ) , X , 6) E r e v iv a l s M ( P ) -
If ((), X , b) E revivalsM(P),  then it is clear that ((), X , b) E revivalsM(P  n  Q)  as ((), X ) E 
fa i luresm(P)  and ((), X ) E fa i lures^(Q)  are satisfied by assumption.

case 2: ((), X  U { 6}, a) E revivalsM(P)-
We have to prove ((), X  U { 6}, a) E r e v i v a l s M { P  LI Q)  or ((), X , b) E re v i v a l sM ^ P  n  Q )■
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To this end we have to prove ((), X  U {&}) E failuresbM {P)  and ((), X  U {b} )  E failuresbM {Q)  
are satisfied or that ((), X )  E failures m( P )  and ((), X )  E failuresbM{Q)  are satisfied.

By expanding the definition of failures ̂  (Q) ,  we consider the two cases below.

case 2.1: () E deadlocksm{Q)-  By definition of failures^,
( ( ) ,X  U {&}) E fai lures^ (Q) .  By definition of fa i lures^(P) ,  ( ( ) ,X  U {6}, a) E
revivalsM (P)  implies
((), X  U { 6}) E fai lures^ (P).
Hence ((), X  U { 6}, a) E revivalsM{P 1=1 Q)-

case  2.2: ( ( ) ,X ,a ' )  E r e v iv a l s M ( Q )-  Since Q  is healthy, ( ( ) ,X , 6) E r e v i v a l sM ( Q )  or 
((), X  U { 6}, a )  E re v i v a l sM ( Q )-  We consider below two cases.

case 2.2.1: If ( Q , X  U {&}, a') E revivalsM(Q),  then ( ( ) ,X  U {&}) E fai lures^(Q) .
( ( ) ,X  U {&},«) G revivalsM(P)  implies ( ( ) ,X  U { 6}) E failuresbM{P).  Hence
(() ,2 f  U {&}, a) E revivalsM(P  n  Q )•

case 2.2.2: ( ( ) ,X , 6) E revivalsM{Q)
((), X , &) ,E revivalsm{Q)  implies ((>, X )  E fai lures^(Q) .  ((), X ) E failuresbM(P)  
follows from the initial assumption ((), X , a) E revivalsm {P)-  
Hence ( ( ) ,X , b) E revivalsM(P 1=1 Q)-

Hence it satisfies R3.

RRS05
We have to show that V s, X  , a . (5 , A”, a) E revivalsM{P □ Q) —* a ^ X . This directly follows
from the assumption of R R S 05 on processes P  and Q.

case: P  |[ X  ]| Q

Assuming that ( t races(P ), deadlocks(P),  revivals(P))  and (traces(Q),  deadlocks{Q), revivals(Q))  
are healthy, we prove that ( t races(P  |[X  ]| Q), deadlocks(P \[X ]\ Q ), revivals(P \ [X  ]| Q )) is also 
healthy, where

t races(P  |[X ]| Q ) = { t i  |[X ]| £2 \ t\  E traces(P),  ti  E t races(Q)}
deadlocks(P \ [X  ]| Q ) = {u  | (s, y )  E fa ilures(P), (t, Z) E failures(Q)  .

y - ( x u { / } )  =  z - ( x u { / } )
A a E s | [X ]| £
A =  Y U Z }  

revivals(P  |[X ]| Q) = {(^ , Y  U Z), a) |
3 s, £.(s, y )  E failures(P)  A (£, Z) E failures(Q)  A u E u E s | [ X ] | £ n E *  
A F  -  (X  U { / } )  =  Z -  (X  U { / } )
A ((a E X  A (s, y ,  a) E revivals(P)  A (£, Z, a) E revivals(Q))

V a ^ X  A (s, y ,  a) E revivals(P)
V a ^ X  A (£, Z, a) E revivals(Q))))  }.

T l
traces(P  |[X ]| Q)  is non-empty as (> |[X ]| () =  {()}  as () E traces(P)  and () E traces(Q).

