869 research outputs found

    Plane extraction for indoor place recognition

    Get PDF
    In this paper, we present an image based plane extraction method well suited for real-time operations. Our approach exploits the assumption that the surrounding scene is mainly composed by planes disposed in known directions. Planes are detected from a single image exploiting a voting scheme that takes into account the vanishing lines. Then, candidate planes are validated and merged using a region grow- ing based approach to detect in real-time planes inside an unknown in- door environment. Using the related plane homographies is possible to remove the perspective distortion, enabling standard place recognition algorithms to work in an invariant point of view setup. Quantitative Ex- periments performed with real world images show the effectiveness of our approach compared with a very popular method

    Structured Indoor Modeling

    Get PDF
    In this dissertation, we propose data-driven approaches to reconstruct 3D models for indoor scenes which are represented in a structured way (e.g., a wall is represented by a planar surface and two rooms are connected via the wall). The structured representation of models is more application ready than dense representations (e.g., a point cloud), but poses additional challenges for reconstruction since extracting structures requires high-level understanding about geometries. To address this challenging problem, we explore two common structural regularities of indoor scenes: 1) most indoor structures consist of planar surfaces (planarity), and 2) structural surfaces (e.g., walls and floor) can be represented by a 2D floorplan as a top-down view projection (orthogonality). With breakthroughs in data capturing techniques, we develop automated systems to tackle structured modeling problems, namely piece-wise planar reconstruction and floorplan reconstruction, by learning shape priors (i.e., planarity and orthogonality) from data. With structured representations and production-level quality, the reconstructed models have an immediate impact on many industrial applications

    Lucid Data Dreaming for Video Object Segmentation

    Full text link
    Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data (1k~100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x~1000x less annotated data than competing methods. Our approach is suitable for both single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models, as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective. This changes the mindset regarding how many training samples and general "objectness" knowledge are required for the video object segmentation task.Comment: Accepted in International Journal of Computer Vision (IJCV

    Advances in Data-Driven Analysis and Synthesis of 3D Indoor Scenes

    Full text link
    This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.Comment: Published in Computer Graphics Forum, Aug 202

    Vision-based 3D Pose Retrieval and Reconstruction

    Get PDF
    The people analysis and the understandings of their motions are the key components in many applications like sports sciences, biomechanics, medical rehabilitation, animated movie productions and the game industry. In this context, retrieval and reconstruction of the articulated 3D human poses are considered as the significant sub-elements. In this dissertation, we address the problem of retrieval and reconstruction of the 3D poses from a monocular video or even from a single RGB image. We propose a few data-driven pipelines to retrieve and reconstruct the 3D poses by exploiting the motion capture data as a prior. The main focus of our proposed approaches is to bridge the gap between the separate media of the 3D marker-based recording and the capturing of motions or photographs using a simple RGB camera. In principal, we leverage both media together efficiently for 3D pose estimation. We have shown that our proposed methodologies need not any synchronized 3D-2D pose-image pairs to retrieve and reconstruct the final 3D poses, and are flexible enough to capture motion in any studio-like indoor environment or outdoor natural environment. In first part of the dissertation, we propose model based approaches for full