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Abstract

The field of succinct data structures has flourished over the last 16 years. Starting from the compressed
suffix array by Grossi and Vitter (STOC 2000) and the FM-index by Ferragina and Manzini (FOCS 2000),
a number of generalizations and applications of string indexes based on the Burrows-Wheeler transform
(BWT) have been developed, all taking an amount of space that is close to the input size in bits. In
many large-scale applications, the construction of the index and its usage need to be considered as one
unit of computation. For example, one can compare two genomes by building a common index for their
concatenation, and by detecting common substructures by querying the index. Efficient string indexing
and analysis in small space lies also at the core of a number of primitives in the data-intensive field of
high-throughput DNA sequencing.

We report the following advances in string indexing and analysis. We show that the BWT of a string
T e€{1,...,0}" can be built in deterministic O(n) time using just O(n log o) bits of space, where o < n.
Deterministic linear time is achieved by exploiting a new partial rank data structure that supports queries
in constant time, and that might have independent interest. Within the same time and space budget,
we can build an index based on the BWT that allows one to enumerate all the internal nodes of the
suffix tree of T'. Many fundamental string analysis problems, such as maximal repeats, maximal unique
matches, and string kernels, can be mapped to such enumeration, and can thus be solved in deterministic
O(n) time and in O(nlog o) bits of space from the input string, by tailoring the enumeration algorithm
to some problem-specific computations.

We also show how to build many of the existing indexes based on the BWT, such as the compressed
suffiz array, the compressed suffiz tree, and the bidirectional BWT indez, in randomized O(n) time and
in O(nlogo) bits of space. The previously fastest construction algorithms for BWT, compressed suffix
array and compressed suffix tree, which used O(nlog o) bits of space, took O(nloglogo) time for the
first two structures, and O(n log®n) time for the third, where € is any positive constant smaller than one.
Contrary to the state of the art, our bidirectional BWT index supports every operation in constant time
per element in its output.
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1 Introduction

The suffix tree [67] is a fundamental text indexing data structure that has been used for solving a large
number of string processing problems over the last 40 years [2, 32]. The suffix array [46] is another widely
popular data structure in text indexing, and although not as versatile as the suffix tree, its space usage is
bounded by a smaller constant: specifically, given a string of length n over an alphabet of size o, a suffix
tree occupies O(nlogn) bits of space, while a suffix array takes exactly n[logn] bits!.

The last decade has witnessed the rise of compressed versions of the suffix array [31, 23] and of the
suffix tree [63]. In contrast to their plain versions, they occupy just O(nloga) bits of space: this shaves a
O(log, n) factor, thus space becomes just a constant times larger than the original text, which is encoded
in exactly nlogo bits. Any operation that can be implemented on a suffix tree (and thus any algorithm
or data structure that uses the suffix tree) can be implemented on the compressed suffix tree (henceforth
denoted by CST) as well, at the price of a slowdown that ranges from O(1) to O(log®n) depending on the
operation. Building a CST, however, suffers from a large slowdown if we are restricted to use an amount of
space that is only a constant factor away from the space taken by the CST itself. More precisely, a CST can
be built in deterministic O(nlog®n) time (where € is any constant such that 0 < € < 1) and O(nlogo) bits
of space [38], or alternatively in deterministic O(n) time and O(nlogn) bits by first employing a linear-time
deterministic suffix tree construction algorithm to build the plain suffix tree [21], and then compressing the
resulting representation. It can also be built in deterministic O(nloglogn) time and O(nlog o loglogn) bits
of space (by combining [38] with [37]).

The compressed version of the suffix array (denoted by CSA in what follows) does not suffer from the same
slowdown in construction as the compressed suffix tree, since it can be built in deterministic O(nloglog o)
time? and O(nlog o) bits of space [38], or alternatively in deterministic O(n) time and in O(nlog o loglogn)
bits of space [55].

In this paper we show that both the CST and the CSA can be built in randomized O(n) time using
O(nlogo) bits of space, where randomization comes from the use of monotone minimal perfect hash func-
tions3. This seems in contrast to the plain suffix array and suffix tree, which can be built in deterministic
O(n) time. However, hashing is also necessary to build a representation of the plain suffix tree that supports
the fundamental child operation in constant time*: building such a plain representation of the suffix tree
takes itself randomized O(n) time. If one insists on achieving deterministic linear construction time, then
the fastest bound known so far for the child operation is O(loglog o).

We also show that the key ingredient of compressed text indexes, namely the Burrows- Wheeler transform
(BWT) of a string [15], can be built in deterministic O(n) time and O(n log o) bits of space. Such construction
rests on the following results, which we believe have independent technical interest and wide applicability to
string processing and biological sequence analysis problems. The first result is a data structure that takes
at most nloga + O(n) bits of space, and that supports access and partial rank® queries in constant time,
and a related data structure that takes nlogo(1 + 1/k) + O(n) bits of space for any positive integer k, and
that supports either access and partial rank queries in constant time and select queries in O(k) time, or
select queries in constant time and access and partial rank queries in O(k) time (Lemma 7). Both such data
structures can be built in deterministic O(n) time and o(n) bits of space.

In turn, the latter data structure enables an index that takes nlog o+ O(n) bits of space, and that allows
one to enumerate a rich representation of all the internal nodes of a suffix tree, in overall O(n) time and in
O(c?log® n) bits of additional space (Lemmas 19 and 22). Such index is our second result of independent
interest: we call it the unidirectional BWT index. Our enumeration algorithm is easy to implement, to
parallelize, and to apply to multiple strings, and it performs a depth-first traversal of the suffiz-link tree®
using a stack that contains at every time at most ologn nodes. A similar enumeration algorithm, which

'n this paper logn stands for log, n.

2This bound should actually read as O(n - max(1,logloga)).

3Monotone minimal perfect hash functions are defined in Section 3.6.

4The constant-time child operation enables e.g. matching a pattern of length m against the suffix tree in O(m) time.
5 Access, partial rank and select queries are defined in Section 2.

6The suffix-link tree is defined in Section 2.3.



performs however a breadth-first traversal of the suffix-link tree, was described in [13]: such algorithm uses a
queue that takes ©(n) bits of space, and that contains ©(n) nodes in the worst case. This number of nodes
might be too much for applications that require storing e.g. a real number per node, like weighted string
kernels (see [9] and references therein).

We also show that many fundamental operations in string analysis and comparison, with a number
of applications to genomics and high-throughput sequencing, can all be performed by enumerating the
internal nodes of a suffix tree regardless of their order. This allows one to implement all such operations in
deterministic O(n) time on top of the unidirectional index, and thus in deterministic O(n) time and O(n log o)
bits of space directly from the input string: this is our third result of independent interest. Implementing
such string analysis procedures on top of our enumeration algorithm is also practical, as it amounts to few
lines of code invoked by a callback function. Using again the enumeration procedure, we give a practical
algorithm for building the BWT of the reverse of a string given the BWT of the string. Contrary to [53],
our algorithm does not need the suffix array and the original string in addition to the BWT.

To build the CST we make use of the bidirectional BWT index, a data structure consisting of two BWTs
that has a number of applications in high-throughput sequencing [65, 66, 43, 44]. Our fourth result of
independent interest consists in showing that, in randomized O(n) time and in O(nlogo) bits of space, we
can build a bidirectional BWT index that takes O(nlogo) bits of space and that supports every operation
in constant time per element in the output (Theorem 12). This is in contrast to the O(c) or O(log o) time
per element in the output required by existing bidirectional indexes in some key operations. Our fifth result
of independent interest is an algorithm that builds the permuted LCP array (a key component of the CST),
as well as the matching statistics array”, given a constant-time bidirectional BWT index, in O(n) time and
O(logn) bits of space (Lemmas 31 and 35). Both such algorithms are practical.

The paper consists of a number of other intermediate results, whose logical dependencies are summarized
in Figure 1. We suggest to keep this figure at hand in particular while reading Section 6.

"The permuted LCP array is defined in Section 2.5. The matching statistics array and related notions are defined in Section
7.
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2 Definitions and preliminaries

We work in the RAM model, and we index arrays starting from one. We denote by i (mod; n) the function
that returns n if ¢ = 0, that returns 7 if ¢ € [1..n], and that returns 1 if i =n + 1.

2.1 Temporary space and working space

We call temporary space the size of any region of memory that: (1) is given in input to an algorithm, initialized
to a specific state; (2) is read and written (possibly only in part) by the algorithm during its execution; (3)
is restored to the original state by the algorithm before it terminates. We call working space the maximum
amount of memory that an algorithm uses in addition to its input, its output, and its temporary space (if
any). The temporary space of an algorithm can be bigger than its working space.

2.2 Strings

A string T of length n is a sequence of symbols from the compact alphabet ¥ = [1..0], i.e. T € X". We
assume o € o(y/n/logn), since for larger alphabets there already exist algorithms for building the data
structures described in this paper, in linear time and in O(nlogo) = O(nlogn) bits of working space (for
example the linear-time suffix array construction algorithms in [41, 40, 39]). The reason behind our choice
of o(y/n/logn) will become apparent in Section 4. We also assume # to be a separator that does not belong
to [1..0], and specifically we set # = 0. In some cases we use multiple distinct separators, denoted by
#; = —i+ 1 for integers ¢ > 0.

Given a string T € [l1..0]", we denote by T[i..j] (with ¢ and j in [1..n]) a substring of T, with the
convention that T'[¢..5] equals the empty string if ¢ > j. As customary, we denote by V- W the concatenation
of two strings V and W. We call T'[1..7] (with ¢ € [1..n]) a prefiz of T, and T'[j..n] (with j € [1..n]) a suffiz
of T.

A rotation of T is a string T'[i..n] - T[1..i — 1] for i € [1..n]. We denote by R(T) the set of all lexico-
graphically distinct rotations of T. Note that |R(T')| can be smaller than n, since some rotations of T' can
be lexicographically identical: this happens if and only if T = W¥ for some W € [1..0]T and k > 1. We are
interested only in strings for which all rotations are lexicographically distinct: we often enforce this property
by terminating a string with #. We denote by S(T') the set of all distinct, not necessarily proper, prefixes of
rotations of T'. In what follows we will use rotations to define a set of notions (like maximal repeats, suffix
tree, suffix array, longest common prefix array) that are typically defined in terms of the suffizes of a string
terminated by #. We do so to highlight the connection between such notions and the Burrows-Wheeler
transform, one of the key tools used in the following sections, which is defined in terms of rotations. Note
that there is a one-to-one correspondence between the i-th rotation of T# in lexicographic order and the
i-th suffix of T'# in lexicographic order.

A repeat of T is a string W € S(T) such that there are two rotations 7' = T[iy..n] - T[1..i; — 1] and
T? = Tlig..n]-T[1..ia—1], with 41 # 42, such that T [1..|W]] = T?[1..|W|] = W. Repeats are substrings of T if
T € [1..o]""#. A repeat W is right-mazimal if |W| < n and there are two rotations 7' = T'[iy..n]-T'[1..i1 —1]
and T? = Tliy..n] - T[1..iz — 1], with iy # ig, such that T'[1..|W|] = T?[1..|W|] = W and T[|W|+ 1] #
T?[|W| + 1]. A repeat W is left-mazimal if |[W| < n and there are two rotations T = T'iy..n] - T[1..i; — 1]
and T? = T[ig..n]-T[1..ia— 1], with i1 # ia, such that T1[2..|W|+1] = T?[2..|W|+1] = W and T*[1] # T?[1].
Intuitively, a right-maximal (respectively, left-maximal) repeat cannot be extended to the right (respectively,
to the left) by a single character, without losing at least one of its occurrences in 7. A repeat is mazximal
if it is both left- and right-maximal. If T' € [1..0]" 14, repeats are substrings of 7', and we use the terms
left- (respectively, right-) maximal substring. Given a string W € S(T'), we call p(W) the number of (not
necessarily proper) suffixes of W that are maximal repeats of T, and we set pur = max{u(T") : T' € R(T)}.
We say that a repeat W of T' is strongly left-mazimal if there are at least two distinct characters a and b
in [1..0] such that both aW and bW are right-maximal repeats of T'. Since only a right-maximal repeat W
of T' can be strongly left-maximal, the set of strongly left-maximal repeats of T is a subset of the maximal
repeats of T. Let W € S(T'), and let A(W) be the number of (not necessarily proper) suffixes of W that are



strongly left-maximal repeats of T. We set Ay = max{A(T") : T' € R(T')}. Note that Ay < pp. Other types
of repeat will be described in Section 7.

2.3 Suffix tree

Let T = {T',T?,...,T™} be a set of strings on alphabet [1..0]. The trie of T is the tree G = (V, E, (), with
set of nodes V, set of edges E, and labeling function ¢, defined as follows: (1) every edge e € E is labeled
by exactly one character £(e) € [1..0]; (2) the edges that connect a node to its children have distinct labels;
(3) the children of a node are sorted lexicographically according to the labels of the corresponding edges; (4)
there is a one-to-one correspondence between V' and the set of distinct prefixes of strings in 7. Note that, if
no string in 7 is a prefix of another string in 7, there is a one-to-one correspondence between the elements
of T and the leaves of the trie of T.

Given a trie, we call unary path a maximal sequence vy, vs, ..., v, such that v; € V and v; has exactly
one child, for all ¢ € [1..k]. By collapsing a unary path we mean transforming G = (V, E,{) into a tree
G' = (V\{v1,...,ue}, (E\ {(vo,v1), (v1,v2),. .., (vk,vk+1)}) U{(vo, vk+1)},¢'), where vy is the parent of vy
in G, vg41 is the only child of vy in G, ¢/(e) = £(e) for all e € ENE’, and ¢'((vo, vk+1)) is the concatenation
L(vg,v1) - £(v1,v2) - -+ - L(vg, vg1). Note that £ labels the edges of G’ with strings rather than with single
characters. Given a trie, we call compact trie the labeled tree obtained by collapsing all unary paths in the
trie. Every node of a compact trie has either zero or at least two children.

Definition 1 ([67]). Let T € [1..0]™ be a string such that |R(T)| = n. The suffiz tree STy = (V,E,£) of T
is the compact trie of R(T).

Note that ST is not defined if some rotations of T are lexicographically identical, and that there is a
one-to-one correspondence between the leaves of the suffix tree of T and the elements of R(T). Since the
suffix tree of T has precisely n leaves, and since every internal node is branching, there are at most n — 1
internal nodes. We denote by sp(v), ep(v), and range(v) the left-most leaf, the right-most leaf, and the set of
all leaves in the subtree of an internal node v, respectively. We denote by £(e) the label of an edge e € E, and
by ¢(v) the string ¢(r,v1)-€(vy,v2) - - - €(vg—1,v), where r € V is the root of the tree, and r,v1,va, ..., V1,
is the path of v € V' in the tree. We say that node v has string depth [£(v)|. We call w the proper locus of
string W if the search for W starting from the root of STt ends at an edge (v, w) € E. Note that there is a
one-to-one correspondence between the set of internal nodes of ST and the set of right-maximal repeats of
T. Moreover, the set of all left-maximal repeats of T enjoys the prefiz closure property, in the sense that if
a repeat is left-maximal, so is any of its prefixes. It follows that the maximal repeats of T" form an induced
subgraph of the suffix tree of T', rooted at r.

Given strings T, T2, ..., T™ with T% € [1..0]" for i € [1..m], assume that |R(T"*)| = n; for all i € [1..m],
and that R(T%) N R(T7) = (O for all i # j in [1l..m]. We call generalized suffiz tree the compact trie of
R(THUR(T?*)U---UR(T™). Note that, if string W labels an internal node of the suffix tree of a string
T, then it also labels an internal node of the generalized suffix tree. However, there could be an internal
node v in the generalized suffix tree G = (V, E, £) such that ¢(v) does not label an internal node in any T*.
This means that: (1) if £(v) € S(T"), then it is always followed by the same character a; in every rotation of
T% (2) there are at least two strings T and 7Y, with i # j, such that a; # a;. A node v in the generalized
suffix tree could be such that all leaves in the subtree rooted at v are rotations of the same string 7%: we
call such a node pure, and we call it impure otherwise.

Let the label ¢(v) of an internal node v of STy = (V, E,¢) be aW, with a € ¥ and W € ¥*. Since W
occurs at all positions where aW occurs, there must be a node w € V with ¢(w) = W, otherwise v would
not be a node of the suffix tree. We say that there is a suffiz link from v to w labelled by a, and we write
suffixLink(v) = w. More generally, we say that the set of labels of internal nodes of ST enjoys the suffiz
closure property, in the sense that if a string W belongs to this set, so does every one of its suffixes. If
T € [1..0]" 1%, we define suffixLink(v) for leaves v of STz as well: the suffix link from a leaf leads either
to another leaf, or to the root of STy. The graph that consists of the set of internal nodes of STy and of
the set of suffix links, is a trie rooted at the same root node as STp: we call such trie the suffiz-link tree
SLT7 of T. Note that the suffix-link tree might contain unary paths, and that traversing the suffix-link tree



allows one to enumerate all nodes of the suffix tree. Note also that extending to the left a repeat that is not
right-maximal does not lead to a right-maximal repeat. We exploit this property in Section 4 to enumerate
all nodes of the suffix tree in small space, storing neither the suffix tree nor the suffix-link tree explicitly.
Note that every leaf of the suffix-link tree has more than one Weiner link, or its label has length n —1. Thus,
the set of all maximal repeats of T' coincides with the set of all the internal nodes of the suffix-link tree with
at least two (implicit or explicit) Weiner links, and with a subset of all the leaves of the suffix-link tree.

Inverting the direction of all suffix links yields the so-called ezplicit Weiner links. Given a node v € V
and a character a € 3, it might happen that string af(v) € S(T'), but that it does not label any internal
node of STr: we call all such extensions of internal nodes implicit Weiner links. An internal node might
have multiple outgoing Weiner links (possibly both explicit and implicit), and all such Weiner links have
distinct labels. The constructions described in this paper rest on the fact that the total number of explicit
and implicit Weiner links is small:

Observation 1. Let T € [l..0]™ be a string such that |[R(T)| = n. The number of suffix links, explicit
Weiner links, and implicit Weiner links in the suffiz tree of T are upper bounded by n—2, n—2, and 3n — 3,
respectively.

Proof. Each of the at most n — 2 internal nodes of the suffix tree (other than the root) has a suffix link.
Each explicit Weiner link is the inverse of a suffix link, so their total number is also at most n — 2.
Consider an internal node v with only one implicit Weiner link e = (£(v),af(v)). The number of such
nodes, and thus the number of such implicit Weiner links, is bounded by n — 1. Call these the implicit
Weiner links of type I, and the remaining the implicit Weiner links of type II. Consider an internal node v
with two or more implicit Weiner links, and let 3, be the set of labels of all Weiner links from v. Since
|Z,] > 1, there is an internal node w in the suffix tree STy of the reverse T of T, labeled by the reverse ¢(v)
of £(v): every ¢ € 3, can be mapped to a distinct edge of ST connecting w to one of its children. This is an
injective mapping from all type II implicit Weiner links to the at most 2n — 2 edges of the suffix tree of 7.
The sum of type I and type II Weiner links, i.e. the number of all implicit Weiner links, is hence bounded
by 3n — 3. O

Slightly more involved arguments push the upper bound on the number of implicit Weiner links down to

2.4 Rank and select

Given a string S € [1..0]™, we denote by rank. (S, 7) the number of occurrences of character ¢ € [1..0] in S[1..],
and we denote by select. (.5, j) the position ¢ of the j-th occurrence of ¢ in S, i.e. j = rank.(S, select.(S,J)).
We use partialRank(S,i) as a shorthand for rankgp;(S,i). Data structures to support such operations
efficiently will be described in the sequel. Here we just recall that it is possible to represent a bitvector of
length n using n + o(n) bits of space, such that rank and select queries can be supported in constant time
(see e.g. [16, 47]). This representation can be built in O(n) time and in o(n) bits of working space. Rank
and select data structures can be used to implement a representation of a string S that supports operation
access(S,4) = S[i] without storing S itself.