We prove that { i i  |[X]|̂ 2 | £1 G t races(P ), £2 G traces (Q )}) is prefix closed. We prove by induction 
on t  in s |[X  ]| £ where s E t races(P)  and £ E traces(Q).  We consider the following cases.
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case 1: ()
0  II^ll 0  =  { ( )}  ls prefix closed.

case 2: (x) G X
() \ [X}\  (x ) =  {}  is prefix closed.

case 3: (y ) ^ X
() \ [ X ]| (y ) =  { (y )}  is prefix closed as traces(Q)  and traces(P)  are prefix closed we have
() €  t races(Q) and (> G tm ces( P )  by the case (i), we have also () G traces (P)\[X]\traces(Q).
Hence it is prefix closed.

case 4: {x) ^  s |[ X  ]| (y) ^  t =  { ( y)  ~  u \ u G (x) ~  s |[ X  ]| t }
We know by induction hypothesis that (x) ^  s |[X  ]| t is prefix closed, hence { ( y)  ^  u \ u € 
(x) ^  s |[ X  ]| t }  is also prefix closed. The proofs for the other cases are similar.

Dl:
First we prove that (s, X )  G fai lures(P)  implies s G t races(P)  by healthiness condition of T l,  D l,  
and R l .  A  trace s comes either from a revival or a deadlock.

If (s, X , a) G revivals(P)  for some X  and a, then we know by R l  that s ^  (a) G t races(P).  By
T l,  it follows that s G t races(P).

If s G deadlocks(P),  then by D l ,  it follows that s G t races(P).

It is clear that deadlocks(P \ [ X ]| Q)  C t races(P  |[X]| Q)  as all the traces of deadlocks(P  j[X]| Q)  is 
also the t races(P \[X]| Q)  as deadlocks(P \[X]| Q ) has more conditions on s |[X]| t and s G traces(P)  
and t G t races(Q)  comes from failures(P ) and fai lures(Q)  respectively.

Rl
We assume that P and Q satisfies R l. We consider the following two cases 

case 1: a G X
Suppose (u ,  Y  U Z, a) G revivals(P \[X]\  Q).  We know that  

3 s, t .( s,  Y )  G fai lures(P)  A (t,  Z)  G fai lures(Q)  A 
u G s \ [X  ]| t  A
Y - ( X  U { / } )  =  Z  -  ( X  U { / } )  A 
(a E X  A (s, Y , a) G revivals(P)  A 

(£, Z,  a) G revivals(P))
We know by assumption that (s, Y , a) G revivals(P) —> s ^  (a) G traces(P)  and (£, Z, a) G
revivals(Q) —* t ^  (a) G t races(Q).  By the definition of s |[X  ]| £,
s ^  (a) |[ X  ]| t  ^  (a) =  {u  ~  (a) | u G s |[ X  ]| £} as we know that for a G X  and
(a) |[X  ]| (a) =  { (a )} . Hence we know that
(u , Y u Z , a ) e  revivals(P  |[ X  ]| Q)  —► u ^  (a) G t races(P  |[ X  ]| Q). 

case 2: a ^ X
Suppose (u, y  U Z, a) G revivals(P  |[ X  ]| Q ) and <2 ^ X . We know that there exists 

3 s, £.(s, y )  G fai lures(P)  A (£, Z) G fai lures(Q)  A 
u G s |[X  ]| £ A
y  -  ( x  u {/}) = z  -  (x u {/}) a
(a X  A ((s, y ,  a) G revivals(P)  V 

(£, Z ,  a) G re'yi?;a/s(Q)))}).
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We consider two cases

case 2.1 : (5, Y ,  a) G revivals(P).
As P  satisfies R l  by assumption, we obtain s ^  (a) G traces (P) .  By the definition 
of 5 \ [X}\  t , s ~ ( a )  \ [X]\  t =  { u ~  (a) \ u G 5 \[X]\  t }  as () \ [X]\  (a) =  { (a )} . Hence 
(w, Y  U Z, a) G revival (P  |[X]| Q)  —»■ (a) G traces(P  || Q ))

case 2.2: ( t , Z , a )  G revivals(Q).
As <5 satisfies # 2  by assumption, we obtain (a) G traces(Q).  By the definition 
of s \ [ X] \  t, s [ X ]  t ~  (a) =  { u ~  (a) | u G s |[X ]| t }  as (> \[X]\  (a) =  { ( a ) } .  Hence 
(u, Y  U Z, a) G revivals(P \[X]\  Q)  (a) G t races(P  |[X ]| Q).