body human motion reconstruction from the video input by employing just 2D joint positions of the four end effectors and the head. We resolve the 3D-2D pose-image cross model correspondence by developing an intermediate container the knowledge base through the motion capture data which contains information about how people move. It includes the 3D normalized pose space and the corresponding synchronized 2D normalized pose space created by utilizing a number of virtual cameras. We first detect and track the features of these five joints from the input motion sequences using SURF, MSER and colorMSER feature detectors, which vote for the possible 2D locations for these joints in the video. The extraction of suitable feature sets from both, the input control signals and the motion capture data, enables us to retrieve the closest instances from the motion capture dataset through employing the fast searching and retrieval techniques. We develop a graphical structure online lazy neighbourhood graph in order to make the similarity search more accurate and robust by deploying the temporal coherence of the input control signals. The retrieved prior poses are exploited further in order to stabilize the feature detection and tracking process. Finally, the 3D motion sequences are reconstructed by a non-linear optimizer that takes into account multiple energy terms. We evaluate our approaches with a series of experiment scenarios designed in terms of performing actors, camera viewpoints and the noisy inputs. Only a little preprocessing is needed by our methods and the reconstruction processes run close to real time. The second part of the dissertation is dedicated to 3D human pose estimation from a monocular single image. First, we propose an efficient 3D pose retrieval strategy which leads towards a novel data driven approach to reconstruct a 3D human pose from a monocular still image. We design and devise multiple feature sets for global similarity search. At runtime, we search for the similar poses from a motion capture dataset in a definite feature space made up of specific joints. We introduce two-fold method for camera estimation, where we exploit the view directions at which we perform sampling of the MoCap dataset as well as the MoCap priors to minimize the projection error. We also benefit from the MoCap priors and the joints' weights in order to learn a low-dimensional local 3D pose model which is constrained further by multiple energies to infer the final 3D human pose. We thoroughly evaluate our approach on synthetically generated examples, the real internet images and the hand-drawn sketches. We achieve state-of-the-arts results when the test and MoCap data are from the same dataset and obtain competitive results when the motion capture data is taken from a different dataset. Second, we propose a dual source approach for 3D pose estimation from a single RGB image. One major challenge for 3D pose estimation from a single RGB image is the acquisition of sufficient training data. In particular, collecting large amounts of training data that contain unconstrained images and are annotated with accurate 3D poses is infeasible. We therefore propose to use two independent training sources. The first source consists of images with annotated 2D poses and the second source consists of accurate 3D motion capture data. To integrate both sources, we propose a dual-source approach that combines 2D pose estimation with efficient and robust 3D pose retrieval. In our experiments, we show that our approach achieves state-of-the-art results and is even competitive when the skeleton structures of the two sources differ substantially. In the last part of the dissertation, we focus on how the different techniques, developed for the human motion capturing, retrieval and reconstruction can be adapted to handle the quadruped motion capture data and which new applications may appear. We discuss some particularities which must be considered during capturing the large animal motions. For retrieval, we derive the suitable feature sets in order to perform fast searches into the MoCap dataset for similar motion segments. At the end, we present a data-driven approach to reconstruct the quadruped motions from the video input data