2.5 String indexes

Sorting the set of rotations of a string yields an index that can be used for supporting pattern matching by
binary search:

Definition 2 ([46]). Let T € [1..0]™ be a string such that |R(T)| = n. The suffix array SAp[1..n] of T is the
permutation of [1..n] such that SAr[i] = j iff rotation T[j..n]-T[1..j — 1] has rank i in the list of all rotations
of T taken in lexicographic order.

Note that SAp is not defined if some rotations of T are lexicographically identical. We denote by
range(W) = [sp(W)..ep(W)] the maximal interval of SAr whose rotations are prefixed by W. Note that



range(W), sp(W) and ep(W) are in one-to-one correspondence with range(v), sp(v) and ep(v) of a node v
of the suffix tree of T such that ¢(v) = W. We will often use such notions interchangeably.

The longest common prefiz array stores the length of the longest common prefix between every two
consecutive rotations in the suffix array:

Definition 3 ([46]). Let T € [1..0]™ be a string such that |R(T)| = n, and let p(i,j) be the function that
returns the longest common prefix between the rotation that starts at position SAr[i] in T and the rotation that
starts at position SAr[j] in T. The longest common prefix array of T, denoted by LCPr[1..n], is defined as
follows: LCPp[1] = 0 and LCPr[i] = p(i,i — 1) for all i € [2..n]. The permuted longest common prefix array
of T, denoted by PLCPr[1..n], is the permutation of LCPp in string order, i.e. PLCPp[SAr[i]] = LCPr[d] for
all i € [1.n].

The main tool that we use in this paper for obtaining space-efficient index structures is a permutation
of T induced by its suffix array:

Definition 4 ([15]). Let T € [l..0]™ be a string such that |R(T)| = n. The Burrows-Wheeler transform
of T, denoted by BWTr, is the permutation L[1..n] of T such that L[i] = T[SAr[i] — 1 (mody n)] for all
i€ [l.n].

Like SA7, BWT cannot be uniquely defined if some rotations of T" are lexicographically identical. Given
two strings S and T such that R(S)NR(T) = 0, we say that the BWT of R(S)UR(T) is the string obtained
by sorting R(S) UR(T) lexicographically, and by printing the character that precedes the starting position
of each rotation. Note that either R(S) N R(T) = 0, or R(S) = R(T).

A key feature of the BWT is that it is reversible: given BWTp = L, one can reconstruct the unique
T of which L is the Burrows-Wheeler transform. Indeed, let V and W be two rotations of T such that
V is lexicographically smaller than W, and assume that both V' and W are preceded by character a in T
It follows that rotation aV is lexicographically smaller than rotation aW, thus there is a bijection between
rotations preceded by a and rotations that start with a that preserves the relative order among such rotations.
Consider thus the rotation that starts at position ¢ in 7', and assume that it corresponds to position p; in
SAr (i.e SAr([p;] = 7). If L[p;] = a is the k-th occurrence of a in L, then the rotation that starts at position
i — 1 in T must be the k-th rotation that starts with a in SAr, and its position p;_1 in SAr must belong
to the compact interval range(a) that contains all rotations that start with a. For historical reasons, the
function that projects the position p; in SAp of a rotation that starts at position 4, to the position p;_; in
SAr of the rotation that starts at position ¢ — 1 (mod; n), is called LF (or last-to-first) mapping [22, 23],
and it is defined as LF(¢) = j, where SA[j] = SA[{]] — 1 (mod; n). Note that reconstructing T from its BWT
requires to know the starting position in T of its lexicographically smallest rotation.

Let again L be the Burrows-Wheeler transform of a string T € [1..0]", and assume that we have an array
C[1..0] that stores in C[c] the number of occurrences in T' of all characters strictly smaller than ¢, that is
the sum of the frequency of all characters in [1..c — 1]. Note that C[1] = 0, and that C[c] 4 1 is the position
in SAr of the first rotation that starts with character c. It follows that LF(i) = C[L[i]] 4+ rank (L, ).

Function LF can be extended to a backward search algorithm which counts the number of occurrences
in T of a string W, in O(|W]) steps, considering iteratively suffixes W[i..|W|] with ¢ that goes from |W| to
one [22, 23]. Given the interval [i1..71] that corresponds to a string V' and a character ¢, the interval [iz..jo]
that corresponds to string ¢V can be computed as iz = rank.(i; — 1) + C[¢] + 1 and j» = rank.(j1) + Clc].
If 4o > jo, then ¢V ¢ S(T). Note that, if W is a right-maximal repeat of T, a step of backward search
corresponds to taking an explicit or implicit Weiner link in STy. The time for computing a backward step is
dominated by the time needed to perform a rank query, which is typically O(loglog o) [27] or O(log o) [29].

The inverse of function LF is called ¢ for historical reasons [28, 60], and it is defined as follows. Assume
that position ¢ in SAp corresponds to rotation aW with a € [1..0]: since a satisfies Cla] < i < Cla + 1],
it can be computed from i by performing selecto(C’,i) — i+ 1 on a bitvector C’ that represents C' with
o — 1 ones and n zeros, and that is built as follows: we append C[i + 1] — C[i] zeros followed by a one for
all i € [1..0 — 1], and we append n — C[o] zeros at the end. Function (i) returns the lexicographic rank of
rotation W, given the lexicographic rank i of rotation aW, as follows: (i) = select,(BWTr,i — C[a)).



Combining the BWT and the C array gives rise to the following index, which is known as FM-indez in
the literature [22, 23]:

Definition 5. Given a string T € [1..0]", a BWT index on T is a data structure that consists of:
o BWTry, with support for rank (and select) queries;

o the integer array C[0..0], that stores in C|[c] the number of occurrences in TH# of all characters strictly
smaller than c.

The following lemma derives immediately from function LF:

Lemma 1. Given the BWT index of a string T € [1..0]" "%, there is an algorithm that outputs the sequence
SAL'[n], SAL [n —1],...,SAL 1], in O(t) time per value in the output, in O(nt) total time, and in O(logn)
bits of working space, where t is the time for performing function LF.

So far we have only described how to support counting queries, and we are still not able to locate the
starting positions of a pattern P in string 7. One way of doing this is to sample suffix array values, and to
extract the missing values using the LF mapping. Adjusting the sampling rate r gives different space/time
tradeoffs. Specifically, we sample all the values of SArx[i] that satisfy SAp4[i] = 1+ rk for 0 < k < n/r,
and we store such samples consecutively, in the same order as in SAry, in array samples[l..[n/r]]. Note
that this is equivalent to sampling every r positions in string order. We also mark in a bitvector B[1..n]
the positions of the suffix array that have been sampled, that is we set B[i| = 1 if SApx[i] = 1 + rk, and
we set B[i] = 0 otherwise. Combined with the LF mapping, this allows one to compute SA7p4[i] in O(rt)
time, where ¢ is the time required for function LF. One can set r = log' ™ n/logo for any given ¢ > 0 to
have the samples fit in (n/r)logn = nlogo/log®n = o(nlogo) bits, which is asymptotically the same as
the space required for supporting counting queries. This setting implies that the extraction of SApx[i] takes
O(loglJr€ nt/logo) time. The resulting collection of data structures is called succinct suffiz array (see e.g.
[51]).

Succinct suffix arrays can be further extended into self-indexes. A self-index is a succinct representation
of a string 7" that, in addition to supporting count and locate queries on arbitrary strings provided in input,
allows one to access any substring of 7" by specifying its starting and ending position. In other words,
a self-index for T' completely replaces the original string 7', which can be discarded. Recall that we can
reconstruct the whole string T'# from BWTr4 by applying function LF iteratively. To reconstruct arbitrary
substrings efficiently, it suffices to store, for every sampled position 1+ ri in string T#, the position of suffix
T[1+ ri..n] in SApy4: specifically, we use an additional array pos2rank[l..[n/r]] such that pos2rank[i] = j
if SArx[j] =1+ ri [23]. Note that pos2rank can be seen itself as a sampling of the inverse suffiz array at
positions 1 + 74, and that it takes the same amount of space as array samples. Given an interval [e..f] in
string T#, we can use pos2rank[k] to go to the position i of suffix T'[14rk..n] in SApx, where k = [(f—1)/7]
and 147k is the smallest sampled position greater than or equal to f in T#. We can then apply LF mapping
14 rk — e times starting from 4: the result is the whole substring T'[e..1 + rk] printed from right to left, thus
we can return its proper prefix T'[e..f]. The running time of this procedure is O((f — e + r)t).

Making a succinct suffix array a self-index does not increase its asymptotic space complexity. We can
thus define the succinct suffix array as follows:

Definition 6. Given a string T € [l..0]", the succinct suffix array of T is a data structure that takes
nlogo(l+4o(1)) + O((n/r)logn) bits of space, where r is the sampling rate, and that supports the following
queries:

o count(P): returns the number of occurrences of string P € [1..0]™ in T.
o locate(i): returns SAp4[i].
e substring(e, f): returns T[e..f].

The following result is an immediate consequence of Lemma 1:
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Lemma 2. The succinct suffic array of a string T € [1..0]™ can be built from the BWT index of T in O(nt)
time and in O(logn) bits of working space, where t is the time for performing function LF.

In Section 6 we define additional string indexes used in this paper, like the compressed suffiz array, the
compressed suffix tree, and the bidirectional BWT indexz.

3 Building blocks and techniques

3.1 Static memory allocation

Let A be an algorithm that builds a set of arrays by iteratively appending new elements to their end. In all
cases described in this paper, the final size of all growing arrays built by A can be precomputed by running
a slightly modified version A’ of A that has the same time and space complexity as A. Thus, we always
restructure A as follows: first, we run A’ to precompute the final size of all growing arrays built by A; then,
we allocate a single, contiguous region of memory that is large enough to contain all the arrays built by A,
and we compute the starting position of each array inside the region; finally, we run A using such positions.
This strategy avoids memory fragmentation in practice, and in some cases, for example in Section 3.5, it
even allows us to achieve better space bounds. See Figure 1 for a list of all algorithms in the paper that use
this technique.

3.2 Batched locate queries

In this paper we will repeatedly need to resolve a batch of queries locate(i) = SAp4[i] issued on a set of
distinct values of i in [1..n], where T € [1..0]"~!. The following lemma describes how to answer such queries
using just the BWT of T" and a data structure that supports function LF:

Lemma 3. Let T € [1..0]" ! be a string. Given the BWT of T#, a data structure that supports function
LF, and a list pairs[l..occ] of pairs (ik,pr), where i, € [1..n] is a position in SAry and py is an integer
for all k € [1..0cc], we can transform every pair (ix, pr) in pairs into the corresponding pair (SAr4(ix), Pk),
possibly altering the order of list pairs, in O(nt + occ) time and in O(occ - logn) bits of working space,
where t is the time taken to perform function LF.

Proof. Assume that we could use a bitvector marked[1..n| such that marked[ix] = 1 for all the distinct iy, that
appear in pairs. Building marked from pairs takes O(n+occ) time. Then, we invert BWT 4 in O(nt) time.
During this process, whenever we are at a position 7 in BWT7x, we also know the corresponding position
SAr4[i] in T#: if marked[i] = 1, we append pair (i, SArx[i]) to a temporary array translate[l..occ]. At
the end of this process, the pairs in translate are in reverse string order: thus, we sort both translate
and pairs in suffix array order. Finally, we perform a linear, simultaneous scan of the two sorted arrays,
replacing (ix, px) in pairs with (SAp4[ix], pr) using the corresponding pair (i, SArx[ix]) in translate.

If occ > n/logn, marked fits in O(occ-logn) bits. Otherwise, rather than storing marked[1..n], we use a
smaller bitvector marked'[1..n/h] in which we set marked’[i] = 1 iff there is an iy € [hi..h(i + 1) — 1]. As we
invert BWT 4, we check whether the block i/h that contains the current position ¢ in the BWT, is such that
marked’[i/h] = 1. If this is the case, we binary search ¢ in pairs. Every such binary search takes O(log occ)
time, and we perform at most & - occ binary searches in total. Setting h = n/(occ - logn) makes marked’ fit
in occ - logn bits, and it makes the total time spent in binary searches O(n/(logn/logocc)) € O(n).

Now if occ > +/logn, we sort array pairs[l..occ] using radix sort: specifically, we interpret each
pair (ig,pr) as a triple (msb(ig), 1sb(ix), px), where msb(z) is a function that returns the most significant
[(logn)/2] bits of x and 1sb(z) is a function that returns the least significant |(logn)/2] bits of z. Since
the resulting primary and secondary keys belong to the range [1..24/n], sorting both pairs and translate
takes O(v/n + occ) time and O((y/n + occ)logn) € O(occlogn) bits of working space. If occ < y/logn we
just sort array pairs[l..occ] using standard comparison sort, in time O(occlogn) € O(y/lognlogn). O
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3.3 Data structures for prefix-sum queries

A prefiz-sum data structure supports the following query on an array of numbers A[l..n|: given ¢ € [1..n],
return 2321 A[j]. The following well-known result, which we will use extensively in what follows, derives
from combining Elias-Fano coding [18, 20] with bitvectors indexed to support the select operation in
constant time:

Lemma 4 ([54]). Given a representation of an array of integers A[l..n] whose total sum is U, that allows
one to access its entries from left to right, we can build in O(n) time and in O(logU) bits of working space
a data structure that takes n(2 + [log(U/n)]) + o(n) bits of space and that answers prefix-sum queries in
constant time.

3.4 Data structures for access, rank, and select queries

We conceptually split a string S of length n into N = [n/o| blocks of size o each, except possibly for the
last block which might be smaller. Specifically, block number i € [1..N — 1], denoted by S, covers substring
S[o(i—1)+1..0i], and the last block S¥ covers substring S[o(N — 1)+ 1..n]. The purpose of splitting S into
blocks consists in translating global operations on S into local operations on a block: for example, access(7)
can be implemented by issuing access(i — o(b — 1)) on block b = [i/o]. The construction we describe in
this section largely overlaps with [27].

We use f(c) to denote the frequency of character ¢ in S, f(c,b) to denote the frequency of character
cin S and CP[c] as a shorthand for 22;11 f(a,b). We encode the block structure of S using bitvector
freq = freq,freq, - - - freq , where bitvector freq,[l..f(c) + N] is defined as follows:

freq, = 10/(@V10/(¢D 1 10/

Note that freq takes at most 2n 4+ o — 1 bits of space: indeed, every freq, contains exactly N ones, thus the
total number of ones in all bitvectors is o[n/o] < n+ o — 1, and the total number of zeros in all bitvectors
I8 > ceqn.01 f(c) = n. Note also that a rank or select operation on a specific freq, can be translated in
constant time into a rank or select operation on freq. Bitvector freq can be computed efficiently:

Lemma 5. Given a string S € [1..0]™, vector freq can be built in O(n) time and in o(n) bits of working
space.

Proof. We use the static allocation strategy described in Section 3.1: specifically, we first compute f(c)
for all ¢ € [1..0] by scanning S and incrementing corresponding counters. Then, we compute the size of
each bitvector freq, and we allocate a contiguous region of memory for freq. Storing all f(c¢) counters
takes ologn < (y/n/logn)logn = o(n) bits of space. Finally, we scan S once again: whenever we see the
beginning of a new block, we append a one to the end of every freq,, and whenever we see an occurrence
of character ¢, we append a zero to the end of freq,. The total time taken by this process is O(n), and the
pointers to the current end of each freq, in freq take o(n) bits of space overall. (]

Vector freq,, indexed to support rank or select operations in constant time, is all we need to translate
in constant time a rank or select operation on S into a corresponding operation on a block of S: thus, we
focus just on supporting rank and select operations inside a block of S in what follows.

For this purpose, let X be the string 1/(L0)27(2:0) ... 5f(o:b)  Gb can be seen as a permutation of
X% let m : [l..0] = [l..0] be the function that maps a position in S” onto a position in X®, and let
m, ' i [1..0] = [1..0] be the function that maps a position in X® to a position in S°. A possible choice for
such permutation functions is:

m(i) = CP[S°[]] + rankgs (S°[i], ) (1)
m (i) = selectg(i— C%[d,c) (2)
where ¢ = X°][i] is the only character that satisfies C®[c] < i < C’[c + 1]. We store explicitly just one of

m and ! so that random access to any element of the stored permutation takes constant time, and we
represent the other permutation implicitly, as described in the following lemma;:
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Lemma 6 ([48]). Given a permutation w[1..n] of sequence 1,2,... ,n, there is a data structure that takes
(n/k)logn+n+o(n) bits of space in addition to © itself, and that supports query m=*[i] for any i € [1..n] in
O(k) time, for any integer k > 1. This data structure can be built in O(n) time and in o(n) bits of working
space. The query and the construction algorithms assume constant time access to any element 7[i].

Proof. A permutation 7[1..n] of sequence 1,2,...,n can be seen as a collection of cycles, where the number
of such cycles ranges between one and n. Indeed, consider the following iterated version of the permutation
operator:

‘e i ift=0

il = { rlrtlE)] it t >0
We say that a position ¢ in 7 belongs to a cycle of length ¢, where ¢ is the smallest positive integer such that
wt[i] = i. Note that 7 can be decomposed into cycles in linear time and using n bits of working space, by
iterating operator 7 from position one, by marking in a bitvector all the positions that have been touched

by such iteration, and by repeating the process from the next position in 7 that has not been marked.

If a cycle contains a number of arcs t greater than a predefined threshold k, it can be subdivided
into [t/k] paths containing at most k arcs each. We store in a dictionary the first vertex of each path,

and we associate with it a pointer to the first vertex of the path that precedes it. That is, given a cycle
x,w[w], 7%[z], ..., w7 [z], z, the dictionary stores the set of pairs:

{(x,wkﬂt/“ﬂ[x])} U {(wik[x],w@*m[x]) cie [L.([t/k] - 1)]} .

Then, we can determine 7~ 1[i] for any value i in O(k) time, by successively computing i, 7[i], 72[i], . . . , 7[i]
and by querying the dictionary for every vertex in such sequence. As soon as the query is successful for some
7l [i] with j € [0..k], we get 7/ ~*[i] from the dictionary and we compute the sequence 7/ ~*[i], wI =*+1[i], 79 =k+2[3] ... 7= L[d], 4,
returning 7~ *[i]. The dictionary can be implemented using a table and a bitvector of size n with rank sup-
port, which marks the first element of each path of length k of each cycle. O

Combining Lemma 5 and Lemma 6 with Equations 1 and 2, we obtain the key result of this section:

Lemma 7. Given a string of length n over alphabet [1..0], we can build the following data structures in
O(n) time and in o(n) bits of working space:

e a data structure that takes at most nlogo + 4n + o(n) bits of space, and that supports access and
partialRank in constant time;

e a data structure that takes nlogo(l + 1/k) 4+ bn + o(n) bits of space for any positive integer k, and
that supports either access and partialRank in constant time and select in O(k) time, or select
in constant time and access and partialRank in O(k) time.

Neither of these data structures requires the original string to support access, partialRank and select.

Proof. In addition to the data structures built in Lemma 5, we store m, explicitly for every S, spending
overall nlog o bits of space. Note that m, can be computed from S® in linear time for all b € [1..N]. We also
store C? for every S” as a bitvector of 20 bits that coincides with a unary encoding of X® (that is we store
107 (1L0)10F(2:0) ... 1Of("7b)): given a position i in block S®, we can determine the character ¢ that satisfies
C®[c] < mp[i] < CPlc+ 1] using a select and a rank query on such bitvector, thus implementing access
to Sb[i] in constant time. In turn, this allows one to implement partialRankgy (i) in constant time using
Equation 1.

A select query on C?, combined with the implicit representation of T, ! described in Lemma 6, allows
one to implement select on S° in O(k) time, at the cost of (o/k)logo + o + o(c) bits of additional space
per block. The complexity of selectgs can be exchanged with that of accessg: and partialRankg,, by
storing explicitly ! rather than .

