4 research outputs found

    Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings

    Get PDF
    Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words

    Reconstruction of Trees from Jumbled and Weighted Subtrees

    Get PDF
    Let T be an edge-labeled graph, where the labels are from a finite alphabet Sigma. For a subtree U of T the Parikh vector of U is a vector of length |Sigma| which specifies the multiplicity of each label in U. We ask when T can be reconstructed from the multiset of Parikh vectors of all its subtrees, or all of its paths, or all of its maximal paths. We consider the analogous problems for weighted trees. We show how several well-known reconstruction problems on labeled strings, weighted strings and point sets on a line can be included in this framework. We present reconstruction algorithms and non-reconstructibility results, and extend the polynomial method, previously applied to jumbled strings [Acharya et al., SIAM J. on Discr. Math, 2015] and weighted strings [Bansal et al., CPM 2004], to deal with general trees and special tree classes

    Reconstruction of Trees from Jumbled and Weighted Subtrees

    Get PDF
    Let T be an edge-labeled graph, where the labels are from a finite alphabet Sigma. For a subtree U of T the Parikh vector of U is a vector of length |Sigma| which specifies the multiplicity of each label in U. We ask when T can be reconstructed from the multiset of Parikh vectors of all its subtrees, or all of its paths, or all of its maximal paths. We consider the analogous problems for weighted trees. We show how several well-known reconstruction problems on labeled strings, weighted strings and point sets on a line can be included in this framework. We present reconstruction algorithms and non-reconstructibility results, and extend the polynomial method, previously applied to jumbled strings [Acharya et al., SIAM J. on Discr. Math, 2015] and weighted strings [Bansal et al., CPM 2004], to deal with general trees and special tree classes

    28th Annual Symposium on Combinatorial Pattern Matching : CPM 2017, July 4-6, 2017, Warsaw, Poland

    Get PDF
    Peer reviewe
    corecore