( t races{P  |[X ]| Q), deadlocks(P \[X]\  Q) , rev ivals(P  |[X ]| Q )) satisfies R l .

R2
We assuming that P and Q satisfies i?2. We prove that
(s, y  U Z , a )  G revivals(P \ [X]\  Q)  A M  C ( s ,M ,a )  G revival{P \[X}\  Q.

We know by Lemma 6.2 that (s, X ) G failures(P)  A F  C X  —► (s, Y )  G failures(Q).

Suppose (a , y  U Z, a) G revivals(P  |[X ]| Q).  We know by definition of revivals(P |[X  ]| Q),
3 s, £.(s, y )  G fai lures(P)  A (£, Z) G failures(Q)  A 
u G s |[X  ]| £ A
y  -  (X  U { / } )  =  Z -  (X  U { / } )  A 
(a G X  A (s, y ,  a) G revivals(P)  A 

(f, Z, a) G revivals(P))  V 
(a ^ X  A ((s, y ,  a) G revivals(P)  V 

(f, Z, a) G remi>aZs((2)))})

By lemma 6.2, we know that there exists (s, y  fl M )  G failures(P)  A (£, Z fl M ) G failures(Q)  as 
y  n M  C y  and Z n M  C z .

It is clear that it satisfies all the following condition by Lemma 6.2 and by assumption
(s, y  D M )  G fai lures(P)  A ( t , Z fl M ) G failures(Q)  A 
u G s |[X ]| t  A
( y  n M) -  (x  u  { / } )  =  ( z  n m)) -  (x  u  { / } )  a
(a G X  A (s, y  fl M , a) G revivals(P)  A 

(f, Z n M , a) G revivals(P))  V 
(a ^ X  A ((s,  y  fl M ,  a) G revivals(P)  V 

(f, Z n M , a) G 7Temt>aZs(Q)))}) 
as revivals (P)  and revivals(P)  satisfies R2.
( t races(P  |[X ]| Q ), deadlocks(P  |[X ]| Q), revivals(P  |[X ]| Q))  satisfies R2.

R3
We assume that P  and Q satisfies R3.  We prove that
(a, y  U Z, a) G revivals(P \[X ]| Q)  A c G E —>

(a,  y  U Z, c) G revivals(P  |[X ]| Q) V (s, y  U Z U { c},  a) G revivals{P  |[X ]| <5).
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Suppose {u, Y  U Z, a) G revivals{P  |[ X  ]| Q).  Then we know that 
(s, Y )  G fai lures(P)  A ( t , Z ) €  fai lures(Q)  A u € u e s | [ X ] | £ n E *
A Y  — (X  U { / } )  =  Z -  (X U { / } )
A ((a  G X  A (s, F , a) €  revivals(P)  A (£, Z, a) G revivals(Q))
V a ( £ X  A ( s , Y ,  a) e  revivals(P)
V a ^ X  A (£, Z, a) G revivals(Q))) ) ■

We consider the following three cases: 

case 1: ((a  G X  A (s, F , a) G revivals(P) A (£, Z, a) G revivals(Q))

We know from hypothesis o f f?3 that
(s, F , c) G revivals(P)  V (s, F  U { c}, a) G revivals(P).
( t , Z, c) G revivals{Q)  V ( i , Z U  {c} , a) G revivals(Q).
We consider the following four cases

case 1.1: If (s, F , c) G revivals(P)  and (s, Z, c) G revivals(Q).

case 1.1.1: If c G C,  then it satisfies the following condition:
3 s, t . {s ,  F )  G fai lures(P) A ( i, Z) G fai lures(Q) A
u G s |[X  ]| t A
F  -  (X  U { / } )  =  Z -  (X  U { / } )  A
(c G X  A (s, F , c) G revivals {P)  A

(t, Z, c) G revivals(P))
Hence it satisfies (a , Z U F , c) G revivals{P  |[X ]| Q).