Note that the individual lower-order terms o(o) needed to support rank and select queries on the bitvectors
that encode C?, and in the structures implemented by Lemma 6, do not necessarily add up to o(n). Thus,
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for each of the two cases, we concatenate all the individual bitvectors, we index them for rank and/or select
queries, and we simulate operations on each individual bitvector using operations on the bitvectors that
result from the concatenation. O

In some parts of the paper we will need an implementation of rank rather than of partialRank, and to
support this operation efficiently we will use predecessor queries. Given a set of sorted integers, a predecessor
query returns the index of the largest integer in the set that is smaller than or equal to a given integer provided
in input. It is known that predecessor queries can be implemented efficiently, for example with the following
data structure:

Lemma 8 ([69, 34]). Given a sorted sequence of n integers z* < 2% < --- < ™, where z* is encoded in log U
bits for all i € [1..n], we can build in O(n) time and in O(nlogU) bits of working space a data structure that
takes O(nlogU) bits of space, and that answers predecessor queries in O(loglogU) time. This data structure
does not require the original sequence of integers to answer queries.

The original predecessor data structure described in [69] (called y-fast trie) has an expected linear time
construction algorithm. Construction time is randomized, since the data structure uses a hash table. To
obtain deterministic linear construction time, one can replace the hash table with a deterministic dictio-
nary [34].

Implementing rank queries amounts to plugging Lemma 8 into the block partitioning scheme of Lemma
7

Lemma 9. Given a string of length n over alphabet [1..0] and an integer ¢ > 1, we can build a data structure
that takes nlogo(1 + 1/k) + 6n + O(n/log" ' o) + o(n) bits of space for any positive integer k, and that
supports:

e cither access and partialRank in constant time, select in O(k) time, and rank in O(kcloglogo)
time;

e or access and partialRank in O(k) time, select in constant time, and rank in O(cloglogo) time.

This data structure can be built in O(n) time and in o(n) bits of working space, and it does not require the
original string to support access, rank and select.

Proof. As described in Lemma 7, we divide the string 7" into blocks of size ¢ and we build bitvectors freq,
for every a € [l..0]. We support rank,(i) as follows. Let b be the block that contains position i, where
blocks are indexed from zero. First, we determine the number of zeros in freq, that precede the b-th one,
by computing selectsreq, (b,1) — b. Then, if character a occurs at most log®o times inside block b, we
binary-search the list of zeros in block b of freq,, using at each step a select query to convert the position of
a zero inside block b of freq, into an occurrence of character @ in string T'. This process takes O(7cloglog o)
time, where 7 is the time to perform a select query on T

If character a occurs more than log® o times inside block b of freq,, we use a sampling strategy similar
to the one described in [69]. Specifically, we sample the relative positions at which a occurs inside block b,
every log® o occurrences of a zero in freq,, and we encode such positions in the data structure described in
Lemma 8. Let us call the sampled positions of a block red positions, and all other positions blue positions.
Since positions are relative to a block, the size of the universe is o, thus the data structure of every block
takes O(mlogo) bits of space and it answers queries in time O(loglogo), where m is the number of red
positions of the block. We use the data structure of Lemma 8 to find the index j of the red position of a that
immediately precedes position 4 inside block b: this takes O(loglog o) time. Since we sampled red positions
every log® o occurrences of a in block b, we know that there are exactly (j + 1)log®c — 1 zeros inside block
b before the j-th red position. Finally, we find the blue position that immediately precedes position ¢ inside
block b by binary-searching the set of log®o — 1 blue positions between two consecutive red positions, as
described above, in time O(rcloglog o).

With this strategy we build O(n/log® o) data structures of Lemma 8, containing in total O(n/log® o)
elements, thus the total space taken by all such data structures is O(n/log®™ ! o) bits. Note also that all such
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data structures can be built using just O(c/log® ' &) bits of working space. For every character a € [1..0],
we store all data structures consecutively in memory, and we encode their starting positions in the prefix-sum
data structure described in Lemma 4. All such prefix-sum data structures take overall O(nloglogo/log o)
bits of space, and they can be built in O(logn) bits of working space. We use also a bitvector which, of size
[n/o] to mark the blocks of freq, for which we built a data structure of Lemma 8. To locate the starting
position of the data structure of a given block and character a, we use a rank query on which, and we query
the prefix-sum data structure in constant time. The bitvectors for all characters take overall n + o(n) bits
of space. O

In the space complexity of Lemma 9, we can achieve 5n rather than 6n by replacing the plain bitvectors
which, with the compressed bitvector representation described in [58], which supports constant-time rank
queries using (cloglogo/log®o)n + O(n/polylog(n)) bits. Lemma 9 can be further improved by replacing
binary searches with queries to the following data structure:

Lemma 10 ([30]). Given a sorted sequence of n integers x' < x? < --- < ™, where x' is encoded in log U
bits for all i € [1..n], and given a constant € < 1 and a lookup table of size O(U€) bits, we can build in O(n)
time and in O(nlogU) bits of working space, a data structure that takes O(nloglogU) bits of space, and that
answers predecessor queries in O(t/€) time, where t is the time to access an element of the sorted sequence
of integers. The lookup table can be built in polynomial time on its size.

Lemma 11. Given a string of length n over alphabet [1..0], we can build a data structure that takes nlogo(1+
1/k) + O(nloglog o) bits of space for any positive integer k, and that supports:

e cither access and partialRank in constant time, select in O(k) time, and rank in O(loglogo + k)
time;

e or access and partialRank in O(k) time, select in constant time, and rank in O(loglogo) time.

This data structure can be built in O(n) time and in o(n) bits of working space, and it does not require the
original string to support access, rank and select.

Proof. We proceed as in Lemma 9, but we build the data structure of Lemma 10 on every sequence of
consecutive log® 0 — 1 blue occurrences of a inside the same block b. Every such data structure uses O(log® o -
loglog o) bits of space, and a O(7/¢)-time predecessor query to such a data structure replaces the binary
search over the blue positions performed in Lemma 10, where 7 is the time to perform a select query on T
The total time to build all the data structures of Lemma 10 for all blocks and for all characters is O(n). All
such data structures take overall O(nloglog o) bits of space, and they all share the same lookup table of
size o(o) bits, which can be built in o(c) time by choosing € small enough. We also build, in O(n) time, the
prefix-sum data structure of Lemma 4, which allows constant-time access to each data structure of Lemma
10. O

3.5 Representing the topology of suffix trees

It is well known that the topology of an ordered tree T' with n nodes can be represented using 2n+ o(n) bits,
as a sequence of 2n balanced parentheses built by opening a parenthesis, by recurring on every child of the
current node in order, and by closing a parenthesis [49]. To support tree operations on such representation,
we will repeatedly use the following data structure:

Lemma 12 ([61, 52]). Let T be an ordered tree with n nodes, and let id(v) be the rank of a node v in the
preorder traversal of T. Given the balanced parentheses representation of T encoded in 2n + o(n) bits, we
can build a data structure that takes 2n + o(n) bits, and that supports the following operations in constant
time:

e child(id(v),4): returns id(w), where w is the ith child of node v (i > 1), or O if v has less than i
children;
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e parent(id(v)): returns id(u), where u is the parent of v, or () if v is the root of T';
e lca(id(v),id(w)): returns id(u), where u is the lowest common ancestor of nodes v and w;

e leftmostLeaf(id(v)), rightmostLeaf(id(v)): returns one plus the number of leaves that, in the pre-
order traversal of T, are visited before the first (respectively, the last) leaf that belongs to the subtree of
T rooted at v;

e selectLeaf(i): returns id(v), where v is the i-th leaf visited in the preorder traversal of T';

e depth(id(v)), height(id(v)): returns the distance of v from the root or from its deepest descendant,
respectively;

e ancestor(id(v),d): returns id(u), where u is the ancestor of v at depth d;
This data structure can be built in O(n) time and in O(n) bits of working space.

Note that the operations supported by Lemma 12 are enough to implement a preorder traversal of T in
small space, as described by the following folklore lemma:

Lemma 13. Let T be an ordered tree with n nodes, and let id(v) be the rank of a node v in the preorder
traversal of T'. Assume that we have a representation of T that supports the following operations:

e firstChild(id(v)): returns the identifier of the first child of node v in the order of T;

e nextSibling(id(v)): returns the identifier of the child of the parent of node v that follows v in the
order of T;

e parent(id(v)): returns the identifier of the parent of node v.
Then, a preorder traversal of T can be implemented using O(logn) bits of working space.

Proof. During a preorder traversal of T we visit every leaf exactly once, and every internal node exactly
twice. Specifically, we visit a node v from its parent, from its previous sibling, or from its last child in the
order of T'. If we visit v from its parent or from its previous sibling, in the next step of the traversal we will
visit the first child of v from its parent — or, if v has no child, we will visit the next sibling of v from its
previous sibling if v is not the last child of its parent, otherwise we will visit the parent of v from its last
child. If we visit v from its last child, in the next step of the traversal we will visit the next sibling of v from
its previous sibling — or, if v has no next sibling, we will visit the parent of v from its last child. Thus, at
each step of the traversal we need to store just id(v) and a single bit that encodes the direction in which we
visited v. O

In this paper we will repeatedly traverse trees in preorder. Not surprisingly, the trees we will be interested
in are suffix trees or contractions of suffix trees, induced by selecting a subset of the nodes of a suffix tree
and by connecting such nodes using their ancestry relationship (the parent of a node in the contracted tree is
the nearest selected ancestor in the original tree). We will thus repeatedly need the following space-efficient
algorithm for building the balanced parentheses representation of a suffix tree:

Lemma 14. Let S € [1..0]" ! be a string. Assume that we are given an algorithm that enumerates all the
intervals of SAgy that correspond to an internal node of STgy, in t time per interval. Then, we can build
the balanced parentheses representation of the topology of STgx in O(nt) time and in O(n) bits of working
space.

Proof. We assume without loss of generality that logn is a power of two. We associate two counters to every
position 7 € [1..n], one containing the number of open parentheses and the other containing the number
of closed parentheses at i. We implement such counters with two arrays C,[1..n] and C.[1..n]. Given the
interval [i..7] of an internal node of ST g4, we just increment C,[i] and C.[j]. Once all such intervals have been
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enumerated, we scan C, and C. synchronously, and for each i € [1..n] we write C,[i] + 1 open parentheses
followed by C.[i]4 1 closed parentheses. The total number of parentheses in the output is at most 2(2n — 1).

A naive implementation of this algorithm would use O(nlogn) bits of working space: we achieve O(n)
bits using the static allocation strategy described in Section 3.1. Specifically, we partition C,[1..n] into [n/b]
blocks containing b > 1 positions each (except possibly for the last block, which might be smaller), and we
assign to each block a counter of ¢ bits. Then, we enumerate the intervals of all internal nodes of the suffix
tree, incrementing counter [i/b] every time we want to increment position i in C,. If a counter reaches its
maximum value 2¢ — 1, we stop incrementing it and we call saturated the corresponding block. The space
used by all such counters is [n/b] - ¢ bits, which is O(n) if ¢ is a constant multiple of b. At the end of this
process, we allocate a memory area of size blogn bits to each saturated block, so that every position ¢ in
a saturated block has logn bits available to store C,[i]. Note that there can be at most (n —1)/(2¢ — 1)
saturated blocks, so the total memory allocated to saturated blocks is at most nblogn/(2° — 1) bits: this
quantity is o(n) if 2¢ grows faster than blogn.

To every non-saturated block we assign a memory area in which we will store the counters for all the b
positions inside the block. Specifically, we will use Elias gamma coding to store a counter value x > 0 in
exactly 14 2[log(z+1)] < 3+2log(x+1) bits [19], and we will concatenate the encodings of all the counters
in the same block. The space taken by the memory area of a non-saturated block j whose counter has value
t < 2°—11is at most:

jb
> (3+2log(Coli] +1))
i=(j—1)b+1
b .
i Colil +1
< 3b+2blog <Z”J‘1)b+bl( 2 )> (3)
= 3b+2blog <¥) (4)
< 5b+2t (5)

where Equation 3 derives from applying Jensen’s inequality to the logarithm, and Equation 5 comes from
the fact that logx < x for all x > 1. Since ZZ{H t <n—1, it follows that the total number of bits allocated
to non-saturated blocks is at most 7n for any choice of b (tighter bounds might be possible, but for clarity we
don’t consider them here). We concatenate the memory areas of all blocks, and we store a prefix-sum data
structure that takes o(n) bits and that returns in constant time the starting position of the memory area
allocated to any given block (see Lemma 4). We also store a bitvector isSaturated[l..[n/b]] that marks
every saturated block with a one and index it for rank queries.

Once memory allocation is complete, we enumerate again the intervals of all internal nodes of the suffix
tree, and for every such interval [i..j] we increment C,[i], as follows. First, we compute the block that
contains position 7, we use isSaturated to determine whether the block is saturated or not, and we use
the prefix-sum data structure to retrieve in constant time the starting position of the region of memory
assigned to the block. If the block is saturated, we increment the counter that corresponds to position 4
directly. Otherwise, we access a precomputed table T,[1..2%,1..b] such that T}[i, j] stores, for every possible
configuration ¢ of s bits interpreted as the concatenation of the Elias gamma coding of b counter values
', 22, ..., 2%, the configuration of s bits that represents the concatenation of the Elias gamma coding of
counter values z', 2%, ..., 277, 2/ + 1,277 ... zb. The total number of bits used by all such tables is at
most YY_, 25bs = 2b + b(y — 1)2¥"!, where y = 3b + 2blog((t 4 b)/b) with ¢t = 2¢ — 2 is from Equation 4.
Thus, we need to choose b and ¢ so that by2¥ € o(n): setting b = loglogn and ¢ = db for any constant d > 1
makes y € O((loglogn)?), and thus by2¥ € o(n). The same choice of b and ¢ guarantees that a cell of Ts can
be read in constant time for any s, and that the space for the counters in the memory allocation phase of
the algorithm is O(n). Finally, setting d > 2 guarantees that 2¢ grows faster than blogn, thus putting the
total memory allocated to saturated blocks in o(n). Tables T for all s € [1..y] can be precomputed in time
linear in their size.
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Array C. of closed parentheses can be handled in the same way as array C,. O

We will also need to be able to follow the suffix link that starts from any node of a suffix tree. Specifically,
let operation suffixLink(id(v)) return the identifier of the destination w of a suffix link from node v of
STsx. The topology of ST g4 can be augmented to support operation suffixLink, using just BWT g4:

Lemma 15 ([63]). Let S € [1..0]" 7! be a string. Assume that we are given the representation of the topology
of STsy described in Lemma 12, the BWT of S# indexed to support select operations in time t, and the C
array of S. Then, we can implement function suffixLink(id(v)) for any node v of STgx (possibly a leaf)
in O(t) time.

Proof. Let w be the destination of the suffix link from v, let [i..5] be the interval of node v in BWTgy,
and let ¢(v) = aW and ¢(w) = W, where a € [0..0] and W € [0..0]*. We convert id(v) to [i..j] using
operations leftmostLeaf and rightmostLeaf of the topology. Let aW X and aWY be the suffixes of S#
that correspond to positions ¢ and j in BWT g4, respectively, where X and Y are strings on alphabet [0..0].
Note that the position i’ of WX in BWT gy is select,(BWTgy,i — Clal]), the position j' of WY in BWT g4
is select,(BWTsx,j — Cla]), and W is the longest prefix of the suffixes that correspond to positions i’ and
j" in BWT gy, which also labels a node of STgx. We use operation selectLeaf provided by the topology of
STs4 to convert ¢’ and j' to identifiers of leaves in STgx, and we compute id(w) using operation lca on
such leaves. O

Note that, if aWV is neither a suffix nor a right-maximal substring of S#, i.e. if aW is always followed by
the same character b € [1..0], the algorithm in Lemma 15 maps the locus of aW to the locus of WbX in ST g4,
where X € [l..0]* and aWbX is the (unique) shortest right-extension of aW that is right-maximal. The
locus of WbX might not be the same as the locus of W. As we will see in Section 6, this is the reason why the
bidirectional BWT index of Definition 7 (on page 36) does not support operation contractLeft (respectively,
contractRight) for strings that are neither suffixes nor right-maximal substrings of S# (respectively, of

S#).
3.6 Data structures for monotone minimal perfect hash functions

Given a set S C [1..U] of size n, a monotone minimal perfect hash function (denoted by MMPHF in what
follows) is a function f : [1..U] — [l..n] such that z < y implies f(x) < f(y) for every x,y € S. In other

words, if the set of elements of S is 2! < 2% < --- < 2™, then f(2') = 4, i.e. the function returns the rank
inside S of the element it takes as an argument. The function is allowed to return an arbitrary value for any
z € [L.UJ\S.

To build efficient implementations of MMPHF's, we will repeatedly take advantage of the following lemma:

Lemma 16 ([6]). Let S C [1..U] be a set represented in sorted order by the sequence x' < 2% < -+ < a™,
where x* is encoded in logU bits for all i € [1..n] and logU < n. There is an implementation of a MMPHF
on S that takes O(nloglogU) bits of space, that evaluates f(x) in constant time for any x € [1..U], and that
can be built in randomized O(n) time and in O(nlogU) bits of working space.

Proof. We use a technique known as most-significant-bit bucketing [7]. Specifically, we partition the sequence
that represents S into [n/b] blocks of consecutive elements, where each block B* = z(=Db+1 2 contains
exactly b = logn elements (except possibly for the last block z(~D¥*+! 2" which might be smaller).
Then, we compute the length of the longest common prefix p’ of the elements in every B?, starting from the
most significant bit. To do so, it suffices to compute the longest prefix that is common to the first and to the
last element of B%: this can be done in constant time using the mostSignificantBit operation, which can
be implemented using a constant number of multiplications [14]. The length of the longest common prefix
of a block is at most logU —loglogn € O(logU).

Then, we build an implementation of a minimal perfect hash function F' that maps every element in S
onto a number in [1..n]. This can be done in O(nlogU) bits of working space and in randomized O(n) time:
see [33]. We also use a table 1cp[l..n] that stores at index F(z*) the length of the longest common prefix
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of the block to which x% belongs, and a table pos[l..n] that stores at index F(z*) the relative position of x?
inside its block. Formally:

Lep[F(')] = bl
pos[F(z')] = i—b-[(i—1)/)

The implementation of F' takes O(n + loglogU) bits of space, 1cp takes O(nloglogU) bits, and pos takes
O(nloglogn) bits.

It is folklore that all p’ values are distinct, thus each p’ identifies block ¢ uniquely. We build an
implementation of a minimal perfect hash function G on set p',p?,...,p/"/l and an inversion table
lcp2block(l..[n/b]] that stores value i at index G(p*). The implementation of G' takes O(n/logn+loglogU)
bits of space, and it can be built in O((n/logn)logU) bits of working space and in randomized O(n/logn)
time. Table 1cp2block takes O((n/logn) -log(n/logn)) = O(n) bits. With this setup of data structures,

we can return in constant time the rank ¢ in S of any z*, by issuing:

i—l)/bj+1|

i=b- 1cp2block{G(xi [1lcp[F(xl)]H + pos[F(z")]

where x'[g..h] denotes the substring of the binary representation of 2% in log U bits that starts at position g
and ends at position h. o

We will mostly use Lemma 16 inside the following construction, which is based on partitioning the
universe rather than the set of numbers:

Lemma 17. Let S C [1..U] be a set represented in sorted order by the sequence x' < x? < --- < 2™, where
xt is encoded in logU bits for all i € [1..n]. There is an implementation of a MMPHF on S that takes
O(nloglogd) + [U/b](2 + [log(nb/U)]) + o(U/b) bits of space, that evaluates f(x) in constant time for any
x € [1..U], and that can be built in randomized O(n) time and in O(blogd) bits of working space, for any
choice of b.

