792 research outputs found

    Indoor Intruder Tracking Using Visible Light Communications

    Get PDF
    This paper proposes a comprehensive study of indoor intruder tracking using visible light communication (VLC). A realistic indoor VLC channel was developed, taking into consideration reflections, shadowing, and ambient noise. The intruder was considered smart and aiming to escape tracking. This was modelled by adding noise and disturbance to the intruder’s trajectory. We propose to extend the application of minimax filtering from state estimation in the radio frequency (RF) domain to intruder tracking using VLC. The performance of the proposed method was examined and compared with Kalman filter for both VLC and RF. The simulation results showed that the minimax filter provided marginally better tracking and was more robust to the adversary behavior of the intruder than Kalman filter, with less than 0.5 cm estimation error. In addition, minimax was significantly better than Kalman filter for RF tracking applications

    Multi-Agent Framework in Visual Sensor Networks

    Get PDF
    21 pages, 21 figures.-- Journal special issue on Visual Sensor Networks.The recent interest in the surveillance of public, military, and commercial scenarios is increasing the need to develop and deploy intelligent and/or automated distributed visual surveillance systems. Many applications based on distributed resources use the so-called software agent technology. In this paper, a multi-agent framework is applied to coordinate videocamera-based surveillance. The ability to coordinate agents improves the global image and task distribution efficiency. In our proposal, a software agent is embedded in each camera and controls the capture parameters. Then coordination is based on the exchange of high-level messages among agents. Agents use an internal symbolic model to interpret the current situation from the messages from all other agents to improve global coordination.This work was funded by projects CICYT TSI2005-07344, CICYT TEC2005-07186, and CAM MADRINET S-0505/TIC/0255.Publicad

    A Self-organizing Hybrid Sensor System With Distributed Data Fusion For Intruder Tracking And Surveillance

    Get PDF
    A wireless sensor network is a network of distributed nodes each equipped with its own sensors, computational resources and transceivers. These sensors are designed to be able to sense specific phenomenon over a large geographic area and communicate this information to the user. Most sensor networks are designed to be stand-alone systems that can operate without user intervention for long periods of time. While the use of wireless sensor networks have been demonstrated in various military and commercial applications, their full potential has not been realized primarily due to the lack of efficient methods to self organize and cover the entire area of interest. Techniques currently available focus solely on homogeneous wireless sensor networks either in terms of static networks or mobile networks and suffers from device specific inadequacies such as lack of coverage, power and fault tolerance. Failing nodes result in coverage loss and breakage in communication connectivity and hence there is a pressing need for a fault tolerant system to allow replacing of the failed nodes. In this dissertation, a unique hybrid sensor network is demonstrated that includes a host of mobile sensor platforms. It is shown that the coverage area of the static sensor network can be improved by self-organizing the mobile sensor platforms to allow interaction with the static sensor nodes and thereby increase the coverage area. The performance of the hybrid sensor network is analyzed for a set of N mobile sensors to determine and optimize parameters such as the position of the mobile nodes for maximum coverage of the sensing area without loss of signal between the mobile sensors, static nodes and the central control station. A novel approach to tracking dynamic targets is also presented. Unlike other tracking methods that are based on computationally complex methods, the strategy adopted in this work is based on a computationally simple but effective technique of received signal strength indicator measurements. The algorithms developed in this dissertation are based on a number of reasonable assumptions that are easily verified in a densely distributed sensor network and require simple computations that efficiently tracks the target in the sensor field. False alarm rate, probability of detection and latency are computed and compared with other published techniques. The performance analysis of the tracking system is done on an experimental testbed and also through simulation and the improvement in accuracy over other methods is demonstrated

    Automated Intruder Detection from Image Sequences using Minimum Volume Sets

    Get PDF
    We propose a new algorithm based on machine learning techniques for automatic intruder detection in surveillance networks.  The algorithm is theoretically founded on the concept of minimum volume sets.  Through application to image sequences from two different scenarios and comparison with some existing algorithms, we show that it is possible for our proposed algorithm to easily obtain high detection accuracy with low false alarm rates

    RSSI Based Indoor Passive Localization for Intrusion Detection and Tracking

    Get PDF
    A real time system for intrusion detection and tracking based on wireless sensor network technology is designed by using the IITH mote which is de- veloped and designed in IIT Hyderabad as the communication module in the network.This paper describes the Device-Free Passive Localization system based on RSSI.The main objective of this paper is to design a DFP Local- ization system that is easily redeployable, recon�gurable, easy to use, and operates in real time. In addition the detection of humans is to be done.The em- bedded intrusion detection algorithm is designed so that it is able to cope with the limited resources, in terms of computational power and available memory space, of the microcontroller unit (MCU) found in the nodes. and various challenges and problem faced during the real test bed deployment and also proposed solutions to overcome them.We presented an alternative algo- rithm based on the minimum Euclidean distance classi�er.our result shows that the localization accuracy of this system is increased when using the proposed algorith

    Intelligent surveillance of indoor environments based on computer vision and 3D point cloud fusion

    Get PDF
    A real-time detection algorithm for intelligent surveillance is presented. The system, based on 3D change detection with respect to a complex scene model, allows intruder monitoring and detection of added and missing objects, under different illumination conditions. The proposed system has two independent stages. First, a mapping application provides an accurate 3D wide model of the scene, using a view registration approach. This registration is based on computer vision and 3D point cloud. Fusion of visual features with 3D descriptors is used in order to identify corresponding points in two consecutive views. The matching of these two views is first estimated by a pre-alignment stage, based on the tilt movement of the sensor, later they are accurately aligned by an Iterative Closest Point variant (Levenberg-Marquardt ICP), which performance has been improved by a previous filter based on geometrical assumptions. The second stage provides accurate intruder and object detection by means of a 3D change detection approach, based on Octree volumetric representation, followed by a clusters analysis. The whole scene is continuously scanned, and every captured is compared with the corresponding part of the wide model thanks to the previous analysis of the sensor movement parameters. With this purpose a tilt-axis calibration method has been developed. Tests performed show the reliable performance of the system under real conditions and the improvements provided by each stage independently. Moreover, the main goal of this application has been enhanced, for reliable intruder detection by the tilting of the sensors using its built-in motor to increase the size of the monitored area. (C) 2015 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Government through the CICYT projects (TRA2013-48314-C3-1-R) and (TRA2011-29454-C03-02)

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system
    corecore