case 1.1.2: If c ^ C, then it satisfies the following condition:
(s, F )  G fai lures(P) A (t, Z) G fai lures(Q) A 
u G s |[ X  ]| t A
Y  - { X U  { / } )  =  Z -  (X U { / } )  A 
(c £  X  A (s, F , c) G revivals(P)  V 

(£, Z, c) G revivals(P))
Hence it satisfies (a , Z U F , c) G revivals{P  |[X ]| (5).

case 1.2: If a G X , (s, F  U ( c } ,a )  G revivals(P) and {t,  Z, c) G revivals(Q),  then we
know that

case 1.2.1: c ^ X , then following condition satisfies
3 s, £.(s, F )  G fai lures{P) A (£, Z) G fai lures{Q) A 
u G s |[ X  ]| t A
Y  - { X U  { / } )  -  Z -  (X  U { / } )  A
(c ^ X  A (s, F , c) G revivals{P)  V

(i, Z, c) G revivals{P)).
Hence it satisfies (a , Z U F , c) G revivals{P  |[X ]| Q).

case 1.2.2: c G X , then following condition satisfies
(s, F  U { c}) G fa i lures{P) A (i, Z) G fa i lures{Q) A 
u G s |[X ]| t A
Y  U {c }  -  (X  U { / } )  =  Z -  (X U { / } )  A

((a  G X  A (s, F U { c } , a) G revivals{P) A (£, Z, a) G revivals{Q))) 
Hence it satisfies (a , Z U F  U {c } , a) G revivals{P  |[X  ]| Q).
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case 1.3: If a E X , (s, Y ,  a) E revivals(P)  and (i, Z U {c } ,  c) E revivals(Q),  then we 
know that

case 1.3.1: c ^ X , then following condition satisfies
(s,  Y )  E failures(P)  A (i,  Z) E failures(Q)  A 
u E s |[X  ]| £ A
r - ( i u {/}) = z - ( i u {/}) a
( c < £ X  A  (s,  y ,  c) E revivals(P)  V 

(£, Z, c) E revivals(P))
Hence it satisfies (w, Z U F , c) E revivals(P |[X ]| Q).

case 1.3.2: c E X ,  then following condition satisfies
(s,  Y  U { c } )  E failures(P)  A (£, Z) E failures(Q)  A 
u E 5 |[X  ]| t A
y  U {c }  -  (X  U { / } )  =  Z -  (X  U { / } )  A

((a  E X  A (s, Y U{ c } ,  a) E revivals(P)  A (£, Z, a) E revivals(Q)))  
Hence it satisfies (« , Z U F  U { c},  a) E revivals{P |[X ]| Q ).

case 1.4: If a E X , (s, 7  U {c} , a) E revivals(P)  and (£, Z U {c} , a) E revivals(Q),  then 
we know that it satisfies the below condition

(s,  Y  U { c } )  E failures(P)  A ( t , Z U  { c } )  E failures(Q)  A 
u E 5 | [X ]| t A
F U { c } - ( X U  { / } )  =  Z U {c }  -  (X  U { / } )  A
((s, Y  U {c} , a) E revivals(P)  A ( t , Z U  { c}, a) E revivals(P))

Hence it satisfies ( « , Z U F U  {c}, a) E revivals(P \[X ]| Q).

case 2: a ^ X  A (s,  F , a) E revivals(P)
We know from hypothesis o f it!3 that
(s,  y ,  c) E revivals(P)  V (s,  y  U {c} ,  a) E revivals(P).
We consider the following two cases

case 2.1: If (s, y , c) E revivals(P)  , then we consider following two cases

case 2.1.1: If c £  X , then it satisfies the following condition
(s,  y )  E failures(P)  A (£, Z) E failures(Q)  A 
u E 5 |[X ]| t A
y  -  (X  U { / } )  =  Z -  (X  U { / } )  A
(c ^ X  A ((s, y ,  c) E revivals(P)  V (£, Z, c) E revivals(P)))

Hence it satisfies (w, Z U y ,  c) E revivals(P \[X  ]| Q ).

case 2.1.2: If c E X , then we expand the definition of (£, Z) E failures(Q)  consider 
the following cases:

case 2.1.2.1: t  E deadlocks(Q),  then we know that (£, Z U { c}) E failures(Q).  
Hence it satisfies