Proof. We will make use of a partitioning technique known as quotienting [57]). We partition interval [1..U]
into n’ < n blocks of size b each, except for the last block which might be smaller. Note that the most
significant log U — log b bits are identical in all elements of S that belong to the same block. For each block ¢
that contains more than one element of S, we build an implementation of a monotone minimal perfect hash
function f* on the elements inside the block, as described in Lemma 16, restricted to their least significant
log b bits: all such implementations take O(nloglogb) bits of space in total, and constructing each of them
takes O(blogb) bits of working space. Then, we use Lemma 4 to build a prefix-sum data structure that
encodes in [U/b](2 4+ [log(nb/U)]) + o(U/b) bits of space the number of elements in every block. Given an
element z € [1..U], we first find the block it belongs to, by computing ¢ = [x/b], then we use the prefix-sum
data structure to compute the number r of elements in S that belong to blocks smaller than 4, and finally
we return r + f¢(z[log U —logb + 1..1og U]), where z[g..h] denotes the substring of the binary representation
of z in log U bits that starts at position g and ends at position h. O

The construction used in Lemma 17 is a slight generalization of one initially described in [6]. Setting
b= [U/n] in Lemma 17 makes the MMPHF implementation fit in O(nloglog(U/n)) bits of space.

3.7 Data structures for range-minimum and range-distinct queries

Given an array of integers A[1..n], let function rmq(4, j) return an index k € [i..j] such that A[k] = min{A[z] :
x € [i..j]}, with ties broken arbitrarily. We call this function a range minimum query (RMQ) over A. Tt
is known that range-minimum queries can be answered by a data structure that is small and efficient to
compute:
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Lemma 18 ([25]). Assume that we have a representation of an array of integers A[l..n] that supports
accessing the value A[i] stored at any position i € [1..n] in time t. Then, we can build a data structure that
takes 2n + o(n) bits of space, and that answers rmq(i, j) for any pair of integers i < j in [1..n] in constant
time, without accessing the representation of A. This data structure can be built in O(nt) time and in
n+ o(n) bits of working space.

Assume now that the elements of array A[l..n] belong to alphabet [1..0], and let ; ; be the set of distinct
characters that occur inside subarray Ali..j]. Let function rangeDistinct(i,j) return the set of tuples
{(c,ranka(c, p.),ranka(c, gc)) : ¢ € X; ;} in any order, where p. and g. are the first and the last occurrence
of ¢ in A[i..j], respectively. The frequency of any ¢ € ¥, ; inside A[i..j] is ranka(c, g.) — ranka(c, pc) + 1.
It is well known that rangeDistinct queries can be implemented using rmq queries on a specific array, as
described in the following lemma:

Lemma 19 ([50, 64, 11]). Given a string A € [1..0]™, we can build a data structure of size nlogo + 8n +
o(n) bits that answers rangeDistinct(i,j) for any pair of integers i < j in [1..n] in O(occ) time and in
olog(n + 1) bits of temporary space, where occ = |¥; ;|. This data structure can be built in O(kn) time
and in (n/k)logo 4 2n + o(n) bits of working space, for any positive integer k, and it does not require A to
answer rangeDistinct queries.

Proof. To return just the distinct characters in ¥; ; it suffices to build a data structure that supports RMQs
on an auxiliary array P[l..n], where P[i] stores the position of the previous occurrence of character A[i] in
A. Since rmq(i, j) is the leftmost occurrence of character A[rmq(4,j)] in Afé..j], it is well known that ¥, ;
can be built by issuing O(occ) rmq queries on P and O(occ) accesses to A, using a stack of O(occ - logn)
bits and a bitvector of size o. This is achieved by setting k = rmq(i, j), by recurring on subintervals [i..k — 1]
and [k + 1..j], and by using the bitvector to mark the distinct characters observed during the recursion and
to stop the process if A[k] is already marked [50]. Random access to array P can be simulated in constant
time using partialRank and select operations on A, which can be implemented as described in Lemma 7
setting k to a constant. We use the data structures of Lemma 7 also to simulate access to A without storing
A itself. We build the RM(Q data structure using Lemma 18. After construction, we will never need to
answer select queries on A, thus we do not output the (n/k)logo 4+ n + o(n) bits that encode the inverse
permutation in Lemma 7.

To report partial ranks in addition to characters, we adapt this construction as follows. We build a
data structure that supports RMQs on an auxiliary array N[1..n], where N|i] stores the position of the next
occurrence of character Afi] in A. Given an interval [i..j], we first use the RMQ data structure on P and a
vector chars(l..0] of o log(n+1) bits to store the first occurrence p,. of every ¢ € ¥; ;. Then, we use the RMQ
data structure on NV to detect the last occurrence ¢. of every ¢ € 3; ;, and we access chars|c| both to retrieve
the corresponding p. and to clean up cell chars|c] for the next query. Finally, we compute rank(c, p.) and
ranky(c, q.) using the partialRank data structure of Lemma 7. To build the data structure that supports
RMQs on N, we can use the same memory area of n+o(n) bits used to build the data structure that supports
RMQs on P. O

The temporary space used to answer a rangeDistinct query can be reduced to o bits by more involved
arguments [11]. Rather than using partialRank, select, and access, we can implement the rangeDistinct
operation using MMPHFs: the following lemma details this approach, since the rest of the paper will
repeatedly use its main technique.

Lemma 20 ([11]). We can augment a string A € [1..0]"™ with a data structure of size O(nloglog o) bits that
answers rangeDistinct(i, j) for any pair of integers i < j in [1..n] in O(occ) time and in olog(n + 1) bits
of temporary space, where occ = |, ;|. This data structure can be built in O(n) randomized time and in
O(nlogo) bits of working space.

Proof. We build the set of sequences {P. : ¢ € [1..0]}, such that P. contains all the positions p1, pa, ..., px of
character ¢ in A in increasing order. We encode P, as a bitvector such that position p; for i > 1 is represented
by the Elias gamma coding of p; — p;—1. The total space taken by all such sequences is O(nlog o) bits, by
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applying Jensen’s inequality twice. Let | P.| be the number of bits in P.: we compute |P.| and we allocate a
corresponding region of memory using the static allocation strategy described in Section 3.1. We also mark
in an additional bitvector start.[l..|P.|] the first bit of every representation of a p; in P, and we index
start. to support select queries.

Then, we build an implementation of an MMPHF for every P,, using Lemma 17 with U = n and b = o*
for some positive integer k. Specifically, for every ¢, we perform a single scan of sequence P,, decoding all the
positions that fall inside the same block of A of size ¢*, and building an implementation of an MMPHF for
the positions inside the block. Once all such MMPHFs have been built, we discard all P. sequences. The total
space used by all MMPHF implementations is at most O(n(log log o+log k))+(nk/a*) log o+2n/o*+o(n/o*)
bits: any & > 1 makes such space fit in O(nloglog o) bits, and it makes the working space of the construction
fit in O(c* log o) bits. Since we assumed o € o(y/n/logn), setting k € {1,2} makes this additional space fit
in O(nlogo) bits.

Finally, we proceed as in Lemma 19. Given a position i, we can compute rank4(A[i],i) by querying
the MMPHF data structure of character A[i], and we can simulate random access to P[i] by querying the
MMPHF data structure of character A[i] and by accessing p; — P[i] using a select operation on start 4. O

Lemma 19 builds an internal representation of A, and the original representation of A provided in the
input can be discarded. On the other hand, Lemma 20 uses the input representation of A to answer queries,
thus it can be combined with any representation of A that allows constant-time access — for example with
those that represent A up to its kth order empirical entropy for k € o(log, n) [24].
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4 Enumerating all right-maximal substrings

The following problem lies at the core of our construction and, as we will see in Section 7, it captures the
requirements of a number of fundamental string analysis algorithms:

Problem 2. Given a string T € [1..0]" 14, return the following information for all right-maximal substrings
W of T:

o |W| and range(W) in SAp;

o the sorted sequence by < by < --- < by, of all the distinct characters in [0..0] such that Wb; is a substring
of T';

o the sequence of intervals range(Whby),...,range(Wby);

® a sequence ai,as,...,ay that lists all the h distinct characters in [0..0] such that a;,W is a prefiz of a
rotation of T'; the sequence ay,as,...,an is not necessarily in lexicographic order;

e the sequence of intervals range(a1W),. .., range(apW).

Problem 2 does not specify the order in which the right-maximal substrings of T (or equivalently, the
internal nodes of STp) must be enumerated, nor the order in which the left-extensions a;W of a right-
maximal substring W must be returned. It does, however, specify the order in which the right-extensions
Wb; of W must be returned.

The first step for solving Problem 2 consists in devising a suitable representation for a right-maximal
substring W of T'. Let v(a, W) be the number of distinct strings Wb such that aWWb is a prefix of a rotation
of T, where a € [0..0] and b € {b1,...,b;}. Note that there are precisely v(a, W) distinct characters to the
right of aW when it is a prefix of a rotation of T: thus, if v(a, W) = 0, then aW is not a prefix of any
rotation of T'; if y(a, W) = 1 (for example when a = #), then aW is not a right-maximal substring of T
and if v(a, W) > 2, then aWV is a right-maximal substring of T'. This suggests to represent a substring W of
T with the following pair:

repr(W) = (chars[l..k], first[l..k + 1])

where chars[i] = b; and range(Wb;) = [first[i]..first[i + 1] — 1] for ¢ € [1..k]. Note that range(W) =
[first[l]..first[k+ 1] — 1], since it coincides with the concatenation of the intervals of the right-extensions
of W in lexicographic order. If W is not right-maximal, array chars and first in repr(WW) have length one
and two, respectively.

Given repr(W), repr(a;W) can be precomputed for all i € [1..h], as follows:

Lemma 21. Assume the notation of Problem 2. Given a data structure that supports rangeDistinct queries
on BWTr, given the C array of T, and given repr(W) = (chars|l..k|, first[l..k + 1]) for a substring W of
T, we can compute the sequence aq,...,an and the corresponding sequence repr(aiW),... , repr(apW), in
O(t - occ) time and in O(a?logn) bits of temporary space, where t is the time taken by the rangeDistinct
operation per element in its output, and occ is the number of distinct strings a;Wb; that are the prefir of a
rotation of T, where i € [1..h] and j € [1..k].

Proof. Let leftExtensions[l..c + 1] be a vector of characters given in input to the algorithm and initialized
to all zeros, and let h be the number of nonempty cells in this vector. We will store in vector leftExtensions
all characters aq,as, ..., an, not necessarily in lexicographic order. Consider also matrices A[0..c,1..0 + 1],
F[0..0,1..c + 1] and L[0..0,1..0 + 1], given in input to the algorithm and initialized to all zeros, whose
rows correspond to possible left-extensions of W. We will store character b; in cell Aa;,p], for increasing
values of p starting from one, iff a;Wb; is the prefix of a rotation of 7": in this case, we will also set
Fla;,p] = sp(a;Wh;) and Lla;,p] = ep(a;Wb;). In other words, every triplet (Alai,p|, Flas,p], L{a;, p])
identifies the right-extension Wb; of W associated with character b; = Ala;, p|, and it specifies the interval
of a;Wb; in BWT (see Figure 2). We use array gamma[0..0], given in input to the algorithm and initialized
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to all zeros, to maintain, for every a € [0..0], the number of distinct characters b € {by,...,bx} such that
aWb is the prefix of a rotation of T, or equivalently the number of nonempty cells in row a of matrices A,
F and L. In other words, gammala] = y(a, W).
For every j € [1..k], we enumerate all the distinct characters that occur inside the interval BWTp[first[j]..first[j+
1]—1] of string Wb; = W-chars][j], along with the corresponding partial ranks, using operation rangeDistinct.
Recall that rangeDistinct does not necessarily return such characters in lexicographic order. For every
character a returned by rangeDistinct, we compute range(aWb;) in constant time using the C' array and
the partial ranks, we increment counter gammala] by one, and we set:

Ala,gammala]] = chars[j]
Fla,gammala]] = sp(aWb;)
L [a, gamma[aﬂ = ep(aWb;)

See Figure 2 for an example. If gammala] transitioned from zero to one, we increment h by one and we
set leftExtensions[h] = a. At the end of this process, leftExtensions[i] = a; for ¢ € [1..h] (note again
that the characters in leftExtensions|[l..h] are not necessarily sorted lexicographically), the nonempty
rows in A, F' and L correspond to such characters, the characters that appear in row a; of matrix A are
sorted lexicographically, and the corresponding intervals [F [ai, p]..La;, pH are precisely the intervals of string
a;W - Ala;,p] in BWTr. Tt follows that such intervals are adjacent in BWTr, thus:

repr(a;W) = (Ala;, 1..gammala;]], F [a;, 1..gammala;]] o (L[a;, gammala;]] + 1))

where X ey denotes appending number y to the end of array X. We can restore all matrices and vectors
to their original state within the claimed time budget, by scanning over all cells of leftExtensions, using
their value to address matrices A, ' and L, and using array gamma to determine how many cells must be
cleaned in each row of such matrices. O

Iterated applications of Lemma 21 are almost all we need to solve Problem 2 efficiently, as described in
the following lemma:

Lemma 22. Given a data structure that supports rangeDistinct queries on the BWT of a string T €
[1..0]" Y4, and given the C array of T, there is an algorithm that solves Problem 2 in O(nt) time and in
O(o? log? n) bits of working space, where t is the time taken by the rangeDistinct operation per element in
its output.

Proof. We use again the notation of Problem 2. Assume by induction that we know repr (W) = (chars[l..k], first[l..k+
1]) and |W| for some right-maximal substring W of T. Using Lemma 21, we compute a; and repr(a;W) =
(chars;[l..k;], first,[1..k;+1]) for all ¢ € [1..h], and we determine whether a; W is right-maximal by checking
whether |chars;| > 1, or equivalently whether gammala;] > 1 in Lemma 21: if this is the case, we push pair
(repr(a;W),|W|+1) to astack S. In the next iteration, we pop the representation of a string from the stack
and we repeat the process, until the stack becomes empty. Note that this is equivalent to following all the
explicit Weiner links from (or equivalently, all the reverse suffix links to) the node v of STt with £(v) = W,
not necessarily in lexicographic order. Thus, running the algorithm from a stack initialized with repr(e) is
equivalent to a depth-first traversal of the suffiz-link tree of T (not necessarily following the lexicographic
order of Weiner link labels): recall from Section 2.3 that a traversal of SLTy guarantees to enumerate all the
right-maximal substrings of T'. Triplet repr(e) can be easily built from the C array of T

Every rangeDistinct query performed by the algorithm can be charged to a distinct node of ST,
and every tuple in the output of all such rangeDistinct queries can be charged to a distinct (explicit
or implicit) Weiner link. It follows from Observation 1 that the algorithm runs in O(nt) time. Since the
algorithm performs a depth-first traversal of the suffix-link tree of 7', the depth of the stack is bounded by
the length of a longest right-maximal substring of 7. More precisely, since we always pop the element at the
top of the stack, the depth of the stack is bounded by quantity pr defined in Section 2.2, i.e. by the largest
number of (not necessarily proper) suffixes of a maximal repeat that are themselves maximal repeats. Even
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Figure 2: Lemma 21 applied to the right-maximal substring W = ¢(v). Gray directed arcs represent implicit
and explicit Weiner links. White dots represent the destinations of implicit Weiner links. Child v of node
v in ST has interval [if..j;] in BWTr, where k € [1..3]. Among all strings prefixed by string W, only those
prefixed by WGAG are preceded by C: it follows that CIW is always followed by G and it is not right-maximal,
thus the Weiner link from v labeled by C is implicit. Conversely, WAGCG, W CG and WGAG are all preceded
by an A, so AW is right-maximal and the Weiner link from v labeled by A is explicit.

more precisely, since we push just right-maximal substrings, the depth of the stack is bounded by quantity
Ar defined in Section 2.2. Unfortunately, Ax might be O(n). We reduce this depth to O(logn) by pushing
at every iteration the pair (repr(a;W), |a;W|) with largest range(a;W) first (a technique already described
in [36]): the interval of every other aW is necessarily at most half of range(W), thus stack S contains at any
time pairs from O(logn) suffix-link tree levels. Every such level contains O(o) pairs, and every pair takes
O(c logn) bits, thus the total space used by the stack is O(c? log? n) bits. O

Algorithm 2 summarizes Lemma 22 in pseudocode. Combining Lemma 22 with the rangeDistinct data
structure of Lemma 19 we obtain the following result:

Theorem 3. Given the BWT of a string T € [1..0]" 14, we can solve Problem 2 in O(nk) time, and in
nlogo(l +1/k) + 10n + (20 + 1)log(n + 1) + o(n) = nlogo(1l + 1/k) + O(n) 4+ O(c logn) bits of working
space, for any positive integer k.

Proof. Lemma 22 needs just the C array, which takes (64 1) logn bits, and a rangeDistinct data structure:
the one in Lemma 19 takes nlogo + 8n + o(n) bits of space, and it answers queries in time linear in the
size of their output and in olog (n + 1) bits of space in addition to the output. Building the C' array from
BWT takes O(n) time, and building the rangeDistinct data structure of Lemma 19 takes O(nk) time and
(n/k)logo + 2n + o(n) bits of working space, for any positive integer k. O
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Note that replacing Lemma 19 in Theorem 3 with the alternative construction of Lemma 20 introduces
randomization and it does not improve space complexity.

As we saw in Section 3.5, having an efficient algorithm to enumerate all intervals in BWTp of right-
maximal substrings of 7" has an immediate effect on the construction of the balanced parentheses represen-
tation of STyr. The following result derives immediately from plugging Theorem 3 in Lemma 14:

Theorem 4. Given the BWT of a string T € [1..0]" 14, we can build the balanced parentheses represen-
tation of the topology of STt in O(nk) time and in nlogo(l + 1/k) + O(n) bits of working space, for any
positive integer k.

In this paper we will also need to enumerate all the right-maximal substrings of a concatenation T =
TiT?...T™ of m strings T, T?,...,T™, where T® € [l..0]" 14 for i € [1..m]. Recall that the right-
maximal substrings of T’ correspond to the internal nodes of the generalized suffix tree of T1, T2, ..., T™,
thus we can solve Problem 5 by applying Lemma 22 to the BWT of T. If we are just given the BWT
of each T? separately, however, we can represent a substring W as a pair of sets of arrays repr' (W) =
({chars!, ... chars™}, {first!...first™}), where chars’ collects all the distinct characters b such that
Wb is observed in string 7", in lexicographic order, and the interval of string W - chars’[j] in BWT: is
[first’[j]..first’[j + 1] — 1]. If W does not occur in T, we assume that |chars’| = 0 and that first’[1]
equals one plus the number of suffixes of T* that are lexicographically smaller than W. If necessary, this
representation can be converted in O(mo) time into a representation based on intervals of BWTp. We can
thus adapt the approach of Lemma 22 to solve the following generalization of Problem 2, as described in
Lemma 23 below:

Problem 5. Given strings T*,T? ..., T™ with T* € [1..0]" =%, for i € [1..m], return the following infor-
mation for all right-mazimal substrings W of T = T T?...T™:

o |W| and range(W) in SAp;

o the sorted sequence by < by < --- < by, of all the distinct characters in [—m + 1..0] such that Wb; is a
substring of T';

o the sequence of intervals range(Whby),...,range(Wby);

® a sequence ai,as,...,ap that lists all the h distinct characters in [—m + 1..0] such that a;W is the
prefix of a rotation of T'; the sequence a1, as,...,ap is not necessarily in lexicographic order;

o the sequence of intervals range(a;W),. .., range(ar,W).

Lemma 23. Assume that we are given a data structure that supports rangeDistinct queries on the BWT
of a string T, and the C array of T®, for all strings in a set {T1,T?,..., T™}, where T* € [1..0]" 14, for
i € [1..m]. There is an algorithm that solves Problem 5 in O(mnt) time and in O(ma?log® n) bits of working
space, where t is the time taken by the rangeDistinct operation per element in its output, andn =3 ;- n;.