    Stereo Reconstruction using Induced Symmetry and 3D scene priors

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraRecuperar a geometria 3D a partir de dois vistas, conhecida como reconstrução estéreo, é um dos tópicos mais antigos e mais investigado em visão por computador. A computação de modelos 3D do ambiente é útil para uma grande número de aplicações, desde a robótica‎, passando pela sua utilização do consumidor comum, até a procedimentos médicos. O princípio para recuperar a estrutura 3D cena é bastante simples, no entanto, existem algumas situações que complicam consideravelmente o processo de reconstrução. Objetos que contêm estruturas pouco texturadas ou repetitivas, e superfícies com bastante inclinação ainda colocam em dificuldade os algoritmos state-of-the-art. Esta tese de doutoramento aborda estas questões e apresenta um novo framework estéreo que é completamente diferente das abordagens convencionais. Propomos a utilização de simetria em vez de foto-similaridade para avaliar a verosimilhança de pontos em duas imagens distintas serem uma correspondência. O framework é chamado SymStereo, e baseia-se no efeito de espelhagem que surge sempre que uma imagem é mapeada para a outra câmera usando a homografia induzida por um plano de corte virtual que intersecta a baseline. Experiências em estéreo denso comprovam que as nossas funções de custo baseadas em simetria se comparam favoravelmente com os custos baseados em foto-consistência de melhor desempenho. Param além disso, investigamos a possibilidade de realizar Stereo-Rangefinding, que consiste em usar estéreo passivo para recuperar exclusivamente a profundidade ao longo de um plano de varrimento. Experiências abrangentes fornecem evidência de que estéreo baseada em simetria induzida é especialmente eficaz para esta finalidade. Como segunda linha de investigação, propomos superar os problemas descritos anteriormente usando informação a priori sobre o ambiente 3D, com o objectivo de aumentar a robustez do processo de reconstrução. Para tal, apresentamos uma nova abordagem global para detectar pontos de desvanecimento e grupos de direcções de desvanecimento mutuamente ortogonais em ambientes Manhattan. Experiências quer em imagens sintéticas quer em imagens reais demonstram que os nossos algoritmos superaram os métodos state-of-the-art, mantendo a computação aceitável. Além disso, mostramos pela primeira vez resultados na detecção simultânea de múltiplas configurações de Manhattan. Esta informação a priori sobre a estrutura da cena é depois usada numa pipeline de reconstrução que gera modelos piecewise planares de ambientes urbanos a partir de duas vistas calibradas. A nossa formulação combina SymStereo e o algoritmo de clustering PEARL [3], e alterna entre um passo de otimização discreto, que funde hipóteses de superfícies planares e descarta detecções com pouco suporte, e uma etapa de otimização contínua, que refina as poses dos planos. Experiências com pares estéreo de ambientes interiores e exteriores confirmam melhorias significativas sobre métodos state-of-the-art relativamente a precisão e robustez. Finalmente, e como terceira contribuição para melhorar a visão estéreo na presença de superfícies inclinadas, estendemos o recente framework de agregação estéreo baseada em histogramas [4]. O algoritmo original utiliza janelas de suporte fronto-paralelas para a agregação de custo, o que leva a resultados imprecisos na presença de superfícies com inclinação significativa. Nós abordamos o problema considerando hipóteses de orientação discretas. Os resultados experimentais obtidos comprovam a eficácia do método, permitindo melhorar a precisção de correspondência, preservando simultaneamente uma baixa complexidade computacional.Recovering the 3D geometry from two or more views, known as stereo reconstruction, is one of the earliest and most investigated topics in computer vision. The computation of 3D models of an environment is useful for a very large number of applications, ranging from robotics, consumer utilization to medical procedures. The principle to recover the 3D scene structure is quite simple, however, there are some issues that considerable complicate the reconstruction process. Objects containing complicated structures, including low and repetitive textures, and highly slanted surfaces still pose difficulties to state-of-the-art algorithms. This PhD thesis tackles this issues and introduces a new stereo framework that is completely different from conventional approaches. We propose to use symmetry instead of photo-similarity for assessing the likelihood of two image locations being a match. The framework is called SymStereo, and is based on the mirroring effect that arises whenever one view is mapped into the other using the homography induced by a virtual cut plane that intersects the baseline. Extensive experiments in dense stereo show that our symmetry-based cost functions compare favorably against the best performing photo-similarity matching costs. In addition, we investigate the possibility of accomplishing Stereo-Rangefinding that consists in using passive stereo to exclusively recover depth along a scan plane. Thorough experiments provide evidence that Stereo from Induced Symmetry is specially well suited for this purpose. As a second research line, we propose to overcome the previous issues using priors about the 3D scene for increasing the robustness of the reconstruction process. For this purpose, we present a new global approach for detecting vanishing points and groups of mutually orthogonal vanishing directions in man-made environments. Experiments in both synthetic and real images show that our algorithms outperform the state-of-the-art methods while keeping computation tractable. In addition, we show for the first time results in simultaneously detecting multiple Manhattan-world configurations. This prior information about the scene structure is then included in a reconstruction pipeline that generates piece-wise planar models of man-made environments from two calibrated views. Our formulation combines SymStereo and PEARL clustering [3], and alternates between a discrete optimization step, that merges planar surface hypotheses and discards detections with poor support, and a continuous optimization step, that refines the plane poses. Experiments with both indoor and outdoor stereo pairs show significant improvements over state-of-the-art methods with respect to accuracy and robustness. Finally, and as a third contribution to improve stereo matching in the presence of surface slant, we extend the recent framework of Histogram Aggregation [4]. The original algorithm uses a fronto-parallel support window for cost aggregation, leading to inaccurate results in the presence of significant surface slant. We address the problem by considering discrete orientation hypotheses. The experimental results prove the effectiveness of the approach, which enables to improve the matching accuracy while preserving a low computational complexity