(s, y )  E failures(P)  A (t, Z U { c}) E failures(Q)  A 
u e  s [ x ]  t a z u y  U {c} =  X  U y  U {c}  A 
y  -  (x u {/}) = z u {c}  -  (x u { / »  a

((a  ^ X  A (s, y ,  a) E revivals(P)  V (£, Z u {a } , a) E revivals(Q))). 
Hence it satisfies (u, Z U y  U {c}, a) E revivals(P  |[X ]| Q).
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case 2.1.2.2: t  ^  ( / )  G traces(Q),  then the proof is similar to case 2.1.2.1.

case 2.1.2.3: ( t , Z , a a ) G revivals( Q),  then we know that (f, Z, c) G revivals(Q)  V 
(i , Z U {c } , aa) G revivals(Q),  then

case 2.1.2.3.1: (£, Z, c) G revivals(Q),  then the below condition satisfies 
3s , t . ( s ,  Y ) G fa ilures(P)  A (£, Z) G fai lures(Q)  A 
u G s |[X ]| £ A
y - ( i u  {/» = z  -  ( x  u {/}) a
(c G X  A (s, y ,  c) G revivals(P)  A 

(£, Z, c) G revivals(P))
.Hence it satisfies (u, Z U 7 ,  c) G revivals(P  |[X ]| Q).

case 2.1.2.3.2: If (£, Z u { c } ,  aa) G revivals(Q),  then it satisfies the following 
condition:

(s, y )  G fai lures(P)  A (t, Z) G fai lures(Q)  A 
u G s |[ X  ]| t  A
y -  ( X U { / } )  -  Z u { c } - ( X U { / } )  A 
(a ^ X  A (s, y ,  a) G revivals(P)  V 

(£, Z, c) G revivals(Q)).
Hence it satisfies (a , Z U Y  U { c}, aa) G revivals(P  |[X ]| (5).

case 2.2: If (s, y  U {c} ,  a) G revivals(P),  then we consider the following two cases

case 2.2.1: c G X , then the following condition is satisfies

(s, y  U {c} )  G fai lures(P)  A (t, Z) G fai lures(Q)  A 
w G s |[X  ]| t A
y  U { c }  -  (X  U { / } )  =  Z -  (X  U { / } )  A
(a ^ X  A (s, y  U {c} ,  a) G revivals(P)  V

(f, Z, c) G revivals(Q)).
Hence it satisfies (u, Z U y  U {c } , a) G revivals(P  |[X  ]| Q ).

case 2.2.2: c ^ X , then we expand the definition of fai lures(Q),  consider the following
cases

case 2.2.2.1: t  G deadlocks(Q),  then we know that ( t , Z U {c})  G fai lures(Q).  It 
satisfies the following

(s, y  U { c}) G fai lures(P)  A (£, Z U { c}) G fai lures(Q)  A 
u G s |[X]| t A
y  U {c }  -  (X  U { / } )  =  Z U {c }  -  (X  U { / } )  A
((a  ^ X  A (s, y U { c } ,  a) G revivals(P)  V (£, Z U {a}, a) G revivals(Q))) .  

Hence it satisfies (a, Z U y  U {c} , a) G revivals(P  |[X  ]| Q).

case 2.2.2.2: t  ^  ( / )  G t races(Q),  then the proof is similar to case 2.2.2.1.

case 2.2.2.3: (£, Z, aa) G revivals(Q),  then we know that (i, Z, c) G revivals(Q)  V 
(£, Z U {c} ,  aa) G revivals(Q),  then

case 2.2.2.3.1: (i, Z, c) G revivals(Q),  then the below condition satisfies

3 s, £.(s, y )  G fai lures(P)  A (i, Z) G fai lures(Q)  A 
u G s |[X  ]| £ A
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Y  -  ( X  U { / } )  =  Z - ( X U  { / } )  A 
r (c ^ X  A (s, Y,  a) G revivals(P)  V 

(£, Z,  c) G revivals(P)).
Hence it satisfies (u, Z  U Y ,  c) G revivals(P \[X ]| Q).

case 2.2.2.3.2: If (£, Z u { c } ,  aa) G revivals(Q),  then it satisfies the following 
condition:

(s, Y  U { c}) G failures(P)  A (£, Z  U { c}) G failures(Q)  A 
u G s | [X]|  t A
7 U { c } - ( I U  { / } )  ^ U { c } - ( I U  { / } )  A 
(a ^ X  A ( 5 , Y  U {a } , a) G revivals(P)  V 

(t, Z,  c) G revivals(Q)).
Hence it satisfies (w, Z U Y  U { c},  a) G revivals(P |[ X  ]| Q).

case 3: a £ X  A (f, Z, a) G revivals(Q)
It is similar to case 2.