Proof. To keep the presentation as simple as possible we omit the details on how to handle strings that occur
in some T but that do not occur in some 77 with j # i. We use the same algorithm as in Lemma 22, but
this time with the following data structures:

e m distinct arrays gamma', gamma?, . .., gamma™;

e m distinct matrices A', A%,..., A" F' F? . . F™ and L',L?,... L™

e a single stack, in which we push repr’ (W) tuples;

e a single array leftExtensions[l..c + m], which stores all the distinct left-extensions of a string W
that are the prefix of a rotation of a string T, not necessarily in lexicographic order.
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Given repr’(W) for a right-maximal substring W of T, we apply Lemma 21 to each T¢ to compute the
corresponding repr(aW) for all strings aW that are the prefix of a rotation of T¢, updating row a in A%, F*, L
and gamma’ accordingly, and adding a character a to the shared array leftExtensions whenever we see a for
the first time in any T° (see Algorithm 4). If @ = #;, we assume it is actually #;_1 if i > 1, and we assume it is
#m if i = 1. We push to the shared stack the pair repr’(aW) = ({chars’...chars™}, {first!...first™})
such that chars’ = A[a, 1..gamma’[a]], first! = Fi[a, 1..gamma’[a]] ® (Li[a, gamma‘[a]] + 1) for all i € [1..m],
if and only if aW is right-maximal in T, or equivalently iff there is an i € [1..m] such that gamma‘la] > 1,
or alternatively if there are two integers i # j in [1..m] such that gamma’la] = 1, gamma’[a] = 1, and
Ala][1] # Ad[a][1] (see Algorithm 3). Note that we never push repr’(aW) with a = #; in the stack, thus
the space taken by the stack is O(mao? 1og2 n) bits. In analogy to Lemma 22, we push first to the stack the
left-extension aW of W that maximizes > .- [[(aW,T%)| = > | L[a, gamma’[a]] — F[a, 1] + 1. The result
of this process is a traversal of the suffix-link tree of T, not necessarily following the lexicographic order of
its Weiner link labels. The total cost of translating every repr’(W) into the quantities required by Problem
5 is O(mn). O

Recall that we say that a node (possibly a leaf) of the suffix tree of T = T1T?...T™ is pure if all the
leaves in its subtree are suffixes of exactly one string 7%, and we call it smpure otherwise. Lemma 23 can be
adapted to traverse only impure nodes of the generalized suffix tree. This leads to the following algorithm

for building the BWT of T from the BWT of T, T2,-.. , T™:

Lemma 24. Assume that we are given a data structure that supports rangeDistinct queries on the BWT
of a string T*, and the C array of T, for all strings in a set {T1,T?,...,T™}, where T* € [1..0]™ =14, for
i € [L.m]. There is an algorithm that builds the BWT of string T = T'T?---T™ in O(mnt) time and in
O(ma? log? n) bits of working space, where t is the time taken by the rangeDistinct operation per element
in its output, and n = >_1" | n;.

Proof. The BWT of T can be partitioned into disjoint intervals that correspond to pure nodes of minimal
depth in ST, i.e. to pure nodes whose parent is impure. In STp, suffix links from impure nodes lead to
other impure nodes, so the set of all impure nodes is a subgraph of the suffix-link tree of T, it includes the
root, and it can be traversed by iteratively taking explicit Weiner links from the root. We modify Algorithm
3 to traverse only impure internal nodes of ST, by pushing to the stack repr’(aW) = ({chars‘}, {first'}),
where chars’ = A'[a, 1..gamma‘’[a]] and first’ = F'[a, 1..gamma’[a]] e (L[a, gamma’[a]] + 1) for all i € [1..m],
iff it represents an internal node of ST,, and moreover if there are two integers ¢ # j in [1..m] such that
gamma’[a] > 0 and gamma’[a] > 0.

Assume that we enumerate an impure internal node of ST with label W, and let repr’ (W) = ({chars’}, {first’}).
We merge in linear time the set of sorted arrays {chars’}. Assume that character b = chars‘[j] oc-
curs only in chars?. It follows that the locus of Wb in ST4 is a pure node of minimal depth, and
we can copy BWT i [first’[j]..first[j + 1] — 1] to BWTy[z..x + first’[j + 1] — first’[j] — 1], where
z =1+ " smaller(b,i) and

et i[1] : i il >
smaller(b, i) { first'[l] -1 o if (|cha.rs | =0) or (chars'[1] > b)
MaXj,charsi[j]<p1£irst'[j + 1] — 1} otherwise
The value of z can be easily maintained while merging set {chars’}. If character b occurs in more than
one chars’ array, then the locus of Wb in STy is impure, and it will be enumerated (or it has already been
enumerated) by the traversal algorithm. O

In the rest of the paper we will focus on the case m = 2. The following theorem, which we will use
extensively in Section 7, combines Lemma 23 for m = 2 with the rangeDistinct data structure of Lemma
19:

Theorem 6. Given the BWT of a string S' € [1..0]™ "4 and the BWT of a string S? € [1..0]"2 714,
we can solve Problem 5 in O(nk) time and in nlogo(l + 1/k) + 10n 4 o(n) bits of working space, for any
positive integer k, where n = ni + na.
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Finally, in Section 5 we will work on strings that are not terminated by a special character, thus we will
need the following version of Lemma 24 that works on sets of rotations rather than on sets of suffixes:

Theorem 7. Let S' € [1..0]™ and S? € [1..0]"* be two strings such that |[R(S')| = n1, |R(S?)| = na,
and R(SY) N R(S?) = 0. Given the BWT of R(S') and the BWT of R(S?), we can build the BWT of
R(SY)UR(S?) in O(nk) time and in nlogo(1+1/k)+10n+ o(n) bits of working space, where n = ny +na.

Proof. Since all rotations of S? are lexicographically distinct, the compact trie of all such rotations is well
defined, and every leaf of such trie corresponds to a distinct rotation of S?. Since no rotation of S is
lexicographically identical to a rotation of S2, the generalized compact trie that contains all rotations of S*
and all rotations of S? is well defined, and every leaf of such trie corresponds to a distinct rotation of S or
of S2. We can thus traverse such generalized compact trie using BWT g1 and BWT g2 as described in Lemma,
24, using Lemma 19 to implement rangeDistinct data structures. o

ALGORITHM 1: Building repr(aW) from repr(W) for all a € [0..0] such that aW is a prefix of a rotation of
T c[l.o]" 4.
Input: repr(W) for a substring W of T'. Support for rangeDistinct queries on the BWT of 7. C array of T
Empty matrices A, F, and L, empty arrays gamma and leftExtensions, and a pointer h.
Output: Matrices A, F, L, pointer h, arrays gamma and leftExtensions, filled as described in Lemma 22.
(chars, first) < repr(W);
h + 0;
for j € [1..|chars]|] do
7 + BWTy.rangeDistinct (first[j], first[j + 1] — 1);
for (a,pa,qa) € Z do
if gammaja] = 0 then
h <+ h+1;
leftExtensions[h] + a;
end
gamma[a] < gamma[a] + 1;
Ala, gammala]] < chars[j];
Fla, ganmala]] < Cla] + pu;
L[a, gammala]] = Cla] + qa;
end

end
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ALGORITHM 2: Enumerating all right-maximal substrings of T' € [1..0]" " '#. See Lemma 21 for a definition of
operator e. The callback function callback highlighted in gray just prints the pair (repr(W),|W]) given in input.
Section 7 describes other implementations of callback.

Input: BWT transform and C array of T. Array distinctChars of all the distinct characters that occur in 7', in
lexicographic order, and array start of starting positions of the corresponding intervals in BWTr. Support
for rangeDistinct queries on BWTr, and an implementation of Algorithm 1 (function extendLeft).

Output: (repr(W), |W|) for all right-maximal substrings W of T'.

S <+ empty stack;

A < zeros[0..0,1..0 +1];

F <+ zeros[0..0,1..0 + 1];

L + zeros[0..0,1..0 + 1];

gamma <— zeros[0..0];

leftExtensions <« zeros[l..c + 1];

repr(e) < (distinctChars,start e (n + 1));

S.push((repr(e),0));

while not S.isEmpty() do

(repr(W),|W]) < S.pop();

h + 0;

extendLeft(repr(W),BWTr,C, A, F, L, gamma, leftExtensions, h);

callback(repr(W), |W|,BWTr,C, A, F, L, gamma, leftExtensions, h);

/* Pushing right-maximal left-extensions on the stack */

C « {c: c=leftExtensions[i|,i € [1..h], gamma[c| > 1};

if C # () then

¢ + argmax{L[c, gamma|c]] — F[c,1] : ¢ € C};

repr(cW) < (Alc, 1..gammalc]], Fc, 1..gamma|[c]] ® (L[c, gamma|c]] + 1));

S.push(repr(cW), |W| + 1);

for a € C\ {c} do

repr(aW) < (Ala,1..gammala]], F[a, 1..gamma[a]] ® (L[a, gamma[a]] + 1));
S.push(repr(aW),|W|+ 1);

end

nd

* Cleaning up for the next iteration x/

or i € [1.h] do

a < leftExtensions|i];

for j € [1..gammala]] do

Ala, j] + 0;

Fla, j] < 0;

Lla, j] < 0;
end

gamma[a] < 0;

0

[=c IR

end
end
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ALGORITHM 3: Enumerating all right-maximal substrings of T = T #1T?#z - - - T™ 4., where T* € [1..0]™ !
for ¢ € [1..m], m > 1. The key differences from Algorithm 2 are highlighted in gray. To iterate over all impure
right-maximal substrings of T, it suffices to replace just the gray lines (see Lemma 24). See Lemma 21 for a definition
of operator e. The callback function callback just prints its input (repr’ (W), |W]). For brevity the case in which a
string occurs in some T" but does not occur in some 77 is not handled.

Input: BWT transform and C array of string T°#. Array distinctChars® of all the distinct characters that occur
in T%#, in lexicographic order, and array start® of starting positions of the corresponding intervals in
BWTriy. Support for rangeDistinct queries on BWT iy, and an implementation of Algorithm 4
(function extendLeft’).

Output: (repr’ (W), |W]) for all right-maximal substrings W of T'.

S < empty stack;

for i € [1..m] do

A" < zeros[0..0,1..0 + 1], F' < zeros[0..0,1..0 + 1];
L' + zeros[0..0,1..0 + 1], gamma’ < zeros|0..0];

end

leftExtensions < zeros[l..c + m];

seen  zeros[l..o];

repr’(¢) + ({distinctChars’}, {start’ e (n; + 1)});

$.push((repr’ (<), 0));

while not S.isEmpty() do

(vepr! (W), W) < S.pop();
h « 0;
extendLeft’(repr’ (W), {BWTr:}, {C}, {A%}, {F'}, {L'}, {gamma’}, 1eftExtensions, seen, h);
callback(repr’ (W), |W|,{BWTr:}, {C*}, {A"}, {F'},{L'}, {gamma'}, 1eftExtensions, h);
/* Pushing right-maximal left-extensions on the stack x/
C < {c>0:c=1leftExtensions[i],i € [1..h], (I p € [1..m] : gamma®[c] > 1)
or(Ap#q: gammap[c] = lvgammaq[c] =1, AP[C, 1] # Aq[ca 1])};
if C # () then
¢ + argmax {Y>_7" | L'[c, gamma’[c]] — F’[c,1] : c € C};
repr’ (W) <+ ({A'[c, 1..gamma’[c]]}, {F'[c, 1..gamma’[c]] o (L[c, gamma‘[c]] + 1)});
S.push(repr’ (cW), |[W| + 1);
for a € C\ {c} do
repr’ (aW) « ({A’[a, 1..gamma’[a]]}, {F[a, 1..gamma’[a]] ® (L'[a, gamma’[a]] 4+ 1)});
S.push(repr’ (aW), |W| + 1);
end
end
/* Cleaning up for the next iteration x/
for i € [1..h] do
a < leftExtensions|i];
if a <0 then
k <+ —a+2 (mod; m);
A*[0,1] <= 0, F*[0,1] < 0, LF[0,1] + 0, gamma®[0] < 0;
end
else
seen[a] + 0;
for j € [1..m] do
for k € [1..gamma’[a]] do
| Alla,k] + 0, F7la, k] + 0, L [a, k] + 0;
end
gamma’ [a] ¢ 0;
end
end
end
end
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ALGORITHM 4: Building repr’(aW) from repr’' (W) for all @ € [-m + 1..0] such that aW is a prefix of a rotation
of T =T 41 T?*#2 - - T™#m, where m > 1 and T? € [1..0]™ ~!. The lines highlighted in gray are the key differences
from Algorithm 1.

Input: repr’ (W) for a substring W of T'. Support for rangeDistinct queries on BWTriy, C array of T*, empty
matrices A*, F* and L', and empty array gamma' of string T, for all ¢ € [1..m]. A single empty array
leftExtensions, a single bitvector seen, and a single pointer h.

Output: Matrices A°, F*, L!, pointer h, and arrays gamma’ and leftExtensions, for all i € [1..m)], filled as

described in Lemma 23.

({chars’}, {first’}) < repr’(W);

h + 0;

for i € [1..m] do

for j € [1..|chars’|] do

T + BWT i, .rangeDistinct (first’[j], first’[j + 1] — 1);

for (a,pa,qa) € Z do

if a =0 then

h <+ h+1;
leftExtensions[h] + —(i — 1 (mody1 m)) + 1;

nd

else

if seen[a] = 0 then

seenfa] = 1;

h <+ h+1;

leftExtensions[h] « a;
end

o}

end

gamma’[a] < gamma’[a] + 1;
A'la, gamma‘[a]] < chars’[j];
F'[a, ganma’[a]] < C*[a] + pa;
L'[a, gamma'[a]] < C"[a] + qa;
end

end
end
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5 Building the Burrows-Wheeler transform

It is well-known that the Burrows-Wheeler transform of a string T'# such that T € [1..0]” and # = 0 ¢ [1..0],
can be built in O(nloglogo) time and in O(nlogo) bits of working space [38]. In this section we bring
construction time down to O(n) by plugging Theorem 7 into the recursive algorithm described in [38], which
we summarize here for completeness.

Specifically, we partition T" into blocks of equals size B. For convenience, we work with a version of
T whose length is a multiple of B, by appending to the end of T the smallest number of occurrences of
character # such that the length of the resulting padded string is an integer multiple of B, and such that
the padded string contains at least one occurrence of #. Recall that B - [x/B] is the smallest multiple of
B that is at least . Thus, we append n’ — n copies of character # to T, where n’ = B - [(n+ 1)/B]. To
simplify notation we call the resulting string X, and we use n’ to denote the length of X.

We interpret a partitioning of X into blocks as a new string Xp of length n’/B, defined on the alphabet
[1..(c + 1)P] of all strings of length B on alphabet [0..0]: the “characters” of Xp correspond to the blocks
of X. In other words, Xp[i] = X[(i — 1)B + 1..iB]. We assume B to be even, and we denote by left
(respectively, right) the function from [1..(o + 1)Z] to [1..(¢ + 1)5/?] such that 1eft(W) returns the first
(respectively, the second) half of block W. In other words, if W = w; ---wp, left(W) = w; ---wp/; and
right(W) = wpg/o41---wp. We also work with circular rotations of X (see Section 2.2): specifically, we

denote by % string X[B/2+ 1..n'] - X[1..B/2], or equivalently string X circularly rotated to the left by B/2

positions, and we denote by X p the string on alphabet [1..(¢ + 1)Z] induced by partitioning ? into blocks
of size B.

Note that the suffix that starts at position ¢ in ?B equals the half-block P, = X[B/2+ (i —1)B+1..iB],
followed by string S; = Fy1 - X[1..B/2], where F;1; is the suffix of Xp that starts at position i + 1 in Xp,

if any. Thus, it is not surprising that we can derive the BWT of string % B from the BWT of string Xp:

Lemma 25 ([38]). The BWT of string %B can be derived from the BWT of string Xp in O(n'/B) time
and O(oP -log(n'/B)) bits of working space, where n' = | X|.

The second key observation that we exploit for building the BWT of X is the fact that the suffixes of
X p/2 which start at odd positions coincide with the suffixes of Xp, and the suffixes of Xp/, that start at
even positions coincide with the suffixes of % B- Thus, we can reconstruct the BWT of Xp /5 by merging the
BWT of Xp with the BWT of XB: this is where Theorem 7 comes into play.

Lemma 26. Assume that we can read in constant time a block of B characters. Then, the BWT of string

Xp/2 can be derived from the BWT of string Xp and from the BWT of string ?B, in O(n'/B) time and
O(n' log o) bits of working space, where n' = |X]|.

Proof. All rotations of Xp (respectively, of ?B) are lexicographically distinct, and no rotation of Xp
is lexicographically identical to a rotation of XB. Thus, we can use Theorem 7 to build the BWT of
R(Xp) U R(?B) in O(n//B) time and in 2n'(1 + 1/k)log(c + 1) 4+ 20n’/B 4 o(n’/B) € O(n'logo) bits
of working space. Inside the algorithm of Theorem 7, we apply the constant-time operator right to the
characters of the input BWTs. There is a bijection between set R(Xp) U R(yg) and set R(Xp/y) that

preserves lexicographic order, thus the BWT of R(Xp/2) coincides with the BWT of R(Xp) U R(% B) in
which each character is processed with operator right. o

Lemmas 25 and 26 suggest building the BWT of X in O(log B) steps, where at step ¢ we compute the
BWT of string Xp/2:, stopping when B/2" = 1. Note that the key requirement of Lemma 26, i.e. that
all rotations of Xp 9 (respectively, of % B/2¢) are lexicographically distinct, and that no rotation of Xp /i
is lexicographically identical to a rotation of ? B/2i, holds for all 7. The time for completing step i is

O(n'/(B/2")), and the Burrows-Wheeler transforms of X /5: and of ?B/gi take O(n'log o) bits of space for
every i.
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The base case of the recursion is the BWT of string Xp for some initial block size B: we build it using
any suffix array construction algorithm that works in O(c® + n’/B) time and in O((n’/B)log(n’/B)) bits
of space (for example those described in [41, 40, 39]). We want this first phase to take O(n') time and
O(n'log o) bits of space, or in other words we want to satisfy the following constraints:

1. B e O(n")
2. (n'/B)log(n'/B) € O(n’log o), or more strictly (n’'/B)logn’ € O(n'logo).

We also want B to be a power of two. Recall that 2/°8%1 is the smallest power of two that is at least
2. Assume thus that we set B = 2[los(logn’/(clogo))] for some constant ¢. Then B > log n'/(clog o), thus
Constraint 2 is satisfied by any choice of ¢. Since [z] < x + 1, we have that B < (2/c¢)logn’/logo, thus
Constraint 1 is satisfied for any ¢ > 2. For this choice of B the number of steps in the recursion becomes
O(loglogn’), and we can read a block of size B in constant time as required by Lemma 26 since the machine
word is assumed to be Q(logn’). It follows that building the BWT of X takes O(n’ + (n’'/B) Ziozng 21) =
O(n’) time and O(n'log o) bits of working space. Since the BWT of T# can be derived from the BWT of
X at no extra asymptotic cost (see [38]), we have the following result:

Theorem 8. The BWT of a string T# such that T € [1..0]™ and # = 0 can be built in O(n) time and in
O(nlogo) bits of working space.
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6 Building string indexes

6.1 Building the compressed suffix array

The compressed suffiz array of a string T € [1..0]""1# (abbreviated to CSA in what follows) is a repre-
sentation of SAp that uses just O((nlogo)/e) bits space for any given constant €, at the cost of increasing
access time to any position of SAr to t = O((log, n)¢/€) [31]. Without loss of generality, let B be a block
size such that B? divides n for any setting of i that we will consider, and let T} be the (suitably terminated)
string of length n/B’ defined on the alphabet [1..(c + 1)B'] of all strings of length B on alphabet [0..0],
and such that the “characters” of T; correspond to the consecutive blocks of size B® of T. In other words,
Ti[j] = T[( — 1)B* + 1..jB%]. Note that Ty = T, and T" with i > 0 is the string obtained by grouping every
consecutive B characters of T;_;. The CSA of T' with parameter € consists of the suffix array of 7' ., and of
1/€ layers, where layer i € [0..1/e — 1] is composed of the following elements:

1. A data structure that supports access and partialRank operations® on BWT,.

2. The C array of T}, defined on alphabet [1..(c + 1)5'], encoded as a bitvector with (o + 1) ones and
n/B® zeros, and indexed to support select queries.