    Stereo Reconstruction using Induced Symmetry and 3D scene priors

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraRecuperar a geometria 3D a partir de dois vistas, conhecida como reconstrução estéreo, é um dos tópicos mais antigos e mais investigado em visão por computador. A computação de modelos 3D do ambiente é útil para uma grande número de aplicações, desde a robótica‎, passando pela sua utilização do consumidor comum, até a procedimentos médicos. O princípio para recuperar a estrutura 3D cena é bastante simples, no entanto, existem algumas situações que complicam consideravelmente o processo de reconstrução. Objetos que contêm estruturas pouco texturadas ou repetitivas, e superfícies com bastante inclinação ainda colocam em dificuldade os algoritmos state-of-the-art. Esta tese de doutoramento aborda estas questões e apresenta um novo framework estéreo que é completamente diferente das abordagens convencionais. Propomos a utilização de simetria em vez de foto-similaridade para avaliar a verosimilhança de pontos em duas imagens distintas serem uma correspondência. O framework é chamado SymStereo, e baseia-se no efeito de espelhagem que surge sempre que uma imagem é mapeada para a outra câmera usando a homografia induzida por um plano de corte virtual que intersecta a baseline. Experiências em estéreo denso comprovam que as nossas funções de custo baseadas em simetria se comparam favoravelmente com os custos baseados em foto-consistência de melhor desempenho. Param além disso, investigamos a possibilidade de realizar Stereo-Rangefinding, que consiste em usar estéreo passivo para recuperar exclusivamente a profundidade ao longo de um plano de varrimento. Experiências abrangentes fornecem evidência de que estéreo baseada em simetria induzida é especialmente eficaz para esta finalidade. Como segunda linha de investigação, propomos superar os problemas descritos anteriormente usando informação a priori sobre o ambiente 3D, com o objectivo de aumentar a robustez do processo de reconstrução. Para tal, apresentamos uma nova abordagem global para detectar pontos de desvanecimento e grupos de direcções de desvanecimento mutuamente ortogonais em ambientes Manhattan. Experiências quer em imagens sintéticas quer em imagens reais demonstram que os nossos algoritmos superaram os métodos state-of-the-art, mantendo a computação aceitável. Além disso, mostramos pela primeira vez resultados na detecção simultânea de múltiplas configurações de Manhattan. Esta informação a priori sobre a estrutura da cena é depois usada numa pipeline de reconstrução que gera modelos piecewise planares de ambientes urbanos a partir de duas vistas calibradas. A nossa formulação combina SymStereo e o algoritmo de clustering PEARL [3], e alterna entre um passo de otimização discreto, que funde hipóteses de superfícies planares e descarta detecções com pouco suporte, e uma etapa de otimização contínua, que refina as poses dos planos. Experiências com pares estéreo de ambientes interiores e exteriores confirmam melhorias significativas sobre métodos state-of-the-art relativamente a precisão e robustez. Finalmente, e como terceira contribuição para melhorar a visão estéreo na presença de superfícies inclinadas, estendemos o recente framework de agregação estéreo baseada em histogramas [4]. O algoritmo original utiliza janelas de suporte fronto-paralelas para a agregação de custo, o que leva a resultados imprecisos na presença de superfícies com inclinação significativa. Nós abordamos o problema considerando hipóteses de orientação discretas. Os resultados experimentais obtidos comprovam a eficácia do método, permitindo melhorar a precisção de correspondência, preservando simultaneamente uma baixa complexidade computacional.Recovering the 3D geometry from two or more views, known as stereo reconstruction, is one of the earliest and most investigated topics in computer vision. The computation of 3D models of an environment is useful for a very large number of applications, ranging from robotics, consumer utilization to medical procedures. The principle to recover the 3D scene structure is quite simple, however, there are some issues that considerable complicate the reconstruction process. Objects containing complicated structures, including low and repetitive textures, and highly slanted surfaces still pose difficulties to state-of-the-art algorithms. This PhD thesis tackles this issues and introduces a new stereo framework that is completely different from conventional approaches. We propose to use symmetry instead of photo-similarity for assessing the likelihood of two image locations being a match. The framework is called SymStereo, and is based on the mirroring effect that arises whenever one view is mapped into the other using the homography induced by a virtual cut plane that intersects the baseline. Extensive experiments in dense stereo show that our symmetry-based cost functions compare favorably against the best performing photo-similarity matching costs. In addition, we investigate the possibility of accomplishing Stereo-Rangefinding that consists in using passive stereo to exclusively recover depth along a scan plane. Thorough experiments provide evidence that Stereo from Induced Symmetry is specially well suited for this purpose. As a second research line, we propose to overcome the previous issues using priors about the 3D scene for increasing the robustness of the reconstruction process. For this purpose, we present a new global approach for detecting vanishing points and groups of mutually orthogonal vanishing directions in man-made environments. Experiments in both synthetic and real images show that our algorithms outperform the state-of-the-art methods while keeping computation tractable. In addition, we show for the first time results in simultaneously detecting multiple Manhattan-world configurations. This prior information about the scene structure is then included in a reconstruction pipeline that generates piece-wise planar models of man-made environments from two calibrated views. Our formulation combines SymStereo and PEARL clustering [3], and alternates between a discrete optimization step, that merges planar surface hypotheses and discards detections with poor support, and a continuous optimization step, that refines the plane poses. Experiments with both indoor and outdoor stereo pairs show significant improvements over state-of-the-art methods with respect to accuracy and robustness. Finally, and as a third contribution to improve stereo matching in the presence of surface slant, we extend the recent framework of Histogram Aggregation [4]. The original algorithm uses a fronto-parallel support window for cost aggregation, leading to inaccurate results in the presence of significant surface slant. We address the problem by considering discrete orientation hypotheses. The experimental results prove the effectiveness of the approach, which enables to improve the matching accuracy while preserving a low computational complexity
    corecore