A.5 Syntax and Semantics of Ccs

Calculus for Communicating Systems (CCS) was designed to understand concurrency and communi
cation using a few primitive operators. In this section, first we describe the syntax of Ccs and then 
we give the semantics of Ccs. The atomic actions in Ccs is usually called actions Act  =  C U {r} . 
C =  A  U A  where A  and A  are a set of names and co-names respectively. The set of co-name is 
defined as A  =  { a  \ a e  A } .  A ranges over C. C is similar to the alphabet E in CSP. In Ccs, a 
process is called agents.  We define the set of agents ^  in Ccs. ^  is the smallest set containing the 
following agents, where E, Ei are in

•  a . E , a Prefix operator where a  G Act.  It is similar to prefix operator in CSP.

•  E ie iE i  a Summation where I is an indexing set. It is a choice operator in C cs. E\ +  E2 is 
syntacial sugar for E i)2^ .  If I  is empty set, 0 = E{}.

•  Ei  | £ 2 is a composition operator in C cs. The action a interact only with a.

•  E  \  L is a restriction operator where L C C. The process E  \  L that cannot perform any 
actions in L.

•  E[f] ,  a Relabelling operator where /  is a relabelling function.

A constant is an agent whose meaning is given by a defining equation in the form

A P.

An example is A =  a.E.  Mutual recursion is defined as follows

A =  a.B B  =;  b.A

The names a G L are bound in E  \  L. The free names of P,  denoted fh(P) ,  are names in P  that are 
not bound.
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Definition: Structural Congruence, =  . Structural congruence, =  is the least congruence relation 
on closed terms under the following rules, together with change of bound names and variables 
(alpha conversion) and reordering of terms in a summation:
1. P  | 0 =  P , P  | Q =  Q | P , P  | (Q  | R) =  ( P  | Q)  | R
2. P  j Q \  L =  P  | (Q  \  L), if a  £  fn (P )  for each a  €  L.
3. 0 \  X =  0.

The semantics o f C cs is given by a labelled transition systems

( S , T , { ± : t e T }

consists of a set S of states to be agents in ^  , a set T o f transition labels to be action in A c t , and a 
transition relation —>C S  x S  for each t  6 T.  The semantics consists of one or two transition rules 
for each operators and one rule for constants. Each rule is associated with a operator.

Act
a . E  A E

Sum,
E i ^ E . 7 (J 6 I )

Com\
£ A E 

E \  F  A E' I F
Com2

F ^  F' 

E \ F  A E \ F
Corns

E  A E

E \ F  E' \F'

Res
E  A E'

E \ L ^ f!  \ L
(a a  ̂L) Rel

E  A E'

m ,(J$  b ' \/\

P * p ‘ . M „ „ P = P' P ^ Q '  Q = Q'Con    T A =f  P  Cong
A ^ > P  P  -2> Q

d e f
Similar to CSP, we can define the internal choice operator as P # Q  — r . P  +  t .Q  We denotes a and 

a  for ( possibly empty) sequences of names and actions. For a  =  ao . . .  a n, we denote P  P ', if 

there exist Po, P i , . . . ,  P n such that P  =  Po , P ' =  P n and for 0 <  i <  n, P  ^  Pi.  We denote

P  °-h>A P ' , where (a* A) 6  {A, r  A, r r  A, . . . } .  We write P  —► P'  if there exists a  such that P  P ' .

P  A  means there exists some P'  such that P  P '. P  is stable if P can make no hidden actions, i.e,
f

P  /> , and P is an end-state if  P can make no action at all .i.e. P  /» . We denote A 6 a to mean that
either A or A is among the labels appearing in a.
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