3. A bitvector marked;, of size n/B?, that marks every position j such that SAz.[j] is a multiple of B.

For concreteness, let ¢ = 27¢ for some constant ¢ > 0. Note that layer ¢ contains enough information
to support function LF on 7;. To compute SAr,[j], we first check whether marked;[j] = 1: if so, then
SAr,[j] = B - SAr,.,[j'], where j' = rank, (marked;, j). Otherwise, we iteratively set j to LF(j) in constant
time and we test whether marked;[j] = 1. If it takes t iterations to reach a j* such that marked;[j*] = 1,
then SAr, [j] = B - SAr,.,,[rank; (marked;, j*)] 4+ ¢. Since t < B — 1 at any layer, the time spent in a layer
is O(B), and the time to traverse all layers is O(B/e). Setting B = (log, n)¢ achieves the claimed time
complexity, and assuming without loss of generality that o is a power of two and n = o2 for some integer
a > c ensures that B for any i € [1..1/¢] is an integer that divides n. Using Lemma 7, every layer takes
O(nlogo) bits of space, irrespective of B, so the whole data structure takes O((nlogo)/e) bits of space.
Counting the number occ of occurrences of a pattern P in T can be performed in a number of ways with the
CSA. A simple, O(|P|logn - (log, n)¢/€)) time solution, consists in performing binary searches on the suffix
array: this allows one to locate all such occurrences in O(|P|(logn + occ) - (log, n)¢/€)) time. Alternatively,
count queries could be implemented with backward steps as in the BWT index, in overall O(|P|loglog o)
time, using Lemma 11.

The CSA takes in general at least nlogo + o(n) bits, or even nHy, + o(n) bits for k = o(log, n) [29]. The
CSA has a number of variants, the fastest of which can be built in O(nloglog o) time using O(nlog o) bits
of working space [38]. Combining the setup of data structures described above with Theorem 8 allows one
to build the CSA more efficiently:

Theorem 9. Given a string T = [1..0]", we can build the compressed suffizx array in O(n) time and in
O(nlog o) bits of working space.

Note that the BWT of all strings T; in the CSA of T, as well as all bitvectors marked;, can be built in
a single invocation of Theorem 8, rather than by invoking Theorem 8 1/¢ times. Note also that combining
Theorem 8 with Lemma 2 and with the first data structure of Lemma 11, yields immediately a BWT index
and a succinct suffix array that can be built in deterministic linear time:

Theorem 10. Given a string T = [1..0]™, we can build the following data structures:

e A BWT index that takes nlogo(l + 1/k) + O(nloglogo) bits of space for any positive integer k,
and that implements operation LF(i) in constant time for any i € [1..n], and operation count(P) in
O(m(loglogo + k)) time for any P € [1..0]™. The index can be built in O(n) time and in O(nlogo)
bits of working space.

8The CSA was originally defined in terms of the v function: in this case, support for select queries would be needed.
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o A succinct suffiz array that takes nlogo(1+1/k)+ O(nloglogo)+ O((n/r)logn) bits of space for any
positive integers k and r, and that implements operation count(P) in O(m(loglogo +k)) time for any
P € [1..0]™, operation locate(i) in O(r) time, and operation substring(i,j) in O(j —i+r) time for
any i < j in [1..n]. The index can be built in O(n) time and in O(nlogo) bits of working space.

6.2 Building BWT indexes

To reduce the time complexity of a backward step to a constant, however, we need to augment the represen-
tation of the topology of ST7 described in Lemma 12 with an additional operation, where T = [1..0]"~14£.
Recall that the identifier id(v) of a node v of STy is the rank of v in the preorder traversal of STy. Given
anode v of STy and a character a € [0..0], let operation weinerLink(id(v),a) return zero if string af(v) is
not the prefix of a rotation of T', and return id(w) otherwise, where w is the locus of string af(v) in STr.
The following lemma describes how to answer weinerLink queries efficiently:

Lemma 27. Assume that we are given a data structure that supports access queries on the BWT of a
string T = [1..0]"~'# in constant time, a data structure that supports rangeDistinct queries on BWTr
in constant time per element in the output, and a data structure that supports select queries on BWTrp
in time t. Assume also that we are given the representation of the topology of STr described in Lemma
12. Then, we can build a data structure that takes O(nlogloga) bits of space and that supports operation
weinerLink(id(v),a) in O(t) time for any node v of STy (including leaves) and for any character a € [0..0].
This data structure can be built in randomized O(nt) time and in O(nlogo) bits of working space.

Proof. We show how to build efficiently the data structure described in [10], which we summarize here
for completeness. We use the suffix tree topology to convert in constant time id(v) to range(v) (using
operations leftmostLeaf and rightmostLeaf), and vice versa (using operations selectLeaf and 1ca). We
traverse ST in preorder using the suffix tree topology, as described in Lemma 13. For every internal node
v of STp, we use a rangeDistinct query to compute all the h distinct characters aq, ..., a; that appear in
BWTr[range(v)], and for every such character the interval of a;¢(v) in BWTy, in overall O(h) time. Note
that the sequence aq,...,an returned by a rangeDistinct query is not necessarily sorted in lexicographic
order. We determine whether a;¢(v) is the label of a node w of STy by taking a suffix link from the locus of
a;¢(v) in O(t) time, using Lemma 15, and by checking whether the destination of such link is indeed v.

For every character ¢ € [0..0], we use vector sources® to store all nodes v of STy (including leaves)
that are the source of an implicit or explicit Weiner link labeled by ¢, in the order induced by the preorder
traversal of STp. We encode the difference between the preorder ranks of two consecutive nodes in the same
sources® using Elias delta or gamma coding [19]. We also store a bitvector explicit® that marks with a
one every explicit Weiner link in sources® (recall that Weiner links from leaves are explicit). Bitvectors
sources® and explicit® can be filled during the preorder traversal of STp. Once explicit® has been filled,
we index it to answer rank queries. The space used by such indexed bivectors explicit® for all ¢ € [0..0]
is O(n) bits by Observation 1, and the space used by vectors sources® for all ¢ € [0..0] is O(nlogo) bits,
by applying Jensen’s inequality twice as in Lemma 20. We follow the static allocation strategy described
in Section 3.1: specifically, we compute the number of bits needed by sources® and explicit® during a
preliminary pass over STp, in which we increment the size of the arrays by keeping the preorder position
of the last internal node with a Weiner link labeled by ¢, for all ¢ € [0..0]. This preprocessing takes O(n)
time and O(ologn) € o(n) bits of space. Once such sizes are known, we allocate a large enough contiguous
region of memory.

Finally, we build an array C'[1..0] where C’[a] is the number of nodes v in ST (including leaves) such that
£(v) starts with a character strictly smaller than a. We also build an implementation of an MMPHF f¢ for
every sources® using the technique described in the proof of Lemma 20, and we discard sources®. All such
MMPHF implementations take O(n loglog o) bits of space, and they can be built in overall O(n) randomized
time and in O(o* log o) bits of working space, for any integer k > 1. Note that C’ takes O(c logn) € o(n)
bits of space, since o € o(y/n/logn), and it can be built with a linear-time preorder traversal of STr.

Given a node v of STy and a character ¢ € [0..0], we determine whether the Weiner link from v labeled
by c¢ is explicit or implicit by accessing explicit®(f¢(id(v))), and we compute the identifier of the locus w
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of the destination of the Weiner link (which might be a leaf) by computing:
C'[c] + rank; (explicit®, f¢(id(v)) — 1) +1

If there is no Weiner link from v labeled by ¢, then v does not belong to sources®, but f¢(id(v)) still returns
a valid pointer in sources®: to check whether this pointer corresponds to v, we convert v and w to intervals
in BWTy using the suffix tree topology, and we check whether select.(BWTr, sp(w) — C[c]) € range(v).
The output of this construction consists in arrays C’, explicit®, and in the implementation of f¢, for
all ¢ € [0..0]. O

Since operation weinerLink(id(v),a) coincides with a backward step with character a from range(v) in
BWTr, Lemma 27 enables the construction of space-efficient BWT indexes with constant-time LF:

Theorem 11. Given a stringT = [1..0]" 14, we can build any of the following data structures in randomized
O(n) time and in O(nlogo) bits of working space:

o A BWT index that takes nlogo(1l+ 1/k) 4+ O(nloglogo) bits of space for any positive integer k, and
that implements operation LF(2) in constant time for any i € [1..n], and operation count(P) in O(mk)
time for any P € [1..0]™.

o A succinct suffiz array that takes nlogo(1+1/k)+ O(nloglogo)+ O((n/r)logn) bits of space for any
positive integers k and r, and that implements operation count(P) in O(mk) time for any P € [1..0]™,
operation locate(i) in O(r) time, and operation substring(i,j) in O(j —i+1r) time for anyi < j in
[1..n].

Alternatively, for the same construction space and time, we can build analogous data structures that support
LF(:) in O(k) time, count(P) in O(m) time, locate(i) in O(r) time, and substring(i,j) in O(j —i+7)
time: such data structures take the same space as those described above.

Proof. In this proof we combine a number of results described earlier in the paper: see Figure 1 for a
summary of their mutual dependencies.

We use Theorem 8 to build BWT from 7', and Lemma 7 to build a data structure that supports access,
partialRank and select queries on BWTp. Then, we discard BWTp. Together with the C' array of T,
this is already enough to implement function LF and to build arrays samples and pos2rank for the succinct
suffix array, using Lemma 2. We either use the data structure of Lemma 7 that supports select queries in
O(k) time (in which case we implement locate and substring queries with function LF), or the data structure
that supports select queries in constant time (in which case we implement locate and substring queries with
function ).

To implement backward steps we need support for weinerLink operations from internal nodes of STr.
We use Lemma 19 to build a rangeDistinct data structure on BWT from the access, partialRank and
select data structure built by Lemma 7. We use rangeDistinct queries inside the algorithm to enumerate
the BWT intervals of all internal nodes of ST described in Theorem 3, and we use such algorithm to build
the balanced parentheses representation of ST, as described in Theorem 4. To support operations on the
topology of ST, we feed the balanced parentheses representation of STy to Lemma 12. Finally, we use the
rangeDistinct data structure, the tree topology, and the support for access, partialRank and select
queries on BWTp, to build the data structures that support weinerLink operations described in Lemma 27.
At the end of this process, we discard the rangeDistinct data structure.

The output of this construction consists of the data structures that support access, partialRank, and
select on BWTr, and weinerLink on STr. O

6.3 Building the bidirectional BWT index

The BWT index can be made bidirectional, in the sense that it can be adapted to support both left and right
extension by a single character [65, 66]. In addition to having a number of applications in high-throughput
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sequencing (see e.g. [43, 44]), this index can be used to implement a number of string analysis algorithms,
and as an intermediate step for building the compressed suffix tree.

Given a string T = t1to - - - t,—1 on alphabet [1..0], consider two BWT transforms, one built on T# and
one built on T# = tyt,—1---t1#. Let I(W,T) be the function that returns the interval in BWTr4 of the
suffixes of T# that are prefixed by string W € [1..0]". Note that interval I(W,T) in the suffiz array of T#
contains all the starting positions of string W in 7. Symmetrically, interval I(W,T) in the suffix array of
T# contains all those positions ¢ such that n — i + 1 is an ending position of string W in T.

Definition 7. Given a string T € [1..0]"~!, a bidirectional BWT index on T is a data structure that
supports the following operations on pairs of integers 1 < i < j <n and on substrings W of T':

e isLeftMaximal(i,j): returns 1 if substring BWTpu[i..j] contains at least two distinct characters, and
0 otherwise.

o isRightMaximal(i,j): returns 1 if substring BWTryli..j] contains at least two distinct characters, and
0 otherwise.

e enumerateLeft(i,j): returns all the distinct characters that appear in substring BWTp4[i..j], in lexi-
cographic order.

e enumerateRight(i,j): returns all the distinct characters that appear in BWT py[i..j], in lexicographic
order.

e extendLeft (¢, (W, T),I(W,T)): returns pair (I(cW,T),I(We,T)) for c € [0..0].

e extendRight (¢, IW,T),I(W,T)): returns (I(We,T),I(cW,T)) for c € [0..0].

o contractLeft (I(aW,T),I(Wa,T)), where a € [1..0] and aW is right-mazimal: returns pair (L(W,T),I(W,T));
e contractRight (I(Wb,T),I(bW,T)), whereb € [1..0] and Wb is left-maximal: returns pair I(W,T),I(W,T)).

Operations extendLeft and extendRight are analogous to a standard backward step in BWT7y4 or
BWTqry, but they keep the interval of a string W in one BWT synchronized with the interval of its reverse
W in the other BWT.
In order to build a bidirectional BWT index on string 7', we also need to support operation countSmaller(range(v), ¢),
which returns the number of occurrences of characters smaller than ¢ in BWTr4[range(v)], where v is a
node of STy and c is the label of an explicit or implicit Weiner link from v. Note that, when v is a leaf of
STry, countSmaller(range(v), BWTrx[z]) = 0, where x = sp(v) = ep(v). The construction of Lemma 27
can be extended to support constant-time countSmaller queries, as described in the following lemmas:

Lemma 28. Assume that we are given a data structure that supports access queries on the BWT of a
string T = [1..0]" 14 in constant time, a data structure that supports rangeDistinct queries on BWTrp
in constant time per element in the output, and a data structure that supports select queries on BWTp
in time t. Assume also that we are given the representation of the topology of STr described in Lemma
12. Then, we can build a data structure that takes 3nlogo + O(nloglogo) bits of space, and that supports
operation weinerLink(id(v), a) in O(t) time for any node v of STt (including leaves) and for any character
a € [0..0], and operation countSmaller(range(v),c) in constant time for any internal node v of STy and
for any character a € [1..0] that labels a Weiner link from v. This data structure can be built in randomized
O(nt) time and in O(nlogo) bits of working space.

Proof. We run the algorithm described in the proof of Lemma 27. Specifically, we traverse STt in preorder,
we print arrays sources® for all ¢ € [0..0], and we build the implementation of an MMPHF f¢ for every
sources®. Before discarding sources®, we build the prefix-sum data structure of Lemma 4 on every sources®
with ¢ > 0: by Jensen’s inequality and Observation 1, all such data structures take at most 3n log c+6n+o(n)
bits of space in total.
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Let ST¢ = (V¢ E€) be the contraction of STy induced by all the n® nodes (including leaves) that have
an explicit or implicit Weiner link labeled by character ¢ € [1..0]. During the preorder traversal of STr,
we also concatenate to a bitvector parentheses® an open parenthesis every time we visit an internal node
v with a Weiner link labeled by character ¢ from its parent, and a closed parenthesis every time we visit v
from its last child. Note that parentheses® represents the topology of ST®. By Observation 1, building all
bitvectors parentheses® takes O(n) time and 6n+o(n) bits of space in total, since every pair of corresponding
parentheses can be charged to an explicit or implicit Weiner link of STp. We feed parentheses® to Lemma
12 to obtain support for tree operations, and we discard parentheses®. Following the strategy described
in Section 3.1, we preallocate the space required by sources® and parentheses® for all ¢ € [1..0] during a
preliminary pass over STp. Note that the preorder rank in ST of a node v, that we denote by 1d(v), equals
its position in array sources®. Note also that the set of id°(w) values for all the descendants w of v in ST,
including v itself, forms a contiguous range.

We allocate o empty arrays diff°[1..n°] which, at the end of the algorithm, will contain the following
information:

diff[id°(v)] = countSmaller(range(v),c)

- Z countSmaller(range(w),c)
(vyw)EE,

i.e. diff°[k] will encode the difference between the number of characters smaller than ¢ in the BWT inter-
val of the node v of ST that is mapped to position & in sources®, and the number of characters smaller
than ¢ in the BWT intervals of all the descendants of v in the contracted suffix tree ST®. To compute
countSmaller(range(v),c) for some internal node v of ST, we proceed as follows. We use the implementa-
tion of the MMPHF f¢ built on sources® to compute id®(v), we retrieve the smallest and the largest 1d°(w)
value assumed by a descendant w of v in ST using operations leftmostLeaf and rightmostLeaf provided
by the topology of ST¢, and we sum diff¢[k] for all k¥ in this range. We compute this sum in constant time
by encoding diff¢ with the prefix-sum data structure described in Lemma 4. Since ZZ; diffe[k] < n, the
total space taken by all such prefix-sum data structures is at most 3nlogo + 6n + o(n) bits, by Observation
1 and Jensen’s inequality.

To build the diff® arrays, we scan the sequence of all characters ¢; < ¢a < -+ < ¢ such that ¢; € [1..0]
and ST has at least one node, for all i € [1..k]. We use a temporary vector lastChar with one element
per node of STr: after having processed character ¢;, lastChar[id(v)] stores the largest ¢; < ¢; that labels
a Weiner link from v. We also assume to be able to answer countSmaller(range(v),c) queries in constant
time. Note that lastChar takes at most (2n — 1)logo bits of space. We process character ¢; as follows.
We traverse ST in preorder using its topology, as described in Lemma 13. For each node v of ST, we
use id%(v) and the prefix-sum data structure on sources® to compute id(v). If v is an internal node of
STr, we use id(v) to access b = lastChar[id(v)]. We compute the number of occurrences of character b in
range(v) using the O(t)-time operation weinerLink(id(v), b), and we compute the number of occurrences of
characters smaller than b in range(v) using the constant-time operation countSmaller(range(v),b). We do
the same for all children of v in ST, which we can access using the topology of ST . Finally, we sum the
values of all children and we subtract this sum from the value of v, appending the result to the end of diff*
using Elias delta or gamma coding. Finally, we set lastChar[id(v)] = ¢;. The total number of accesses to
a node v of STy is a constant multiplied by the number of Weiner links from v, thus the algorithm runs in
O(nt) time.

The output of the construction consists in the topology of ST for all ¢ € [1..k], in arrays C’ and
explicit® of Lemma 27 for all ¢ € [0..0], in the implementation of f¢ for all ¢ € [0..0], and in the prefix-sum
data structure on diff® for all i € [1..k]. O

Lemma 28 immediately yields the following result:

Theorem 12. Given a string T = [l..0]™, we can build in randomized O(n) time and in O(nlogo) bits
of working space a bidirectional BWT index that takes O(nlog o) bits of space and that implements every
operation in time linear in the size of its output.
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Proof. Let W be a substring of T such that I(W,BWTr4) = [i..j] and I(W,BWTrpyx) = [¢'..5], let v be the
node of STy such that I(v, BWT ) = [i..j] and let v’ be the node of STy such that I(v', BWTrx) = [i'..5'].
We plug the countSmaller support provided by Lemma 28 in the construction of the BWT index described
in Theorem 11, and we build the corresponding data structures on both BWT74 and BWT .

Operation extendLeft(a, (4,5), (i',5')) = ((p,q),(p’.q')) can be implemented as follows: we compute
(p, q) using weinerLink(id(v),a), and we set (p,¢') = (i'+countSmaller(i, j,a), 7 +countSmaller(i, j,a)+
q—Dp).

T()) support isLeftMaximal we build a bitvector runs[2..n + 1] such that runs[i] = 1 if and only if
BWTry[i] # BWTpx[i — 1]. We build this vector by a linear scan of BWTyp4, and we index it to support
rank queries in constant time. We implement isLeftMaximal(i,j) by checking whether there is a one in
runs[i+ 1..j], i.e. whether rank;(runs, j) — rank; (runs,i) > 1. This technique was already described in e.g.
[42, 56).

Assuming that W is right-maximal, we support contractLeft((i, ), (', ;) = ((p,q), (P, ¢')) as follows.
Let W = aV for some a € [0..0] and V € [l..0]*. We compute (p,q) = I(V,BWTrx) using operation
suffixLink(id(v)) described in Lemma 15, and we check the result of operation isLeftMaximal(p,q): if V
is not left-maximal, then (p,¢") = (¥/,j’), otherwise V is the label of an internal node of STy, and this
node is the parent of v'.

