7 research outputs found

    More Time-Space Tradeoffs for Finding a Shortest Unique Substring

    Get PDF
    We extend recent results regarding finding shortest unique substrings (SUSs) to obtain new time-space tradeoffs for this problem and the generalization of finding k-mismatch SUSs. Our new results include the first algorithm for finding a k-mismatch SUS in sublinear space, which we obtain by extending an algorithm by Senanayaka (2019) and combining it with a result on sketching by Gawrychowski and Starikovskaya (2019). We first describe how, given a text T of length n and m words of workspace, with high probability we can find an SUS of length L in O(n(L/m)logL) time using random access to T, or in O(n(L/m)log2(L)loglogσ) time using O((L/m)log2L) sequential passes over T. We then describe how, for constant k, with high probability, we can find a k-mismatch SUS in O(n1+Ï”L/m) time using O(nÏ”L/m) sequential passes over T, again using only m words of workspace. Finally, we also describe a deterministic algorithm that takes O(nτlogσlogn) time to find an SUS using O(n/τ) words of workspace, where τ is a parameter

    Longest property-preserved common factor

    Get PDF
    In this paper we introduce a new family of string processing problems. We are given two or more strings and we are asked to compute a factor common to all strings that preserves a specific property and has maximal length. Here we consider two fundamental string properties: square-free factors and periodic factors under two different settings, one per property. In the first setting, we are given a string x and we are asked to construct a data structure over x answering the following type of on-line queries: given string y, find a longest square-free factor common to x and y. In the second setting, we are given k strings and an integer 1 < k’ ≀ k and we are asked to find a longest periodic factor common to at least k’ strings. We present linear-time solutions for both settings. We anticipate that our paradigm can be extended to other string properties

    Longest Property-Preserved Common Factor

    Get PDF
    International audienceIn this paper we introduce a new family of string processing problems. We are given two or more strings and we are asked to compute a factor common to all strings that preserves a specific property and has maximal length. Here we consider three fundamental string properties: square-free factors, periodic factors, and palindromic factors under three different settings, one per property. In the first setting, we are given a string x and we are asked to construct a data structure over x answering the following type of on-line queries: given string y, find a longest square-free factor common to x and y. In the second setting, we are given k strings and an integer 1 < k ≀ k and we are asked to find a longest periodic factor common to at least k strings. In the third setting, we are given two strings and we are asked to find a longest palindromic factor common to the two strings. We present linear-time solutions for all settings. We anticipate that our paradigm can be extended to other string properties or settings

    Indexed Matching Statistics and Shortest Unique Substrings

    No full text

    Linear-time String Indexing and Analysis in Small Space

    Get PDF
    The field of succinct data structures has flourished over the past 16 years. Starting from the compressed suffix array by Grossi and Vitter (STOC 2000) and the FM-index by Ferragina and Manzini (FOCS 2000), a number of generalizations and applications of string indexes based on the Burrows-Wheeler transform (BWT) have been developed, all taking an amount of space that is close to the input size in bits. In many large-scale applications, the construction of the index and its usage need to be considered as one unit of computation. For example, one can compare two genomes by building a common index for their concatenation and by detecting common substructures by querying the index. Efficient string indexing and analysis in small space lies also at the core of a number of primitives in the data-intensive field of high-throughput DNA sequencing. We report the following advances in string indexing and analysis: We show that the BWT of a string T is an element of {1, . . . , sigma}(n) can be built in deterministic O(n) time using just O(n log sigma) bits of space, where sigma We also show how to build many of the existing indexes based on the BWT, such as the compressed suffix array, the compressed suffix tree, and the bidirectional BWT index, in randomized O(n) time and in O(n log sigma) bits of space. The previously fastest construction algorithms for BWT, compressed suffix array and compressed suffix tree, which used O(n log sigma) bits of space, took O(n log log sigma) time for the first two structures and O(n log(epsilon) n) time for the third, where. is any positive constant smaller than one. Alternatively, the BWT could be previously built in linear time if one was willing to spend O(n log sigma log log(sigma) n) bits of space. Contrary to the state-of-the-art, our bidirectional BWT index supports every operation in constant time per element in its output.Peer reviewe
    corecore