To implement enumerateleft(s, ), we first check whether isLeftMaximal(i, j) returns true: otherwise,
there is just character BWTrx[i] to the left of W in T#. Recall that operation rangeDistinct(s,j) on

BWTr4 returns the distinct characters that occur in BWTyp4[i..j] as a sequence az,...,a; which is not
necessarily sorted lexicographically. Note that characters ay, ..., a; are precisely the distinct right-extensions
of string W in T#: since W is left-maximal, we have that W = £(v"), and ay, . .., ay, are the labels associated

with the children of v" in STyx. Thus, if we had an MMPHF f”/ that maps a1, ..., ap to their rank among
the children of v" in STpy, we could sort the output of rangeDistinct(é,j) in linear time. We can build
the implementation of f”, for all internal nodes v" of STy using the enumeration algorithm described in
Theorem 3, and by applying to array chars of repr(¢(v’)) the implementation of the MMPHF described in
Lemma 16. Since every character in every chars array can be charged to a distinct node of ST, the set of
all such MMPHF implementations takes O(n loglog o) bits of space, and building it takes randomized O(n)
time and O(o log o) bits of working space. Operation enumerateLeft can be combined with extendLeft to
return intervals in addition to distinct characters.

We support enumerateRight, isRightMaximal, contractRight and extendRight symmetrically. o

Before describing the construction of other indexes, we note that the constant-time countSmaller support
of Lemma 28, combined with the enumeration algorithm of Lemma 22, enables an efficient way of building
BWTry from BWTy:

Lemma 29. Let T € [l..0]" be a string. Given BWTry, indexed to support rangeDistinct queries in
constant time per element in their output, and countSmaller queries in constant time, we can build BWT
in O(n) time and in O(c®log® n) bits of working space, and we can build BWT 14 from left to right, in O(n)
time and in O(\r - 0% logn) bits of working space, where At is defined in Section 2.2.

Proof. We use Lemma 22 to iterate over all right-maximal substrings W of T', and we use countSmaller
queries to keep at every step, in addition to repr(W), the interval of W in BWTr4, as described in Theo-
rem 12.

Let a € [1..0], let (W ,BWTry) = [i..5], and let I(aW,BWTry) = [¢'..5']. Recall that [¢'..5'] C [i..5],
and that we can test whether aW is right-maximal by checking whether gammaja] > 1 in Lemma 21. If aW
is not right-maximal, i.e. if the Weiner link labelled by a from the locus of W in STry is implicit, then
BWTr4[i'..5] is a run of character A[a][1], where A is the matrix used in Lemma 21. If aW is right-maximal,
then it will be processed in the same way as W during the iteration, and its corresponding interval [i’..5'] in
BWTzy will be recursively filled.

To build BWTry from left to right, it suffices to replace the traversal strategy of Lemma 22, based on
the logarithmic stack technique, with a traversal based on the lexicographic order of the left-extensions of
every right-maximal substring. This makes the depth of the traversal stack of Lemma 22 become O(Ar). O
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Contrary to the algorithm described in [53], Lemma 29 does not need T' and SA74 in addition to BWT 4.

We also note that a fast bidirectional BWT index, such as the one in Theorem 12, enables a number
of applications, which we will describe in more detail in Section 7. For example, we can enumerate all the
right-maximal substrings of T" as in Section 4, but with the additional advantage of providing access to their
left extensions in lexicographic order:

Lemma 30. Given the bidirectional BWT index of T € [1..0]™ described in Theorem 12, there is an algorithm
that solves Problem 2 in O(n) time, and in O(c log® n) bits of working space and O(c? logn) bits of temporary
space, where the sequence a1, ...,an of left-extensions of every right-maximal string W is in lexicographic
order.

Proof. By adapting Lemma 22 to use operations enumerateLeft, extendLeft and isRightMaximal provided
by the bidirectional BWT index. The smaller working space with respect to Lemma 22 derives from the fact
that the representation of a string W is now the constant-space pair of intervals (H(W, T#),1(W, Z#)). O

6.4 Building the permuted LCP array
We can use the bidirectional BWT index to compute the permuted LCP array as well:

Lemma 31. Given the bidirectional BWT index of T € [l..0]" described in Theorem 12, we can build
PLCPy4 in O(n) time and in O(logn) bits of working space.

Proof. We scan T' = T# from left to right. By inverting BWTyp4, we know in constant time the position
r; in BWTyp4 that corresponds to every position ¢ in T#. Assume that we know PLCP[i] and the interval
of aW =TVi..i + PLCP[i] — 1] in BWTr4 and in BWT 7y, where a € [1..0]. Note that aW is right-maximal,
thus we can take the suffix link from the internal node of the suffix tree of T'# labeled by aW to the internal
node labeled by W, using operation contractLeft. Let ([z..y], [2’..y']) be the intervals of W in BWT 4 and
in BWT 4, respectively. If ¢ = 0 or PLCP[i] = 0, rather than taking the suffix link from aW, we set W = ¢,
x=2a'=1and y =y =n+1. Since PLCP[i + 1] > PLCP[{] — 1, we set PLCP[i + 1] to its lower bound |W].
Then, we issue:
([z..y], [#"..4/]) < extendRight(T"[i + PLCP[i]], [z..y], [z’..¢])

and we check whether & = r;41: if this is the case we stop, since neither W - T"[i + PLCP[i]] nor any of its
right-extensions are prefixes of the suffix at position 7,41 —1 in BWTp%. Otherwise, we increment PLCP[i+1]
by one and we continue issuing extendRight operations with the following character of T”. At the end of
this process we know the interval of 7"[i + 1..i + 1 + PLCP[i + 1] — 1] in BWT 74 and BWTry, thus we can
repeat the algorithm from position i + 2. o

This algorithm can be easily adapted to compute the distinguishing statistics array of a string T' given
its bidirectional BWT index, and to compute the matching statistics array of a string T? with respect to a
string T, given the bidirectional BWT index of T4, T?#5,: see Section 7.1.
6.5 Building the compressed suffix tree

The compressed suffiz tree of a string T € [1..0]"~1 [63], abbreviated to CST in what follows, is an index
that consists of the following elements:

1. The compressed suffix array of T#.

2. The topology of the suffix tree of T#. This takes 4n + o(n) bits of space, but it can be reduced to
2.54n + o(n) bits [26].

3. The permuted LCP array of T#, which takes 2n + o(n) bits of space [63].
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The CST is designed to support the same set of operations as the suffix tree. Specifically, all operations
that involve just the suffix tree topology can be supported in constant time, including taking the parent
of a node and the lowest common ancestor of two nodes. Most of the remaining operations are instead
supported in time ¢, i.e. in the time required for accessing the value stored at a given suffix array position.
Some operations are supported by augmenting the CST with other data structures: for example, following
the edge that connects a node to its child with a given label (and returning an error if no such edge exists)
needs additional O(nloglogo) bits, and runs in ¢ time. Some operations take even more time: for example,
string level ancestor queries (defined in Section 6.5) need additional o(n) bits of space, and are supported in
O(tloglogn) time.
By just combining Lemma 31 with Theorems 12, 9, 4 and 8, we can prove the key result of Section 6:

Theorem 13. Given a string T = [1..0]™, we can build the three main components of the compressed suffix
tree (i.e. the compressed suffiz array, the suffic tree topology, and the permuted LCP array) in randomized
O(n) time and in O(nlogo) bits of working space. Such components take overall O(nlog o) bits of space.

A number of applications of the suffix tree depend on the following additional operations: stringDepth(id(v)),
which returns the length of the label of a node v of the suffix tree; blindChild(id(v), a), which returns the
identifier of the child w of a node v of the suffix tree such that £(v,w) = aW for some W € ¥* and
a € 3, and whose output is undefined if v has no outgoing edge whose label starts with a; child(id(v), a),
which is analogous to blindChild but returns () if v has no outgoing edge whose label starts with a; and
stringAncestor(id(v), d), which returns the locus of the prefix of length d of ¢(v). The latter operation
is called string level ancestor query. Operation stringDepth can be supported in O((log: n)/e€) time using
just the three main components of the compressed suffix tree. To support blindChild and child we need
the following additional structure:

Lemma 32. Given a string T = [1..0]", we can build in randomized O(n) time and in O(nlogo) bits of
working space, a data structure that allows a compressed suffix tree to support operation blindChild in
constant time, and operation child in O((logf n)/e) time. Such data structure takes O(nlogloga) bits of
space.

Proof. We build the following data structures, described in [5, 10]. We use an array nChildren[l..2n — 1],
of (2n — 1)logo bits, to store the number of children of every suffix tree node, in preorder, and we use
an array labels[l..2n — 2] of (2n — 2)log o bits to store the sorted labels of the children of every node, in
preorder. We enumerate the BWT intervals of every right-maximal substring W of T, as well as the number
k of distinct right-extensions of W, using Theorem 3. We convert range(W) into the preorder identifier ¢
of the corresponding suffix tree node using the tree topology, and we set nChildren[i] = k. Then, we build
the prefix-sum data structure of Lemma 4 on array nChildren (recall that this structure takes O(n) bits
of space), and we enumerate again the BWT interval of every right-maximal substring W of T, along with
its right-extensions b1, bs, . .., by, using Theorem 3. For every such W, we set labels[i + j|] = b; for all
j € [0..k — 1], where i is computed from the prefix-sum data structure. Finally, we scan nChildren and
labels using pointers ¢ and j, respectively, both initialized to one, we iteratively build a monotone minimal
perfect hash function on labels[j..j + nChildren[i] — 1] using Lemma 17, and we set ¢ to ¢ + 1 and j to
j +nChildren[i]. All such MMPHFsS fit in O(nloglog o) bits of space and they can be built in randomized
O(n) time. O

The output of blindChild can be checked in O((logf n)/€) time using the compressed suffix array and
the stringDepth operation, assuming we store the original string. Finally, the data structures that support
string level ancestor queries can be built in deterministic linear time and in O(nlog o) bits of space:

Lemma 33. Given the compressed suffix tree of a string T = [1..0]™, we can build in O(n) time and in
O(nlog o) bits of working space, a data structure that allows the compressed suffiz tree to answer stringAncestor
queries in O(((logs n)/e)log®n - loglogn) time. Such data structure takes o(n) bits of space.

Proof. We call depth of a node the number of edges in the path that connects it to the root, and we call height
of an internal node v the difference between the depth of the deepest leaf in the subtree rooted at v and the
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depth of v. To build the data structure, we first sample a node every b in the suffix tree. Specifically, we
sample a node iff its depth is multiple of b and its height is at least b. Note that the number of sampled nodes
is at most n/b, since we can associate at least b — 1 non-sampled nodes to every sampled node. Specifically,
let v be a sampled node at depth b for some i. If no descendant of v is sampled, we can assign to v all the
at least b nodes in the path from v to its deepest leaf. If at least one descendant of v is sampled, then v has
at least one sampled descendant w at depth (i 4+ 1)b, and we can assign to v all the b — 1 non-sampled nodes
in the path from v to w.

We perform the sampling using just operations supported by the balanced parentheses representation of
the topology of the suffix tree (see Lemma 12). Specifically, we perform a preorder traversal of the suffix tree
topology using Lemma 13, we compute the depth and the height of every node v using operations depth and
height provided by the balanced parentheses representation, and, if v has to be sampled, we append pair
(id(v), stringDepth(id(v))) to a temporary list pairs. Building pairs takes O((n/b)- (logf n)/e) time, and
pairs itself takes O((n/b)logn) bits of space. During the traversal we also build a sequence of balanced
parentheses S, that encodes the topology of the subgraph of the suffix tree induced by sampled nodes: every
time we traverse a sampled node from its parent we append to S an opening parenthesis, and every time we
traverse a sampled node from its last child we append to S a closing parentheses. At the end of this process,
we build a weighted level ancestor data structure (WLA, see e.g. [1]) on the set of sampled nodes, where
the weight assigned to a node equals its string depth. To do so, we build the data structure of Lemma 12 on
S, and we feed S and pairs to the algorithm described in [1]. The WLA data structure takes O(n/b) space
and it can be built in O(n/b) time. Finally, we build a dictionary D that stores the identifiers of all sampled
nodes: the size of this dictionary is O((n/b) logn) bits. The dictionary and the WLA data structure are the
output of our construction.

We now describe how to answer stringAncestor(id(v),d), waving details on corner cases for brevity.
We first check whether w, the lowest ancestor of v at depth b for some ¢, is sampled: to do so, we compute
e = depth(id(v)), we issue ancestor(id(v),ib), where i = |e/b], using the suffix tree topology, and we query
D with id(w). If w is not sampled, we replace w with its ancestor at depth (i — 1)b, which is necessarily
sampled. If the string depth of w equals d, we return id(w). Otherwise, if the string depth of w is less than d,
we perform a binary search over the range of tree depths between the depth of w plus one and the depth of v,
using operations ancestor and stringDepth. Otherwise, we query the WLA data structure to determine u,
the deepest sampled ancestor of w whose depth is less than d, and we perform a binary search over the range
of depths between the depth of u plus one and the depth of w, using operations ancestor and stringDepth.
Note that the range explored by the binary search is of size at most 2b, thus the search takes O(logb) steps
and O(logb - ((log n)/e)) time. Setting b = log® n makes the query time O(loglogn - ((log€ n)/e€)), the time
to build pairs O(n), and the space taken by pairs and by the WLA data structure o(n) bits. (]
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7 String analysis

In this section we use the enumerators of right-maximal substrings described in Theorems 3 and 6 to solve a
number of fundamental string analysis problems in optimal deterministic time and small space. Specifically,
we show that all such problems can be solved efficiently by just implementing function callback invoked by
Algorithms 2 and 3. We also show how to compute matching statistics and distinguishing statistics (defined
below) using a bidirectional BWT index.

7.1 Matching statistics

Definition 8 ([68, 67]). Given two strings S € [1..0]" and T € [1..0]™, and an integer threshold T > 0, the
matching statistics MSt s.» of T' with respect to S is a vector of length m that stores at index i € [1..m] the
length of the longest prefiz of T[i..m] that occurs at least T times in S.

Definition 9 ([68, 67]). Given S € [1..0|™ and an integer threshold T > 0, the distinguishing statistics DSg -
of S is a vector of length |S| that stores at index i € [1..|S]] the length of the shortest prefix of S[i..|S|] that
occurs at most T times in S.

We drop a subscript from DSg . whenever it is clear from the context. Note that DSg -[i] > 1 for all 4
and 7. The key additional property of DSg r, which is shared by PLCP g, is called §-monotonicity:

Definition 10 ([59]). Let a = apai...a, and 6 = §102...0, be two sequences of nonnegative integers.
Sequence a is said to be 6-monotone if a; — a;—1 > —0; for all i € [1..n].

Specifically, MSr s.-[i] — MS7.g,[i — 1] > —1 for all i € [2.m], DSr,[i] — DSr,[i — 1] > —1 and
PLCP74[i] — PLCPpyli — 1] > —1 for all ¢ € [2..m + 1]. This property allows all three of these vectors to be
encoded in 2z bits, where x is the length of the corresponding input string [62, §].

The matching statistics array and the distinguishing statistics array of a string can be built in linear time
from the bidirectional BWT index of Theorem 12:

Lemma 34. Given a bidirectional BWT index of T € [1..0]™ that supports every operation in time linear in
the size of its output, we can build DSt , in O(n) time and in O(logn) bits of working space.

Proof. We proceed as in the proof of Lemma 31, scanning T’ = T# from left to right. Assume that we
are at position ¢ of 7', and assume that we know DS[i]. Then, aW = T'[i..i + DS[i] — 2] occurs more than
T times in T’ and it is a right-maximal substring of 7. To compute DS[i + 1], we take the suffix link
from the node of the suffix tree of 7" that corresponds to aWV, using operation contractLeft, and we issue
extendRight operations on string W using characters T'[i + DS[i] — 1], T"[i + DS[i]], etc., until the frequency
of the right-extension of W drops again below 7 + 1. O

Lemma 35. Let S € [1..0]” and T € [1..0]™ be two strings. Given a bidirectional BWT index of their
concatenation S#1T#s< that supports every operation in time linear in the size of its output, we can build
MSt s+ in O(n+m) time and in n+m + o(n +m) bits of working space.

Proof. We use the same algorithm as in Lemma 34, scanning 7" from left to right and checking at each step the
frequency of the current string in S. This can be done in constant time using a bitvector which[l..n +m + 2]
indexed to support rank operations, such that which[i] = 1 iff the suffix of S#;T#- with lexicographic rank
i starts inside S. O

By plugging Theorem 12 into Lemmas 34 and 35, we immediately get the following result:

Theorem 14. Let S € [1..0]" and T € [1..0]™ be two strings. We can build DSy . in randomized O(m)
time and in O(mlogo) bits of working space, and we can build MSt s, in randomized O(n + m) time and
in O((n+m)logo) bits of working space.

Moreover, using Algorithm 3, we can achieve the same bounds in deterministic linear time:
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Theorem 15. Let S € [1..0]" and T € [1..0]™ be two strings. We can build DSy, in O(m) time and in
O(mlogo) bits of working space, and we can build MSy g - in O(n + m) time and in O((n + m)logo) bits
of working space.

Proof. For simplicity we describe just how to compute MSr 5 1. Note that array MSy g can be built in linear
time from two bitvectors start and end, of size |T| each, where start[i] = 1 iff MS¢ g[i] > MSp g[i — 1] — 1,
and where end[j] = 1 iff there is an ¢ such that j =i 4+ MSp g[i] — 1.

To build start, we use an auxiliary bitvector start’ of size |T'| 4 1, initialized to zeros, and we run
Algorithm 3 to iterate over all right-maximal substrings W of S#17T#3 that occur both in S and in 7. Let
repr’' (W) = ({chars®, chars”}, {first® first”}). If chars” \ chars® = (), we don’t process W further
and we continue the iteration. Otherwise, for every character b € chars” \ chars®, we enumerate all the
distinct characters a that occur to the left of Wb in T', and their corresponding intervals in BWTry, as
described in Lemma 21. If aW is not a prefix of a rotation of S, we set to one all positions in start’[i..j],
where [i..j] is the interval of aWb in BWTry. At the end of this process, we invert BWTry4 and we set
start[i+ 1] = 1 for every i such that start’[j] = 1 and j is the lexicographic rank of suffix T'[i..|T'||# among
all suffixes of T#. Finally, we repeat the entire process using BWTrx, BWTgx and end’. The claimed
complexity comes from Theorems 8 and 6. O

7.2 Maximal repeats, maximal unique matches, maximal exact matches.

Recall from Section 2 that string W is a mazimal repeat of string T € [1..0]™ if W is both left-maximal and
right-maximal in 7. Let {W?!, W2 ... W°} be the set of all occ distinct maximal repeats of T. We encode
such set as a list of occ pairs of words (p?, |W?|), where p’ is the starting position of an occurrence of W in
T.

Theorem 16. Given a string T € [1..0]", we can compute an encoding of all its occ distinct mazimal repeats
in O(n + occ) time and in O(nlogo) bits of working space.

Proof. Recall from Section 4 the representation repr(W) of a substring W of T. Algorithm 2 invokes
function callback on every right-maximal substring W of T': inside such function we can determine the
left-maximality of W by checking whether h > 1, and in the positive case we append pair (first[1],|W]) to a
list pairs, where first[l] in repr(W) is the first position of the interval of W in BWT 4 (see Algorithm 5).
After the execution of the whole Algorithm 2, we feed pairs to Lemma 3, obtaining in output a list of
lengths and starting positions in 7' that uniquely identifies the set of all maximal repeats of T'.

We build BWT7x from T using Theorem 8. Then, we use Lemma 7 to build a data structure that
supports access and partialRank queries on BWTry, and we discard BWTrx. We use this structure
both to implement function LF in Lemma 3, and to build the rangeDistinct data structure of Lemma 19.
Finally, as described in Theorem 3, we implement Lemma 22 with this rangeDistinct data structure. We
allocate the space for pairs and for related data structures in Lemma 3 using the static allocation strategy
described in Section 3.1. We charge to the output the space taken by pairs. In Lemma 3, we charge to the
output the space taken by list translate, as well as part of the working space used by radix sort. o

Maximal repeats have been detected from the input string in O(nlog o) bits of working space before, but
not in overall O(n) time. Specifically, it is possible to achieve overall running time O(nlog o) by combining
the BWT construction algorithm described in [38], which runs in O(nloglogo) time, with the maximal
repeat detection algorithm described in [12], which runs in O(nlog o) time. The claim of Theorem 16 holds
also for an encoding of the maximal repeats that contains, for every maximal repeat, the starting position
of all its occurrences in T'. In this case, occ becomes the number of occurrences of all maximal repeats of
T. Specifically, given the BWT interval of a maximal repeat W, it suffices to mark all the positions inside
the interval in a bitvector marked[l..n], to assign a unique identifier to every distinct maximal repeat, and
to sort the translated list pairs by such identifier before returning it in output. Bitvector marked can be
replaced by a smaller bitvector marked’ as described in Lemma 3.

Once we have the encoding (p’, |[IW?|) of every maximal repeat W*, we can return the corresponding string
Wt by scanning T in blocks of size logn, i.e. outputting log, n characters in constant time: this allows us to
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ALGORITHM 5: Function callback for maximal repeats. See Theorem 16 and Algorithm 2.

Input: repr(W), |W|, BWTz, and C array of string T € [1..0]" " '#. Matrices A, F, L, gamma, leftExtensions,
and counter h, from Lemma 21. List pairs.
if h < 2 then
| return;
end
pairs.append ((first[1], |[W]));

print the C total characters in the output in overall C/log, n time. Alternatively, we can discard the original
string altogether, and maintain instead an auxiliary stack of characters while we traverse the suffix-link tree
in Lemma 22. Once we detect a maximal repeat, we print its string to the output by scanning the auxiliary
stack in blocks of size logn. Recall from Section 2.3 that the leaves of the suffix-link tree are maximal
repeats: this implies that the depth d of the auxiliary stack is at most equal to the length of the longest
maximal repeat, thus the maximum size dlogo of the auxiliary stack can be charged to the output.

A supermaximal repeat is a maximal repeat that is not a substring of another maximal repeat, and a
near-supermaximal repeat is a maximal repeat that has at least one occurrence that is not contained inside
an occurrence of another maximal repeat (see e.g. [32]). The proof of Theorem 16 can be adapted to detect
supermaximal and near-supermaximal repeats within the same bounds: we leave the details to the reader.

Consider two string S and T. For a mazimal unique match (MUM) W between S € [l..0]™ and T €
[1..0]™, it holds that: (1) W = S[i..i+k—1] and W = T'[j..j + k — 1] for exactly one i € [1..n] and for exactly
onejel.m]; (2)ifi—1>1and j—1>1,then S[i—1]#T[j—1]; (4) if i+ k <n and j+ k < m, then
Sli+ k] # T[j + k] (see e.g. [32]). To detect all the MUMs of S and T, it would suffice to build the suffix
tree of the concatenation C = S#,T#3 and to traverse its internal nodes, since MUMs are right-maximal
substrings of C, like maximal repeats. More specifically, only internal nodes v with exactly two leaves as
children can be MUMs. Let the two leaves of a node v be associated with suffixes C[i..|C|] and C[j..|C],
respectively. Then, ¢ and j must be such that ¢ < |S| and j > |S + 1|, and the left-maximality of v can be
checked by accessing S[i — 1 (mod; n)] and T[j — 1 (mod; m)] in constant time.

This notion extends naturally to a set of strings: a string W is a maximal unique match (MUM) of d
strings T, T2,..., T, where T? € [1..0]™, if W occurs exactly once in T? for all i € [1..d], and if W cannot
be extended to the left or to the right without losing one of its occurrences. We encode the set of all maximal
unique matches W of T, T2,... T% as a list of occ triplets of words (p’, |W|, id), where p’ is the first position
of the occurrence of W in string 7%, and id is a number that uniquely identifies . Note that the maximal
unique matches of T, T2,...,T? are maximal repeats of the concatenation T = T # \T2#, - - - #, T4,
thus we can adapt Theorem 16 as follows:

Theorem 17. Given a set of strings T ,T2,...,T% where d > 1 and T* € [1..o|* for all i € [1..d], we
can compute an encoding of all the distinct mazimal unique matches of the set in O(n + occ) time and in

O(nlog o) bits of working space, where n = Z'Z:l |T? and occ is the number of words in the encoding.

Proof. We build the same data structures as in Theorem 16, but on string T = T # T4 - - - #,T%,,
and we enumerate all the maximal repeats of T using Algorithm 2. Whenever we find a maximal repeat
W with exactly d occurrences in T, we set to one in a bitvector intervals([l..|T|] the first and the last
position of the interval of W in BWTy (see Algorithm 6). Note that the BWT intervals of all the maximal
repeats of T with exactly d occurrences are disjoint. Then, we index intervals to support rank queries in
constant time, we allocate another bitvector documents|1..|T|], and we invert BWTr. Assume that, at the
generic step of the inversion, we are at position ¢ in 7" and at position j in BWTr. We decide whether j
belongs to the interval of a maximal repeat with d occurrences, by checking whether rank;(intervals, j)
is odd, or, if it is even, whether intervals[j] = 1. If j belongs to an interval [z..y] that has been marked
in intervals, we compute x using rank queries on intervals, and we set documents[z + p — 1] to one,
where p is the identifier of the document that contains position ¢ in 7. Finally, we scan bitvectors intervals
and documents synchronously: for each interval [z..y] that has been marked in intervals and such that

44



Uk W N

R N T

ALGORITHM 6: First callback function for maximal unique matches. See Theorem 17 and Algorithm 2.

Input: repr(W), |W|, BWTz, and C array of string T € [1..0]" " '#. Matrices A, F, L, gamma, leftExtensions,
and counter h, from Lemma 21. Bitvector intervals[l..|T].
if h <2 orfirst[|first|] — first[l] # d then
| return;
end
intervals[first[l]] «+ 1;
intervals[first[|first|] — 1] + 1;

ALGORITHM 7: Second callback function for maximal unique matches. See Theorem 17 and Algorithm 2.

Input: repr(W), [W|, BWTr, and C array of string T' € [1..0]" " '#. Matrices A, F, L, gamma, leftExtensions,
and counter h, from Lemma 21. Bitvector intervals[l..|T|]. List pairs. Integer id.

if h <2 orfirst[|first|] — first[l] #d or intervals[first[l]] # 1 or intervals[first[|first|] —1] # 1 then
| return;
end
for i € [first[l]..first[|first|] — 1] do
pairs.append ((i, |W],1d));
id < id+ 1;
end

documents(i] = 0 for some ¢ € [z..y], we reset intervals|z] and intervals[y| to zero. Finally, we iterate
again over all the maximal repeats of T' with exactly d occurrences, using Algorithm 2. Let W be such a
maximal repeat, with interval [x..y] in BWTr: if intervals[z] = intervals[y] = 1, we append to list pairs
of Theorem 16 a triplet (¢, |[W|,id) for all ¢ € [x..y], where id is a number that uniquely identifies W (see
Algorithm 7). Then, we continue as in Theorem 16. O

Maximal exact matches (MEMSs) are related to maximal repeats as well. A triplet (7,7, ¢) is a mazimal
ezact match (also called mazimal pair) of two strings Tt and T2 if: (1) T [i...i+l—1]=T?*[j...j+0—1] =
W; (2)ifi—1>1andj—1>1,then T'i — 1] # T?[j — 1]; 3) if i + £ < |T'| and j + £ < |T?|, then
TYi+ 4] #T?j + 4] (see e.g. [3, 32]). We encode the set of all maximal exact matches of strings T and T2
as a list of occ such triplets. Since W is a maximal repeat of T'#,T2?#, that occurs both in 7' and in T2,
we can build a detection algorithm on top of the generalized iterator of Algorithm 3, as follows:

Theorem 18. Given two strings T and T? in [1..0]", we can compute an encoding of all their occ mazimal
exact matches in O(|TY| + |T?| + occ) time and in O((|T*| + |T?|)log o) bits of working space.

Proof. Recall that Algorithm 3 uses a rangeDistinct data structure built on top of the BWT of T, and a
rangeDistinct data structure built on top of the BWT of T2, to iterate over all the right-maximal substrings
W of T 44, T?#,. For every such W, the algorithm gives to function callback the intervals of all strings
aWb such that a € [1..0], b € [1..0], and aWb is a prefix of a rotation of T, and with the intervals of all
strings ¢Wd such that ¢ € [1..0], d € [1..0], and cWd is a prefix of a rotation of 72. Recall from Section 4 the
representation repr’ (W) of a substring W of T #,T?#,. Inside function callback, it suffices to determine
whether W occurs in both T' and T2, using arrays first! and first? of repr/(W), and to determine
whether W is left-maximal in T 4, T%#3, by checking whether h > 1 (see Algorithm 8). If both such tests
succeed, we build a set X that represents all strings aWWb that are the prefix of a rotation of T, and a set
X? that represents all strings cI¥d that are the prefix of a rotation of 72

X' ={ (a,b,4,5): a = leftExtensions[p], p < h, gamma'[a] > 0, b = A'[d][q],
q < gamma'[a], i = F'[a][q], j = L[al[q] }

X2 ={ (c,d,i,j"): c=1leftExtensions[p], p < h, gamma®[c] > 0, d = A*[d][q],
q < gamma'[c], i’ = F*[c][q], 5 = L*[c][q] }
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ALGORITHM 8: Function callback for maximal exact matches. See Theorem 18 and Algorithm 3. Operator ®
is from Lemma 36.
Input: repr’ (W), W[, {BWT iy}, {C'} arrays. Matrices {4}, {F'}, {L'}, {gamma’}. Array leftExtensions and
counter h. List pairs.

if h <2 or|chars'|=0 or |chars®’| =0 then

| return;
end
Xt ¢
X% « 0,
for i € [1..h] do
a < leftExtensions|i];
if gamma'[a] > 0 then

for j € [1..gamma' [a]] do
| X' X U{(a, A'fa]5], FH[allj), L' [al i) }:
end

nd
f gamma®[a] > 0 then
for j € [1..gamma®[a]] do

| X% X2 U {(a, A2[alj], F2la]lj], 2Ll
end

=

end

end
Y « X' X%
for (4,5,7',5') € Y do

for z € [i..j], y € [¢'..7'] do
| pairs.append((:c,y,|W|));
end

end

In such sets, [i..j] is the interval of aWb in the BWT of T4, and [i’..5'] is the interval of cWd in the BWT
of T?#. Building X' and X2 for all maximal repeats W of T'#,T?#j, takes overall linear time in the size
of the input, since every element of X' (respectively, of X?2) can be charged to a distinct edge or implicit
Weiner link of the generalized suffix tree of T'#,T?#5, and the number of such objects is linear in the size
of the input (see Observation 1). Then, we use Lemma 36 to compute the set of all quadruplets (4, j,4', j')
such that (a,b,i,7) € X1, (c,d,i',j') € X?, a # c and b # d, in overall linear time in the size of the input and
of the output, and for every such quadruplet we append all triplets (z,y, |W|) to list pairs of Theorem 16,
where x € [i..j] and y € [i’..5']. Running Algorithm 3 and building its input data structures from 7 and 72
takes overall O(|T| + |T?|) time and O((|T"| + |T?|)log o) bits of working space, by combining Theorem 8
with Lemmas 7, 19 and 23.

Finally, we translate every x and y in pairs to a string position, as described in Theorem 16. We allocate
the space for pairs and for related data structures in Lemma 3 using the static allocation strategy described
in Section 3.1. We charge to the output the space taken by pairs. In Lemma 3, we charge to the output
the space taken by list translate, as well as part of the working space used by radix sort. O

Lemma 36. Let X be a set, and let A and B be two subsets of ¥ x X. We can compute A Q@ B =
{(a,b,¢,d) | (a,b) € A, (c,d) € B,a £ ¢,b # d} in O(|A| + |B| + |4 BJ) time.

Proof. We assume without loss of generality that |A| < |B|. We say that two pairs (a, b), (¢, d) are compatible
if a # c and b # d. Note that, if (a,b) and (¢, d) are compatible, then the only elements of ¥ x ¥ that are
incompatible with both (a,b) and (¢, d) are (a,d) and (c,b). We iteratively select a pair (a,b) € A and scan
A in O(JA4|) = O(|B]) time to find another compatible pair (¢, d): if we find one, we scan B and report
every pair in B that is compatible with either (a,b) or (¢,d). The output will be of size |B| — 2 or larger,
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thus the time to scan A and B can be charged to the output. Then, we remove (a,b) and (¢,d) from A
and repeat the process. If A becomes empty we stop. If all the remaining pairs in A are incompatible
with our selected pair (a,b), that is, if ¢ = a or d = b for every (c,d) € A, we build subsets A% and A®
where A% = {(a,x) : © # b} C A and A® = {(z,b) : z # a} C A. Then we scan B, and for every
pair (z,y) € B different from (a,b) we do the following. If x # a and y # b, then we report (a,b,z,y),
{(a,z,2,y) : (a,2) € A% z # y} and {(2,b,2,y) : (2,b) € A®, 2 # x}. Pairs (a,y) € A% and (z,b) € A are
the only ones that do not produce output, thus the cost of scanning A% and A% can be charged to printing
the result. If x = a and y # b, then we report {(z,b,2,%) : (2,b) € A*}. If 2 # a and y = b, then we report
{(a,z,2,y) : (a,2) € A®}. O

Theorem 18 uses the matrices and arrays of Lemma 21 to access all the left-extensions aW of a string W,
and for every such left-extension to access all its right-extensions aWb. A similar approach can be used to
compute all the minimal absent words of a string T'. String W is a minimal absent word of a string T' € X+
if W is not a substring of T' and if every proper substring of W is a substring of T (see e.g. [17]). To decide
whether aWWb is a minimal absent word of T', where {a,b} C X, it suffices to check that aWb does not occur
in T, and that both aW and Wb occur in T. Only a maximal repeat of T' can be the infix W of a minimal
absent word aWb: we can enumerate all the maximal repeats W of T as in Theorem 16. Recall also that
aWb is a minimal absent word of T" only if both aW and Wb occur in T. We can use repr(W) to enumerate
all strings Wb that occur in T', we can use vector leftExtensions to enumerate all strings aWW that occur
in T, and finally we can use matrix A to discard all strings aWWb that occur in 7. Algorithm 9 uses this
approach to output an encoding of all distinct minimal absent words of T" as a list of triplets (i, ¢,b), where
each triplet encodes minimal absent word T'[¢..i + ¢ — 1] - b. Every operation of this algorithm can be charged
to an element of the output, to an edge of the suffix tree of T, or to a Weiner link. The following theorem
holds by this observation, and by applying the same steps as in Theorem 16: we leave its proof to the reader.

Theorem 19. Given a string T € [1..0]™, we can compute an encoding of all its occ minimal absent words
in O(n + occ) time and in O(nlogo) bits of working space.

Recall from Section 2 that occ can be of size ©(no) in this case. Minimal absent words have been detected
in linear time in the length of the input before, but using a suffix array (see [4] and references therein).

7.3 String kernels

Another way of comparing and analyzing strings consists in studying the composition and abundance of all
the distinct strings that occur in them. Given two strings T and T2, a string kernel is a function that
simultaneously converts T and T? to composition vectors {Tt, T2} C R", indexed by a given set of n > 0
distinct strings, and that computes a similarity or a distance measure between T and T2 (see e.g. [35, 45]).
Value T#{W] is typically a function of the number fr: (W) of (possibly overlapping) occurrences of string W
in T* (for example the estimate p;(W) = fr:(W)/(|T?| — [W| + 1) of the empirical probability of observing
W in T%). In this section, we focus on computing the cosine of the angle between T and T2, defined as:

2w THWIT2[W]
VW THWP) (3 T2WP)

Specifically, we consider the case in which T is indexed by all distinct strings of a given length k (called
k-mers), and the case in which T! is indexed by all distinct strings of any length:

w(T, T?) =

Definition 11. Given a string T € [l..0]T and a length k > 0, let vector Ty = [1..0%] be such that
T[W] = fr(W) for every W € [1..0]*. The k-mer complexity C(T, k) of string T is the number of nonzero
components of Tx. The k-mer kernel between two strings T' and T? is k(Tg, TZ).

Definition 12. Given a string T € [1..0]T, consider the infinite-dimensional vector T, indexed by all
distinct substrings W € [1..0]t, such that Too[W] = fr(W). The substring complexity C(T') of string
T is the number of nonzero components of To,. The substring kernel between two strings T' and T? is
(TS, TZ,).
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ALGORITHM 9: Function callback for minimal absent words. See Theorem 19 and Algorithm 2.

Input: repr(W), |W|, BWTz, and C array of string T € [1..0]" " '#. Matrices A, F, L, gamma, leftExtensions,
and counter h, from Lemma 21. Bitvector used[l..o] initialized to all zeros. List pairs.
if h < 2 then
| return;
end
for i € [1..|chars|] do
| used|chars[i]] + 1;
end
for i € [1..h] do
a < leftExtensions|i];
for j € [1..gamma[a]] do
| usedlAfa][j] O
end
for j € [1..|chars|] do
b + chars[j];
if used[b] = 0 then
pairs.append ((F[a][1],|W]|+ 1,b));
used[b] + 1;
end

end

end

for i € [1..|chars|] do
| used|chars[i]] + 0;

end

Substring complexity and substring kernels, with or without a constraint on string length, can be com-
puted using the suffix tree of a single string or the generalized suffix tree of two strings, using a telescoping
technique that works by adding and subtracting terms to and from a sum, and that does not depend on the
order in which the nodes of the suffix tree are enumerated [9]. We can thus implement all such algorithms
as callback functions of Algorithms 2 and 3:

Theorem 20. Given a string T € [1..0]", there is an algorithm that computes:

o the k-mer complexity C(T, k) of T, in O(n) time and in O(nlogo) bits of working space, for a given
integer k;

o the substring complezity C(T), in O(n) time and in O(nlogo) bits of working space.
Given two strings T' and T? in [1..0]T, there is an algorithm that computes:

o the k-mer kernel between T* and T?, in O(|T| + |T?|) time and O((|T*| + |T?|)log o) bits of working

space, for a given integer k;

e the substring kernel between T and T?, in O(|T*| + |T?|) time and in O((|T*| + |T?|)log o) bits of
working space.

Proof. To make the paper self-contained, we just sketch the proof of k-mer complexity given in [9]: the same
telescoping technique can be applied to solve all other problems: see [9].

A Ek-mer of T is either the label of a node of the suffix tree of T', or it ends in the middle of an edge (u,v)
of the suffix tree. In the latter case, we assume that the k-mer is represented by its locus v, which might be
a leaf. Let C(T,k) be initialized to |T| + 1 — k, i.e. to the number of leaves that correspond to suffixes of
T# of length at least k, excluding suffix T[|T'| — k+ 2..|T'|]#. We use Algorithm 2 to enumerate the internal
nodes of STy, and every time we enumerate a node v we proceed as follows. Let £(v) = W. If |W| < k we
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leave C(T, k) unaltered, otherwise we increment C(T, k) by one and we decrement C(T, k) by the number of
children of v in STy, which is equal to |chars| in repr(W). It follows that every node v of STpx that is
located at depth at least & and that is not the locus of a k-mer is both added to C(T, k) (when the algorithm
visits v) and subtracted from C(T, k) (when the algorithm visits parent(v)). Leaves at depth at least k are
added by the initialization of C(T', k), and subtracted during the enumeration. Conversely, every locus v of a
k-mer of T (including leaves) is just added to C(T, k), because |¢(parent(v))| < k. The claimed complexity
comes from Theorem 8 and Theorem 3. (|

A number of other kernels and complexity measures can be implemented on top of Algorithms 2 and 3:
see [9] for details. Since such iteration algorithms work on data structures that can be built from the input
strings in deterministic linear time, all such kernels and complexity measures can be computed from the
input strings in deterministic O(n) time and in O(nlog o) bits of working space, where n is the total length
of the input strings.
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